当前位置:文档之家› 玻尔的原子模型氢原子光谱

玻尔的原子模型氢原子光谱

玻尔的原子模型氢原子光谱
玻尔的原子模型氢原子光谱

玻尔的原子模型、氢原子光谱

溧阳市埭头中学 徐斌

一.玻尔原子理论的基本假设:

1、轨道量子化假设:原子中的电子在库仑引力的作用下,绕原子核做圆周运动,电子绕核

运动的可能轨道是___________的.且电子绕核运动的轨道

半径不是 的。

2、定态假设:电子在不同的轨道上运动时,原子处于不同

的状态,因而具有不同的能量,即原子的能量是_______的.

这些具有确定能量的稳定状态称为定态,在各个定态中,

原子是________的,不向外辐射能量.

3、跃迁假设:原子从一个能量状态向另一个能量状态跃迁

时要________或_______一定频率的光子,光子的能量等于

两个状态的__________,即hν=___________。

【例1】在氢原子模型中,若已知电子的质量为m ,电荷量为-e ,氢原子在基态时轨道半径为r 1,试问:(静电力常量为k )

(1)电子在基态上运行时的动能E k 1= ;

(2)已知原子内电子与原子核间的电势能满足关系r

e k E p 2

-=,则氢原子在基态时的电势能E P 1= ;其总能量E 1= ;

(3)若氢原子激发态的轨道半径和基态的轨道半径满足关系r n =n 2r 1,则氢原子在激发态时的总能量En = E 1;

(4)随着氢原子能级值n 的增加,其动能E k 将 ,势能E P 将 ,总能量E 将 。(填写“增大”或“减小”)

【变式训练1】氢原子辐射出一个光子后,则【 】

A .电子绕核旋转的半径增大

B .电子的动能增大

C .氢原子的电势能增大

D .原子的能级值增大

【例2】氢原子基态能量E 1=-13.6eV ,当氢原子处于n =5激发态时,求:

(1)最少要给基态的氢原子提供多少电子伏特的能量,才能使它跃迁到该激发态?

(2)该激发态的氢原子向低能级跃迁辐射的光子频率最多有多少种?请画出所有可能的跃迁方式;其中最低频率为多少?最高频率为多少?

(3)若已知钠的极限频率为6.00×1014Hz ,今用一群处于n =5的激发态的氢原子发射的光谱照射钠,试通过计算说明有几条谱线可使钠发生光电效应?

(4)若要使该激发态的氢原子发生电离,则应用多长波长的光照射?

【变式训练2】已知氢原子的能级规律为E 1=-13.6eV 、E 2=-3.4eV 、E 3=-1.51eV 、E 4=-0.85eV 。现用光子能量介于11eV ~12.5eV 范围内的光去照射一大群处于基态的氢原子,则下列说法中正确的是【 】

A .照射光中可能被基态氢原子吸收的光子只有1种

B .照射光中可能被基态氢原子吸收的光子有无数种

C .激发后的氢原子发射的不同能量的光子最多有4种

D .激发后的氢原子发射的不同能量的光子最多有2种

【变式训练3】原子从a 能级状态跃迁到b 能级状态时发射波长为λ1的光子;原子从b 能级状态跃迁到c 能级状态时吸收波长为λ2的光子,已知λ1>λ2。那么原子从a 能级状态跃迁到c 能级状态时将要:【 】

A .发出波长为λ1-λ2的光子

B .发出波长为

2

121λλλλ-的光子 C .吸收波长为λ1-λ2的光子 D .吸收波长为2

121λλλλ-的光子

二.原子光谱:

1.光谱的分类:

2.明线状谱、连续光谱、吸收光谱的产生:

(1)明线状谱:由 或 所发出的光谱为明线光谱,不同元素的明线光谱不同,所以又称为原子的 .

(2)连续光谱:由炽热 、 及 发光所发射的光谱均为连续光谱.

(3)吸收光谱:连续光谱中某波长的光波被吸收后出现的 .吸收光谱同样可以称为原子的 。太阳光谱就是典型的吸收光谱.

3.光谱分析:利用每种原子都有自己的特征谱线可以用来鉴别物质和确定物质的组成成分,且灵敏度很高.在发现和鉴别化学元素上有着重大的意义.

【例3】对原子光谱,下列说法正确的是【 】

A .原子的光谱是不连续的

B .由于原子都是由原子核和电子组成的,所以各种原子的原子光谱是相同的

C .各种原子的原子结构不同,所以各种原子的原子光谱也不相同

D .分析物质发光的光谱,可以鉴别物质中含哪些元素

【例4】关于光谱的产生,下列说法正确的是:【 】

A .太阳光谱和白炽灯光谱是线状谱

B .观察月亮光谱,可以确定月亮的化学组成

C .各种原子的明线光谱中的明线和它吸收光谱中的暗线一一对应

D .甲物质发出的白光通过乙物质的蒸汽形成的是甲物质的吸收光谱

三.玻尔理论的局限性:

虽然玻尔理论能够成功的解释氢原子光谱的实验规律,但对于

稍微复杂一点的原子如氦原子,玻尔理论就无法解释它的光谱现象。

它的不足之处就在于既保留了经典粒子的观念,又把电子的运动仍

看作经典力学描述下的轨道运动。实际上,原子中电子的

没有确定的值,因此,我们只能描述电子在某个位置出现

的多少,如果把电子这种概率分布用疏密不同的点来表示时,画出来

的图象就像云雾一样分布在原子核周围,称做为 。

【例5】对玻尔理论的下列说法中,正确的是【 】

A 、继承了卢瑟福的原子模型,但对原子能量和电子轨道引入了量子化假设

B 、对经典电磁理论中关于“做加速运动的电荷要辐射电磁波”的观点表示赞同

C 、用能量转化与守恒建立了原子发光频率与原子能量变化之间的定量关系

D 、玻尔的两个公式是在他的理论基础上利用经典电磁理论和牛顿力学计算出来的

【课后巩固练习】

1.下列关于玻尔原子模型说法中正确的是【】

A.原子处于定态的能量状态时,虽然电子做加速运动,但并不向外辐射能量。

B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的。

C.电子从一个轨道跃迁到另一轨道时,辐射(或吸收)一定频率的光子。

D.电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率。

E.氢原子从基态跃迁到激发态时,动能变大,势能变小,总能量变小

2.按照玻尔理论,下列关于氢原子的论述正确的是:【】

A.第m个定态和第n个定态的轨道半径R m和R n之比为R m∶R n=m2∶n2

B.第m个定态和第n个定态的能量E m和E n之比为E m∶E n= m2∶n2

C.电子沿某一轨道绕核运动,若其圆周运动的频率是ν,则其发光频率也是ν

D.若氢原子处于能量为E的定态,则其发光频率为ν=E/h

3.如图为氢原子能级图,可见光的光子能量范围约为1.61~3.10 eV,则下列说法正确的是【】

A.从n=3能级的氢原子向n=2能级跃迁时,发出的光是紫外线

B.从n=4能级的氢原子向低能级跃迁过程中会发出红外线

C.从n=4能级的氢原子向低能级跃迁时,最容易表现出衍射现象

的是由n=4向n=3能级跃迁辐射出的光子

D.用能量为10.3 eV的电子轰击,可以使基态的氢原子受激发

4.有关氢原子光谱的说法中正确的是:【】

A.氢原子的发射光谱是连续光谱

B.氢原子光谱的频率与氢原子能级的能量差有关

C.氢原子光谱说明氢原子能级是分立的

D.氢原子光谱说明氢原子只发出特定频率的光

5.如图所示,是氢原子四个能级的示意图.当氢原子从n=4的能级跃迁到n=3的能级时,辐射出光子a.当氢原子从n=3的能级跃迁到n=2的能级时,

辐射出光子b。则以下判断正确的是【】

A.光子a的能量大于光子b的能量

B.光子a的频率大于光子b的频率

C.光子a的波长大于光子b的波长

D.在真空中光子a的传播速度大于光子b的传播速度

6.现让一束单色光照射到大量处于基态(量子数n=1)的氢原子上,受激的氢原子能自发地发出3种不同频率的光,则照射氢原子的单色光的光子能量为:【】A.13.6eV B.3.4eV

C.10.2eV D.12.09eV

7.如图为氢原子能级的示意图,现有大量的氢原子处于n=4的激发态,当向低能级跃迁时

辐射出若干不同频率的光.关于这些光,下列说法正确的是【】

A.最容易衍射的光是由n=4能级跃迁到n=1能级产生的

B.频率最小的光是由n=2能级跃迁到n=1能级产生的

C.这些氢原子总共可辐射出3种不同频率的光

D.用n=2能级跃迁到n=1能级辐射出的光照射逸出功为6.34 eV

的金属铂能发生光电效应

8.一群氢原子处于n=3的激发态,在向较低能级跃迁的过程中向外发出光子,用这些光照射逸出功为2.49eV的金属钠,下列说法正确的是:【】

A.这群氢原子能发出三种频率不同的光,其中从n=3跃迁到n=2所发出的光波长最短B.这群氢原子能发出两种频率不同的光,其中从n=3跃迁到n=1所发出的光频率最高C.金属钠表面所发出的光电子的初动能最大值为11.11eV

D.金属钠表面所发出的光电子的初动能最大值为9.60eV

9.(2009·全国卷)氦氖激光器能产生三种波长的激光,其中两种波长分别为λ1=0.632μm,λ2=3.39μm。已知波长为λ1的激光是氖原子在能级间隔为ΔE1=1.96 eV的两个能级之间跃迁产生的.用ΔE2表示产生波长为λ2的激光所对应的跃迁的能级间隔,则ΔE2近似为

【】

A.10.50 eV B.0.98 eV C.0.53 eV D.0.36 eV 10.(2010·新课标·34(1))用频率为ν0的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为ν1、ν2、ν3的三条谱线,且ν3>ν2>ν1,则【】

A.ν0<ν1B.ν3=ν2+ν1 C.ν0=ν1+ν2+ν3D.1

ν1=

1

ν2+

1

ν3

11.若处于某

】A.红、蓝-靛B.黄、绿C.红、紫D.蓝-靛、紫

12.(2011·江苏·12C)按照玻尔原子理论,氢原子中的电子离原子核越远,氢原子的能量________(选填“越大”或“越小”).已知氢原子的基态能量为E1(E1<0),电子质量为m,基态氢原子中的电子吸收一频率为ν的光子被电离后,电子速度大小为________(普朗克常量为h).

13.原子从一个较高的能级跃迁到一个较低的能级时,有可能不发射光子。例如在某种条件下,铬原子的n=2 能级上的电子跃迁到n=1 能级上时并不发射光子,而是将相应的能量转交给n=4 能级上的电子,使之脱离原子。这种现象叫做俄歇效应。以这种方式脱离的电子叫做俄歇电子。已知铬原子的能级公式可简化为En =–A/n2,其中n=1,2,3…. 表示不同能级,A是常数。由以上条件计算俄歇电子的动能为。

14.如图,氢原子从n>2的某一能级跃迁到n=2的能级,辐射出能量为2.55 eV的光子.问:(1)最少要给基态的氢原子提供多少电子伏特的能量,才能使它辐射上述能量的光子?(2)请在图中画出获得上述能量后的氢原子可能的辐射跃迁图.

(3)在哪两个能级间跃迁时,所放出光子波长最长?最长波长是多少?

(4)用波长为多大的光照射可使该激发态的氢原子电离?

(5)若已知金属钨的逸出功W0=4.54 eV,则用辐射出的最大频率的光子照射金属钨,产生光电子的最大初动能是多少?

《玻尔原子模型、氢原子光谱》——教学反思

溧阳市埭头中学徐斌2013年3月14日

一、对教材的分析:

本章教材有一个共同的特点就是以卢瑟福核式结构模型为基础,让学生得出感性认识,再通过光谱分析总结出原子发光的不同规律,在通过对典理论的困难的基础上提出假设从而形成对玻尔原子模型的理性认识。

本节课重点需要解决的任务是强化学生对原子发光原理的认识。同时它也是高考选修3-5模块考查的重点和热点,主要以选择题和填空题的形式考查,所以应突出对每个概念、规律、现象的理解。要紧扣教材,重点加强对玻尔理论、能级跃迁规律的理解和应用。这就决定了本节课的教学目的和教学要求.

二、对学生的分析:

学生是教学的对象,是课堂的主体,一切教学活动都是为主体服务的。虽然这节课是复习课,但由于长时间未接触该内容,所以对于大多数学生而言均已遗忘该内容。所以为了所有的学生能理解“玻尔原子模型”,提高教学质量和效率,还应该从最基本内容开始,带领学生利用已有的知识基础,再次呈现玻尔原子理论的知识形成过程,让学生充分理解其内涵,并能借此解决常规问题。

三、对教学过程的反思:

1、通过问题的方式引导学生掌握玻尔原子模型的基本内容,使学生了解该知识、规律的形成过程;

2、通过对该节内容相关的高考试题及模拟试题的整理与分析,总结出常见考查方式,设计相关例题及变式训练。

3、能利用多媒体形象、完整的展现各类模型,并能有效节约课堂教学时间,提高课堂效率。

4、在习题讲解过程中能注重及时解答学生在思考问题过程中反馈出来的思维障碍及错误认识。

总之,本节课重在概念的理解和规律的应用,通过讲练结合,引导分析和当堂反馈,同学们基本掌握了运用玻尔原子理论解决相关问题的基本思路和方法。

四、存在的问题:

通过课后的评课之后,觉得这节课还是有几点不足的:

1、现在由于物理属于选修课程,所以课时安排比较少,而考查内容却没有缩减,所以就要求教师必须提高课堂教学效率,而我本节课讲的过细,导致课堂教学容量低,从而影响教学进度不能按时完成;

2、学生纸笔训练时间仍有点少,学生被动听得多,自主钻研不够多,从而导致学生对概念的理解及规律的应用还不是很熟练。

所以,在今后的高三复习教学过程中,要精简教学内容,提高教学效益,并要充分认识到学生是学习的主体,要不断加强学生自身的训练,从而让学生真正有效的掌握所学知识内容。

玻尔理论与氢原子跃迁含答案

玻尔理论与氢原子跃迁 一、基础知识 (一)玻尔理论 1、定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量. 2、跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=Em-En.(h是普朗克常量,h=6.63×10-34 J·s) 3、轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 4、氢原子的能级、能级公式 (1)氢原子的能级图(如图所示) (2)氢原子的能级和轨道半径 ①氢原子的能级公式:En=1 n2 E1(n=1,2,3,…),其中E1为基态能量,其数值为E1= -13.6 eV. ②氢原子的半径公式:rn=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m. (二)氢原子能级及能级跃迁 对原子跃迁条件的理解 (1)原子从低能级向高能级跃迁,吸收一定能量的光子.只有当一个光子的能量满足hν=E末-E初时,才能被某一个原子吸收,使原子从低能级E初向高能级E末跃迁,而当光子能量hν大于或小于E末-E初时都不能被原子吸收.

(2)原子从高能级向低能级跃迁,以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差. 特别提醒 原子的总能量En =Ekn +Epn ,由ke2r2n =m v2rn 得Ekn =12ke2rn ,因此,Ekn 随r 的增大而减小,又En 随n 的增大而增大,故Epn 随n 的增大而增大,电势能的变化也可以从电场力做功的角度进行判断,当r 减小时,电场力做正功,电势能减小,反之,电势能增大. 二、练习 1、根据玻尔理论,下列说法正确的是 ( ) A .电子绕核运动有加速度,就要向外辐射电磁波 B .处于定态的原子,其电子绕核运动,但它并不向外辐射能量 C .原子电子的可能轨道是不连续的 D .原子能级跃迁时,辐射或吸收光子的能量取决于两个轨道的能量差 答案 BCD 解析 根据玻尔理论,电子绕核运动有加速度,但并不向外辐射能量,也不会向外辐射电磁波,故A 错误,B 正确.玻尔理论中的第二条假设,就是电子绕核运动可能的轨道半径是量子化的,不连续的,C 正确.原子在发生能级跃迁时,要放出或吸收一定频率的光子,光子能量取决于两个能级之差,故D 正确. 2、下列说法中正确的是 ( ) A .氢原子由较高能级跃迁到较低能级时,电子动能增加,原子势能减少 B .原子核的衰变是原子核在其他粒子的轰击下而发生的 C .β衰变所释放的电子是原子核的中子转化成质子而产生的 D .放射性元素的半衰期随温度和压强的变化而变化 答案 AC 解析 原子核的衰变是自发进行的,选项B 错误;半衰期是放射性元素的固有特性,不 会随外部因素而改变,选项D 错误. 3、(2000?)根据玻尔理论,某原子的电子从能量为E 的轨道跃迁到能量为E'的轨道,辐射出波长为λ的光.以h 表示普朗克常量,C 表示真空中的光速,则E ′等于( C ) A .E ?h λ/c B .E+h λ/c C .E ?h c/λ D E+hc /λ 4、欲使处于基态的氢原子激发,下列措施可行的是 A.用10.2 eV 的光子照射 B.用11 eV 的光子照射 C.用14 eV 的光子照射 D.用11 eV 的光子碰撞 [命题意图]:考查考生对玻尔原子模型的跃迁假设的理解能力及推理能力. [解答]:由"玻尔理论"的跃迁假设可知,氢原子在各能级间,只能吸收能量值刚好等于

高中物理总复习之知识讲解 原子的核式结构模型、玻尔的氢原子理论 (基础)

物理总复习:原子的核式结构模型、玻尔的氢原子理论 【考纲要求】 1、知道卢瑟福的原子核式结构学说及α粒子散射实验现象 2、知道玻尔理论的要点及氢原子光谱、氢原子能级结构、能级公式 3、会进行简单的原子跃迁方面的计算 【知识网络】 【考点梳理】 考点一、原子的核式结构 要点诠释: 1、α粒子散射实验 (1)为什么用α粒子的散射现象可以研究原子的结构:原子的结构非常紧密,一般的方 法无法探测它。α粒子是从放射性物质(如铀和镭)中发射出来的高速运动的粒子,带 有两个单位的正电荷,质量为氢原子质量的4倍、电子质量的7300倍。 (2)实验装置:放射源、金箔、荧光屏、放大镜和转动圆盘组成。荧光屏、放大镜能围 绕金箔在圆周上转动,从而观察到穿过金箔偏转角度不同的α粒子。 (3)实验现象:大部分α粒子穿过金属箔沿直线运动;只有极少数α粒子明显地受到 排斥力作用而发生大角度散射。绝大多数α粒子穿过金箔后仍能沿原来方向前进,少数α 粒子发生了较大的偏转,并且有极少数α粒子偏转角超过了90°,有的甚至被弹回,偏转 角几乎达到180°。 (4)实验分析:①电子不可能使α粒子大角度散射;②汤姆孙原子结构与实验现象不符; ③少数α粒子大角度偏转,甚至反弹,说明受到大质量大电量物质的作用。④绝大多数 α粒子基本没有受到力的作用,说明原子中绝大部分是空的。 记住原子和原子核尺度:原子1010-m ,原子核1510-m

2、原子的核式结构 卢瑟福对α粒子散射实验结果进行了分析,于1911年提出了原子的核式结构学说:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎所有的质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转。原子核所带的单位正电荷数等于核外的电子数。 原子的半径大约是1010-m ,原子核的大小约为1510-m ~1410-m 。 【例题】卢瑟福通过对α粒子散射实验结果的分析,提出( ) A.原子的核式结构模型. B.原子核内有中子存在. C.电子是原子的组成部分. D.原子核是由质子和中子组成的. 【解析】英国物理学家卢瑟福的α粒子散射实验的结果是绝大多数α粒子穿过金箔后基本上仍沿原方向前进,但有少数α粒子发生较大的偏转。α粒子散射实验只发现原子核可以再分,但并不涉及原子核内的结构。查德威克在用α粒子轰击铍核的实验中发现了中子,卢瑟福用α粒子轰击氮核时发现了质子。 【答案】AC 考点二、玻尔的氢原子模型 要点诠释: 1、玻尔的三条假说 (1)轨道量子化:原子核外电子的可能轨道是某些分立的数值; (2)能量状态量子化:原子只能处于与轨道量子化对应的不连续的能量状态中,在这些状态中,原子是稳定的,不辐射能量; (3)跃迁假说:原子从一种定态向另一种定态跃迁时,吸收(或辐射)一定频率的光子,光子能量21E h E E ν==-。 2、氢原子能级 (1)氢原子在各个能量状态下的能量值,叫做它的能级。最低的能级状态,即电子在离原子核最近的轨道上运动的状态叫做基态,处于基态的原子最稳定,其他能级叫激发态。 (2)氢原子各定态的能量值,为电子绕核运动的动能E k 和电势能E p 的代数和。由1 2 n E E n =和E 1=-13.6 eV 可知,氢原子各定态的能量值均为负值。因此,不能根据氢原子的能级公式12n E E n =得出氢原子各定态能量与n 2成反比的错误结论。 (3)氢原子的能级图:

氢原子能级模型分类解析

氢原子能级模型分类解析 原子物理学是高考的必考内容,而氢原子的能级是考查重点,本文想结合高考题对氢原子能级试题进行分类解析。 1.发光种类 例1如图所示为氢原子的能级图,用光子能量为13.07 eV的光照射一群处于基态的氢原子,可能观测到氢原子发射的不同波长有多少种? ( ) A.15 B.10 C.4 D.1 解析由于照射光子能量为13.07 eV=E s—E1,用该频率的光子照射一群处于基态的氢原子,氢原子会跃迁到n=5的激发态,氢原子从n=5的能态向低能态跃迁可发出10种不同波长的光。答案选B。 2.光子总数 例2现有1200个氢原子被激发到量子数为4的能级上,若这些受激氢原子最后都回到基态,则在此过程中发出的光子总数是多少?假定处在量子数为n的激发态的氢原 子跃迁到各较低能级的原子数都是处在该激发态能级上的原子总数的。( ) A.22OO B.2000 C.1200 D.2400 解析量子数为4的氢原子总数为1200个,共分成3部分。其中第一部分400个氢原子直接跃迁到基态,发出400个光子;第二部分400个氢原子先跃迁到量子数为2的激发态,发出400个光子,接着再跃迁到基态,发出400个光子,共发出800个光子;第三部分400个氢原子先跃迁到量子数为3的激发态,发出400个光子,其中200个再

跃迁到基态,发出200个光子,另外200个先跃迁到量子数为2的激发态,发出200个光子,接着再跃迁到基态,发出200个光子,共发出1000个光子。三部分在此过程中发出的光子总数是2200个。选项A正确。 3.光子能量 例3 图中画出了氢原子的4个能级,并注明了相应的能量E 处在n=4的能级的一群氢原子向低能级跃迁时,能够发出若干种不同频率的光波。已知金属钾的逸出功为2.22eV。在这些光波中。能够从金属钾的表面打出光电子的总共有 ( ) A.二种 B.三种 C.四种 D.五种 解析处在n=4的能级的一群氢原子向低能级跃迁时,能够发出六种不同频率的光波。相应的光子能量分别为:E4-E3=0.66 eV,E4-E2=2.55 eV,E4-E1=12.75 eV,E3-E2=1.89 eV,E3-E1=12.09 eV,E2- E1=10.20 eV,已知金属钾的逸出功为2.22 eV。在这些光子中,能够从金属钾的表面打出光电子的总共有四种。答案选C。 4.电离能 例4氢原子的能级图如图所示。欲使一处于基态的氢原子释放出一个电子而变成氢离子。该氢原子需要吸收的能量至少是 ( )

新课标人教版3-5选修三18.4《玻尔的原子模型》WORD教案2

普通高中课程标准实验教科书一物理(选修3- 5)[人教版] 第十八章原子结构 新课标要求 1 ?内容标准 (1)了解人类探索原子结构的历史以及有关经典实验。 例1用录像片或计算机模拟,演示a粒子散射实验。 (2)通过对氢原子光谱的分析,了解原子的能级结构。 例2 了解光谱分析在科学技术中的应用。 2.活动建议 观看有关原子结构的科普影片。 新课程学习 18. 4玻尔的原子模型 ★新课标要求 (一)知识与技能 1.了解玻尔原子理论的主要内容。 2.了解能级、能量量子化以及基态、激发态的概念。 (二)过程与方法 通过玻尔理论的学习,进一步了解氢光谱的产生。 (三)情感、态度与价值观 培养我们对科学的探究精神,养成独立自主、勇于创新的精神。 ★教学重点 玻尔原子理论的基本假设。 ★教学难点 玻尔理论对氢光谱的解释。 ★教学方法

教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1课时 ★教学过程 (一)引入新课 复习提问: 1.a粒子散射实验的现象是什么? 2 ?原子核式结构学说的内容是什么? 3?卢瑟福原子核式结构学说与经典电磁理论的矛盾 电子绕核运动(有加速度) 辐射电磁波频率等于绕核运行的频率 电子沿螺旋线轨道落入原子核原子光谱应为连续光谱 (矛盾:实际上是不连续的亮线)教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。 (二)进行新课 1 ?玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原 子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n)跃迁到另一种定态(设 能量为E m)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即A = E m - E n (h为普朗克恒量) (本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核 (针对原子核式模型提

中国科学技术大学ch波尔氢原子理论

§1—3 波尔氢原子理论
一. 原子行星模型的困难
卢瑟福模型把原子看成由带正电的原子核和围绕核运动的一些电子组 成,这个模型成功地解释了α粒子散射实验中粒子的大角度散射现象。
α粒子的大角度散射,肯定了原子核的存在,但核外电子的分布及运动 情况仍然是个迷,而光谱是原子结构的反映,因此研究原子光谱是揭 示这个迷的必由之路。
经典理论假设:电子和原子核之间由库仑里作用,维持着电子在一定 的轨道上不停的绕原子核旋转——原子的行星模型
进一步的考察原子内部电子的运动规律时,却发现已经建立的物理规 律无法解释原子的稳定性,同一性,再生性和分立的线光谱。

原子行星模型
核外电子在核的库仑场中运动,受有心力作用
Ze2 = me v2
4πε 0 r 2
r
?e rr
+ Ze
原子内部系统的总能量是电子的动能和体系的势能之和
E
=
EK
+ EV
=
me v 2 2
?
Ze2
4πε 0 r
= ? 1 ? Ze2
2 4πε0r
电子在轨道中运动频率
f= v = e
2πr 2π
Z
4πε 0 me r 3

卢瑟福模型提出了原子的核式结构,在人们探索原子结构的历程中踏 出了第一步。可是当我们利用原子的行星模型进入原子内部考察电子 的运动规律时,却发现与已建立的物理规律不一致的现象。经典的原 子行星模型遇到了难以克服的困难。 ⑴ 原子的分立线光谱和稳定性
? 按经典电磁学理论,带电粒子做加速运动,将向外辐射电磁波,其电磁 辐射频率等于带电粒子运动频率。
? 由于向外辐射能量,原子的能量将不断减少,则原子的光谱应当为连续 谱;电子的轨道半径将不断缩小,最终将会落到核上,即所有原子将 “坍缩”。
? 这与事实是矛盾的。 ? 无法用经典的理论解释原子中核外电子的运动。

高中物理-玻尔的原子模型达标练习

高中物理-玻尔的原子模型达标练习 1.(多选)关于玻尔的原子模型,下述说法中正确的有( ) A.它彻底否定了卢瑟福的核式结构学说 B.它发展了卢瑟福的核式结构学说 C.它完全抛弃了经典的电磁理论 D.它引入了普朗克的量子理论 解析:玻尔的原子模型在核式结构模型的前提下提出轨道量子化、能量量子化及能级跃迁,故A错误,B正确;它的成功就在于引入了量子化理论,缺点是被过多的引入经典力学所困,故C错误,D正确. 答案:BD 2.(多选)氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确的是( ) A.核外电子受力变小 B.原子的能量减少 C.氢原子要吸收一定频率的光子 D.氢原子要放出一定频率的光子 解析:由玻尔理论知,当电子由离核较远的轨道跃迁到离核较近的轨道上时,要放出能量,故要放出一定频率的光子;电子的轨道半径减小了,由库仑定律知它与原子核之间的库仑力增大了.故A、C错误,B、D正确. 答案:BD 3.(多选)如图所示给出了氢原子的6种可能的跃迁,则它们发出的光( ) A.a的波长最长 B.d的波长最长 C.f比d的能量大 D.a频率最小 解析:能级差越大,对应的光子的能量越大,频率越大,波长越小. 答案:ACD

4.(多选)根据玻尔理论,氢原子能级图如图所示,下列说法正确的是( ) A.一群原处于n=4能级的氢原子回到n=1的状态过程中,最多放出6种频率不同的光子 B.一群原处于n=4能级的氢原子回到n=1的状态过程中,最多放出3种频率不同的光子 C.一个原处于n=4能级的氢原子回到n=1的状态过程中,最多放出6种频率不同的光子 D.一个原处于n=4能级的氢原子回到n=1的状态过程中,最多放出3种频率不同的光子 解析:由于处在激发态的氢原子会自动向低能级跃迁,所以一群原处于n=4能级的氢原子回到n=1的状态过程中,最多放出C24=6种频率不同的光子,故A正确,B错误;一个原处于n=4能级的氢原子回到n=1的状态过程中,只能是4→3→2→1或4→2→1或4→1三种路径中的一种路径,可知跃迁次数最多的路径为4→3→2→1,最多放出3种频率不同的光子, 故C错误,D正确. 答案:AD 5.如图所示为氢原子的能级示意图,一群氢原子处于n=3的激发态,在向较低能级跃迁的过程中向外发出光子,用这些光照射逸出功为2.49 eV的金属钠.下列说法正确的是( ) A.这群氢原子能发出3种不同频率的光,其中从n=3跃迁到n=2所发出的光波长最短B.这群氢原子能发出6种不同频率的光,其中从n=3跃迁到n=1所发出的光频率最小C.这群氢原子发出不同频率的光,只有一种频率的光可使金属钠发生光电效应 D.金属钠表面发出的光电子的最大初动能为9.60 eV 解析:一群氢原子处于n=3的激发态,可能发出C23=3种不同频率的光子,n=3和n=2间能级差最小,所以从n=3跃迁到n=2发出的光子频率最低,根据玻尔理论hν=E2-E1=hc 可知,光的波长最长,选项A错误.因为n=3和n=1间能级差最大,所以氢原子从n=3跃λ 迁到n=1发出的光子频率最高.故B错误.当入射光频率大于金属钠的极限频率时,金属钠能

高中物理选修3-5教学设计 2.3 玻尔的原子模型 教案

2.3 玻尔的原子模型 知识与技能 (1)了解玻尔原子理论的主要内容; (2)了解能级、能量量子化以及基态、激发态的概念。 过程与方法:通过玻尔理论的学习,进一步了解氢光谱的产生。 情感、态度与价值观:培养我们对科学的探究精神,养成独立自主、勇于创新的精神。 教学重点:玻尔原子理论的基本假设。 教学难点:玻尔理论对氢光谱的解释。 教学方法:教师启发、引导,学生讨论、交流。 课时安排 2课时 教学过程 引入新课: 1、α粒子散射实验的现象是什么? 2、原子核式结构学说的内容是什么? 3、卢瑟福原子核式结构学说与经典电磁理论的矛盾 教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。 新课教学: 1、玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的) (2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量)(本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可 能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径: 12r n r n =

玻尔原子理论对氢光谱的解释

三、玻尔原子理论对氢光谱的解释 教学目的: ◆了解玻尔原子理论的成功之处及局限性 1、 知道巴耳末公式 2、 了解如何用玻尔原子理论解释氢原子光谱 3、 了解玻尔理论的局限性。 教学重点:玻尔原子理论对氢光谱的解释 教学过程: (一) 组织教学 (二) 复习提问1、玻尔原子理论的内容是什麽? 2、玻尔原子理论中计算氢原子电子的各条可能轨道的半径和电子在各条 轨道上运动时的能量公式是什麽? 1 21 212 1E E h E n E r n r n n -== =ν (三) 引入:看课本彩图4,找氢原子光谱在可见光区的四条谱线波长: m H m H m H m H μμμμδγβα4101.04340.04861.06562.0 (四) 新授 1、 氢光谱的实验规律:即巴耳末公式: ??? ??-=2212 1 1 n R λ, n=3,4,5,┅┅ 其中λ是氢原子光波的波长,R 为里德伯常量实验值为R=1.096776×107 m -1 2、 玻尔理论导出的氢光谱规律:按玻尔的原子理论,氢原子的电子从能量较高的轨道 n 跃迁到能量较低的轨道2时辐射出的光子能量:2E E h n -=ν 但:2 122 12 ,E E n E E n = =, 由此可得: ,121 2 21?? ? ??--=n E h ν 由于λ νc = ,所以上式可写作: ?? ? ??--= 2211211 n hc E λ ,此式与巴耳末公式比较,形式完全一样, 里德伯常

量1 71 10097373.1-?=-= m hc E R 与实验符合的很好。 由此可知,氢光谱的巴耳末线系是电子从 n=3,4,5,6,等能级跃迁到n=2的能级时辐射出来的。 玻尔原子理论还解释了帕邢系(在红外区),预言了当时未发现的氢原子的其他光谱线系。 氢原子能级图 3、 玻尔理论的局限性 (1) 玻尔原子模型在解释氢原子光谱上获得成功,而对核外电子较多的原子, 理论与实验相差很多,玻尔理论不再成立,取而代之的是量子力学。 (2) 玻尔理论的成功之处在于它引入了量子的观念,失败之处在于它保留了过 多的经典物理理论。 (3) 要用建立在量子力学基础之上的原子理论去解释大量的微观现象。 (五) 小结:①氢光谱的实验规律, ②用玻尔的原子能级及电子的跃迁规律结合公式 ?? ? ??--= 2211211n hc E λ 解释氢光谱。 (六)作业:练习三:(1)、(2)、(3)

第二章 玻尔氢原子理论习题

第二章 玻尔氢原子理论 1.选择题: (1)若氢原子被激发到主量子数为n 的能级,当产生能级跃迁时可能发生的所有谱线总条数应为: A .n-1 B .n(n-1)/2 C .n(n+1)/2 D .n (2)氢原子光谱赖曼系和巴耳末系的系线限波长分别为: A.R/4 和R/9 B.R 和R/4 C.4/R 和9/R D.1/R 和4/R (3)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为: A .3Rhc/4 B. Rhc C.3Rhc/4e D. Rhc/e (4)氢原子基态的电离电势和第一激发电势分别是: A .13.6V 和10.2V; B –13.6V 和-10.2V; C.13.6V 和3.4V; D. –13.6V 和-3.4V (5)由玻尔氢原子理论得出的第一玻尔半径0a 的数值是: A.5.291010-?m B.0.529×10-10m C. 5.29×10-12m D.529×10-12m (6)根据玻尔理论,若将氢原子激发到n=5的状态,则: A.可能出现10条谱线,分别属四个线系 B.可能出现9条谱线,分别属3个线系 C.可能出现11条谱线,分别属5个线系 D.可能出现1条谱线,属赖曼系 (7)欲使处于激发态的氢原子发出αH 线,则至少需提供多少能量(eV )? A.13.6 B.12.09 C.10.2 D.3.4 (8)氢原子被激发后其电子处在第四轨道上运动,按照玻尔理论在观测时间内最多能看到几条线? A.1 B.6 C.4 D.3 (9)氢原子光谱由莱曼、巴耳末、帕邢、布喇开系…组成.为获得红外波段原子发射光谱,则轰击基态氢原子的最小动能为: A .0.66 eV B.12.09eV C.10.2eV D.12.57eV (10)用能量为12.7eV 的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋); A .3 B.10 C.1 D.4 (11)有速度为1.875m/s 106?的自由电子被一质子俘获,放出一个光子而形成基态氢原子,则光子的频率(Hz )为: A .3.3?1015; B.2.4?1015 ; C.5.7?1015; D.2.1?1016. (12)按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的: A.1/10倍 B.1/100倍 C .1/137倍 D.1/237倍 (13)玻尔磁子B μ为多少焦耳/特斯拉? A .0.9271910-? B.0.9272110-? C. 0.9272310-? D .0.9272510-?

选修3-5 玻尔的原子模型 习题(含答案)

18.4玻尔的原子模型课后作业 1.氢原子从基态跃迁到激发态时,下列论述中正确的是(B) A.动能变大,势能变小,总能量变小 B.动能变小,势能变大,总能量变大 C.动能变大,势能变大,总能量变大 D.动能变小,势能变小,总能量变小 2.下列叙述中,哪些符合玻尔理论(ABC) A.电子可能轨道的分布是不连续的 B.电子从一条轨道跃迁到另一个轨道上时,原子将辐射或吸收一定的能量 C.电子的可能轨道上绕核做加速运动,不向外辐射能量 D.电子没有确定的轨道,只存在电子云 3.大量原子从n=5的激发态向低能态跃迁时,产生的光谱线数是( B ) A.4条 B.10条 C.6条D.8条  4.对玻尔理论的评论和议论,正确的是(BC) A.玻尔理论的成功,说明经典电磁理论不适用于原子系统,也说明了电磁 理论不适用于电子运动 B.玻尔理论成功地解释了氢原子光谱的规律,为量子力学的建立奠定了基 础 C.玻尔理论的成功之处是引入量子观念 D.玻尔理论的成功之处,是它保留了经典理论中的一些观点,如电子轨道 的概念 5.氢原核外电子分别在第1、2条轨道上运动时,其有关物理量的关系是(BC ) A.半径r1>r2 B.电子转动角速度ω1>ω2 C.电子转动向心加速度a1>a2 D.总能量E1>E2 6.已知氢原子基态能量为-13.6eV,下列说法中正确的有(D ) A.用波长为600nm的光照射时,可使稳定的氢原子电离 B.用光子能量为10.2eV的光照射时,可能使处于基态的氢原子电离 C.氢原子可能向外辐射出11eV的光子 D.氢原子可能吸收能量为1.89eV的光子 7.氢原子从能级A跃迁到能级B,吸收频率v1的光子,从能级A跃迁到能级C 释放频率v2的光子,若v2>v1则当它从能级C跃迁到能级B将(D) A.放出频率为v2-v1的光子 B.放出频率为v2+ v1的光子 C.吸收频率为v2- v1的光子 D.吸收频率为v2+v1的光子 8.已知氢原子的基态能量是E1=-13.6eV,第二能级E2=-3.4eV.如果氢原子吸收______eV的能量,立即可由基态跃迁到第二能级.如果氢原子再获得1.89eV的

鲁科版化学选修3氢原子光谱和玻尔的原子结构模型

第1节原子结构模型 第1课时 【教学目标】 1.了解“玻尔原子结构模型”,知道其合理因素和存在的不足。 2.知道原子光谱产生的原因。 3.能利用“玻尔原子结构模型”解释氢原子的线状光谱。 【教学重点】 1.基态、激发态及能量量子化的概念。 2.原子光谱产生的原因 3.利用跃迁规则,解释氢原子光谱是线状光谱及其他光谱现象。【教学难点】 1.能量量子化的概念。 2.原子光谱产生的原因 【教学方法】启发式讨论式 【教学过程】 教学环节活 动 时 间 教学内容教师活动学生活 动 设计意图 一、联想·质疑2 分 钟 在美丽的城市,我们经常可以看到 五光十色的霓虹灯,霓虹灯为什么 能发出五颜六色的光?我们马上就 会知道。 【板书】 第1节原子结构模型 第1课时 量子力学前的原子结构模型 引起学生对本 节课的学习兴 趣。

二、 复习旧课3 分 钟 提问 1.请同学们指 出原子是由什 么构成的? 2.请同学们描 述一下核外 电子运动有 什么特征? 对学生的回答加以完善。回答问题为评价各种原 子结构模型提 供知识支持 三、导入新课5 分 钟 1.介绍道尔顿原子学说的内容。 2.让学生评价“道尔顿原子学说” 有那些不足之处,并对学生的评价 加以完善 同组内交 流、讨论, 并对“道 尔顿原子 学说”进 行评价。 学生思考 问题并做 出否定的 回答。 培养学生合作 精神和分析、 评价能力。 1.使学生认识 到原子结构模 型是不断发 展、完善的。 2.使学生认识 到化学实验对 化学理论发展 的重要意义。 四、展开新课1 7 分 钟 1.道尔顿原子 学说 2.卢瑟福原子 结构的核式模 型 3.玻尔原子结 构模型 【板书】 一、道尔顿原子学说 1.介绍卢瑟福原子结构的核式模 型。 2.让学生思考:“卢瑟福原子结构的 核式模型”能解释氢原子的光谱是 线状光谱吗? 【板书】 1.阅读 “玻尔原 子结构模 型”理论 2.交 流·讨论 原子光谱 产生的原 1.使学生认识 到“玻尔原子 结构模型”对 原子结构理论 的发展起着极 其重要的作 用。 2.使学生认识

玻尔氢原子模型

18.4 玻尔的原子模型 【教学目标】 (一)知识与技能 1.了解玻尔原子理论的主要内容。 2.了解能级、能量量子化以及基态、激发态的概念。 (二)过程与方法 通过玻尔理论的学习,进一步了解氢光谱的产生。 (三)情感、态度与价值观 培养我们对科学的探究精神,养成独立自主、勇于创新的精神。 【教学重点】玻尔原子理论的基本假设 【教学难点】玻尔理论对氢光谱的解释。 【教学方法】教师启发、引导,学生讨论、交流。 【教学用具】投影片,多媒体辅助教学设备 【教学过程】 (一)引入新课 复习提问: 1.α粒子散射实验的现象是什么? 2.原子核式结构学说的内容是什么? 3.卢瑟福原子核式结构学说与经典电磁理论的矛盾 教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。

(二)进行新课 1.玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量) (本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可 能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径: 12r n r n = n=1,2,3……能 量: 121E n E n = n=1,2,3……式中r 1、E 1、分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量,r n 、E n 分别代表第n 条可能轨道的半径和电子在第n 条轨道上运动时的能量,n 是正整数,叫量子数。3.氢原子的能级图 从玻尔的基本假设出发,运用经典电磁学和经典力学的理论,可以计算氢原子中电子的可能轨道半径和相应的能量。 (1)氢原子的大小:氢原子的电子的各条可能轨道的半径r n : r n =n 2r 1, r 1代表第一条(离核最近的一条)可能轨道的半径 r 1=0.53×10-10 m 例:n=2, r 2=2.12×10-10 m (2)氢原子的能级:①原子在各个定态时的能量值E n 称为原子的能级。它对应电子在各条可能轨道上运动时的能量E n (包括动能和势能) E n =E 1/n 2 n=1,2,3,······ E 1代表电子在第一条可能轨道上运动时的能量 E 1=-13.6eV 注意:计算能量时取离核无限远处的电势能为零,电子带负电,在正电荷的场中为负值,电子的动能为电势能绝对值的一半,总能量为负值。 例:n=2,E 2=-3.4eV , n=3,E 3=-1.51eV , n=4,E 4=-0.85eV ,…… 氢原子的能级图如图所示。

(完整版)选修3-5玻尔的原子模型习题(含答案)

1.氢原子从基态跃迁到激发态时,下列论述中正确的是(B) A.动能变大,势能变小,总能量变小 B.动能变小,势能变大,总能量变大 C.动能变大,势能变大,总能量变大 D.动能变小,势能变小,总能量变小 2.下列叙述中,哪些符合玻尔理论(ABC) A.电子可能轨道的分布是不连续的 B.电子从一条轨道跃迁到另一个轨道上时,原子将辐射或吸收一定的能量C.电子的可能轨道上绕核做加速运动,不向外辐射能量 D.电子没有确定的轨道,只存在电子云 3.大量原子从n=5的激发态向低能态跃迁时,产生的光谱线数是( B )A.4条B.10条C.6条D.8条 4.对玻尔理论的评论和议论,正确的是(BC) A.玻尔理论的成功,说明经典电磁理论不适用于原子系统,也说明了电磁理论不适用于电子运动 B.玻尔理论成功地解释了氢原子光谱的规律,为量子力学的建立奠定了基础C.玻尔理论的成功之处是引入量子观念 D.玻尔理论的成功之处,是它保留了经典理论中的一些观点,如电子轨道的概念 5.氢原核外电子分别在第1、2条轨道上运动时,其有关物理量的关系是(BC )A.半径r1>r2 B.电子转动角速度ω1>ω2 C.电子转动向心加速度a1>a2 D.总能量E1>E2 6.已知氢原子基态能量为-13.6eV,下列说法中正确的有(D ) A.用波长为600nm的光照射时,可使稳定的氢原子电离 B.用光子能量为10.2eV的光照射时,可能使处于基态的氢原子电离 C.氢原子可能向外辐射出11eV的光子 D.氢原子可能吸收能量为1.89eV的光子 7.氢原子从能级A跃迁到能级B,吸收频率v1的光子,从能级A跃迁到能级C 释放频率v2的光子,若v2>v1则当它从能级C跃迁到能级B将(D)A.放出频率为v2-v1的光子 B.放出频率为v2+ v1的光子 C.吸收频率为v2- v1的光子 D.吸收频率为v2+v1的光子 8.已知氢原子的基态能量是E1=-13.6eV,第二能级E2=-3.4eV.如果氢原子吸收______eV的能量,立即可由基态跃迁到第二能级.如果氢原子再获得1.89eV的能量,它还可由第二能级跃迁到第三能级,因此氢原子第三能级E3=_____eV. 10.2 -1.51

高中物理氢原子跃迁问题分析

氢原子跃迁问题例谈 玻尔的氢原子模型是高中物理的重要模型之一。以此知识点为背景的考题,往往具有较强的抽象性和综合性,一直都是学生学习的难点。本文试图就其中涉及氢原子跃迁的几个常见问题一一举例说明。 问题一:一个原子和一群原子的不同 例1 有一个处于量子数n=4的激发态中的氢原子,在它向低能态跃迁时,最多可能发出________种频率的光子;有一群处于量子数n=4的激发态中的氢原子,在它们发光的过程中,发出的光谱线共有________条。 解析:对于一个氢原子,它只能是多种可能的跃迁过程的一种,如图1所示,处于量子数n=4的氢原子可以跃迁到三个较低能级,即有4→3,4→2,4→1这三种可能。而4→3这种还可以继续跃迁到更低的能级,实现3→2然后2→1,则最多可能发出3种频率的光子。对于一群氢原子,情况就不同了。它们向低能级跃迁就应该包括4、3、2、1四个轨道中任意两个轨道的跃迁,由数学知识可 问题二:分清跃迁与电离的区别 例2 欲使处于基态的氢原子激发,下列措施可行的是 ( ) A.用 eV的光子照射 B.用11 eV的光子照射 C.用14 eV的光子照射 D.用10 eV的光子照射 解析:基态氢原子向激发态跃迁,只能吸收能量值刚好等于某激发态和基态能级之差的光子。由氢原子能级关系不难算出, eV刚好为氢原子n=1和n=2的两个能级之差,而10 eV 、11 eV都不是氢原子基态和任一激发态的能量之差,因而氢原子只能吸收前者被激发,而不能吸收后二者。对14 eV 的光子,其能量大于氢原子电离能 eV,足可使其电离,故而不受氢原子能级间跃迁条件限制。由能的转化和守恒定律知道,氢原子吸收14 eV的光子电离后产生的自由电子仍具有 eV的动能。故正确选项为AC。

玻尔的原子模型

4 玻尔的原子模型 [先填空] 1.玻尔原子模型 (1)原子中的电子在库仑力的作用下,绕原子核做圆周运动. (2)电子绕核运动的轨道是量子化的. (3)电子在这些轨道上绕核的转动是稳定的,且不产生电磁辐射. 2.定态 当电子在不同轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量,即原子的能量是量子化的,这些量子化的能量值叫做能级,原子具有确定能量的稳定状态,称为定态.能量最低的状态叫做基态,其他的能量状态叫做激发态.

3.跃迁 当电子从能量较高的定态轨道(其能量记为E m)跃迁到能量较低的定态轨道(其能量记为E n,m>n)时,会放出能量为hν的光子,该光子的能量hν=E m-E n,这个式子被称为频率条件,又称辐射条件. [再判断] 1.玻尔的原子结构假说认为电子的轨道是量子化的.(√) 2.电子吸收某种频率条件的光子时会从较低的能量态跃迁到较高的能量态.(√) 3.电子能吸收任意频率的光子发生跃迁.(×) [后思考] 1.玻尔的原子模型轨道与卢瑟福的行星模型轨道是否相同? 【提示】不同.玻尔的原子模型的电子轨道是量子化的,只有当半径的大小符合一定条件时才有可能.卢瑟福的行星模型的电子轨道是任意的,是可以连续变化的. 2.电子由高能量状态跃迁到低能量状态时,释放出的光子的频率可以是任意值吗? 【提示】不可以.因各定态轨道的能量是固定的,由hν=E m-E n可知,跃迁时释放出的光子的频率,也是一系列固定值. [合作探讨] 根据玻尔原子模型,原子核外的电子处于一系列不连续的轨道上,原子在不同的轨道又具有不同的能量. 探讨1:原子处于什么状态稳定,什么状态不稳定? 【提示】原子处于基态时是稳定的,原子处于激发态时不稳定. 探讨2:原子的能量与电子的轨道半径具有怎样的对应关系? 【提示】原子的能量与电子的轨道半径相对应,轨道半径大,原子的能量大,轨道半径小,原子的能量小.

玻尔原子模型氢原子光谱

玻尔的原子模型、氢原子光谱 溧阳市埭头中学 徐斌 一.玻尔原子理论的基本假设: 1、轨道量子化假设:原子中的电子在库仑引力的作用下,绕原子核做圆周运动,电子绕核运动的可能轨道是___________的.且电子绕核运动的轨道 半径不是 的。 2、定态假设:电子在不同的轨道上运动时,原子处于不同 的状态,因而具有不同的能量,即原子的能量是_______的. 这些具有确定能量的稳定状态称为定态,在各个定态中, 原子是________的,不向外辐射能量. 3、跃迁假设:原子从一个能量状态向另一个能量状态跃迁 时要________或_______一定频率的光子,光子的能量等于 两个状态的__________,即hν=___________。 【例1】在氢原子模型中,若已知电子的质量为m ,电荷量为-e ,氢原子在基态时轨道半径为r 1,试问:(静电力常量为k ) (1)电子在基态上运行时的动能E k 1= ; (2)已知原子内电子与原子核间的电势能满足关系r e k E p 2 -=,则氢原子在基态时的电势能E P 1= ;其总能量E 1= ; (3)若氢原子激发态的轨道半径和基态的轨道半径满足关系r n =n 2r 1,则氢原子在激发态时的总能量En = E 1; (4)随着氢原子能级值n 的增加,其动能E k 将 ,势能E P 将 ,总能量E 将 。(填写“增大”或“减小”) 【变式训练1】氢原子辐射出一个光子后,则【 】 A .电子绕核旋转的半径增大 B .电子的动能增大 C .氢原子的电势能增大 D .原子的能级值增大 【例2】氢原子基态能量E 1=-13.6eV ,当氢原子处于n =5激发态时,求: (1)最少要给基态的氢原子提供多少电子伏特的能量,才能使它跃迁到该激发态? (2)该激发态的氢原子向低能级跃迁辐射的光子频率最多有多少种?请画出所有可能的跃迁方式;其中最低频率为多少?最高频率为多少? (3)若已知钠的极限频率为6.00×1014Hz ,今用一群处于n =5的激发态的氢原子发射的光谱照射钠,试通过计算说明有几条谱线可使钠发生光电效应? (4)若要使该激发态的氢原子发生电离,则应用多长波长的光照射? 【变式训练2】已知氢原子的能级规律为E 1=-13.6eV 、E 2=-3.4eV 、E 3=-1.51eV 、E 4=-0.85eV 。现用光子能量介于11eV ~12.5eV 范围内的光去照射一大群处于基态的氢原子,则下列说法中正确的是【 】 A .照射光中可能被基态氢原子吸收的光子只有1种 B .照射光中可能被基态氢原子吸收的光子有无数种 C .激发后的氢原子发射的不同能量的光子最多有4种 D .激发后的氢原子发射的不同能量的光子最多有2种 【变式训练3】原子从a 能级状态跃迁到b 能级状态时发射波长为λ1的光子;原子从b 能级状态跃迁到c 能级状态时吸收波长为λ2的光子,已知λ1>λ2。那么原子从a 能级状态跃迁到c 能级状态时将要:【 】 A .发出波长为λ1-λ2的光子 B .发出波长为2121λλλλ-的光子 C .吸收波长为λ1-λ2的光子 D .吸收波长为2 121λλλλ-的光子 二.原子光谱: 1.光谱的分类:

玻尔的氢原子理论

玻尔的氢原子理论 关键词:氢原子 跃迁 谱线 模型 椭圆轨道 缺陷 摘要:1913年3、6、9月,分别写出了《原子构造和分子构造1、2、3》三篇论文(人称“三部曲”),提出了定态跃迁的原子模型。 1)定态假设:原子中电子的轨道不是任意的,只能取分立的几个,在以上轨道运动的电子不辐射电磁波,原子处于相应的定态。 2)跃迁假设:原子中的电子从一定态跃迁到另一定态,若相应的能量En>Ek ,则原子将放出一个光子,其频率:h E E k n -=ν 3)角动量量子化:如果电子绕核转的是圆轨道的话,它的角动量也应是量子化的,即π2h n P =(n=1,2,3…) 由定态跃迁原理通过运用经典力学的计算和引入量子条件,玻尔推出了原子的玻尔半径大小a ,并得到了定态能量En 。 2242222224h n me E ,m e h n a n ππ-== 将定态能量代入跃迁公式,即得氢光谱规律公式: ???? ??-=2221342112n n c h me ~πν 从而使氢光谱的谱线规律很自然的得到解释。 参考文献:《物理学史》 郭奕玲、沈慧君 清华大学出版社 《原子物理学》 杨福家 高等教育出版社 《量子力学教程》 曾谨言 高等教育出版社 一 玻尔其人 (一)生平简介 玻尔 ,N .(Niels Henrik David Bohr ,1885.10.07~1962.11.18) 丹麦物理学家 ,哥本哈根学派的创始人。1885年10月7日生于丹麦哥本哈根的一个富裕知识分子家庭,父亲是哥本哈根大学生理学教授。1903年入哥本哈根大学数学和自然科学系,主修物理学。1907年以有关水的表面张力的论文获得丹麦皇家科学文学院的金质奖章,并先后于1909年和1911年分别以关于金属电子论的论文获得哥本哈根大学的科学硕士和哲学博士学位。随后去英国学习,先在剑桥J .J .汤姆孙主持的卡文迪什实验室,据说他第一次与导师J.J.汤姆孙见面时,就把他论文中批评汤姆孙的段落当面指出,使导师很不高兴,因而给以冷遇。1912年3月转到了曼彻斯特随卢瑟福工作,这成了他一生的重要转折点。玻尔在卢瑟福实验室工作期间(约4个月),正值卢瑟福发表有核原子理论,并组织对这一

高中物理 玻尔的原子模型精品教案

玻尔的原子模型 (一)知识与技能 1.了解玻尔原子理论的主要内容。 2.了解能级、能量量子化以及基态、激发态的概念。 (二)过程与方法 通过玻尔理论的学习,进一步了解氢光谱的产生。 (三)情感、态度与价值观 培养我们对科学的探究精神,养成独立自主、勇于创新的精神。★教学重点 玻尔原子理论的基本假设。 ★教学难点 玻尔理论对氢光谱的解释。 ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 复习提问: 1.α粒子散射实验的现象是什么? 2.原子核式结构学说的内容是什么? 3.卢瑟福原子核式结构学说与经典电磁理论的矛盾

教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。 (二)进行新课 1.玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量) (本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径:12r n r n = n=1,2,3……能 量: 121 E n E n = n=1,2,3……式中r 1、E 1、分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量,r n 、E n 分别代表第n 条可能轨道的半径和电子在第n 条轨道上运动时的能量,n 是正整数,叫量子数。3.氢原子的能级图 从玻尔的基本假设出发,运用经典电磁学和经典力学的理论,可以计算氢原子中电子的可能轨道半径和相应的能量。 (1)氢原子的大小:氢原子的电子的各条可能轨道的半径r n : r n =n 2r 1, r 1代表第一条(离核最近的一条)可能轨道的半径 r 1=0.53×10-10 m 例:n=2, r 2=2.12×10-10 m (2)氢原子的能级:①原子在各个定态时的能量值E n 称为原子的能级。它对应电子在各条可能轨道上运动时的能量E n (包括动能和势能) E n =E 1/n 2 n=1,2,3,······ E 1代表电子在第一条可能轨道上运动时的能量 E 1=-13.6eV 注意:计算能量时取离核无限远处的电势能为零,电子带负电,在正电荷

相关主题
文本预览
相关文档 最新文档