当前位置:文档之家› 关于菱形天线的设计原理

关于菱形天线的设计原理

关于菱形天线的设计原理
关于菱形天线的设计原理

关于菱形天线的设计原理

高增益四菱形无线数字电视接收天线制作

中心频率为600MHz

+----+

|__

|/\__C/F/4*1。01=12。6cm|\/|

|/\|

|\/|

|/\|

|\/|

|/\|

|\/|

||

+----+

辐射器距反射板约8.2 cm 细调之, 至接收讯号最强

反射板到五金行购镀锌铁网来作

辐射器使用一般1.0 的PVC 单心电线绕制

辐射体详图:

/\

/\

/\

\/

\/

\/此处交叉, 但不短路

/\

/\

/\

\/

\/

)(此处不交叉, 形成><, 中央> < 处接

/\5c2v同轴电缆, 同轴电缆中心导体接一边/\> , 外部导体接另一边<

\/

\/

\/此处交叉, 但不短路

/\

/\

/\

\/

\/

\/

将5c2v 同轴电缆接在>< 处, 直接往后透过铁丝网引出

增益约有15dbi 上下

水平波束角约60 度到70 度之间

利用PVC 水管及木螺纹钉作为支撑骨架即可

若还要提高增益, 可再加装导波环四组

____

/\____C/F/4*0。8=10cm

\/

/\

\/

/\

\/

/\

\/

每个导波环置放于辐射体前方约18cm 处细调之, 至信号最强加装一组(四个)导波环, 增益可达17dbi 上下

加装导波环后, 水平波束角会减小..

辐射器或导波环的骨架固定例(此处以导波环为例):

木螺纹钉

|︿|*

/*\|<-此处绕线

/||\-|-

/||\-。-

/||\

-/---+-+---\-

(。*。)

-\---+-+---/-

\||/

\||/\

\||/。如此绕线就可以

\*/\|\在同一平面上

|﹀||\

||*\*

|︿|*\|\

/*\-|-----\\----

/||\||\\

/||\-。-----。-\\--

/||\\。

-/---+-+---\-\|\

(。*。)|

-\---+-+---/-*\

\||/

\||/

\||/

\*/

|﹀|

︴︴

︴︴

此天线很适合安装在墙面上或绑在水塔侧边..

若觉得您的接收讯号不佳, 试试这个自制天线, 我拿它在宜兰可以收到台北竹子山的讯号.. ---------------------------------------------------------------------------------------------------------------

信号强度的差距, 若排除天线频率响应的问题, 主要是看转播站位置, 距离及接收与发射天线的辐射涵盖图形, 另直射波与反射波也会有所关系..

在无线电领域, 基本的评估方式如下(理想状况):

Ri = Po - Co + Ao - 92.4 - 20 log D - 20 log F + Ar - Cr

Ri : 接收到的信号准位, 单位dbm

Po : 发射机输出功率, 单位dbm

Co : 发射机电波馈送电缆传输损失, 单位db

Ao : 以接收者的位置观察, 发射机天线在此角度的增益,

单位dbi , 通常发射天线增益会以最大增益方向角

度的增益值来标示,但是以广播发射站而言, 会因接

收者位置的不同, 相对于天线角度的不同, 而呈现不

同的增益..

92.4 : 真空传播衰减常数, 若频率单位改用MHz 时, 常数

值则为32.4, 因为20log F(Ghz) = 60 + 20log F(MHz),

同理, 若距离单位改用公尺或英里, 也是如此转换,

我个人是喜欢用92.4 的常数..

D : 接收点到发射点间的距离, 单位公里

F : 所使用频率, 单位GHz

Ar : 接收器天线增益, 单位dbi 但若发射站位置不在该天

线最大增益方向, 记得扣除相对增益..

Cr : 接收器传输电缆传输损失, 单位db

以上式子是电波在真空中, 理想状态下的传输, 这里要特别提到一点是, 式子中, 似乎频率越高, 传输衰减越严重,故有些文章会如此描述, 但实则不然, 式子中频率越高, 衰减越多是因为天线的长度随着所使用波长的缩短而缩短, 故等效截收截面积跟着缩减的关系, 也因为是面积, 故用20 log 而不是10 log..

由此式子我们也可以知道, 距离每增一倍, 在其它条件都不变的情况下, 接收信号准位少6db, 故距离增一倍, 若要维持相同的接收信号强度, 除了增加功率6db 外, 就是要提升天线系统Ao + Ar 6db..

这是理想状况的式子, 在实际情况下, 我们还会碰到障碍物所引起的绕射, 反射等多重影响, 这就用到"夫累聂" 带的评估, 这在以后有兴趣时, 再来谈谈..

至于为何要乘上 1.01, 主要是环型天线周长约略等于 1.01~1.1 波长时, 虚数阻抗几近为零(天线谐振), 此时其阻抗值约为100 ohm, 我们看这种天线结构, 刚好主要是两个环型并接, 故可得到50 ohm 的天线阻抗, 虽然用在75 ohm 的接收系统时, 因阻抗不完全匹配, 其SWR 会稍高, 但因为是接收系统, 没有发射机, 故不必担心因阻抗不匹配而损坏发射机, 更何况加上反射板时, 天线整体会呈电感性, 阻抗也会增加, 用在75 ohm 的接收系统, 不会有啥大问题..

单一组(四个环)的不须特别做阻抗匹配, 但要再合并多个时就需要..

这种利用两组环形天线并联, 加上反射板的天线, 记得好像是一位德国人发明的, 因为效能良好, 尤其是在UHF 频带, 制作也简单, 水平波束角宽, 且为水平极化, 阻抗在50ohm 附近, 在UHF 及微*注意*通讯的业余自制天线, 常被采用..

一个环形天线的圆周长等于所使用波长乘上 1.01~1.1 时, 处于谐振状态, 且等长线段涵盖最大截面积是呈现圆形, 在此状况下, 环形天线有效截面比dipole 大, 故约比dipole 天线多出1db 的增益, 已知标准dipole 天线增益为 2.15dbi, 故一组环形天线增益约为3.15dbi, 当将两组环形并接时, 截面积增一倍, 增益加3db, 再加上反射板, 将朝后的能量往前送, 增益再增一倍, 故双环形天线加上反射板, 增益可达3.15+3+3 = 9.15dbi, 实作上可以利用调整到反射板的距离, 将波束集中一些, 故可获得约9~12 dbi 的天线增益; 而四环形天线, 环形数量比双环形多一倍, 有效截面积多出将近一倍, 故增益约可达12~15dbi..

我们以4 菱形天线来看其动作原理..

假设馈电缆中心导体接天线右侧激励点" < ", 外部导体接天线左侧激励点" > ", 那么呈现在天线的高频电波相位如下:

/\

↗↘

270/\90

\/

↖↙

180\/0

/\

↙↖

270/\90

\/

↘↗此处接同轴电缆中心导体, 定义相位为0 度

180)(0换言之另一侧相位就是180 度, 在经过四分

↗↘之一波长的单边长度, 电波延迟移相90 度,

/\再经过四分之一波长单边长度, 电波再移相

\/成为180 度到左侧, 从图面箭头路径可知, 从

↖↙上到下, 所有天线激励均左右同相位, 依天线

\/收发等效原理, 接收天线所截收下来的电波,

/\在馈电点相位都一样, 故波幅增加..

↗↘但因为实际环周长是比所使用波长还长, 再

/\考虑导体传送电波时应有的波长缩短因子,

\/故实际上每经过单边长度后, 电波延迟所呈

↖↙现的相位增加比90 度还多, 故像这样的迭

\/接, 以中心点起算到上下两端, 以两个环形

(一共四个) 为限, 再多也提升不了多少增益,

且当以此天线为发射天线的立场观之, 较大

部分的能量集中在靠近中央的两个环上, 故

若再增加迭接数量, 提升的效果非常有限..

若还要再提升增益, 有几个方法:

1.利用导波板(四个环):

作用原理如同Y AGI 的导波器, 在增加一组导波板时, 增益约可

增加3db, 在天线方向上再增加导波板数量, 适当调整距离间格,

导波板数量每增一倍, 增益多3db, 而实际上如同Y AGI 的导波器,

并不到3db 那么多, 且有一定极限..

下图是运用在2.45 GHz 的频率上, 若要用在DVB-T的频带, 记得

换算波长:

2.利用反射板:

作用原理如同碟形天线的碟子一般, 如图

3.数个四菱形天线, 利用功率分配合成网络, 将每个天线的讯号合并在一起, 在UHF 带, 因为有现成的分配合成器, 且价位低廉, 不像在SHF 带那么昂贵, 建议直接购用现成的分配成器即可, 就如同将两个Y AGI 天线迭接一般, 须考虑各个分支电缆长度, 让每个天线所截收下来的信号, 到达合并点时须为同相位, 但因为4菱形天线的水平波束角相当宽, 若想让天线最大增益方向不是在正前方时, 可以增减各个分支电缆的长度, 让在某方向的电波, 经由各个天线接收下来到达合并点时能够同相..

如下图, 希望天线组增益最大方向是斜向左侧N 度

同相位的位置

\\\/各个天线所接收的电波相位, 以最左边的

\\/\天线为零度来当基准, 则

\\/\X = x / (C / F) * 360

\\/\\z= 电波路径长Y = y / (C / F) * 360

\\/\y\Z = z / (C / F) * 360

↘/↘x↘↘

↘↘↘↘

OXYZ所使用的电缆长度

-+--+--+--+-c1.c2.c3.c4 , 须让电

||||波传送到合并器时

||||相位一样, 那么天线

c1|c2|c3|c4|最大增益方向就会

||||朝向左侧N 度的位置

\\//, 这种做法, 就如同

\||/相位数组天线一般..

\||/此处以c1 的电缆出口

+-------------+为0 度, 那么c2 相位

||延迟就是-X, C3 为-Y

||C4 为-Z, 那么电波到

||达合并器时, 相位就

||会一样..

另外要注意, 一般VHF/UHF 的功率合并分配器, 其每组分支出口的相位有可能相差180 度, 譬如一分二(二合一), 其两组输出相位可能刚好相反(视分配合成器的结构而定), 须把此项因素考虑进去, 通常的做法是若发现此种现象, 将天线馈电点位置左右互换即可..

这里要注意的是, 电波在电缆中传送的速度较真空慢, 故利用电缆长度来达到电波相位延迟, 须先查表得知电波在该种电缆的波长缩减比例, 以RG58 来说, 这个值约为0.66, 换言之, 300MHz 的电波在真空中波长约为1M, 该电波在真空中传输一公尺远的点, 电压与原点同相, 故利用一米长的RG58 传输该电波, 在电缆出口处的电波相位与电缆入口比较将会是

L/ (C/F*0.66) * 360 = 1米/ (光速/300MHz * 0.66) * 360 = 185.5 度..

而SHF 因为频率高, 一般市售VHF/UHF 功率合成分配器(变压器结构) 不适用, 此时可以利用电缆来制作, 大体上有两种方式, 一是共振线法, 一是迭接并接法, 参考以下我以前写的网页:

https://www.doczj.com/doc/da6382310.html,/mysite/ch...ant-network.htm

网页中的数值, 是以50 ohm 阻抗的系统来举例, 75 ohm 的系统也可用, 只是共振线的取得较困难, 尤其是 1 to 2 时, 其共振线传输阻抗会是sqr(150*75)= 106ohm 及sqr(37.5*75) = 53ohm两种数值,前者很难找到这样的电缆, 后者倒是可以用rg58 (50~52ohm); 而1 to 4

及迭接合并法则没这样的困扰..

这里顺带一提, 使用共振线法, 因为频率不同, 共振线长度就需要不同, 故共振线方式只能用在窄频带..

而底下这张照片中的16 菱形天线, 就是利用迭接法将四组四菱形天线合并, 故每两组天线的馈电点左右相反, 而分支电缆长度都相同, 故最大增益方向垂直于天线面, 也就是朝向您的方向..

这个天线排列方式, 其水平波束角相当窄, 约在10~20 度之间, 若全部以垂直方式来合并如同下图方式, 则水平波束角与原4 菱形同, 但垂直波束角约只有3 度:

/\↓共16 个

\/ /\

\/ /\

\/ /\

\/ /\

\/ /\

\/ /\

\/ /\

\/ ↑

至于所制作出来的天线大小, 请各位以天线单边长来绘图想象一下吧.... 当初我所制作的那个拿来收台北数字电视讯号的4x 含一组导波, 印象中高近90 cm, 厚近30cm (不做导波装置会薄很多), 宽约30~40 cm 忘了!故真要像照片那样做16 菱形, 则天线长宽各约. 1 米, 若想垂直方向迭接, 天线将高达3 米.....><"

最初由antion 发表

车机建议还是使用全方位的垂直天线比较适当。因为在车天线上装上反射板,天线会变成有方向性,可能会影响行动时的收视讯号喔!除非您车辆定点收视。

嗯! 是可以, 但是一般全向性垂直天线为垂直极化, 极化不匹配, 会有损失, 其实只要做出水平极化的全向形天线即可:

建议可以试着装设环型天线, 如双菱形的型态, 而不加反射板, 若车用机有自动天线切换装置(空间分集接收型, 大多为拥有两组天线输入接座, 找看看, 看是否有四输入的机型), 则装设两组, 分别朝向相差90 度的方向..

因为不加反射板的双菱形, 其辐射图场是类似赫芝天线的" 8 " 字型

---

/\

/\

/\

||

\/ \/

\/

\/

------------从上往下看

/\

/\

/\

/\

||

\/ \/

\/

---

因此如下图摆放, 那么左边的天线接收前后方向(出入屏幕方向), 右边摆放接收左右方向, 因此不管波源在哪个方向都可涵盖到..

左边天线右边天线左边天线右边天线

/\||/\

\/||\/

/\||/\

\/||\/

从前后看从侧边看

每一组天线各接往接收机其中一组天线输入端子接座

若制作技巧足够者, 可以试着将它们复合在一起:

/|\

\|/

/|\

\|/

每一组天线也一样各接往接收机其中一组天线输入接座

若接收机是单一天线输入型态者(无空间分集), 可以参考上次在pczone 所讨论的全向性天线的做法, 将每个环的方向个别朝向相差90 度的面向如下图:

|/\

|\/

/\|

\/|

从前后看从左右看

或者如下图:

/\|

\/|

|/\

|\/

|/\

|\/

/\|

\/|

从前后看从左右看

或者像渔船的通信天线如下图:

\/

/|\这两组天↗\/↖这两组天

\|/线端子接→><←线端子接

在一起,↘/\↙在一起,

接同轴中心/\接同轴外部

从侧面看从底侧往上看

不然将个别朝向不同方向的方向性天线, 利用合并分配器连结后成一路后, 接到接收机也是可以:

-----

+-----+

|||||

||↓||

左||-→O←-||右

||↑||

|||||

+-----+

-----

后O:代表合并器

从上(下)往下(上)看

若是两组天线输入的机器, 可用2 to 1 的合并器两组, 以两组天线为一单位, 分别接续两组, 个别接到接收机天线输入端头..

若您的接收机为具备四组天线输入端子的空间分集接收机, 那么将个别天线接往各端子, 会是最佳组合..

--------------------------------------------------------------------------------

最初由chenyu6 发表

看过这篇文章觉得"菱形天线"好像很不错

所以我想制作一个山贼兄的"菱形天线",我不是读电子,那些公式我看不懂

有那位好心的大大可以告诉我那"菱形天线"要怎么做才可以给接收机用谢谢

--------------------------------------------------------------------------------

要制作它是很简单的, 材料到五金行及水电行买:

1.充当反射板的镀锌铁丝网, 铁丝不要太细, 最好有1mm 直径以上, 免得容易了掉, 网孔大小至少要能穿过同轴电缆..

2.制作辐射器用的电线, 一般的电源导线即可, 导体直径建议至少1mm 以上, 免得容易断掉..

3.用来当支架的水管, 用四分管即可, 若想要做得漂亮, 可搭配一些T 型管..

4.自攻(自攻牙)螺钉, 就是尾巴尖尖, 可以直接锁进木头的那种..

再来就是制作天线, 首先您要决定如何利用水管制作天线骨架的几何型态, 简单的参考做法如下图:

ps:此处以双菱形举例, 仅是举例, 希望您自己动动脑看以啥方式是最好的, 我自己做的, 是用另外的方式..

水管

↓铁丝网

∥↙将电线绕制在螺钉上, 作为辐射器

∥︴↙

∥︴……+…*←自攻螺钉

同轴∥︴水管|

电缆∥︴O…+…*

↓∥︴|

=======±

∥︴|

∥︴O…+…*

∥︴水管|

∥︴……+…*

∥︴

∥↖↑

调整距离

侧面图

铁丝网

+++++++++++*:自攻螺钉

+++++︿+++++

++++/*\++++=:水管

+++/+++\+++

+=〈*===*〉=+※:接同轴电缆

+++\+++/+++

++++\+/++++\/

+++++※+++++\︵/

++++/+\++++\\

+++/+++\+++(。)

+=〈*===*〉=+//

+++\+++/+++/︶\

++++\*/++++/\

+++++﹀+++++

+++++++++++同轴电缆接续图,辐射器

左侧”>”接中心点,右侧正面图”<”接电缆外部导体.

水管同轴电缆, 穿过铁丝网, 绕过垂铁丝网↘∥↙直的那支水管即可, 建议绕过的↘O∥方向是在接外部导体的那一侧

~~~~~~∥~~~~←

=========适当调整距离↗–:--:--:–←

水管***↖

↖↑↗辐射器

自攻螺丝

俯视图

辐射器边长, 以中心频率为600MHz, 为12.6 cm

↙12.6 cm, 为方便制作,

︿取13 cm 也可以..

/\

/\↙

〈〉

\/

\/

由此可知, 双菱形辐射器高等于

12.6 / sqr(2) * 4 = 12.6 / 1.414 * 4 = 36 cm :

?

/\

\/36 cm

/\

\/_

而四菱形高就约为72 cm..

但这单指辐射器本体, 因为反射器必须比辐射器还大, 故以双菱形来说, 就至少需用40 * 20 的铁丝网, 而四菱形的反射器至少需为80 * 20 的铁丝网, 而我因为是制作4菱形, 所以当初是购买一尺未经裁切的量(高约3尺)来制作的

1. 这样的摆放方式是"水平极化"

/\

\/

/\

\/

相当符合目前转播站发送的电波极化方向..

此外这种天线从上往下看, 其波束角约有60 度, 故您所谓的 2 度, 应是指天线倾斜的程度, 但在垂直面的波束角, 也不只2 度, 我想您家里接收到的强度与质量, 大概只落在临界点附近, 在这样的环境下测试, 测不出天线应有的波束特性, 故可以的话, 最好加上反射板后, 到空旷可直视转播站的地点测试看看..

2.宜兰属平原地带且幅员距离最远仅45KM 上下, 排除建物阻挡外, 均可直视转播站, 故信号良好是应当的, 而双菱形天线行动状态下使用, 因为车辆方向随时在改变, 而此种天线有方向性, 故很可能您在测试时, 电波源时常落在该天线波束角外; 若要让它对四面八方的电波源都可接收, 可以参考之前的举例, 尤其是用四菱形弯成下图的方式:

/\|

\/|

|/\

|\/

|/\

|\/

/\|

\/|

从前后看从左右看

信号强度的差距, 若排除天线频率响应的问题, 主要是看转播站位置, 距离及接收与发射天线的辐射涵盖图形, 另直射波与反射波也会有所关系..

在无线电领域, 基本的评估方式如下(理想状况):

Ri = Po - Co + Ao - 92.4 - 20 log D - 20 log F + Ar - Cr

Ri : 接收到的信号准位, 单位dbm

Po : 发射机输出功率, 单位dbm

Co : 发射机电波馈送电缆传输损失, 单位db

Ao : 以接收者的位置观察, 发射机天线在此角度的增益,

单位dbi , 通常发射天线增益会以最大增益方向角

度的增益值来标示,但是以广播发射站而言, 会因接

收者位置的不同, 相对于天线角度的不同, 而呈现不

同的增益..

92.4 : 真空传播衰减常数, 若频率单位改用MHz 时, 常数

值则为32.4, 因为20log F(Ghz) = 60 + 20log F(MHz),

同理, 若距离单位改用公尺或英里, 也是如此转换,

我个人是喜欢用92.4 的常数..

D : 接收点到发射点间的距离, 单位公里

F : 所使用频率, 单位GHz

Ar : 接收器天线增益, 单位dbi 但若发射站位置不在该天

线最大增益方向, 记得扣除相对增益..

Cr : 接收器传输电缆传输损失, 单位db

以上式子是电波在真空中, 理想状态下的传输, 这里要特别提到一点是, 式子中, 似乎频率越高, 传输衰减越严重,故有些文章会如此描述, 但实则不然, 式子中频率越高, 衰减越多是因为天线的长度随着所使用波长的缩短而缩短, 故等效截收截面积跟着缩减的关系, 也因为是面积, 故用20 log 而不是10 log..

由此式子我们也可以知道, 距离每增一倍, 在其它条件都不变的情况下, 接收信号准位少6db, 故距离增一倍, 若要维持相同的接收信号强度, 除了增加功率6db 外, 就是要提升天线系统Ao + Ar 6db..

这是理想状况的式子, 在实际情况下, 我们还会碰到障碍物所引起的绕射, 反射等多重影响, 这就用到"夫累聂" 带的评估, 这在以后有兴趣时, 再来谈谈..

至于为何要乘上 1.01, 主要是环型天线周长约略等于 1.01~1.1 波长时, 虚数阻抗几近为零

(天线谐振), 此时其阻抗值约为100 ohm, 我们看这种天线结构, 刚好主要是两个环型并接, 故可得到50 ohm 的天线阻抗, 虽然用在75 ohm 的接收系统时, 因阻抗不完全匹配, 其SWR 会稍高, 但因为是接收系统, 没有发射机, 故不必担心因阻抗不匹配而损坏发射机, 更何况加上反射板时, 天线整体会呈电感性, 阻抗也会增加, 用在75 ohm 的接收系统, 不会有啥大问题..

所谓的Dopplequad 就是daul quad ! 也就是之前写的2x quad antenna, 它的理论增益约3.15 + 3 + 3 = 9.15dbi, 辐射体到反射体的距离与反射体大小及密度, 都会决定该天线的阻抗特性及辐射图场, 一般来说, 反射体比所使用半波长还长即可, 更长一点, 在某个范围内波束角会小一点, 波束更集中, 而距离的选择, 大致上是所使用波长的1/6.5 左右, 但没有确切的数据, 因为这与您所使用的反射体结构与密度及大小有关, 须经实作调整..

若您还想再提升增益, 可以试着以下做法:

1.增加导波环

2.将两个环远离中心点那端, 适当拉远离反射板, 如下图:

侧面图:

\/

-----→\/

--------------

顶视图:

将这端点远离反射板

/\

\/

/\

\/

将这端点远离反射板

建议可以试着装设环型天线, 如双菱形的型态, 而不加反射板, 若车用机有自动天线切换装置(空间分集接收型, 大多为拥有两组天线输入接座, 找看看, 看是否有四输入的机型), 则装设两组, 分别朝向相差90 度的方向..

因为不加反射板的双菱形, 其辐射图场是类似赫芝天线的" 8 " 字型

---

/\

/\

/\

||

\/ \/

\/

\/

------------从上往下看

/\

/\

/\

/\

||

\/ \/

\/

---

因此如下图摆放, 那么左边的天线接收前后方向(出入屏幕方向), 右边摆放接收左右方向, 因此不管波源在哪个方向都可涵盖到..

左边天线右边天线左边天线右边天线

/\||/\

\/||\/

/\||/\

\/||\/

从前后看从侧边看

每一组天线各接往接收机其中一组天线输入端子接座

若制作技巧足够者, 可以试着将它们复合在一起:

/|\

\|/

/|\

\|/

每一组天线也一样各接往接收机其中一组天线输入接座

若接收机是单一天线输入型态者(无空间分集), 可以参考上次在pczone 所讨论的全向性天线的做法, 将每个环的方向个别朝向相差90 度的面向如下图:

|/\

|\/

/\|

\/|

从前后看从左右看

或者如下图:

/\|

\/|

|/\

|\/

|/\

|\/

/\|

\/|

从前后看从左右看

或者像渔船的通信天线如下图:

\/

/|\这两组天↗\/↖这两组天

\|/线端子接→><←线端子接

在一起,↘/\↙在一起,

接同轴中心/\接同轴外部

从侧面看从底侧往上看

不然将个别朝向不同方向的方向性天线, 利用合并分配器连结后成一路后, 接到接收机也是可以:

-----

+-----+

|||||

||↓||

左||-→O←-||右

||↑||

|||||

+-----+

-----

后O:代表合并器

从上(下)往下(上)看

若是两组天线输入的机器, 可用2 to 1 的合并器两组, 以两组天线为一单位, 分别接续两组, 个别接到接收机天线输入端头..

若接收机为具备四组天线输入端子的空间分集接收机, 那么将个别天线接往各端子, 会是最

佳组合..转载请注明出自中国无线论坛https://www.doczj.com/doc/da6382310.html,/,本贴地址:https://www.doczj.com/doc/da6382310.html,/thread-1871-1-1.html

2.4G_各式各样WiFi天线的DIY试验

2.4G WiFi 天线的DIY试验 初学者型奶粉罐天线 一、选型 先上网收集天线资料,看到很多国外的天线DIYER做出来的WIFI天线真是五花八门!有螺旋天线、有八木天线、有菱形天线、有栅网天线、还有罐头天线......让人看得眼花缭乱。经过再三筛选,最终把制作目标锁定在罐头天线上。选择它为DIY对象主要是因为这种天线取材方便、效率高!十分适合初学者制作。 二、制作 圆筒天线之所以取材方便,是由于人人家里必定有铁罐、金属筒之类的东西。笔者就是随便拿了一个奶粉罐制作的。 下面是参照外国WIFI网站的图片而画的制作图。 各数据如下: 中心频点=2.445G 圆筒直径=127mm 圆筒长度=111mm 振子长度=31mm 振子距圆筒底部边距=37mm 从图片可以看出,馈线的屏蔽网连接金属圆筒,信号通过圆筒反射到振子上,当然振子就是馈线的芯线了,芯线与金属筒是绝缘的,这点必须注意! 在参照外国爱好者制作WIFI天线的同时,笔者加入了自己的想法:很多爱好者都喜欢在圆筒加装N座或BNC座,然后在馈线的连接处做对应的N头或BNC头,用于连接。但笔者觉得虽然该方法对使用十分方便,但同时也对信号造成了损耗(估计1-2DBI),尤其在2.4G 的频段更加明显!因此,mr7决定把屏蔽网直接焊在圆筒上(焊接前先把外壳打磨光滑),而作为振子的芯线则保留其原来的泡沫绝缘。这样一来把损耗减到最低。有点专线专用的味

道了! 建议大家最好在焊接前找根直径稍比馈线粗一点的小铜管和热缩套管,先把铜管套在馈线上,然后跟屏蔽网一起焊牢在金属圆筒的外壳上,然后用热风筒把热缩套管来回吹多次,把馈线固定在铜管上,这样一来可以很好的减低由于调节天线时给馈线和振子带来的影响!

抛物面天线的工作原理

抛物面天线的工作原理 普通抛物面天线的结构如图3-1所示。馈源是一种弱方向性天线,安装在抛物面前方的焦点位置上,故普通抛物面天线又称为前馈天线。由馈源辐射出来的球面波被抛物面往一个方向(天线轴向)反射,形成尖锐的波束,这种情况与探照灯极为相似。 图 3-1 普通抛物面天线的结构图图 3-2 普通抛物面天线的几何关系图 抛物面是由抛物线绕它的轴线(z轴)旋转而成的,如图3-2所示。在yoz平面上,以F为焦点,O 为顶点的抛物线方程为: 相应的立体坐标方程为: 为了便于分析,也可引入极坐标。令极坐标系(ρ,ψ) 的原点与焦点F重合,则相应的旋转抛物面的方程可表示为: 设D为抛物面口径的直径,为口径对焦点所张的角(简称口径张角),由上述关系式可导出决定抛物面口径张角的抛物面焦径比: 焦径比的大小表征了抛物面的结构特征,f/D越大,口径张角越小,抛物面越浅,加工就容易,但馈源离主反射面越远,天线的抗干扰能力就越差,反之亦然。 抛物面具有如下重要的几何光学特性:由焦点发出的各光线经抛物面反射,其反射线都平行于z轴;反之,当平行光线沿z轴入射时,则被抛物面反射而聚焦于F点。其原因是,由焦点发出的各光线经抛物面反射后到达口径面的行程相等(这一结论可利用抛物线的以下性质来证明:从抛物线任一点到焦点的距离等于该点到准线的距离)。

微波的传播特性与光相似,因此,位于焦点F的馈源所辐射的电磁波经抛物面反射后,在抛物面口径上得到同相波阵面,使电磁波沿天线轴向传播。如果抛物面口径尺寸为无限大,那么抛物面就把球面波变为理想平面波,能量只沿z轴正方向传播,其它方向辐射为零。但实际上抛物面的口径是有限的,这时天线的辐射是波源发出的电磁波通过口径面的绕射,它类似于透过屏上小孔的绕射,因而得到的是与口径大小及口径场分布有关的窄波波束。 3.2.2 偏馈天线 前馈抛物面天线的馈源位于天线的主波束内,因而对所接收的电磁波形成了遮挡,其结果降低了天线的增益,增大了旁瓣。将馈源移出天线反射面的口径,可消除馈源及其支撑物对电磁波的遮挡。图3-3示出了偏馈反射面天线的结构示意图。 实际上,偏馈反射面是在旋转抛物反射面上截取一部分而构成的。它同样可将焦点发出的球面波转换成沿轴向传播的平面波。馈源的相位中心仍放在原抛物面的焦点上,但馈源的最大辐射须指向偏馈反射面的中心。尽管反射面的轮廓呈椭圆型,但它的口径仍是一个圆。此外,对于偏馈天线而言,电磁波的最大辐射方向并不在偏馈反射面的法向,而是与法向成一定的夹角。这一特点也是偏馈天线的另一特 色,如图3-4所示。对于偏馈天线有式中,ψo是抛物面轴线与焦点到反面中心联线的夹角。反射面在这条中心两旁张成2ψe的角度。 图 3-3 偏馈天线的结构图 图 3-4 偏馈反射面天线的几何关系图

第一讲 天线基本原理

第一讲天线基本原理 1、天线的基本概念 1.天线的作用 在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。 天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。 2.天线问题的实质 从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。 从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。 3.对天线结构的概念理解 采用不同的模型,对天线可以有不同的理解。典型的模型比如:开放的电容 [思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方? 开放的传输线 从传输线理论理解,天线可以看做是将终端开路的传输线终端掰 开。 TM mn型波导 将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励

高次模。 由电磁波源和电磁波传输媒质形成电磁波传输的机构 波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。 [思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。 [哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。 2、电磁场基本方程 1.麦克斯韦方程 (电生磁。若电场变化,则磁场随之变化) (磁生电。若磁场变化,则电场随之变化) (磁力线是无始无终的封闭闭合曲线) (电力线出发和终止于自由电荷)

抛物面天线的工作原理

面天线的结构和工作原理 一、抛物面天线 (一)抛物面天线的结构 常用的抛物面天线从结构上看,主要由两部分组成: 照射器,由一些弱方向性天线来担当,想短电对称振子天线,喇叭天线。 作用:是把高频电流转换为电磁波并投射到抛物面上。 抛物面,它一般有导电性能较好的铝合金板构成,其厚度为1.5-3(mm),或者用玻璃钢构成主抛物面,然后在其内表面粘贴一层金属网或金属栅栏。网孔的最大值要求小于λ/8-λ/10,过大将造成对电磁波的漏射现象,影响天线的正常工作性能。 作用:构成天线辐射场方向性的主要部分。 图 1-1 普通抛物面天线的结构图图 1-2 普通抛物面天线的几何关系图(二)工作原理 抛物面具有如下重要的几何光学特性:由焦点发出的各光线经抛物面反射,其反射线都平行于z轴;反之,当平行光线沿z轴入射时,则被抛物面反射而聚焦于F点。其原因是,由焦点发出的各光线经抛物面反射后到达口径面的行程相等(这一结论可利用抛物线的以下性质来证明:从抛物线任一点到焦点的距离等于该点到准线的距离)。 微波的传播特性与光相似,因此,位于焦点F的馈源所辐射的电磁波经抛物面反射后,在抛物面口径上得到同相波阵面,使电磁波沿天线轴向传播。如果抛物面口径尺寸为无限大,那么抛物面就把球面波变为理想平面波,能量只沿z轴正方向传播,其它方向辐射为零。但实际上抛物面的口径是有限的,这时天线的辐射是波源发出的电磁波通过口径面的绕射,它类似于透过屏上小孔的绕射,因而得到的是与口径大小及口径场分布有关的窄波波束。 二、卡塞格伦天线

(一)卡塞格伦天线的结构 卡塞格伦天线是一种双反射面天线,其主反射面是旋转抛物面,副反射面是旋转双曲面。卡塞格伦天线的结构与普通抛物面天线的差别,不仅在于多了一个副反射面,而且把馈源安装到了主反射面后面上,如图1-3所示。故有时也把卡塞格伦天线称为后馈天线。 图 1-3 卡塞格伦天线的结构图 (二)卡塞格伦天线的工作原理 卡塞格伦天线的工作原理是,根据双曲面的性质,由F2发出的电磁波被副面反射,其反射的电磁波方向可以看成是共轭焦点F1发出的射线方向。又因为F1是抛物面的焦点,所以,由F2发出的电磁波经副反射面和主反射面反射后,在口径面形成同相场,从而得到平行于轴向的电磁辐射波。 双反射面的优点之一在于可以采用赋形技术。如果修正旋转双曲面的形状,使口径场分布符合要求,同时适当地修改主面以校正由于副面改变而引起的口径场相位差,那么,卡塞格伦天线将有较高的电性能。但卡塞格伦天线的副面直径一般要取较大,这在小口径天线中会造成较大的遮挡,所以在小天线中很少采用卡塞格伦结构方案。

螺旋天线原理与设计基础知识

一般成品螺旋天线都用导电性能良好的金属线绕成并密封好,其工作原理下: 图1 所示一般天线结构示意图。D是螺旋天线直径,L是螺旋天线长度,ρ是螺距,Ⅰ、Ⅱ是螺旋线上相对应两点。 一般可以认为,电磁波沿金属螺旋线以光速C作匀速运动。 从Ⅰ点到Ⅱ点即进行一个螺旋,所需时间为 t = πD/C 而对螺旋天线而言,其轴向电磁波只运动行进了一个螺距ρ,其轴向等效速率 υ=ρ/t =ρ/C (πD) 这种关系也可用图2形式解释。由图2可知: υ=Csinθ=Cρ/(πD)≤C 由上式可以看出,υ总是小于等于C的。故螺旋天线能使电磁波运动速度减慢,是一个慢波系统,其等效波长λ等效小于工作波长λ。对于螺旋天线而言,应谐振于其1/4等效波长,因而能缩短螺旋天线的几何长度。 对于工作于一定中心频率的通讯机来说,其所需绕的线圈数N可以由下式近似算出:

螺距:υ=L/N 所需金属线长度:ι=NπD 对于一般通讯机可取 L=20~40cm D=10~20mm 下表是对一些常用频率螺旋天线的设计实例,其他频率也可类似设计。 f是工作中心频率; D是螺旋天线直径; L是螺旋天线长度; N是螺旋圈数; ι是所需金属线长度。 以上N、ρ为了实际制作需要均取近似值。 制作时可用直径0.5~1.5mm漆包线或镀银铜线或铝线在直径为D的有机玻璃或其他绝缘材料上绕制,并在棒的两头打上小孔,以利于固定金属线;在棒的底端焊上较粗的金属杆或插头固定在棒上,以利于与机器连接;整个螺旋天线的外面可用橡胶管或其他材料套封,并在顶端盖上橡皮帽或用其他材料密封,这样既美观大方,又防雨防蚀,经久耐用。如果没有上述金属丝,也可采用多股细绝缘导线代替,效果相同,只是绕制时固定较为困难。 以上螺旋天线也可用于各种小型遥控设备及其他类似机器上。 为了比较慢波天线与常规拉杆天线的不同,说明慢波天线尺寸较小的优点,我们可对拉杆天线作一计算。 设定参数如下:

板状天线原理及分析

工学院课程考核论文 课程名称:微波技术与天线 题目:板状天线基本原理及分析专业:电子信息工程 班级:08级1班 姓名:李亮亮 学号:1665080115 任课教师:张平娟

摘要 本文主要介绍了板状天线的原理以及做出相应的分析。 由于微带天线具有重量轻、低剖面、成本低、易于制造、封装和安装等许多固有的优点,本文选用微带贴片天线作为天线单元。首先采用传输线法和腔模理论对矩形微带天线进行分析,计算出矩形贴片的长,宽,并选择基板材料和高度。然后针对设计指标详细讨论了各种因素对微带贴片天线性能的影响,用背馈的方式完成了微带贴片天线单元的设计方案,从而简化馈电网络。 板状天线基本原理及分析 一.板状天线基本原理 板状天线的基本知识: 无论是GSM 还是CDMA,板状天线是用得最为普遍的一类极为重要的基站天线。这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能可靠以及使用寿命长。板状天线也常常被用作为直放站的用户天线,根据作用扇形区的范围大小,应选择相应的天线型号。 图1-1板状天线的基本形式 如图所示,板状天线是在阵列天线或者天线单元的下方加上一块反射板,使波束往前方发射,利用反射板可把辐射能控制到单侧方向,平面反射板放在阵列的一边构成扇形区覆盖天线。下面的图1-2说明了反射面的作用,反射面把功率反射到单侧方向,提高了增益。天线的基本知识全向阵(垂直阵列不带平

面反射板)。抛物反射面的使用,更能使天线的辐射,像光学中的探照灯那样,把能量集中到一个小立体角内,从而获得很高的增益。不言而喻,抛物面天线的构成包括两个基本要素:抛物反射面和放置在抛物面焦点上的辐射源,基站天线可供设计的参数是天线的垂直波瓣和水平波瓣,垂直波瓣是通过阵列天线来实现的,而水平波瓣是由所采用的天线单元样式和相应的反射板所决定。 图1-2水平面方向图 板状天线高增益的形成: 1.采用多个半波振子排成一个垂直放置的直线阵,如图1-3 图1-3直线阵的方向和模型 2.在直线阵的一侧加一块反射板(以带反射板的二半波振子垂直阵为例),如图2-4

天线功能与工作原理

中国联通江苏分公司 技 术 交 流 材 料 江苏靖江亚信电子科技有限公司二00三年六月十一日 目录

一、天线功能与工作原理 (3) 二、天线的分类 (6) 三、性能指标与检测方法 (9) 四、天线结构和质量保证 (14) 五、天线选型原则 (20) 一、天线功能与工作原理 用来进行无线通讯的手机和基站,在空中是通过无线电波来传递信息的,需要有无线电波的辐射和接收。在无线电技术设备中,用来辐射和接收无线电波的装置称为天线。 天线的功能首先在于辐射和接收无线电波,但是能辐射或接收电磁波的装置并

不一定都能用来作为天线,任何高频电路,只要不被完全屏蔽,都可以向周围空间辐射电磁波,或者从周围空间接收电磁波,但是并非任何高频电路都能用作天线,因为辐射或接收效率有高有低,为了有效地辐射或接收电磁波,天线的结构形式应该满足一定的要求。 例如,像平行双导线传输线这样的封闭结构就不能用作天线,因为双导线传输线在周围空间激发的电磁场很微弱,终端开路的平行双导线传输线上的电流呈驻波分布。在两根互相平行的导线上,电流方向相反,线间距离远小于波长,所激发的电磁场在两线外部大部分空间中,由于相位相反而相互抵消。如果把两根导线的末端逐渐张开,辐射就会逐渐增强,当两根线完全张开时,张开的两臂短于半波长,上面电流的方向相同,在周围空中激发的电磁场在某些方向由于相位关系而互相抵消,在大部分方向则互相叠加,或者部分叠加、部分抵消,使辐射显著增强,这样的结构称为开放式结构,由末端开路的平行双导线传输线张开而成的天线,就是通常的对称振子天线。 作为基站天线,常常要求天线在水平面内向所有方向(一圈360o)均匀地辐射(或对所有方向具有同等的接收能力),具有这种特性的天线,叫做全向天线。而对某些基站天线,只要求能覆盖含有一定角度的一个扇区,这种天线叫做定向天线,对这种天线要求只向待定的扇形区域辐射(或只接收来自特定扇形区域的无线电波),在其它方向不辐射或辐射很弱(不能接收或接收能力很弱)。也就是说,要求天线具有所谓方向性。 如果天线没有方向性,无线电波呈球形向外均匀辐射,即所谓无方向性天线。此时,对发射天线来说,所辐射的功率中只有很少一部分到达所需要的方向,大部分功率浪费在不需要的方向上;对接收天线来说,在接收到所需要的信号同时,还接收到来自其它方向的干扰和噪声,甚至使信号完全淹没在干扰和噪

天线的基本知识

一、发射天线的作用 广播电视发射台的主要设备包括了:信号源系统、发射机设备以及铁塔和天馈线系统。 在广播电视传输的各个环节中,天馈线系统是各环节中最终的主要设备之一,其作用是将广播电视信号以电磁波的形式向空间传送能量。 天线可以向周围辐射电磁波能量,在计算天线辐射场强时,天线的增益若能提高3dB,则相当于发射机有效功率提高一倍。因此,使用较高增益的天线更具有较大的使用价值。 二、天线的发展 1、1887年郝兹在验证电磁波存在时使用了双球发射天线和单环天线。 2、1897年出现了能实现5Km通信的大型长波天线。 3、1901年马可尼研制出第一付大型垂直极化天线实现3700Km远程通信。 4、20年代初中波天线兴起和发展,从T型、Г型和伞型天线到后来的拉线 式或自立式铁塔天线。凌风公司在2003年又率先研制出了自立式缩短型 曲线式中波电小天线。 5、30年代雷达的出现推动了喇叭天线透镜天线介质天线、缝隙天线等超 短波天线的诞生。1928年著名的八木天线研制成功并推广应用至今。 6、40—50年代:蝙蝠翼天线、带有反射板的各种半波振子天线、大功率缝 隙天线迅速发展。长、中、短天线基本定型。 7、随着科技的发展,高增益、宽频带、高分辨率、快速扫描的天线大量出现, 相控天线取得了突破性发展,现代天线已有微带天线、有源相控天线、超导天线、四维天线等。更有向小型化、轻便、隐形化的发展趋势。 三、天线问题求解的基本方法 1、解析法:对形状极为简单的天线求得精确解。 2、近似解析法:变分法、微扰法、迭代法、几何光学法几何绕射法、物理绕射法等。 3、数值法:利用计算机进行运算,可用纯数值法,也可用矢量法。但是,较 为复杂的天线,仍然是用多次实验的方法优化出来的,某些电参数用经验公式或实验曲线计算。 四、天线的主要参数 1、天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。 天线与馈线的连接,最理想的情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波。

卡塞格伦天线的工作原理

卡塞格伦天线的工作原理 时间:2015-08-10 来源:天线设计网TAGS:卡赛格伦 我们已经知道,反射面天线的方向图形状(波束指向、主瓣宽度、副瓣电平)决定于天线口径上的场(或电流)分布。而口径场分布又由馈源的方向图和反射面的形状确定。改变反射面的形状,即采用长焦距的反射面来得到较均匀的口径场分布。但是,焦距变长之后,天线纵向尺寸变大,这不仅使结构上不便,而且馈线变长会增加损耗,对远距离通讯来说增加噪声,降低效率。 另外,要获得低副瓣(如-40dB),口径场振幅分布还不能是均匀的,应满足一定分布规律。这由单反射面和一个馈源来调整是困难的。采用双反射面天线,可方便地控制口径场分布。既可以使反射面的焦距较短,又可保证得到所需的天线方向图,而且使设计增加了灵活性。双反射面天线系统的设计起源于卡塞格伦光学望远镜。这种光学望远镜以其发明人卡塞格伦Cassegrain命名。下图为中国科学院国家天文台、中电集团39所联合研制的 40米射电望远镜,位于中科院云南天文台(昆明东郊凤凰山),于2005年8月动工兴建,2006年5月投入运行。40米射电望远镜的主要任务,是接收嫦娥卫星下行的科学数据并参与完成对绕月卫星的精密测轨。 40米射电望远镜是一台转台式卡塞格伦型天线,总重约360吨。天线主反射面直径40米,由464块铝合金实体单块面板和不锈钢网状单块面板构成,中央(直径26米以内部分)由208块实体单块面板构成,周边直径26米至40米部分则由256块网状单块面板构成。正十六边形的天线中心体空间行架结构及辐射梁、环梁构成天线的主反射体背架结构。40米天线馈电采用后馈卡焦方式,焦长为13.2米。直径4.2米的双曲线副反射体由4根与俯仰轴成450 方向对称布局的支撑柱支撑。是不是很高大上呢?

无线网络WiFi天线原理

无线网络WiFi天线原理 1.7.2 高增益栅状抛物面天线 从性能价格比出发,人们常常选用栅状抛物面天线作为直放站施主天线。由于抛物面具有良好的聚焦作用,所以抛物面天线集射能力强,直径为 1.5 m 的栅状抛物面天线,在900兆频段,其增益即可达 G = 20dBi。它特别适用于点对点的通信,例如它常常被选用为直放站的施主天线。 抛物面采用栅状结构,一是为了减轻天线的重量,二是为了减少风的阻力。 抛物面天线一般都能给出不低于 30 dB 的前后比,这也正是直放站系统防自激而对接收天线所提出的必须满足的技术指标。 1.7.3 八木定向天线 八木定向天线,具有增益较高、结构轻巧、架设方便、价格便宜等优点。因此,它特别适用于点对点的通信,例如它是室内分布系统的室外接收天线的首选天线类型。 八木定向天线的单元数越多,其增益越高,通常采用 6 - 12 单元的八木定向天线,其增益可达 10-15dBi。 1.7.4 室内吸顶天线 室内吸顶天线必须具有结构轻巧、外型美观、安装方便等优点。 现今市场上见到的室内吸顶天线,外形花色很多,但其内芯的购造几乎都是一样的。这种吸顶天线的内部结构,虽然尺寸很小,但由于是在天线宽带理论的基础上,借助计算机的辅助设计,以及使用网络分析仪进行调试,所以能很好地满足在非常宽的工作频带内的驻波比要求,按照国家标准,在很宽的频带内工作的天线其驻波比指标为VSWR ≤ 2 。当然,能达到VSWR ≤ 1.5 更好。顺便指出,室内吸顶天线属于低增益天线, 一般为G = 2 dBi。 1.7.5 室内壁挂天线 室内壁挂天线同样必须具有结构轻巧、外型美观、安装方便等优点。 现今市场上见到的室内壁挂天线,外形花色很多,但其内芯的购造几乎也都是一样的。这种壁挂天线的内部结构,属于空气介质型微带天线。由于采用了展宽天线频宽的辅助结构,借助计算机的辅助设计,以及使用网络分析仪进行调试,所以能较好地满足了工作宽频带的要求。顺便指出,室内壁挂天线具有一定的增益,约为G = 7 dBi。 2 电波传播的几个基本概念 目前GSM和CDMA移动通信使用的频段为: GSM:890 - 960 MHz, 1710 - 1880 MHz CDMA: 806 - 896 MHz 806 - 960 MHz 频率范围属超短波范围;1710 ~1880 MHz 频率范围属微波范围。 电波的频率不同,或者说波长不同,其传播特点也不完全相同,甚至很不相同。 2.1 自由空间通信距离方程 设发射功率为PT,发射天线增益为GT,工作频率为f . 接收功率为PR,接收天线增益为GR,收、发天线间距离为R,那么电波在无环境干扰时,传播途中的电波损耗 L0 有以下表达式: L0 (dB) = 10 Lg( PT / PR ) = 32.45 + 20 Lg f ( MHz ) + 20 Lg R ( km ) - GT (dB) - GR (dB) [ 举例] 设:PT = 10 W = 40dBmw ;GR = GT = 7 (dBi) ; f = 1910MHz 问:R = 500 m 时, PR = ? 解答: (1) L0 (dB) 的计算 L0 (dB) = 32.45 + 20 Lg 1910( MHz ) + 20 Lg 0.5 ( km ) - GR (dB) - GT (dB)

第二讲 电小天线原理和分析

第二讲电小天线原理和分析 一、电小天线的概念 电小天线就是指最大几何尺寸远远小于波长(0.1 以下量级)的天线。所有手机内置天线都是电小天线。 当天线的尺寸与波长相比很小时,其实质就是一个带有少量辐射的电感器或电容器。它仍然是整个天线系统的一个分支,与一般大天线相比并无本质差别,只是其电尺寸小,所以有特别需要注意的一些方面。 二、电小天线电特性分析 1.方向性 在上一讲介绍天线基本原理时曾介绍天线的辐射方向系数D的概念。它反映了辐射能量的集中程度。假设在最大辐射方向上某点上某一实际天线与各向同性天线在该点产生相同的场强,则方向系数等于: 其中表示辐射功率。电流元或磁流元的方向图都呈苹果状8字型,方向系数为 1.5。而电小天线的电尺寸很小,因此其方向图接近电流元或磁流元的方向图,因此其方向系数接近1.5。半波偶极子天线的方向系数则为1.64。 2.辐射效率 辐射效率的定义是: 其中是辐射电阻,是损耗电阻。在损耗电阻中包括天线自身的欧姆损耗还包括馈线和匹配网络中的损耗电阻,即:

其中是天线上的损耗电阻,是馈线和匹配网络中的损耗电阻。 一般来说在提到天线效率时并不考虑,但由于小天线和匹配电路密切相关,比如一个小的电容性天线,由于天线输入容抗很高,电阻很小,如果要求此天线和发射机匹配,则在匹配电路中必然要求引入一个串连的大电感使之调谐,并通过变换将低阻值变换为所需的电阻值。这是匹配电路必然带来可观的损耗,所以考虑电小天线 的效率必须将计入,以便于对比各种电小天线的性能。 [注意] 上式中的各项电阻应归算于同一电流,或者是波幅电流或者是平均电流。 从辐射效率的定义式可知,提高辐射效率的途径不外乎从提高辐射电阻和降低损耗电阻入手。 [思考] 为什么手机天线设计中提倡尽量不使用匹配电路,或匹配元件尽量少? 3.增益 根据天线增益公式: 要提高增益则应设法提高辐射效率和方向系数,但对电小天线来说,由于 ,所以提高增益的途径,主要依赖于提高天线的辐射效率。 同时由此也可以看出,在电小天线中,提高增益和提高辐射效率是等效的。在手机天线中,有时也使用总辐射功率(TRP)的概念,即天线的总辐射功率,可以通过 天线在空间各方向上的增益求积分得到。电小天线中的增益(G)、辐射效率() 和总辐射功率(TRP)是三个相互关联的概念,当其中一个性能得到改善时,另外两个性能也随之改善。 4.输入阻抗 天线输入阻抗定义为天线输入端的电压和电流之比。的有功和无功分量分

科普:最全面的天线知识

科普:最全面的天线知识 天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。 天线总输入功率的比值,称该天线的最大增益系数。它是比天线方向性系数更全面的反映天线对总的射频功率的有效利用程度。并用分贝数表示。可以用数学推证,天线最大增益系数等于天线方向性系数和天线效率的乘积。 天线的发明 天线是由俄国科学家波波夫发明的。 1888年,29岁的波波夫得知德国著名物理学家赫兹发现电磁波的消息后,这位曾经立志推广电灯的年轻科学家对朋友们说:“我用毕生的精力去安装电灯,对于广阔的俄罗斯来说,只不过照亮了很小的一角:假如我能指挥磁波,那就可以飞越整个世界!” 于是,他埋头研究,向新的目标发起了冲击。 1894年,波波夫制成了一台无线电接收机。这台接收机的核心部分用的是改进了的金属屑检波器,波波夫采用电铃作终端显示,电铃的小锤可以把检波器里的金属屑震松。电铃用一个电磁继电器带动,当金属屑检波器检测到电磁波时,继电器接通电源,电铃就响起来。 有一次,波波夫在实验中发现,接收机检测电波的距离突然比往常增大了许多。 “这是怎么回事呢?”波波夫查来查去,一直找不出原因。 一天,波波夫无意之中发现一根导线搭在金属屑检波器上。他把导线拿开,电铃便不响了;他把实验距离缩小到原来那么近,电铃又响了起来。 波波夫喜出望外,连忙把导线接到金属屑检波器的一头,并把检波器的另一头接上。经过再次试验,结果表明使用天线后,信号传递距离剧增。 无线电天线由此而问世。 1、按工作性质可分为发射天线和接收天线; 2、按用途可分为通信天线、广播天线、电视天线、雷达天线等; 3、按方向性可分为全向天线和定向天线等; 4、按工作波长可分为超长波天线、长波天线、中波天线、短波天线、超短波天线、微波天线等; 5、按结构形式和工作原理可分为线天线和面天线等。描述天线的特性参量有方向图、方向性系数、增益、输入阻抗、辐射效率、极化和频宽; 6、按维数来分可以分成两种类型:一维天线和二维天线。

天线功能与工作原理

天线功能与工作原理 一、天线功能与工作原理 (3) 二、天线的分类 (6) 三、性能指标与检测方法 (9) 四、天线结构和质量保证 (14) 五、天线选型原则 (20) 一、天线功能与工作原理用来进行无线通讯的手机和基站,在空中是通过无线电波来传递信息的,需要有无线电波的辐射和接收。在无线电技术设备中,用来辐射和接收无线电波的装置称为天线。天线的功能首先在于辐射和接收无线电波,但是能辐射或接收电磁波的装置并不一定都能用来作为天线,任何高频电路,只要不被完全屏蔽,都可以向周围空间辐射电磁波,或者从周围空间接收电磁波,但是并非任何高频电路都能用作天线,因为辐射或接收效率有高有低,为了有效地辐射或接收电磁波,天线的结构形式应该满足一定的要求。例如,像平行双导线传输线这样的封闭结构就不能用作天线,因为双导线传输线在周围空间

激发的电磁场很微弱,终端开路的平行双导线传输线上的电流呈驻波分布。在两根互相平行的导线上,电流方向相反,线间距离远小于波长,所激发的电磁场在两线外部大部分空间中,由于相位相反而相互抵消。如果把两根导线的末端逐渐张开,辐射就会逐渐增强,当两根线完全张开时,张开的两臂短于半波长,上面电流的方向相同,在周围空中激发的电磁场在某些方向由于相位关系而互相抵消,在大部分方向则互相叠加,或者部分叠加、部分抵消,使辐射显著增强,这样的结构称为开放式结构,由末端开路的平行双导线传输线张开而成的天线,就是通常的对称振子天线。作为基站天线,常常要求天线在水平面内向所有方向(一圈360o)均匀地辐射(或对所有方向具有同等的接收能力),具有这种特性的天线,叫做全向天线。而对某些基站天线,只要求能覆盖含有一定角度的一个扇区,这种天线叫做定向天线,对这种天线要求只向待定的扇形区域辐射(或只接收来自特定扇形区域的无线电波),在其它方向不辐射或辐射很弱(不能接收或接收能力很弱)。也就是说,要求天线具有所谓方向性。如果天线没有方向性,无线电波呈球形向外均匀辐射,即所谓无方向性天线。此时,对发射天线来说,所辐射的功率中只有很少一部分到达所需要的方向,大部分功率浪费在不需要的方向上;对接收天线来说,在接收到所需要的信号同时,还接收到来自其它方向的干扰和噪声,甚至使信号完全淹没在干扰和噪音中。因此,一副好的天线,在有效的辐射或接收无线电波的同时,还应该具有完

谁都可以做 DIY双菱形13db天线效果实测

今天我们来介绍一款13DB的双菱形天线,在此也感谢作者vodka的精彩作品,他很详细的介绍了天线馈线的选择,振子和馈线的焊接方法。独乐乐不如众乐乐。希望大家也能做出一款好的双菱天线。 一、天线概述 双菱天线是最容易制作的,而且是增益较高的一种定向天线。材料也很容易收集,初学者很容易就能制作成功,而且增强的无线信号效果让人很有成就感,更能激发大家对DIY的信心和兴趣。 二、材料收集以及工具准备 型号为mil-c-17 RG-316 50?的镀银特氟龙高温线准备5M,估计10元/米。 横截面积为2.5mm的铜线(这个可以从电力线里面剥出来,但是横截面积要符合)估计4元/米。 准备的部分材料 空调机铜管,外径9mm、内径7mm,长6CM 奶糖盒子的盖,面积280mm x 200mm x 20mm

奶糖盒盖子拿来当反射板 三、制作步骤 1、首先制做天线的中心,也就是振子的部分。 铜丝按规定的长度来进行弯曲 角度要垂直

按照图示来弯曲 振子的成品展示

2、制作天线的支撑物。 用钢质螺钉在标记好的中心位置敲出一个定位点 钻个大小合适的洞, 刚好可以传过铜管

用锉刀或者电动砂轮加工铜管的一头 双菱到反射板高度在20mm左右 3、SMA接头制作方法(馈线接头的做法)

SMA 头和射频线 为什么我们要制做SMA接头,这是因为很多无线路由或AP本身提供有独立的天线接口,这样我们就不需要拆开AP或无线路由在内部焊线了,也就不就用担心设备的保修问题。先剥好射频线,芯线暴露1.7~2mm。 剥线和制做SMA头 射频馈线的中心导体只需要暴露2mm左右,刚好能放进SMA插针里面就好。给馈线的中心导体上一点锡,这样接触更紧密,导电性更好。再把SMA的的针头套上馈线的中心导体,并焊死。

手机天线的工作原理

无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 内、外置天线比较 目前手机天线主要就内置及外置天线两种,内置天线客观上必然比外置天线弱。天线的架设都是尽量远离地面和建筑物的,天线接近参考地的时候,大部分能量将集中在天线和参考地之间,而无法顺利发射,所以天线发射,需要一个“尽量开放”的空间。而手机电路版就是手机天线的参考地,让天线远离手机其他电路,是提高手机天线发射效率的关键。 但受到实际环境限制以及大家追求携带方便的要求,手机的设计就必须在电气方面做出妥协。实际上,所有的GSM手机的接收发送电路的增益都是是可以根据环境变化而自动调节的,能通过合理的参数设定,会自动补偿有关的损失。所以,就手机整体而言,在信号比较好情况下,内天线和外天线并不能看出差别。 差别是有的,在信号很弱的情况,外天线尤其是长天线的信号死点门限将高于内天线,也就是理论上内天线手机比较容易在弱信号环境丢失信号。 手机天线的制造生产 手机外置天线,我们接触比较多,大概可以知道制造的程序及材质。对于手机内置天线。这类天线主要都在手机内部,手机外观上看不到里面的东西。其实包括NOKIA,索爱等知名品牌手机里面的天线主要都是FPC材质制造的FPC手机内置天线。FPC即柔性线路板,手机内置天线设计出来,使用FPC制作,贴在手机壳内侧,用支架和顶针与其他部件相联。 辐射问题,天线效率的下降必须以大的发射功率补偿,相同条件下内天线的辐射会比外天线大。但人体实际受到的辐射和整机结构有关,内天线手机也可以通过合理安排天线位置,抵消辐射对人体的影响。 辐射问题 手机的辐射主要是手机的天线发射模块带来的,手机的天线做得十分粗大,它的作用就是为了减小发射的阻力。 可以说手机天线是手机的辐射源,而把所谓的防磁贴贴在听音器上面也是不行的,因为这样会改变天线周围的磁场,使得天线的信号发生变化,使得通话不能正常进行。 多数设计公司将手机天线设计外发,当然大牌公司自己有天线设计团队。 因为较大的天线测试投资和天线设计高手同时具备的公司不多。无论如何,

无线网络WIFI天线原理

无线网络WIFI天线原理 1 天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度L 远小于波长λ 时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b。

天线基本原理

第一讲天线基本原理 一、天线的基本概念 1.天线的作用 在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。 天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。 2.天线问题的实质 从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。 从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。 3.对天线结构的概念理解 采用不同的模型,对天线可以有不同的理解。典型的模型比如: ●开放的电容 [思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方? ●开放的传输线 从传输线理论理解,天线可以看做是将终端开路的传输线终端掰开。 ●TM mn型波导 将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励高次模。

由电磁波源和电磁波传输媒质形成电磁波传输的机构 波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。 [思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。 [哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。 二、电磁场基本方程 1.麦克斯韦方程 (电生磁。若电场变化,则磁场随之变化) (磁生电。若磁场变化,则电场随之变化) (磁力线是无始无终的封闭闭合曲线) (电力线出发和终止于自由电荷) 麦克斯韦方程的物理含义:变化的电场可以产生磁场,变化的磁场可以产生电场,这是电磁波可以脱离辐射体在空间存在的物理基础。 [思考] 自然界存在一些有趣的现象,尽管机理与电磁波不完全一致,但是其过程却可以帮助我们加深对我们问题的理解。请大家考虑一下,孩童吹肥皂泡时,肥皂泡能够

行波天线方向图仿真实验报告(B5)

天线与电波传播实验报告 08 级队区队学员姓名学号 实验组别 3 同组人实验日期2011.12.22 实验成绩 实验项目:行波天线方向图仿真实验 实验目的: 1.加深对行波天线工作原理的理解; 2.理解行波单导线的长度对天线方向性的影响; 3.了解菱形天线的参数选取。 实验器材: 1.计算机 2.MATLAB软件 实验原理阐述、实验方案: 一、实验原理 1.行波单导线的方向性 行波单导线是指天线上电流按行波分布的单导线天线。设长度为l 的导线沿z轴放置,如图2所示,导线上电流按行波分布,即天线沿线各点电流振幅相等,相位连续滞后,其馈电点置于坐标原点。设输入端电流为I0,忽略沿线电流的衰减,则线上电流分布为

'jk z 0e I )'z (I -= (2-1) z o R r kz cos θ??l dz ′ θ 图2 行波单导线及其坐标 行波单导线辐射场的分析方子相似法与对称振,即首先把天线分割成许多个电基本振子,而后取所有电基本振子辐射场的总和,故 ?θ-θθλ =l 0)cos 'z r (jk 'jk z 0 'dz e e sin r I 60j E )cos 1(2 k l j jk r 0e )]cos 1(2 kl sin[cos 1sin e r I 60j θ--θ-θ-θλ= (2-2) 式中,r 为原点至场点的距离;θ为射线与z 轴之间的夹角。由上式可得行波单导线的方向函数为 ) cos 1()]cos 1(2 kl sin[ sin )(f θ-θ-θ =θ (2-3) 根据上式可画出行波单导线的方向图如图3所示,由图可以看出行波单导线的方向性具有如下特点:

智能天线工作原理

智能天线工作原理 [摘要] 智能天线包括射频天线阵列部分和信号处理部分,其中信号处理部分根据得到的关于通信情况的信息,实时地控制天线阵列的接收和发送特性。这些信息可能是接收到的无线信号的情况;在使用闭环反馈的形式时,也可能是通信对端关于发送信号接收情况的反馈信息。 [关键字] 无线通信智能天线 天线的方向图表示的是空间角度与天线增益的关系,对于全向天线来说,它的方向图是一个圆;对于阵列天线,可以通过调整阵列中各个元素的加权参数来形成更具方向性的天线方向图,形成主瓣方向具有较大增益,而其它副瓣方向增益较小的形式。智能天线正是一种能够根据通信的情况,实时地调整阵列天线各元素的参数,形成自适应的方向图的设备。这种方向图通常以最大限度地放大有用信号、抑制干扰信号为目的,例如将大增益的主瓣对准有用信号,而在其它方向的干扰信号上使用小增益的副瓣。图为一个智能天线结构的示例图。 智能天线包括射频天线阵列部分和信号处理部分,其中信号处理部分根据得到的关于通信情况的信息,实时地控制天线阵列的接收和发送特性。这些信息可能是接收到的无线信号的情况;在使用闭环反馈的形式时,也可能是通信对端关于发送信号接收情况的反馈信息。

我们以西安海天天线公司研发的智能天线为例,为大家详细介绍智能天线的原理。如图1和图2所示

下面以扇区阵列天线的性能介绍智能天线的工作原理。该智能天线阵列有两种工作模式。在蜂窝移动通信系统中,由于用户通常分布在不同方向(也有用户方向重合的情况),加之无线移动信道的多径效应,有用信号仅存在一定的空间分布而并非整个蜂窝小区或者整个扇区。当基站接收信号时,即在上行链路中,来自各个用户的有用信号到达基站的方向可能不同;当基站发射信号时,即在下行链路中,可被用户有效接收的也只是部分信号。考虑到上述因素,调整天线的方向图使其能定向性的发射和接收就非常合适了,这也就是波束形成(Beam Forming)(可在射频、中频或基带实现),把这种模式定义为工作模式。 智能天线系统在未通话状态时基站仍然需要向扇区内所有用户发送公共控制信息,并通过小区内不同方向的用户返回给基站的信息来判断用户方向和数量。这种功能要求基站天线的方向图能够均匀地覆盖整个扇区,即广播模式。如图3虚线所示。 而通常提到的波束形成分两种方法:切换波束阵列(Switching Beam Array)和跟踪波束阵列(Tracking Beam Array)。对于切换波束阵列,预先形成一定数量角度固定的窄波束,仅在数字信号处理中采用算法计算出切换到“最优”波束使波束指向期望用户方向。这种方法只能通过低副瓣来降低干扰。而跟踪波束阵列能够实时形成权值使主波束跟踪期望用户,并在干扰用户方向形成零陷以提高信噪比。这种方法的缺点是实时得到权值的计算量显著增加。 从阵列综合的角度出发,阵列形式的设计和激励权值的确定是两个核心的问题。阵列形式

相关主题
文本预览
相关文档 最新文档