当前位置:文档之家› 高考物理带电粒子在复合场中的运动技巧(很有用)及练习题

高考物理带电粒子在复合场中的运动技巧(很有用)及练习题

高考物理带电粒子在复合场中的运动技巧(很有用)及练习题
高考物理带电粒子在复合场中的运动技巧(很有用)及练习题

一、带电粒子在复合场中的运动专项训练

1.在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求

(1)M、N两点间的电势差U MN ;

(2)粒子在磁场中运动的轨道半径r;

(3)粒子从M点运动到P点的总时间t.

【来源】带电粒子在电场、磁场中的运动

【答案】1)U MN=(2)r=(3)t=

【解析】

【分析】

【详解】

(1)设粒子过N点时的速度为v,有:

解得:

粒子从M点运动到N点的过程,有:

解得:

(2)粒子在磁场中以O′为圆心做匀速圆周运动,半径为r,有:

(3)由几何关系得:

设粒子在电场中运动的时间为t 1,有:

粒子在磁场中做匀速圆周运动的周期:

设粒子在磁场中运动的时间为t 2,有:

2.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图2所示的幅值为U 0的交变电压,周期02m

T qB

π=

.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x ,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.

(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能; (2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之

【来源】【省级联考】浙江省2019届高三上学期11月选考科目考试物理试题

【答案】(1)00x y = ,

()2

02qBy m

(2)见解析

【解析】 【详解】

(1)发射源的位置00x y =, 粒子的初动能:()2

00

2k qBy E

m

=

(2)分下面三种情况讨论: (i )如图1,002k E qU >

由02101mv mv mv

y R R Bq Bq Bq

===、、, 和

221001122mv mv qU =-,222101122

mv mv qU =-, 及()012x y R R =++, 得()

()

2

2

002

224x y yqB mqU yqB mqU qB

qB

=+

++

+;

(ii )如图2,0002k qU E qU <<

由02

0mv mv y d R Bq Bq

--==、, 和

22

0201122

mv mv qU =+, 及()032x y d R =--+,

得()

2

2202

3)2x y d y d q B mqU qB

=-+++(

(iii )如图3,00k E qU <

由02

0mv mv y d R Bq Bq

--==、, 和

22

0201122

mv mv qU =-, 及()04x y d R =--+, 得()

2

2204

2x y d y d q B mqU qB

=--+

+-;

3.如图所示,x 轴正方向水平向右,y 轴正方向竖直向上.在xOy 平面内有与y 轴平行的匀强电场,在半径为R 的圆内还有与xOy 平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x 轴正方向发射出一束具有相同质量m 、电荷量q (q >0)和初速度v 的带电微粒.发射时,这束带电微粒分布在0<y <2R 的区间内.已知重力加速度大小为g . (1)从A 点射出的带电微粒平行于x 轴从C 点进入有磁场区域,并从坐标原点O 沿y 轴负方向离开,求电场强度和磁感应强度的大小与方向. (2)请指出这束带电微粒与x 轴相交的区域,并说明理由.

(3)若这束带电微粒初速度变为2v ,那么它们与x 轴相交的区域又在哪里?并说明理由.

【来源】带电粒子在电场中运动 压轴大题 【答案】(1) mg

E q =

,方向沿y 轴正方向;mv B qR

=,方向垂直xOy 平面向外(2)通

过坐标原点后离开;理由见解析(3)范围是x >0;理由见解析 【解析】 【详解】

(1)带电微粒平行于x 轴从C 点进入磁场,说明带电微粒所受重力和电场力的大小相等,方向相反.设电场强度大小为E ,由:

mg qE =

可得电场强度大小:

mg q

E =

方向沿y 轴正方向;

带电微粒进入磁场后受到重力、电场力和洛伦兹力的作用.由于电场力和重力相互抵消,它将做匀速圆周运动.如图(a )所示:

考虑到带电微粒是从C 点水平进入磁场,过O 点后沿y 轴负方向离开磁场,可得圆周运动半径r R =;设磁感应强度大小为B ,由:

2

v qvB m R

=

可得磁感应强度大小:

mv B qR

=

根据左手定则可知方向垂直xOy 平面向外;

(2)从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,如图(b )所示,设P 点与O '点的连线与y 轴的夹角为θ,其圆周运动的圆心Q 的坐标为

(sin ,cos )R R θθ-,圆周运动轨迹方程为:

222(sin )(cos )x R y R R θθ++-=

而磁场边界是圆心坐标为(0,R )的圆周,其方程为:

22()x y R R +-=

解上述两式,可得带电微粒做圆周运动的轨迹与磁场边界的交点为

0x y =??=?

或:

sin {

(1cos )

x R y R θθ=-=+

坐标为[sin ,(1cos )]R R θθ-+的点就是P 点,须舍去.由此可见,这束带电微粒都是通过坐标原点后离开磁场的;

(3)带电微粒初速度大小变为2v ,则从任一点P 水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r '为:

(2)

2m v r R qB

'=

= 带电微粒在磁场中经过一段半径为r '的圆弧运动后,将在y 轴的右方(x >0区域)离开磁场并做匀速直线运动,如图(c )所示.靠近M 点发射出来的带电微粒在穿出磁场后会射向x 轴正方向的无穷远处;靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场 所以,这束带电微粒与x 轴相交的区域范围是x >0.

答:(1)电场强度mg q

E = ,方向沿y 轴正方向和磁感应强度mv

B qR

=

,方向垂直xOy 平面向外.

(2)这束带电微粒都是通过坐标原点后离开磁场的;

(3)若这束带电微粒初速度变为2v ,这束带电微粒与x 轴相交的区域范围是x >0。

4.如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场. 图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l 的相同平行金属板构成,极板长度为l 、间距为d,两对极板间偏转电压大小相等、电场方向相反. 质量为m 、电荷量为+q 的粒子经加速电压U0 加速后,水平射入偏转电压为U1 的平移器,最终从A 点水平射入待测区域. 不考虑粒子受到的重力.

(1)求粒子射出平移器时的速度大小v1;

(2)当加速电压变为4U0 时,欲使粒子仍从A 点射入待测区域,求此时的偏转电压U; (3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F. 现取水平向右为x 轴正方向,建立如图所示的直角坐标系Oxyz. 保持加速电压为U0 不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示.

请推测该区域中电场强度和磁感应强度的大小及可能的方向. 【来源】2012年普通高等学校招生全国统一考试理综物理(江苏卷) 【答案】(1)0

12qU v m

=

1U?4U = (3)E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°,

若B 沿-x 轴方向,E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°. 【解析】

(1)设粒子射出加速器的速度为0v 动能定理2001

2

qU mv =

由题意得10v v =,即0

12qU v m

=

(2)在第一个偏转电场中,设粒子的运动时间为t 加速度的大小1

qU a md

=

在离开时,竖直分速度y

v at = 竖直位移2

112

y at =

水平位移1

l v t = 粒子在两偏转电场间做匀速直线运动,经历时间也为t 竖直位移2y y v t =

由题意知,粒子竖直总位移12

y?2y y =+

解得2

10U l y U d

=

则当加速电压为04U 时,1U?4U =

(3)(a)由沿x 轴方向射入时的受力情况可知:B 平行于x 轴. 且F

E q

= (b)由沿y +

-轴方向射入时的受力情况可知:E 与Oxy 平面平行.

222F f (5F)+=,则f?2F =且1f?qv B =

解得0

2F m

B B

qU =

(c)设电场方向与x 轴方向夹角为

.

若B 沿x 轴方向,由沿z 轴方向射入时的受力情况得222sin )(cos )(7)f F F

F αα++=( 解得

=30°,或

=150°

即E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°. 同理,若B 沿-x 轴方向

E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°.

5.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。0t =时,一带正电、质量为m 的微粒从左边界上的1N 点以水平速度v 射入该区域,沿直线运动到Q 点后,做一次完整的圆周运动,再沿直线运动到右边界上的2N 点,Q 为线段12N N 的中点,重力加速度为g ,上述d 、0E 、m 、v 、g 为已知量。

(1)求微粒所带电荷量q 和磁感应强度B 的大小; (2)求电场变化的周期T ;

(3)改变宽度d ,使微粒仍能按上述运动过程通过相应宽度的区域,求T 的最小值。

【来源】2010年普通高等学校招生全国统一考试(安徽卷)理综

【答案】(1)0

2E B v

=;(2)122d v T t t v g π=+=+;(3)min 1min 2(21)2v T t t g π+=+。 【解析】 【分析】

根据物体的运动性质结合物理情景确定物体的受力情况。再根据受力分析列出相应等式解决问题。 【详解】

(1)根据题意,微粒做圆周运动,洛伦兹力完全提供向心力,重力与电场力平衡, 则mg=qE 0 ①

∵微粒水平向右做直线运动,∴竖直方向合力为0. 则 mg+qE 0=qvB ② 联立①②得:q=

③B=

(2)设微粒从N 1运动到Q 的时间为t 1,作圆周运动的周期为t 2, 则=vt 1⑤qvB=m

⑥2πR=vt 2 ⑦

联立③④⑤⑥⑦得:t 1=,t 2=⑧ 电场变化的周期T=t 1+t 2=

+

(3)若微粒能完成题述的运动过程,要求 d≥2R ⑩ 联立③④⑥得:R=

,设N 1Q 段直线运动的最短时间t 1min ,由⑤⑩得t 1min =

因t 2不变,T 的最小值 T min =t 1min +t 2=。

答:(1)微粒所带电荷量q 为,磁感应强度B 的大小为。

(2)电场变化的周期T 为+

。 (3)T 的最小值为。

【点睛】

运动与力是紧密联系的,通过运动情况研究物体受力情况是解决问题的一个重要思路。

6.在场强为B 的水平匀强磁场中,一质量为m 、带正电q 的小球在O 静止释放,小球的运动曲线如图所示.已知此曲线在最低点的曲率半径为该点到z 轴距离的2倍,重力加速度为g .求:

(1)小球运动到任意位置P (x ,y)的速率v ; (2)小球在运动过程中第一次下降的最大距离y m ;

(3)当在上述磁场中加一竖直向上场强为E (mg

E q

>)的匀强电场时,小球从O 静止释放后获得的最大速率m v 。

【来源】江苏高考物理试题复习

【答案】(1)2v gy =;(2)2222m m g

y q B

= ;(3)()2m v qE mg qB =-。 【解析】 【详解】

⑴洛伦兹力不做功,由动能定理得

2

102

mgy mv =

- ① 解得

2v gy = ②

⑵设在最大距离m y 处的速率为m v ,根据圆周运动有

2m

m v qv B mg m R

-= ③

且由②知

2m m v gy = ④

由③④及2m R y =,得

2222m m g

y q B

= ⑤

⑶小球运动如图所示,

由动能定理得

2

1()2

m m qE mg y mv -= ⑥

由圆周运动得

2m

m v qv B mg qE m R

+-= ⑦

且由⑥⑦及2m R y =,解得:

()2

m v qE mg qB

=

-

7.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为

q

m

=5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求:

(1)电压U 0的大小;

(2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23

T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围.

【来源】【市级联考】山东省济南市2019届高三第三次模拟考试理综物理试题

【答案】(1)4

0 2.1610V U =? (2)0.04m x ?= (3)0.1425m x ≥

【解析】 【分析】 【详解】

(1)对于t =0时刻射入极板间的粒子:

0l v T = 7110T s -=?

211()22

T y a =

2y T v a

= 22

y

T y v = 122d

y y =+ Eq ma =

U E d

=

解得:4

0 2.1610V U =?

(2)2T

t nT =+

时刻射出的粒子打在x 轴上水平位移最大:032

A T x v = 所放荧光屏的最小长度A x x l ?=-即:0.04x m ?= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0

tan y v v β=

37β=

cos37v v

=

6110m/s v =?

即:所有的粒子射出极板时速度的大小和方向均相同.

2

v qvB m R

=

0.03m R r ==

由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.

由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场

圆半径方向射出磁场;从x 轴射出点的横坐标:

tan 53C A R

x x ?

=+

0.1425m C x =.

由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥

8.在地面附近的真空中,存在着竖直向上的匀强电场和垂直电场方向水平向里的匀强磁场,如图甲所示.磁场的磁感应强度B (图像中的B 0末知)随时间t 的变化情况如图乙所示.该区域中有一条水平直线MN ,D 是MN 上的一点.在t =0时刻,有一个质量为m 、电荷量为+q 的小球(可看做质点),从M 点开始沿着水平直线以速度v 0向右做匀速直线运动,t 0时刻恰好到达N 点.经观测发现,小球在t =2t 0至t =3t 0时间内的某一时刻,又竖直向下经过直线MN 上的D 点,并且以后小球多次水平向右或竖直向下经过D 点.不考虑地磁场的影响,求:

(1)电场强度E 的大小;

(2)小球从M 点开始运动到第二次经过D 点所用的时间; (3)小球运动的周期,并画出运动轨迹(只画一个周期).

【来源】【百强校】2015届辽宁师范大学附属中学高三模拟考试物理卷(带解析)

【答案】(1)mg q

E =

(2)2t 0(

1

+1) (3)T =8t 0,

【解析】 【分析】 【详解】

(1)小球从M 点运动到N 点时,有qE =mg , 解得mg q

E =

(2)小球从M 点到达N 点所用时间t 1=t 0,小球从N 点经过个圆周,到达P 点,所以t 2=t 0 小球从P 点运动到D 点的位移

x =R =0

0mv B q

小球从P 点运动到D 点的时间

300

R m t v B

q

==

02m t qB π=

,t 3=023t

π

, 所以时间

1230(

)1

321t t t t t π

+++==. (3)小球运动一个周期的轨迹如图所示.小球的运动周期为

T =8t 0.

9.如图1所示,直径分别为D 和2D 的同心圆处于同一竖直面內,O 为圆心,GH 为大圆的水平直径两圆之间的环形区域(I 区)和小圆内部(II 区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m ,电最

为+q 的粒子由小孔下

2

d

处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场,不计粒子的重力.

(1)求极板间电场强度的大小E ;

(2)若I 区、II 区磁感应强度的大小分别为2mv qD 、4mv

qD

,粒子运动一段时间t 后再次经

过H 点,试求出这段时间t ;:

(3)如图23D ,调节磁感应强度为B 0(大小未知),并将小圆中的磁场改为匀强电场,其方向与水平方向夹角成60?角,粒子仍由H 点紧靠大圆内侧射入磁场,为使粒子恰好从内圆的最高点A 处进入偏转电场,且粒子在电场中运动的时间最长,求I 区磁感应强度B 0的大小和II 区电场的场强E 0的大小? 【来源】【全国百强校】天津市新华中学2019届高三高考模拟物理试题

【答案】(1)

2

mv

qd

(2)

5.5D

v

π

(3

3mv

2

83mv

【解析】

【详解】

解:(1)粒子在电场中运动,由动能定理可得:2

1

22

d

qE mv

=

解得:

2

mv

E

qd

=

(2)粒子在I区中,由牛顿第二定律可得:

2

1

1

v

qvB m

R

=

其中1

2v

B

qD

π

=,

12

R

v

=

粒子在II区中,由牛顿第二定律可得:

2

2

2

v

qvB m

R

=

其中2

4mv

B

qD

=,

24

D

R=

12

12

22

,

R R

T T

v v

ππ

==,

由几何关系可得:1120

θ=?

2

180

θ=?

1

11

2

360

t T

θ

=

?

2

22

360

t T

θ

?

=

()

12

6

t t t

=+

解得:

5.5D

t

v

π

=

(3)由几何关系可知:2223()()22

D D r r

=+- 解得:3

r D =

由牛顿第二定律可得:2

0v qvB m r

=

解得:03mv

B qB

=

32cos D

r θ==

解得:30θ=?,则粒子速度方向与电场垂直

(1sin )2

D

vt θ+= 21cos 22D at θ= 0E q ma =

解得:2083mv E =

10.在平面直角坐标系xOy 中,第Ⅱ、Ⅲ象限y 轴到直线PQ 范围内存在沿x 轴正方向的匀强电场,电场强度大小500N/C E =,第I 、Ⅳ象限以()0.4,0为圆心,半径为的

圆形范围内,存在垂直于坐标平面向外的匀强磁场,磁感应强度0.5T B =.大量质量为

10110kg m -=?,电荷量6110C q -=?的带正电的粒子从PQ 上任意位置由静止进入电

场.已知直线PQ 到y 轴的距离也等于R .不计粒子重力,求:

(1)粒子进入磁场时的速度大小;

(2)若某个粒子出磁场时速度偏转了120,则该粒子进入电场时到y 轴的距离h 多大? (3)粒子在磁场中运动的最长时间.

【来源】天津市耀华中学2019届高三高考二模物理试题 【答案】(1)2000m/s (2)0.2m (3)4210s π-? 【解析】 【详解】

(1)粒子在电场中加速,则有:212

EqR mv = 解得:2000m/s v =

(2)在磁场中,有:2

v qvB m r

=

解得: 0.4m r R ==

即正好等于磁场半径,如图,轨迹圆半径与磁场圆半径正好组成一个菱形

由此可得sin300.2h R m =?=

(3)无论粒子从何处进入磁场,(2)中菱形特点均成立,所有粒子均从同一位置射出磁场,故4max 210s 2T m t Bq

ππ-=

==?

11.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面

向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x

(1)求电场强度大小E ;

(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;

(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间. 【来源】四川省2018届高三春季诊断性测试理综物理试题

【答案】(1)2

mv E qL =(2)04nmv B qL =n=1、2、3......(3)0

2L t v π=

【解析】

本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.

(1)带电粒子在电场中做类平抛运动有: 0L v t =,

2

122

L at =,qE ma = 联立解得: 2

mv E qL

=

(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan x

y

v v θ==l 速度大小0

02sin v v v θ

=

= 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2

π

;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.

若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2

π

.则有2R ,此时满足L=2nx 联立可得:22R n

=

由牛顿第二定律,洛伦兹力提供向心力,则有:2

v qvB m R

=

得:0

4nmv B qL

=

,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为

2

π

.则有222x R ,此时满足()221L n x =+

联立可得:()2212

R n =

+

由牛顿第二定律,洛伦兹力提供向心力,则有:2

22

v qvB m R =

得:()0

2221n mv B qL

+=

,n=1、2、3....

所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =

,n=1、2、3....或()0

2221n mv B qL

+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×

2

π×2=2nπ,则02222n n m L t T qB v ππππ=?==

若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220

(42)(42)2n n m L

t T qB v ππππ++=?

== 粒子从进入磁场到坐标(-L ,0)点所用的时间为0

2222n n m L

t T qB v ππππ=?

==或

2220

(42)(4

2)2n n m L

t T qB v ππππ++=?

==

12.如图所示,在平面直角坐标系xoy 的第二象限内有平行于y 轴的匀强电场,电场强度大小为E ,方向沿y 轴负方向。在第一、四象限内有一个半径为R 的圆,圆心坐标为(R ,0),圆内有方向垂直于xoy 平面向里的匀强磁场。一带正电的粒子(不计重力),以速度为v 0从第二象限的P 点,沿平行于x 轴正方向射入电场,通过坐标原点O 进入第四象限,速度方向与x 轴正方向成30?,最后从Q 点平行于y 轴离开磁场,已知P 点的横坐标为

2-h 。求:

(1)带电粒子的比荷

q

m

; (2)圆内磁场的磁感应强度B 的大小;

(3)带电粒子从P 点进入电场到从Q 点射出磁场的总时间。

【来源】2020届天津市六校高三上学期期末联考物理试题(天津外大附校等)

【答案】(1)2036v q

m Eh = (2)0

4Eh v R (3)063π3h R v +

【解析】 【详解】

(1)由水平方向匀速直线运动得

2h =v 0t 1

竖直向下的分速度

0ta 30n y v v ?=

由竖直方向匀加速直线运动知v y =at 1,加速度为

qE

a m

=

根据以上式解得

203v q

m =

(2)粒子进入磁场的速度为v ,有

cos30v v

?=

相关主题
文本预览
相关文档 最新文档