当前位置:文档之家› 方程的根与函数的零点练习题及答案解析

方程的根与函数的零点练习题及答案解析

方程的根与函数的零点练习题及答案解析
方程的根与函数的零点练习题及答案解析

方程的根与函数的零点练习题及答案解析

王学忠 山东省临沂市沂水县第一中学

教材版本:《普通高中课程标准实验教科书·数学1·必修·A 版》,人民教育出版社,2007年1月第二版

课 题:§3.1.1方程的根与函数的零点

教学目标:

【知识与技能】了解函数零点的概念,理解方程的根与函数的零点的关系;理解图象连续的函数存在零点的判定方法,并能进行简单的应用。

【过程与方法】在探究方程的根与函数的零点的关系,图象连续的函数存在零点的判定方法中体会数形结合、函数与方程的数学思想,从特殊到一般的归纳思想。

【情感态度与价值观】在函数与方程的联系中体验数学中的转化思想的意义和价值;在教学中让学生体验探究的过程、发现的乐趣,培养学生的辨证思维。

教学重点:方程的根与函数的零点的关系;图象连续的函数存在零点的判定方法及应用。 教学难点:图象连续的函数存在零点的判定方法的理解。

教具准备:直尺 Powerpoint 2003课件 几何画板4.07课件

学具准备:计算器

教学方法:问题探究法

教学过程设计:

一、创设情境:

问题引入:求方程01532=-+x x 的实数根。 变式:求方程01535=-+x x 的实数根。 数学史上,人们曾希望得到一般的五次以上代数方程的根式解,但经过长期的努力仍无结果,1824年挪威年仅22岁的数学家阿贝尔(N.H.Abel ,1802-1829)成功地证明了五次以上一般方程没有根式解。五次以上的高次方程不能用代数运算来求解,我们就必须寻求新的角度——函数来解决这个方程的问题。

设计意图:从学生的认知冲突中,引发学生的好奇心和求知欲,推动问题进一步的探究。通过对数学史的讲解,培养学生学习数学的兴趣,开门见山地提出利用函数思想解决方程根的问题。

二、新知探究:

1.零点的概念:

问题1:求方程0322=--x x 的实数根,并画出函数322--=x x y 的图象。

1-,3具有多重角色,它能够使这个方程成立,也能够使这个函数的函数值为0,它又是函数图象与x 轴两个交点的横坐标。这样1-,3就把函数与方程联系到一起了,在方程里,1-,3叫做方程的实数根,在函数里,它能够使得函数值为0,我们就称它为函数的零点。

对于函数)(x f y =,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点(zero point )。

设计意图:以学生熟悉一元二次方程和二次函数图象为平台,观察方程和函数形式上的联系,得出函数零点的概念。

问题2:求函数122+-=x x y 和函数322+-=x x y 的零点。

结论:函数)(x f y =的零点是个实数,是方程0)(=x f 实数根,是函数)(x f y =的图象与x 轴交点的横坐标(学生可能认为零点是个点,在这里要强调)。

问题3:探究一元二次方程)0(02≠=++a c bx ax 的实数根和对应的二次函数)0()(2≠++=a c bx ax x f 的零点及图象与x 轴交点的关系。(填下面表格)

结论:方程0)(=x f 有实数根0x ?函数)(x f

y =的图象与x 轴有交点)0,(0x ?函数)(x f y =有零点0x 。

设计意图:通过对一般形式一元二次方程和对应的二次函数的研究,进一步理解方程的根与函数的零点的关系。

练习:

1.求下列函数的零点:

(1)32+

=x y (2)12-=x y (3)83-=x y

2.已知函数)(x f y =的图象如下图所示,则函数)(x f y =的零点为______。

答案:1.(1)23

- (2)0 (3)2 2.3,1,2-。

设计意图:通过练习,使学生进一步理解函数零点的概念,强调求函数的零点可转化为求方程的根或求函数图象与x 轴的交点。

2.函数零点的判定:

问题4:观察下列两组画面,请你推断一下在他的徒步行程中是否一定趟过这条小溪?

第(1)组说明他的徒步行程中一定趟过这条小溪,第(2)组中不一定趟过这条小溪。

问题5:满足什么条件,才能使函数)(x f y =在))(,()),(,(b f b B a f a A 间的图象与x 轴一定有交点?

将小溪抽象成x 轴,将前后的两个位置视为A 、B 两点。请问当A 、B 与x 轴怎样的位置关系时,AB 间的一段函数图象与x 轴一定会有交点?

A 、

B 两点在x 轴的两侧。如何用数学符号(式子)来表示? 0)()(

(1)

(2)

并且函数图象必须是一条连续不断的曲线。

设计意图:从现实生活中的问题,让学生体会动与静的关系,整体与局部的关系。将现实生活中的问题抽象成数学模型,由图形语言转化为数学语言,培养学生的观察能力和提取有效信息的能力。

问题6:观察二次函数32)(2--=x x x f 的图象,在区间]1,2[-上,函数值)2(-f 和)1(f 的积与0的大小关系如何?函数32)(2--=x x x f 在)1,2(-是否存在零点?

在区间]1,2[-上,0)1()2(

问题7:观察二次函数32)(2--=x x x f 的图象,在区间]4,1[上,函数值)1(f 和)4(f 的积与0的大小关系如何?函数32)(2--=x x x f 在)4,1(是否存在零点?

在区间]4,1[上,0)4()1(

设计意图:通过对二次函数图象的分析,进一步探究函数在某个区间上存在零点的条件。 通过以上探究,让学生自己概括出对于一般的函数)(x f y =在区间],[b a 上满足什么条件就存在零点?

零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(

(1)函数图象连续不断,端点函数值异号,函数一定存在(至少有一个)零点。 问题9:若函数)(x f y =在区间),(b a 内有零点,一定有0)()(

不一定,如32)(2--=x x x f ,可以发现在区间]4,2[-上有零点,但0)4()2(>?-f f 。

(2)函数存在零点,端点函数值不一定异号。

设计意图:使学生准确理解零点存在性定理,强调结论不能随便改动。

三、新知应用与深化:

例1 观察下表,分析函数153)(5-+=x x x f 在定义域内是否存在零点?

分析:函数153)(5-+=x x x f 图象是连续不断的,又因为0)1()0(

设计意图:初步应用定理来判断函数零点存在问题。引导学生探索判断函数零点的方法,通过作出)(,x f x 的对应值表,来寻找函数值异号的区间;还可以借助几何画板作出函数的图象分析零点问题,并对函数有一个零点形成直观认识,为例2判断函数零点的个数作好准备。

例2 求函数62ln )(-+=x x x f 的零点个数。

分析:用计算器或计算机作出)(,x f x 的对应值表和图象。

由表可知,0)3(,0)2(>

结论:图象连续的单调函数若存在零点,则零点唯一。

设计意图:学生应用例题1方法来解决例题2的零点存在性问题,并结合函数的单调性判断零点的个数问题。

四、达标检测:

1.已知函数)(x f 图像是连续不断的,且有如下对应值表:

则函数至少有零点( )

A .1个

B .2个

C .3个

D .4个

2.设0x 是方程04ln =-+x x 的根,则0x 在下列哪个区间内 ( )

A .)2,1(

B .)3,2(

C .)4,3(

D .)5,4(

3.已知函数13)(+=ax x f 在)1,0(上有零点,则a 的取值范围是___________。

4.若函数b ax x x f --=2)(的两个零点是2和3,则=+225log b a ___________。

5.方程041=-+-x e x 的根有_______个。

答案:1.C 2.B 3.31

-

五、课堂小结:

通引导让学生回顾零点概念,方程的根与函数零点的关系,以及零点存在性判断,鼓励学生积极回答,然后老师从数学思想方面进行总结。

六、课后作业:

课本88P 练习1、2 92P 习题3.1 A 组1、2

七、下节预告:

我们已经可以利用求根公式来求一些方程的根,对于没有公式解的方程,我们借助函数的零点能估计方程的根所处的大体区间,能不能求出方程的根呢?这就是我们下节课学习的内容――用二分法求方程的近似解。

教学反思:

本节课在新课标理念的指导下,本着“教师的主导地位与学生的主体地位相统一”的教学原则下组织本节教学。采用问题探究式的教学方法并配以多媒体辅助教学,通过教师的点拨,启发学生主动思考、动手操作来达到对知识的发现和接受,并形成初步的应用技能。在教学过程中充分遵循学生的认知规律,在生活事例的引领下,进入新知识的学习,直观情境又在学生积极思考的过程中激发学生的学习热情和探究欲望。通过学生自主、合作、探究,在探索与交流中解决问题,形成自己对本节课重难点的理解和掌握。课堂练习和例题,由浅入深,承上启下,各有侧重,不但突出了本节课的重点内容,而且让学生体会运用函数性质及其图像来解题的重要数学思想。教学环节层层深入,环环相扣,充分体现了师生的交流互动,在教师的整体调控下,学生通过动手操作、动眼观察、动脑思考、层层递进,亲历了知识的形成和发展过程。

教学过程中的出现的几个问题:

1.在探求函数零点存在性定理时,学生提出满足条件也不一定存在零点,如图所示: 注意:这不是函数图象。

2.例2还可以看作是两个函数的交点问题。如:函数x y ln =与62+-=x y 。因为联立方程组???+-==62ln x y x

y ,消去y ,得到62ln +-=x x 即062ln =-+x x ,故函数

62ln -+=x x y 的零点也是两函数图象交点的横坐标。这样将未知函数图象转化为已知函数图象问题,进一步加强数形结合思想的应用意识。

3.在目前高考不允许使用计算器的情况下,可提醒学生学会利用估算来确定函数值的大小。如例2中计算:012ln 22ln )2(<-=-<-=e f ,01ln 3ln )3(>=>=e f 。

4.为了说明“图象连续的单调函数若存在零点,则零点唯一”,给出的两个例题中函数都只有一个零点,但防止给学生一种“函数至多有一个零点”的错误认识。如:课本练习88P 2

(4)就有三个零点。

【高考数学专题】函数的零点练习题

函数的零点 班级 ___________ 姓名 __________ 知识必备 1、函数零点定义. 对于函数()D x x f y ∈=,,把使()0=x f 成立的实数x 叫作函数()D x x f y ∈=,的零点。 2、函数的零点与相应方程的根,函数的图像与x 轴交点之间的关系. 方程()0=x f 有实根?函数()x f y =的图像与x 轴交点?函数()x f y =有零点. 3、函数零点的判定(零点存在性定理) 如果函数()x f y =在区间[]b a ,上的图像是一条连续曲线,并且有()()0+-≤-+=0 ,ln 20 ,322x x x x x x f 的零点个数为____________. 5、函数()()2,1≥∈-+=+n N n x x x f n n 在区间?? ? ??121,内的零点个数为______. 6、已知0x 是函数()x x f x -+ =11 2的一个零点,若()()+∞∈∈,,10201x x x x ,则( ) ()()0,0.21<x f x f C ()()0,0. 21>>x f x f D 7、已知a 是()x x f x 2 1log 2-=的零点,若a x <<00,则()0x f 的值满足( ) ()0. 0=x f A ()0.0x f C ()符号不确定 0.x f D 8、若函数()a x x x f -+=2 log 3 在区间()21, 内有零点,则实数a 的取值范围是( ) ()2log 1. 3--,A ()2l o g 0.3,B ()12l o g .3, C ()4l o g 1.3,D 9、若432<<<

专题06 重温高考压轴题----函数零点问题集锦-2019年高考数学压轴题之函数零点问题(解析版)

专题六重温高考压轴题----函数零点问题集锦 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题精选高考压轴题及最新高考模拟压轴题,形成函数零点问题集锦,例题说法,高效训练,进一步提高处理此类问题的综合能力. 【典型例题】 类型一已知零点个数,求参数的值或取值范围 例1.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 【解析】 画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C. 例2.【2018年理数全国卷II】已知函数. (1)若,证明:当时,; (2)若在只有一个零点,求. 【答案】(1)见解析(2)

【解析】 (1)当时,等价于. 设函数,则. 当时,,所以在单调递减. 而,故当时,,即. (2)设函数. 在只有一个零点当且仅当在只有一个零点. (i)当时,,没有零点; (ii)当时,. 当时,;当时,. 所以在单调递减,在单调递增. 故是在的最小值. ①若,即,在没有零点; ②若,即,在只有一个零点; ③若,即,由于,所以在有一个零点, 由(1)知,当时,,所以.故在有一个零点,因此在有两个零点. 综上,在只有一个零点时,. 类型二利用导数确定函数零点的个数 例3.【2018年全国卷II文】已知函数. (1)若,求的单调区间; (2)证明:只有一个零点.

函数与零点练习题

函数与零点 基础回顾: 零点、根、交点的区别 零点存在性定理:f (x )是连续函数;f (a )f (b )<0 二分法思想:零点存在性定理 一、基础知识—零点问题 1.若函数)(x f y =在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( ) A .若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ; B .若0)()(b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ; D .若0)()(

高考数学经典常考题型第9专题 零点存在的判定与证明

第9专题训练 零点存在的判定与证明 一、基础知识: 1、函数的零点:一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数 ()y f x =的零点。 2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有 ()()0f a f b ?<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b ?∈,使得()00f x = 注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在 3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。因此分析一个函数零点的个数前,可尝试判断函数是否单调 4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续) (1)若()()0f a f b ?<,则()f x “一定”存在零点,但“不一定”只有一个零点。要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点 (2)若()()0f a f b ?>,则()f x “不一定”存在零点,也“不一定”没有零点。如果()f x 单调,那么“一定”没有零点 (3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ?的符号是“不确定”的,受函数性质与图像影响。如果()f x 单调,则()()f a f b ?一定小于0 5、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b ∈,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x > 6、判断函数单调性的方法: (1)可直接判断的几个结论: ① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数 ② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数

方程的根与函数的零点

方程的根与函数的零点 教学重点:确定方程实数根的个数 教学难点:通过计算器或计算机做出函数的图象 教学方法:探讨法 教学过程: 引入问题 一元二次方程20(0)ax bx c a ++=≠的根与二次函数2 (0)y ax bx c a =++≠的图象有什么关系? 通过复习二者之间的关系引出新课(板书课题): 1.函数零点的定义: 对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点(zero point ).这样,函数()y f x =的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的横坐标,故有 2.一般结论 方程()0f x =有实数根?函数()y f x =的图象与x 轴有交点?函数()y f x =有零点 3.函数变号零点具有的性质 对于任意函数()y f x =,只要它的图象是连续不间断的,则有 (1)当它通过零点时(不是二重零点),函数值变号。如函数2()23f x x x =--的图象在零点1-的左边时,函数值取正号,当它通过第一个零点1-时,函数值由正变为负,再通过第二个零点3时,函数值又由负变成正(见教材第102页“探究”题)。 (2)在相邻两个零点之间所有的函数值保持同号。 4.注意点 (1)函数是否有零点是针对方程是否有实数根而言的,若方程没有实数根,则函数没有零点。 (2)如方程有二重实数根,可以称函数有二阶零点。 5.勘根定理 如果函数()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 ()()0f a f b ?<那么函数()y f x =在区间(,)a b 内有零点, 即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的实数根。 例1.求函数()ln 26f x x x =+-的零点个数。 分析:求函数的零点个数实际上是判断方程有没有实数根,有几个实数根的方法,其步骤是:

高中数学《方程的根与函数的零点》公开课优秀教学设计一

2016年全国高中青年数学教师优秀课展示与培训活动交流课案 课 题:3.1.1 方程的根与函数的零点 教 材:人教A 版高中数学·必修1 【教材分析】 本节课的内容是人教版教材必修1第三章第一节,属于概念定理课。“函数与方程”这个单元分为两节,第一节:“方程的根与函数的零点”,第二节:“用二分法求方程的近似解”。 第一节的主要内容有三个:一是通过学生已学过的一元二次方程、二次函数知识,引出零点概念;二是进一步让学生理解:“函数()y f x =零点就是方程()0f x =的实数根,即函数 ()y f x =的图象与x 轴的交点的横坐标”;三是引导学生发现连续函数在某个区间上存在零 点的判定方法:如果函数()y f x =在区间[],a b 上图象是连续不断的一条曲线,并且有 ()()0f a f b ?<,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根。这些内容是求方程近似解的基础。本节课的 教学主要是围绕如何用函数的思想解决方程的相关问题展开,从而使之函数与方程紧密联系在一起。为后续学习二分法求方程的近似解奠定基础,本节内容起着承上启下的作用,承接以前学过的方程知识,启下为下节内容学习二分法打基础。 【教学目标】 1.理解函数零点的概念;掌握零点存在性定理,会求简单函数的零点。 2.通过体验零点概念的形成过程、探究零点存在的判定方法,提高学生善于应用所学知识研究新问题的能力。 3.通过本节课的学习,学生能从“数”“形”两个层面理解“函数零点”这一概念,进而掌握“数形结合”的方法。 【学情分析】 1.学生具备的知识与能力 (1)初中已经学过一元二次方程的根、一元二次函数的图象与x 轴的交点横坐标之间的关系。 (2)从具体到抽象,从特殊到一般的认知规律。 2. 学生欠缺的知识与能力 (1)超越函数的相关计算及其图象性质. (2)通过对具体实例的探究,归纳概括发现的结论或规律,并将其用准确的数学语言表达出

方程的根与函数的零点练习题

方程的根与函数的零点 一、选择题 1.下列函数中在区间[1,2]上有零点的是( ) A .f (x )=3x 2-4x +5 B .f (x )=x 3-5x -5 C .f (x )=ln x -3x +6 D .f (x )=e x +3x -6 [答案] D [解析] 对于函数f (x )=e x +3x -6来说 f (1)=e -3<0,f (2)=e 2>0 ∴f (1)f (2)<0,故选D. 2.已知函数f (x )=mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点右侧,则实数m 的取值范围是( ) A .(0,1] B .(0,1) C .(-∞,1) D .(-∞,1] [答案] D [解析] 解法1:取m =0有f (x )=-3x +1的根x =1 3>0,则m =0应符合题 设,所以排除A 、B ,当m =1时,f (x )=x 2-2x +1=(x -1)2它的根是x =1符合要求,排除C.∴选D. 解法2:直接法,∵f (0)=1,∴(1)当m <0时必成立,排除A 、B , (2)当m >0时,要使与x 轴交点至少有一个在原点右侧, 则??? ?? m >0,Δ=(m -3)2 -4m >0,-m -32m >0, ∴00.∴选D. 3.函数y =f (x )与函数y =2x -3的图象关于直线y =x 对称,则函数y =f (x )与直线y =x 的一个交点位于区间( ) A .(-2,-1) B .(2,3)

C .(1,2) D .(-1,0) [答案] B [解析] y =2x -3的反函数为y =log 2(x +3) 由图象得:交点分别位于区间(-3,-2)与(2,3)内,故选B. 4.函数f (x )=lg x -9 x 的零点所在的大致区间是( ) A .(6,7) B .(7,8) C .(8,9) D .(9,10) [答案] D [解析] ∵f (9)=lg9-1<0,f (10)=1-9 10 >0, ∴f (9)·f (10)<0, ∴f (x )在(9,10)上有零点,故选D. 5.已知f (x )=(x -a )(x -b )-2,并且α、β是函数f (x )的两个零点,则实数a 、b 、α、β的大小关系可能是( ) A .a <α

函数与零点练习题

% 函数与零点 基础回顾: 零点、根、交点的区别 零点存在性定理:f(x)是连续函数;f(a)f(b)<0二分法思想:零点存在性定理 一、基础知识—零点问题 1.若函数 ) (x f y=在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是 () A.若 ) ( ) (> b f a f,不存在实数) , (b a c∈使得0 ) (= c f; 。 B.若 ) ( ) (< b f a f,存在且只存在一个实数) , (b a c∈使得0 ) (= c f; C.若 ) ( ) (> b f a f,有可能存在实数) , (b a c∈使得0 ) (= c f; D.若 ) ( ) (< b f a f,有可能不存在实数) , (b a c∈使得0 ) (= c f; 2.已知 ) (x f唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的 是 () A.函数 ) (x f在(1,2)或[2,3]内有零点 B.函数 ) (x f在(3,5)内无零点 C.函数 ) (x f在(2,5)内有零点 … D.函数 ) (x f在(2,4)内不一定有零点 3.关于“二分法”求方程的近似解,说法正确的是() A.“二分法”求方程的近似解一定可将 ) (x f y=在[a,b]内的所有零点得到 B.“二分法”求方程的近似解有可能得不到 ) (x f y=在[a,b]内的零点 C.应用“二分法”求方程的近似解, ) (x f y=在[a,b]内有可能无零点 D.“二分法”求方程的近似解可能得到 ) (= x f在[a,b]内的精确解 4.通过下列函数的图象,判断不能用“二分法”求其零点的是() 》 A.○1○2○3 B.○2○3○4 C.○1○2○4 D.○1○3○4 5.求 1 3 2 ) (3+ - =x x x f零点的个数为() A.1 B.2 C.3 D.4

方程的根与函数的零点题型及解析

方程的根与函数的零点 题型及解析 标准化管理部编码-[99968T-6889628-J68568-1689N]

方程的根与函数的零点题型及解析1.求下列函数的零点 (1)f(x)=x3+1;(2)f(x)=;(3)y=﹣x2+3x+4;(4)y=x2+4x+4. 分析:根据函数零点的定义解f(x)=0,即可得到结论. 解:(1)由f(x)=x3+1=0得x=﹣1,即函数的零点为﹣1;(2)由f(x)==0 得x2+2x+1=0得(x+1)2=0,得x=﹣1,即函数的零点为﹣1.(3)由y=﹣x2+3x+4=0,可得(x﹣4)(x+1)=0,所以函数的零点为4,﹣1;(4)y=x2+4x+4,可得(x+2)2=0,所以函数的零点为﹣2. 2.①求函数f(x)=2x+x﹣3的零点的个数;②求函数f(x)=log 2 x﹣x+2的零点的个数;③求函数的零点个数是多少? 分析:①由题意可判断f(x)是定义域上的增函数,从而求零点的个数;②由题意可 得,函数y=log 2 x 的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数 y=lnx 的图象与函数y=的图 象只有一个交点,可得函数f(x)=lnx-(1/x)的零点个数. 解:①∵函数f(x)=2x+x﹣3单调递增,又∵f(1)=0,故函数f(x)=2x+x﹣3 有且只有一个零点 ②函数f(x)=log 2x﹣x+2的零点的个数,即函数y=log 2 x 的图象和直线y=x﹣2 的交点个数,如图所示:故函数y=log 2 x 的图象(红色部分)和直线y=x﹣2(蓝 色部分)的交点个数为2,即函数f(x)=log 2 x﹣x+2的零点的个数为2;③函数 f(x)=lnx-(1/x)的零点个数就是函数y=lnx的图象与函数y=1/x的图象 的 交点的个数,由函数y=lnx 的图象与函数y=1/x的图象只有一个交点,如图 所示, 可得函数f(x)=lnx-(1/x)的零点个数是1 3.①已知方程x2﹣3x+a=0在区间(2,3)内有一个零点,求实数a的取值范围 ②已知a是实数,函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个 零点,求a的取值. ③已知函数f(x)=x2﹣2ax+4在区间(1,2)上有且只有一个零点,求a的取值范围 分析:①由已知,函数f(x)在区间(2,3)内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可; ②若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f(0)<0,f(1)>0,f(2)>0,f(4)<0,解得答案;③若函数f(x)=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数f(x)=x2﹣2ax+4有两个零点,进而f (1)f(2)<0,解得答案 解:①若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f (0)<0,f(1)>0,f(2)>0,f(4)<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈(4,19/4);②∵令f(x)=x2﹣3x+a,它的对称轴为x=3/2,∴函数f (x)在区间(2,3)单调递增,∵方程x2﹣3x+a=0在区间(2,3)内有一个零点,∴函数f(x)在区间(2,3)内与x轴有一个交点,根据零点存在性定理得出:f(2)<0,f(3)>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数f(x)=x2﹣2ax+4只有

函数与方程零点问题考点例题讲解

函数与方程 考纲解读 1.求常见函数的零点;2.判断基本初等函数零点所在区间;3.判断二次函数零点个数及分布;4.根据函数零点与方程根的关系求参数范围;5.根据具体函数的图象,能够用二分法求相应方程的近似解. [基础梳理] 1.函数的零点 (1)函数零点的定义 对于函数y =f (x ),把使f (x )=0的实数x 叫作函数y =f (x )的零点. (2)函数零点的判定(零点存在性定理) 如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根. 2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系 (x 0),(x 0) (x 0) 无交点 1.函数f (x )=lg x +x -3的零点个数为( ) A .0 B .1 C .2 D .3 答案:B 2.函数f (x )=e x - 1+4x -4的零点所在区间为( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3) 答案:B 3.函数f (x )=ln x -2 x 的零点所在的大致范围是( ) A .(1,2) B .(2,3) C.????1e ,1和(3,4) D .(4,+∞) 答案:B

4.用二分法求f (x )=2x +3x -7的零点的近似解,若第一次零点区间为(1,2),则第二次的零点区间为________. 答案:(1,1.5) 5.(2017·高考全国卷Ⅰ改编)函数y =x 2+1 x 的零点为__________. 答案:-1 [考点例题] 考点一 判定函数零点区间|方法突破 [例1] (1)函数f (x )=2x +ln 1 x -1的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(1,2)与(2,3) [解析] f (x )=2x +ln 1x -1=2x -ln(x -1),当1<x <2时,ln(x -1)<0,2 x >0,所以f (x )> 0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln 1=1,f (3)=2 3-ln 2=2-3ln 23=2-ln 83.∵8= 22≈2.828>e ,∴8>e 2,即ln 8>2,即f (3)<0.又f (4)=1 2-ln 3<0,∴f (x )在(2,3)内存在 一个零点. [答案] B (2)已知函数f (x )=2x +x ,g (x )=log 3x +x ,h (x )=x -1 x 的零点依次为a ,b ,c ,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <a <c [解析] 在同一坐标系下分别画出函数y =2x ,y =log 3x ,y =-1 x 的图象,如图,观察它们与y =-x 的交点可知a

《方程的根与函数的零点》测试题

《3.1.1 方程的根与函数的零点》测试题 一、选择题 1.(2012天津)函数在区间(0,1)内的零点个数是( ). A.0 B.1 C.2 D.3 考查目的:考查函数零点的概念与零点存在性定理的应用. 答案:B. 解析:∵函数在区间(0,1)上连续且单调递增,又∵,,∴根据零点存在性定理可知,在区间内函数零点的个数有1个,答案选B. 2.(2010浙江)已知是函数的一个零点.若,,则( ). A. B. C. D. 考查目的:考查函数零点的概念、函数的性质和数形结合思想. 答案:B. 解析:(方法1)由得,∴.在同一直角坐标系中,作出函数,的图象,观察图象可知,当时,;当时,,∴,. (方法2)∵函数、在上均为增函数,∴函数在上为增函数,∴由,得,由,得. 3.若是方程的解,则属于区间( ).

A. B. C. D. 考查目的:考查函数零点的存在性定理. 答案:D. 解析:构造函数,由,知,属于区间(1.75,2). 二、填空题 4.若函数的零点位于区间内,则 . 考查目的:考查函数零点的存在性定理. 答案:2. 解析:∵函数在定义域上是增函数,∴函数在区间上只有一个零点. ∵,,,∴函数的零点位于区间内,∴. 5.若函数在区间(-2,0)与(1,2)内各有一个零点,则实数的取值范围. 考查目的:考查函数零点的概念,函数零点的存在性定理和数形结合思想. 答案:. 解析:由题意画出函数的草图,易得,即,解得. 6.已知函数,设函数有两个不同的零点,则实数 的取值范围是. 考查目的:考查函数零点的概念、函数与方程的关系和数形结合思想. 答案:.

解析:函数有两个不同的零点,即方程有两个不同的实数根,画出函数图象与直线,观察图象可得满足题意的实数的取值范围是. 三、解答题 7.利用函数图象判断下列方程有没有根,有几个根? ⑴; ⑵. 考查目的:考查方程有实数根等价于函数的图象与轴交点的情况. 解析:⑴方程可化为,作出函数的图象,与轴有两个交点,故原方程有两个实数根; ⑵方程可化为,作出函数的图象,开口向上,顶点坐标为,与轴没有交点,故原方程没有实数根. 8.求出下列函数零点所在的区间. ⑴;⑵. 考查目的:考查函数零点的存在性定理. 解析:⑴∵函数的定义域为,且在定义域上单调递增,在 上最多只有一个零点.又∵,, ,∴函数的零点所在的区间为. ⑵∵函数的定义域为R,且在定义域上单调递减,∴函数在R上最多只有一个零点,又∵,,,∴函数零点所在的区间为.

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析 一、函数与方程基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。 函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。如:

方程的根与函数的零点练习答案

方程的根与函数零点综合练习题答案 一、选择题 1.下列函数中在区间[1,2]上有零点的是( ) A .f (x )=3x 2-4x +5 B .f (x )=x 3-5x -5 C .f (x )=ln x -3x +6 D .f (x )=e x +3x -6 2.设函数f (x )=1 3 x -lnx (x >0)则y =f (x )( ) A .在区间????1e ,1,(1,e )内均有零点 B .在区间??? ?1 e ,1, (1,e )内均无零点 C .在区间????1e ,1内有零点;在区间(1,e )内无零点D .在区间????1 e ,1内无零点,在区间(1,e )内有零点 3.函数f (x )=e x +x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2) 4.函数y =3 x -1x 2的一个零点是( ) A .-1 B .1 C .(-1,0) D .(1,0) 5.若函数f (x )是奇函数,且有三个零点x 1、x 2、x 3,则x 1+x 2+x 3的值为( ) A .-1 B .0 C .3 D .不确定 6.已知f (x )=-x -x 3,x ∈[a ,b ],且f (a )·f (b )<0,则f (x )=0在[a ,b ]内( ) A .至少有一实数根 B .至多有一实数根 C .没有实数根 D .有惟一实数根 7.若函数)(x f y =在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( ) A .若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ; B .若0)()(b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ; D .若0)()(0,f (2)<0,则f (x )在(1,2)上零点的个数为( ) A .至多有一个 B .有一个或两个 C .有且仅有一个 D .一个也没有 9.函数f (x )=2x -log 12 x 的零点所在的区间为( ) A.??? ?0,1 4 B.????14,12 C.??? ?1 2,1 D .(1,2) 10.根据表格中的数据,可以判定方程e x -x -2=0的一个根所在的区间为( ) A.(-1,0) B 11.若函数f (x )=ax +b 的零点是2,则函数g (x )=bx 2-ax 的零点是( )

函数的零点及应用

函数的零点及应用 一、要点扫描 1.函数零点的理解:(1)函数的零点、方程的根、函数图象与x 轴的交点的横坐标,实质是同一个问题的三种不同表达形式;(2)若函数f (x )在区间[a ,b ]上的图象是一条连续的曲线且f (a )f (b )<0,则f (x )在区间(a ,b )内有零点. 2.函数零点的判定常用方法:(1)零点存在性定理;(2)数形结合法;(3)解方程f (x )=0. 3.曲线的交点问题:(1)曲线交点坐标即为方程组的解,从而转化为方程的根;(2)求曲线y =f (x )与y =g (x )的交点的横坐标,实际上就是求函数y =f (x )-g (x )的零点,即求f (x )-g (x )=0的根. 二、典型例题剖析 1.求函数的零点 例1 求函数f (x )=x 3-3x +2的零点. 解 令f (x )=x 3-3x +2=0,∴(x +2)(x -1)2=0. ∴x =-2或x =1, ∴函数f (x )=x 3-3x +2的零点为-2,1. 评注 求函数的零点,就是求f (x )=0的根,利用等价转化思想,把函数的零点问题转化为方程根的问题,或利用数形结合思想把函数零点问题转化为函数图象与x 轴的交点问题. 2.判断函数零点的个数 例2 已知函数f (x )=a x +x -2 x +1 (a >1),判断函数f (x )=0的根的个数. 解 设f 1(x )=a x (a >1),f 2(x )=-x -2 x +1 ,则f (x )=0的解,即为f 1(x )=f 2(x )的解,即为函数f 1(x ) 与f 2(x )的交点的横坐标.

2021年函数与零点练习题

函数与零点 欧阳光明(2021.03.07) 基础回顾: 零点、根、交点的区别 零点存在性定理:f (x )是连续函数;f (a )f (b )<0 二分法思想:零点存在性定理 一、基础知识—零点问题 1.若函数)(x f y =在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是() A .若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ; B .若0)()(b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ; D .若0)()(

函数的零点和方程的根经典练习题

函数的零点和方程的根经典练习题 1.函数2()41f x x x =--+的零点为( ) A 、12-+ B 、12-- C 、12 -± D 、不存在 2、函数32()32f x x x x =-+的零点个数为( ) A 、0 B 、1 C 、2 D 、3 3、函数()ln 26f x x x =+-的零点一定位于区间( ). A. (1, 2) B. (2 , 3) C. (3, 4) D. (4, 5) 4、已知[x ]表示不超过实数x 的最大整数,g (x )=[x ]为取整函数,x 0是函数f (x )=ln x -2x 的零点,则g (x 0)等于________ 5、若定义在R 上的偶函数f(x)满足f(x +2)=f(x),且当x ∈[0,1]时,f(x)=x ,则函数y =f(x)-log 3|x|的零点个数是 6、定义在R 上的奇函数()f x ,当0x ≥时,2log (1)(01)()|3|1(1)x x f x x x +≤x x ,若关于x 的函数 +=)(22x f y 1)(2+x bf 有8个不同的零点,则实数b 的取值范围是____________. 11、求证方程231 x x x -= +在(0,1)内必有一个实数根. 12、已知关于x 的方程x 2+2mx +2m +3=0的两个不等实根都在区间(0,2)内,求实数m 的取值范围.

函数零点与方程的根练习题

方程的根与函数的零点 1、函数()? ? ?>+-≤-=1,341 ,442 x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( ) A.4 B.3 C.2 D.1 2、函数12log )(2-+=x x x f 的零点必落在区间( ) A.?? ? ??41,81 B.?? ? ??21,41 C.?? ? ??1,21 D.(1,2) 3、函数()f x 的零点与()422x g x x =+-的零点之差的绝对值不超过0.25, 则()f x 可以是( ) A. ()41f x x =- B. ()2(1)f x x =- C. ()1x f x e =- D.)2 1 ln()(-=x x f 4.若0x 是方程31 )2 1 (x x =的解,则0x 属于区间( ) A .??? ??1,32 . B .??? ??32,21 . C .??? ??21,31 D .?? ? ??31,0 5.若0x 是方程式lg 2x x +=的解,则0x 属于区间( ) A .(0,1). B .(1,1.25). C .(1.25,1.75) D .(1.75,2) 6.函数()x x f x 32+=的零点所在的一个区间是( ) A .()1,2-- B .()0,1- C .()1,0 D .()2,1 7.函数()2-+=x e x f x 的零点所在的一个区间是( ) A .()1,2-- B .()0,1- C .()1,0 D .()2,1 8.已知0x 是函数()x x f x -+ =11 2的一个零点,若()01,1x x ∈,()+∞∈,02x x ,则( ) A .()01x f C .()01>x f ,()02x f ,()02>x f 9.已知以4T =为周期的函 数(1,1] ()12,(1,3] x f x x x ?∈-?=?--∈??,其中0m >。若方程 3()f x x =恰有5个实数解,则m 的取值范围为( )

方程的根与函数的零点说课稿

《方程的根与函数的零点》说课稿 1 教材分析 1.1 地位与作用 本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课. 新课标教材新增了二分法,也因而设置了本节课.所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存在性定理的是二分法的必备知识.之前的教材虽然没有设置本节内容,但方程的根与函数的关系从来是重要且无法回避的,所以将本节课直接编入教材很有必要.本节课也就不仅为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础. 从研究方法而言,零点概念的形成和零点存在性定理的发现,符合从特殊到一般的认识规律,有利于培养学生的概括归纳能力,也为数形结合思想提供了广阔的平台. 1.2 教学重点 基于上述分析,确定本节的教学重点是:了解函数零点概念,掌握函数零点存在性定理. 2 学情分析 2.1 学生具备必要的知识与心理基础. 通过前面的学习,学生已经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础.方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础. 2.2学生缺乏函数与方程联系的观点. 高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位. 例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象.函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成了本节课必须承载的任务. 2.3直观体验与准确理解定理的矛盾. 从方程根的角度理解函数零点,学生并不会觉得困难.而用函数来确定方程根的个数和大致范围,则需要适应.换言之,零点存在性定理的获得与应用,必须让学生从一定量的具体案例中操作感知,通过更多的举例来验证.

文本预览
相关文档 最新文档