当前位置:文档之家› 炼铝用新型电极材料_邱竹贤

炼铝用新型电极材料_邱竹贤

炼铝用新型电极材料_邱竹贤
炼铝用新型电极材料_邱竹贤

铝及铝合金熔炼工艺操作规程

铝及铝合金熔炼工艺操作规程 1、炉子准备 1.1 新炉、大修后的冷炉,应按烘炉规程烘炉。停炉24小时以上的炉子,应根据环境、湿度先烘炉2~6小时以上,才能加料。不得事先将炉料加入冷炉化铝。 1.2 大修后的炉子,在使用前必须洗炉。熔炼合金后转产纯铝时,必须洗炉。洗炉次数不少于两炉次。 1.3 洗炉时,彻底搅拌熔体不少于三次。每次搅拌间隔时间为半小时。洗炉料应彻底放干。 2、技术要求 2.1 化学成分 2.2 按工艺单的要求进行配料,保证加入铝-铁中间合金后,铁硅比≥1.2(铁和硅总量超过0.65%时,可以不要求铁硅比)。 3、加料 3.1 对炉料的要求 3.1.1 配料所使用的原料,必须符合公司内部原材料验收标准的规定,必须有化学成分单方可使用。

3.1.2 外购卷废料成分符合要求,且加工性能合格,方可使用。 3.1.3 铝屑之类的炉料应先铸成锭后,才能加入,并应掺含50%以上的新料(可以是剪切边角料)加入。 3.1.4 所使用的原材料必须清洁、干燥,不得粘有泥、砂,不得混入其他金属和非金属夹杂物。粘有泥、砂的炉料,应清洗晾干后,才能加入炉内。 3.2 炉料的加入顺序和原则 3.2.1 为了保护炉底,加料前先用小块料铺一层底料。 3.2.2 炉膛内加料分布均匀,保持重心不偏移。 3.2.3 炉料在炉膛内的平均高度不允许超过烧嘴的位置,炉料最高处不允许超过烧嘴位置8cm,要保持烧嘴喷射火焰空间畅通,空气流通,防止冒浓烟,减少热损失。为保证装炉量,分二次加料,开火待一次加料软化、炉料高度下降后,再进行二次加料。 3.3 安全要求 3.3.1 凡粘有水和油的废料,不得直接加入未放尽铝液的炉内。 3.3.2 凡粘有润滑油的炉料,不得直接加入保温炉,应在柴油炉内加热蒸发,烧去油污和水分。 3.3.3 加废料前,应先打开烟道闸门,加完后再开烧嘴一刻钟,然后适当关烟道闸门进行升温。 4、熔化 4.1 柴油炉点火,应严格遵守安全操作规程,先开风,后开油,先停油,后关风。点火前应先打开烟道闸门及炉门,火苗调至稳定后,

几种常见的电极反应式的书写

几种常见的“燃料电池”的电极反应式的书写 江西黎川一中朱印聪 燃料电池是原电池中一种比较特殊的电池,它与原电池形成条件有一点相悖,就是不一定两极是两根活动性不同的电极,也可以用相同的两根电极。燃料电池有很多,下面主要介绍几种常见的燃料电池,希望达到举一反三的目的。 一、氢氧燃料电池 氢氧燃料电池一般是以惰性金属铂(Pt)或石墨做电极材料,负极通入H2,正极通入 O2,总反应为:2H2 + O2 === 2H2O 电极反应特别要注意电解质,有下列三种情况: 1.电解质是KOH溶液(碱性电解质) 负极发生的反应为:H2 + 2e- === 2H+ ,2H+ + 2OH- === 2H2O,所以: 负极的电极反应式为:H2– 2e- + 2OH- === 2H2O; 正极是O2得到电子,即:O2 + 4e- === 2O2-,O2- 在碱性条件下不能单独存在,只能结合H2O生成OH-即:2O2- + 2H2O === 4OH-,因此, 正极的电极反应式为:O2 + H2O + 4e- === 4OH-。 2.电解质是H2SO4溶液(酸性电解质) 负极的电极反应式为:H2 +2e- === 2H+ 正极是O2得到电子,即:O2 + 4e- === 2O2-,O2- 在酸性条件下不能单独存在,只能结合H+生成H2O即:O2- + 2 H+ === H2O,因此 正极的电极反应式为:O2+ 4H+ + 4e- === 2H2O(O2 + 4e- === 2O2-,2O2- + 4H+ === 2H2O) 3. 电解质是NaCl溶液(中性电解质) 负极的电极反应式为:H2 +2e- === 2H+ 正极的电极反应式为:O2 + H2O + 4e- === 4OH- 说明:1.碱性溶液反应物、生成物中均无H+ 2.酸性溶液反应物、生成物中均无OH- 3.中性溶液反应物中无H+ 和OH- 4.水溶液中不能出现O2- 二、甲醇燃料电池 甲醇燃料电池以铂为两极,用碱或酸作为电解质: 1.碱性电解质(KOH溶液为例) 总反应式:2CH4O + 3O2 +4KOH=== 2K2CO3 + 6H2O 正极的电极反应式为:3O2+12e- + 6H20===12OH- 负极的电极反应式为:CH4O -6e-+8OH- === CO32-+ 6H2O 2. 酸性电解质(H2SO4溶液为例)

铝的检测方法38958

铝的检测方法 -------北京普析通用仪器有限责任公司 一、铝试剂紫外可见分光光度法 二、方法提要: 在中性或酸性介质中,铝试剂与铝反应生成红色络合物,其吸光度与铝的含量在一定浓度范围内成正比。PH=4时,显色络合物最稳定。 三、试剂: 1、氨水溶液:(C=0.1mol/L)1ml氨水用纯水稀释至150ml。 2、盐酸溶液:(C=0.1mol/L)1ml盐酸用纯水稀释至120ml。 3、抗坏血酸溶液(50g/L):称取抗坏血酸5.0g,溶于纯水中(不可加热)稀释至100ml。用时现配。 4、铝试剂溶液(0.5g/L);称取0.25g铝试剂金精酸铵,加250ml纯水,温热至溶解,加72.6g乙酸铵,溶解后,加30.ml冰乙酸,稀释至500ml。必要时过滤,放置棕色瓶中,暗处保存,可稳定6个月。 5、铝标准储备溶液(0.1000mg/L):称取1.759g硫酸铝钾(优级纯)溶于纯水中,加10ml硫酸(1+3),移入1000ml容量瓶中,用纯水定容。 6、铝标准使用液(1.00ug/ml):吸取10.00ml铝标准储备溶液于100ml容量瓶中,用纯水定容。 7、对硝基酚指示剂(1g/L):称取对硝基酚0.1g溶于纯水中,稀释至100ml. 四、仪器 1、分光光度计 2、50ml具塞比色管 五、分析步骤;

1、吸取铝标准使用液:0、1.00、2.00、3.00、4.00、5.00、10.00ml于50ml具塞比色管中,补加纯水至25ml.。 2、吸取25.0ml水样于50ml具塞比色管中,向各标准管和水样管中,各加3滴对硝基酚指示剂,,若水样为中性,则显黄色,可滴加盐酸溶液。恰至无色,若水样为酸性,则不显色,可先滴加氨水溶液至显黄色,再滴加盐酸溶液至黄色恰好消失。 3、加抗坏血酸溶液1.0ml,(若水样中含铁很低,<0.1mg/L时,可不加),加铝试剂溶液4.0ml,用纯水稀释至50ml摇匀,放置15min(注意控制每支显色时间一致)。 4、于528nm波长处,用1cm比色皿,以实际空白作参比测量吸光度。 5、以比色管中的铝含量(ug)为横坐标,吸光度为纵坐标绘制校准曲线。 六、计算 m ρ(Al)= v 式中:ρ(Al)——水样中铝的质量浓度,mg/L。 m——从标准曲线上查得的比色管中铝的含量,ug。 V——水样的体积,ml。

行业标准《冶金级氧化铝》编制说明

《冶金级氧化铝》审定稿编制说明 中国铝业股份有限公司郑州研究院 二О一一年十月

编制说明 一、工作简况 1、任务来源 根据全国有色金属标准化技术委员会2010武汉年会的安排,由中国铝业股份有限公司郑州研究院承担《冶金级氧化铝》标准的起草工作,由XXX、XXX、XXX单位参与起草。项目已经国家工业和信息化部以“关于印发2011年第二批行业标准制修订计划的通知(工信厅科[2011]134号)”文件下达,项目编号:2011-0935T-YS。 标准主要起草人:XXX、XXX、XXX、XXX。 2、标准负责起草单位简况 中国铝业股份有限公司郑州研究院是国内唯一的从事铝、镁轻金属研究的专业性机构,成立于1965年,一直致力于行业重大、关键、共性技术的开发研究,包括大型预焙铝电解槽、皮江法炼镁、氧化铝的砂状化、选矿拜耳法等国家重点科技攻关项目的研究。拥有铝土矿处理、氧化铝工艺、铝用炭素和电解铝工艺、镁冶炼工艺、化学品氧化铝和轻金属材料工艺、轻金属检测等技术领域的研究实验室,具有完善的铝、镁基础理论研究技术平台,包括TEM、SEM、EDS、XRD、XRF、IC等在内的大型仪器设备50余套,建有世界上最大的氧化铝中间试验厂和电解铝中间试验厂,以及铝土矿综合利用试验基地,同时依托郑州研究院设立了国家铝冶炼工程技术研究中心、国家轻金属质量监督检验中心和中国铝业股份有限公司博士后科研工作站。郑州研究院是国际标准化组织ISO/TC79、ISO/TC129、ISO/TC226在国内的主要技术支撑单位,在全国有色金属标准化技术委员会的直接领导下,承担了轻金属行业大部分分析检测方法标准的起草或修订工作,近今年来,作为负责起草单位,完成了《铝土矿石化学分析方法》、《镁及镁合金化学分析方法》、《铝用炭素材料检测方法》等多个系列160项标准的起草或修订。 3、主要工作过程(征求意见过程,讨论会、预审会的情况)及主要工作内容 郑州研究院接受任务后立即成立标准编制小组,确定工作方案,于2011年2月开始发文征求意见,发出60余份调研信函或电子邮件,返回意见的企业26家,其中生产企业10家,使用企业16家,其中2家生产企业、8家使用企业的

电极反应式和总反应式的书写规范

电极反应式和总反应式的书写规 关于高中化学的电化学部分一直是高中化学容中重要的基本概念和基础理论之一,特别是电极反应式和总反应式的书写问题。虽说现行新课程对这部分的要求不高,但是,这部分的容一直是高考和竞赛的要点和难点。再加上现行教材中对这部分的容书写也不是很规,这样更加加大了教师和学生教与学的难度。本文旨在唤起广大师生的共识,力求规和准确书写电极反应式和总反应式。 一、电极反应式和总反应式的一般概念 电极反应式是指在电化学反应中,原电池放电时的正、负极(或电解池电解时的阴、阳极)发生的还原、氧化反应得失电子的离子反应式(包括极区溶液中的微粒参加的反应在)。其实质均是将氧化还原反应分割成氧化和还原两个半反应的反应式,并且伴随着电子的得失和转移。 总反应式则有两个层次的含义。广义的总反应式是指原电池放电(或电解池电解)时装置中所发生的所有相关化学变化并反映各物质之间的化学计量关系的总反应式(既包括两极反应又包括两极反应的产物在溶液中的相关反应)。而狭义的总反应式仅是指两电极反应式之和,不包括两极的电极反应产物在溶液中相遇或混匀溶液时发生的反应。

例如:普通的锌锰干电池的电极反应式和总反应式如下: 正极:2NH4+ + 2e- + 2MnO2 = 2NH3 + Mn2O3 + H2O (包括极区反应H2+2MnO2=Mn2O3+H2O,教材此处已在试用版的基础上得到修正) 负极:Zn - 2e- = Zn2+ 该电池总反应式为(狭义):Zn + 2NH4+ + 2MnO2 = Zn2+ + 2NH3 + Mn2O3 + H2O(一般常用此式表示) 若还包括两极各自产物Zn2+和NH3在溶液中的络合反应{ Zn2+ + 4NH3 = [Zn (NH3)4]2+},则该电池反应的总反应式(广义)即为:2Zn + 4NH4+ + 4MnO2 = Zn2+ +[Zn(NH3)4]2+ + 2Mn2O3 +2 H2O。 二、电极反应式和总反应式的书写规则 1、电极反应式的书写规则 (1)原电池放电时的正、负极(或电解池电解时的阴、阳极)的电极反应式中各微粒的化学式均严格按照离子方程式的书写规则进行书写(即除了易溶且易电离的物质才可拆成离子形式,其它物质一律只写成化学式)。 (2)电极反应式不仅写出被氧化和被还原的物质及其产物外,还须包括该极区周围电解质溶液中参加了离子反应的微粒在。(注意:由于盐类的水解程度一般很小,因此可不考虑某些离子的水解反应) (3)原电池放电时的正、负极(或电解池电解时的阴、阳极)的电极反

常见原电池方程式

1.电化腐蚀:发生原电池反应,有电流产生 (1)吸氧腐蚀 负极:Fe-2e-==Fe2+ 正极:O2+4e-+2H2O==4OH- 总式:2Fe+O2+2H2O==2Fe(OH)2 4Fe(OH)2+O2+2H2O==4Fe(OH)32Fe(OH)3==Fe2O3+3H2O (2)析氢腐蚀:CO 2+H2O H2CO3H++HCO3- 负极:Fe -2e-==Fe2+ 正极:2H+ + 2e-==H2↑ 总式:Fe + 2CO2 + 2H2O = Fe(HCO3)2 + H2↑ Fe(HCO3)2水解、空气氧化、风吹日晒得Fe2O3。 常见原电池 (1)一次电池 ①碱性锌锰电池 构成:负极是锌,正极是MnO2,正极是KOH 工作原理:负极Zn+2OH—-2e-=Zn(OH)2;正极:2MnO2+2H2O+2e-=2MnOOH+2OH- 总反应式:Zn+2MnO2+2H2O=2MnOOH+Zn(OH)2 特点:比能量较高,储存时间较长,可适用于大电流和连续放电。 ②钮扣式电池(银锌电池) 锌银电池的负极是Zn,正极是Ag20,电解质是KOH,总反应方程式:Zn+Ag20=2Ag+ZnO 特点:此种电池比能量大,电压稳定,储存时间长,适宜小电流连续放电。 ③锂电池 锂电池用金属锂作负极,石墨作正极,电解质溶液由四氯化铝锂(LiAlCl4)溶解在亚硫酰氯(SOC12)中组成。 锂电池的主要反应为:负极:8Li-8e—=8Li+;正极:3SOC12+8e—=SO32-+2S+6Cl— 总反应式为:8Li+3SOC12=6LiCl+Li2SO3+2S 特点:锂电池是一种高能电池,质量轻、电压稳定、工作效率高和贮存寿命长的优点。 (2)二次电池 ①铅蓄电池:

铝合金材料检验试验规范

铝合金材料检验试验规范 制定 / 日期审核 / 日期批准 / 日期 文件发行栏 □ 执行董事□ 总经理□ 财务总监□ 生产副总□ 财务部□ 管理部□ 计划物料部□ 采购部□ 出口部□ 研发部□ 技术部□ 品保部□ 前加工车间□ 装配车间□ 喷涂车间□ 镜柜车间□ 杭洲湾分部

修改履历 序号章节版次修改内容生效日期1 全部A0 初次发行2012-07-01

1、目的: 为了保证铝合金(铝型材)材料的来料质量和满足制程中各项工艺技术要求,特制定本规范。 2、范围: 本规范规定了铝合金(铝型材)材料的技术要求、检验方法、试验方法,检验标准。 本规范适用于本公司外购的所有的铝合金型材材料。 本规范规定的原材料外形尺寸和表面质量为正常检查项目,化学成分和力学分析为特殊检查项目。 3、职责: 品质部:负责原材料来料检验; 工程技术中心:负责新工艺、新材料的试验; 采购部:负责联系与原材料供应商之间信息反馈及品质要求。 4、内容: 、外形尺寸 测量工具: 测量工具型号精度 游标卡尺0~300mm 0.02mm 千分卡尺0~25mm 0.01mm 铝合金型材截面尺寸: 技术要求中除技术部门提供的图纸资料中有特殊要求,否则按执行,铝型材开口尺寸除外。(见表1、表2)。 表1 铝合金型材截面尺寸及允许偏差 截面尺寸/mm 公差截面尺寸/mm 公差 大于至大于至 0 1 ±19 25 ± 1 2 ±25 38 ± 2 3 ±38 50 ± 3 4 ±50 100 ± 4 6 ±100 150 ± 6 12 ±150 200 ± 12 19 ±200 350 ±注:铝型材的长度尺寸按供需双方在订单合同的技术要求约定执行。 表2 铝合金型材管壁厚允许偏差mm 铝合金管材壁厚允许偏差 外径 壁厚

电极方程式的书写和常见电源(高考总复习)

电极方程式的书写和常见电源 电极反应式书写的一般步骤: 负极:活泼金属失电子,看阳离子能否在电解液中大量存在。如果金属阳离子不能与电解液中的离子共存,则进行进一步的反应。例:甲烷燃料电池中,电解液为K OH,负极甲烷失8个电子生成CO2和H2O,但CO2不能与OH-共存,要进一步反应生成碳酸根。 正极:①当负极材料能与电解液直接反应时,溶液中的阳离子得电子。例:锌铜原电池中,电解液为HCl,正极H+得电子生成H2。②当负极材料不能与电解液反应时,溶解在电解液中的O2得电子。如果电解液呈酸性,O2+4e-+4H+==2H2O;如果电解液呈中性或碱性,O2+4e-+2H2O==4OH-。 特殊情况:Mg-Al-NaOH,Al作负极。 负极:Al-3e-+4OH-==AlO2-+2H2O;正极:2H2O+2e-==H2↑+2OH- Cu-Al-HNO3,Cu作负极。 注意:Fe作负极时,氧化产物是Fe2+而不可能是Fe3+; 肼(N2H4)和NH3的电池反应产物是H2O和N2 无论是总反应,还是电极反应,都必须满足电子守恒、电荷守恒、质量守恒。pH变化规律: 电极周围:消耗OH-(H+),则电极周围溶液的pH减小(增大);反应生成OH-(H+),则电极周围溶液的pH增大(减小)。 溶液:若总反应的结果是消耗OH-(H+),则溶液的pH减小(增大);若总反应的结果是生成OH-(H+),则溶液的pH增大(减小);若总反应消耗和生成OH-(H+)的物质

的量相等,则溶液的pH由溶液的酸碱性决定,溶液呈碱性则pH增大,溶液呈酸性则pH减小,溶液呈中性则pH不变。 书写下列原电池的电极方程式 1.Cu─H2SO4─Zn原电池 正极: 2H+ + 2e-→ H2↑ 负极: Zn - 2e-→ Zn2+ 总反应式: Zn + 2H+ == Zn2+ + H2↑ 2.Cu─FeCl3─C原电池 正极: 2Fe3+ + 2e-→ 2Fe2+ 负极: Cu - 2e-→ Cu2+ 总反应式: 2Fe3+ + Cu == 2Fe2+ + Cu2+ 3.钢铁在潮湿的空气中发生吸氧腐蚀 正极:O2 + 2H2O + 4e-→ 4OH- 负极:2Fe - 4e-→ 2Fe2+ 总反应式:2Fe + O2 + 2H2O == 2Fe(OH)2 4.氢氧燃料电池(中性介质) 正极:O2 + 2H2O + 4e-→ 4OH- 负极:2H2 - 4e-→ 4H+ 总反应式:2H2 + O2 == 2H2O 5.氢氧燃料电池(酸性介质) 正极:O2 + 4H+ + 4e-→ 2H2O 负极:2H2 - 4e-→ 4H+ 总反应式:2H2 + O2 == 2H2O 6.氢氧燃料电池(碱性介质) 正极:O2 + 2H2O + 4e-→ 4OH- 负极:2H2 - 4e- + 4OH-→ 4H2O 总反应式:2H2 + O2 == 2H2O 7.铅蓄电池(放电) 正极 (PbO2) : PbO2 + 2e- + SO42- + 4H+→ PbSO4 + 2H2O

铝合金熔炼工艺流程和操作工艺

铝合金熔炼工艺流程和操作工艺(一) 装料 熔炼时,装入炉料的顺序和方法不仅关系到熔炼的时间、金属的烧损、热能消耗,还会影响到金属熔体的质量和炉子的使用寿命。装料的原则有: 1、装炉料顺序应合理。正确的装料要根据所加入炉料性质与状态而定,而且还应考虑到最快的熔化速度,最少的烧损以及准确的化学成分控制。 装料时,先装小块或薄片废料,铝锭和大块料装在中间,最后装中间合金。熔点易氧化的中间合金装在中下层。所装入的炉料应当在熔池中均匀分布,防止偏重。 小块或薄板料装在熔池下层,这样可减少烧损,同时还可以保护炉体免受大块料的直接冲击而损坏。中间合金有的熔点高,如AL-NI和AL-MN合金的熔点为750-800℃,装在上层,由于炉内上部温度高容易熔化,也有充分的时间扩散;使中间合金分布均匀,则有利于熔体的成分控制。 炉料装平,各处熔化速度相差不多这样可以防止偏重时造成的局部金属过热。 炉料应进量一次入炉,二次或多次加料会增加非金属夹杂物及含气量。 2、对于质量要求高的产品(包括锻件、模锻件、空心大梁和大梁型材等)的炉料除上述的装料要求外,在装料前必须向熔池内撒20-30kg粉状熔剂,在装炉过程中对炉料要分层撒粉状熔剂,这样可提高炉体的纯洁度,也可以减少损耗。 3、电炉装料时,应注意炉料最高点距电阻丝的距离不得少于100mm,否则容易引起短路。 熔化 炉料装完后即可升温。熔化是从固态转变为液态的过程。这一过程的好坏,对产品质量有决定性的影响。 A、覆盖 熔化过程中随着炉料温度的升高,特别是当炉料开始熔化后,金属外层表面所覆盖的氧化膜很容易破裂,将逐渐失去保护作用。气体在这时候很容易侵入,造成内部金属的进一步氧化。并且已熔化的液体或液流要向炉底流动,当液滴或液流进入底部汇集起来时,其表面的氧化膜就会混入熔体中。所以为了防止金属进一步氧化和减少进入熔体的氧化膜,在炉料软化下塌时,应适当向金属表面撒上一层粉状熔剂覆盖,其用量见表。这样也可以减少熔化过程中的金属吸气。 覆盖剂种类及用量 炉型及制品电气熔炼煤气炉熔炼 覆盖剂用量普通制品特殊制品普通制品特殊制品 (占投量) /% 0.4-0.5 0.5-0.6 1-2 2-4 覆盖剂种类粉状熔剂 Kcl:Nacl按1:1混合 B、加铜、加锌 当炉料熔化一部分后,即可向液体中均匀加入锌锭或铜板,以熔池中的熔体刚好能淹没住锌锭和铜板为宜。 这时应强调的是,铜板的熔点为1083℃,在铝合金熔炼温度范围内,铜是溶解在铝合金熔体中。因此,铜板如果加得过早,熔体未能将其盖住,这样将增加铜板的烧损;反之如果加得过晚,铜板来不及溶解和扩散,将延长熔化时间,影响合金的化学成分控制。 电炉熔炼时,应尽量避免更换电阻丝带,以防脏物落入熔体中,污染金属。 C、搅动熔体 熔化过程中应注意防止熔体过热,特别是天然气炉(或煤气炉)熔炼时炉膛温度高达1200℃,在这样高的温度下容易产生局部过热。为此当炉料熔化之后,应适当搅动熔体,以使熔池里各处温度均匀一致,同时也利于加速熔化.

铝用炭素材料检测方法.

铝用炭素材料检测方法磨损率的测定 编制说明 中国铝业股份有限公司 二○○八年六月

《铝用炭素材料检测方法磨损率的测定》 行业标准编制说明 根据中色协综字[2007]132号《关于下达2007年有色金属行业标准制修订和行业标准样品研(复)制项目计划的通知》的安排,中国有色金属标准计量质量研究所归口的有色行业标准YS/T《铝用炭素材料检测方法》中《磨损率的测定》由中国铝业股份有限公司贵州分公司负责起草,为此贵州分公司成立了专门起草小组,负责该标准的编制起草工作。 本次制定遵循了GB/T1.1—2000《标准化工作导则第1部分标准的结构和编写规则》、GB/20000.1—2001《标准化工作指南第2部分采用国际标准的规则》的规定。 根据标准制定的计划安排,2008年4月15日至4月18日《炭素材料检测方法磨损率的测定》预审会在全国有色金属标准化技术委员会主持下于浙江省杭州市戴斯大酒店召开,参加会议的×个单位的×名代表对中铝贵州分公司申报起草的《炭素材料检测方法磨损率的测定》方法的预审稿进行了认真分析、广泛讨论,提出了9项建议和要求:⑴标准名称由“磨损率的测定”改为“阴极碳块磨损率的测定;⑵标准“1 范围”中“底部阴极碳块”改为“阴极碳块”;⑶标准“2 规范性引用文件”中增加侧部碳块的取样方法;⑷标准“4.2摩擦材料”中注明使用砂纸应符合的标准;⑸标准5.2条中试样的尺寸“长度”改为“高度”;⑹标准中应对摩擦材料砂纸使用过程中产生卷边情况,测试结果是否有效作出说明; ⑺测试样品是如何固定的?⑻参照YS/T63.12标准对本标准的精密度作出说明,在下一次会议上提供有关精密度的测定数据;⑼在标准中应说明该标准测定的阴极碳块磨损率不代表电解槽中阴极碳块的实际磨损值。 起草单位根据预审会的要求,综合代表们提出的上述建议和要求,于6月底前完成了标准修改工作,并同时提出了标准送审稿、意见汇总等资料,标准修改的具体内容如下: ⑴将标准名称由“磨损率的测定”改为“阴极碳块磨损率的测定; ⑵在标准“1 范围”中将“底部阴极碳块”改为“阴极碳块”; ⑶在标准“2 规范性引用文件”中增加了侧部碳块的取样方法;

电极反应方程式的书写步骤

电极反应方程式的书写步骤: 1、首先判断原电池的正负极 如果电池的正负极判断失误,则电极反应必然写错.一般来说,较活泼的金属失去电子,为原电池的负极,但不是绝对的.如镁片和铝片插入氢氧化钠溶液中组成的原电池虽然镁比铝活泼,但由于铝和氢氧化钠溶液反应失去电子被氧化,因而铝是负极,此时的电极反应为: 负极:2Al-6e-═2Al3+ 正极:6H2O+6e-═6OH-+3H2↑ 或2Al3++2H2O+6e-+2OH-═2AlO2-+3H2↑ 再如,将铜片和铝片同时插入浓硝酸中组成原电池时,由于铝在浓硝酸中发生了钝化,铜却失去电子是原电池的负极被氧化,此时的电极反应为: 负极:Cu-2e-═Cu2+ 正极:2NO3-+4H++2e-═2NO2↑+2H2O 2、要注意电解质溶液的酸碱性 在正负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系.如氢-氧燃料电池就分酸式和碱式两种,在酸性溶液中的电极反应: 负极:2H2-4e-═4H + 正极:O2+4H++4e-═2H2O 如果是在碱性溶液中,则不可能有H+出现,同样在酸性溶液中,也不能出现OH-.由于CH4、CH3OH等燃料电池在碱性溶液中,碳元素是以CO32-离子形式存在的,故不是放出CO2. 3、还要注意电子转移的数目 在同一个原电池中,负极失去电子的总数一定等于正极得到电子的总数,所以在书写电极反应式时,要注意电荷守恒.这样可避免在有关计算时产生错误或误差,也可避免由电极反应式写总反应方程式或由总方程式改写电极反应式时所带来的失误 4、抓住总的反应方程式 从理论上讲,任何一个自发的氧化还原反应均可设计成原电池.而两个电极相加即得总的反应方程式.所以对于一个陌生的原电池,只要知道总的反应方程式和其中的一个电极反应式,就可写出另一个电极反应式.

铝合金熔炼工艺及注意事项

1、炉料处理 所有炉料入炉前均需要预热,以去除表面附的水分,缩短熔炼时间。 2、坩埚及熔炼工具的准备 (1)新坩埚使用前应清理干净及仔细检查有无穿透性缺陷,确认没有任何缺陷才能投入使用,预热至暗红色(500—600度)保温2小时以上,以烧除附着在坩埚内壁的水分及可燃物质,待冷却到300度以下时,仔细清理坩埚内壁,在温度不低于200度时,喷刷涂料,烘干烘透后才能使用。 (2)压勺、搅拌勺、浇包等熔炼工具使用前必须除尽残余金属及氧化皮等污物,经过200-300度预热后涂刷防护涂料,涂刷后烘干待用。 3、熔炼温度的控制 合金液快速升至较高的温度(705度左右),进行合理的搅拌,以促进所有合金元素的溶解,确认所有元素全部溶解后,进行精炼除气,扒除浮渣后将至浇注温度。(因铝溶液的温度难以用肉眼来判断的,所以必须用测温仪表控制温度,测温仪表应定期校准和维修;热电偶套管应周期的用金属刷刷干净,涂以防护性涂料,以保证测温结果的准确性及延长使用寿命。 4、熔炼时间的控制 为了减少铝溶液的氧化、吸气,应尽量缩短铝溶液在炉内的停留时间,快速熔炼。为加速熔炼过程,应首先加入中等块度、熔点较低的回炉料,以便在坩埚底部尽快形成熔池,然后再加出铝锭,使之能徐徐浸入逐渐扩大熔池,加速熔化;在炉料主要部分熔化后,再加入熔点较高、数量不多的合金元素,升温、搅拌以加速熔化,最后降温,压入易氧化的合金元素。 5、精炼处理

精炼处理温度:690—730度 精炼剂(充分预热)加入量铝液重的0.15—0.2%,用钟罩压入 处理时间为3—5分钟后静止5—10分钟,扒除浮渣进行浇注,浇注温度为700—740度。

常见化学电源电极反应式的书写汇总

常见化学电源电极反应式的书写汇总1、银-锌电池: (电解质溶液:KOH溶液) 2、Ni-Cd电池:(电解质溶液:KOH溶液) 总反应:Cd +2 NiO(OH) + 2H 2O=Cd(OH) 2 + 2Ni(OH) 2 正极:2 NiO(OH) + 2H 2O+2e-→2Ni(OH) 2 +2OH- 负极:Cd +2OH-→Cd(OH) 2 + 2e- 3、铅蓄电池:(电解质溶液:硫酸) 总反应:Pb + PbO 2 + 2H 2 SO 4 =2PbSO 4 + 2H 2 O 正极:PbO 2 + 4H++SO 4 2-+2e-→PbSO 4 + 2H 2 O 负极:Pb + SO 42-→PbSO 4 +2e- 4、锌锰干电池 (1)酸性(电解质:NH 4 Cl等)[注:总反应式存在争议] (2碱性(电解质KOH) 总反应:Zn+2MnO 2+H 2 O=Zn(OH) 2 +Mn 2 O 3 正极:2MnO 2+H 2 O+2e-→Mn 2 O 3 +2OH- 负极:Zn+2OH-→Zn(OH) 2 +2e-5、氢-氧电池:

6.锂电池:(正极材料为LiMnO 2 ) 总反应:Li + MnO 2=LiMnO 2 正极:Li++e-+MnO 2→LiMnO 2 负极:Li→Li++e- 7、甲烷电池:(电解质溶液:KOH溶液) 总反应:CH 4 +2 KOH + 2O 2 =K 2 CO 3 + 3H 2 O 正极:2O 2+8e-+ 4H 2 O=8OH- 负极:CH 4 +10OH-→CO 3 2- +8e-+7H 2 O 8、乙烷电池: (电解质溶液:KOH溶液) 总反应:2C 2H 6 + 8KOH +7O 2 =4K 2 CO 3 + 10H 2 O 正极:7O 2+28e-+ 14H 2 O→28OH- 负极:2C 2H 6 +36OH-→4CO 3 2-+28e-+24H 2 O 9、甲醇燃料电池(40%KOH溶液) 总反应式:2CH 3OH+3O 2 +4KOH→2K 2 CO 3 +6H 2 O 正极:3O 2+12e-+ 6H 2 O→12OH- 负极:2CH 3OH+16OH-→2CO 3 2-+12e-+12H 2 O 10、Fe-Ni电池(爱迪生电池):(电解质溶液:KOH溶液) 总反应:Fe + NiO 2 + 2H 2 O=Fe(OH) 2 + Ni(OH) 2 正极:NiO 2 + 2H 2 O+2e-→Ni(OH) 2 +2OH- 负极:Fe+2OH-→Fe(OH) 2 +2e- 11、铝-空气海水电池:(电解质溶液:海水) 总反应:4Al + 6H 2O + 3O 2 =4Al(OH) 3 正极:3O 2+12e-+ 6H 2 O→12OH- 负极:4Al→4Al3++12e-[注:海水基本呈中性] 12、熔融盐电池:(电解质:熔融Li 2CO 3 、Na 2 CO 3 )

高中常见原电池电极反应式书写总结

高中常见的原电池电极反应式的书写 书写过程归纳:列物质,标得失(列出电极上的物质变化,根据价态变化标明电子得失)。 选离子,配电荷(根据介质选择合适的离子,配平电荷,使符合电荷守)。 巧用水,配个数(通常介质为水溶液,可选用水配平质量守恒) 一、一次电池(负极氧化反应,正极还原反应) 1、伏打电池:(负极—Zn,正极—Cu,电解液—H2SO4) 负极:Zn–2e-==Zn2+(氧化反应)正极:2H++2e-==H2↑(还原反应) 总反应离子方程式Zn + 2H+ == H2↑+ Zn2+ 2、铁碳电池(析氢腐蚀):(负极—Fe,正极—C,电解液——酸性) 负极:Fe–2e-==Fe2+(氧化反应)正极:2H++2e-==H2↑(还原反应) 总反应离子方程式Fe+2H+==H2↑+Fe2+ 3、铁碳电池(吸氧腐蚀):(负极—Fe,正极—C,电解液——中性或碱性) 负极:2Fe–4e-==2Fe2+(氧化反应)正极:O2+2H2O+4e-==4- OH(还原反应)总反应化学方程式:2Fe+O2+2H2O==2Fe(OH)2 4Fe(OH)2+O2+2H2O==4Fe(OH)3 ;2Fe(OH)3==Fe2O3 +3 H2O (铁锈的生成过程) 4.铝镍电池:(负极—Al,正极—Ni,电解液——NaCl溶液) 负极:4Al–12e-==4Al3+(氧化反应)正极:3O2+6H2O+12e-==12- OH(还原反应)总反应化学方程式:4Al+3O2+6H2O==4Al(OH)3 (海洋灯标电池) 5、铝–空气–海水(负极--铝,正极--石墨、铂网等能导电的惰性材料,电解液--海水) 负极:4Al-12e-==4Al3+ (氧化反应)正极:3O2+6H2O+12e-==12OH-(还原反应) 总反应式为:4Al+3O2+6H2O===4Al(OH)3(铂网增大与氧气的接触面)(海洋灯标电池) 6、普通锌锰干电池:(负极——Zn,正极——碳棒,电解液——NH4Cl糊状物) 负极:Zn–2e-==Zn2+(氧化反应)正极:2MnO2+2NH4++2e-==Mn2O3 +2NH3+H2O(还原反应)总反应化学方程式:Zn+2NH4Cl+2MnO2=ZnCl2+Mn2O3+2NH3+H2O 7、碱性锌锰干电池:(负极——Zn,正极——碳棒,电解液KOH糊状物) 负极:Zn + 2OH– 2e-== Zn(OH)2(氧化反应)正极:2MnO2 + 2H2O + 2e-==2MnO(OH) +2OH-(还原反应) 总反应化学方程式:Zn +2MnO2 +2H2O == Zn(OH)2 + MnO(OH) 8、银锌电池:(负极——Zn,正极--Ag2O,电解液NaOH ) 负极:Zn+2OH-–2e-== ZnO+H2O(氧化反应)正极:Ag2O + H2O + 2e-== 2Ag + 2OH-(还原反应)总反应化学方程式:Zn + Ag2O == ZnO + 2Ag 9、镁铝电池:(负极--Al,正极--Mg,电解液KOH) 负极(Al):2Al + 8OH-+6e-=2AlO2-+4H2O(氧化反应)正极(Mg):6H2O + 6e-=3H2↑+6OH–总反应化学方程式:2Al + 2OH-+ 2H2O =2AlO2-+ 3H2↑ 10、一次性锂电池:(负极--金属锂,正极--石墨,电解液:LiAlCl4-SOCl2) 负极:8Li -8e-=8 Li + 正极:3SOCl2+8e-=SO32-+2S+6Cl- 总反应化学方程式8Li+3SOCl2 === Li2SO3 +6LiCl +2S 二、二次电池(又叫蓄电池或充电电池) 1、铅蓄电池:(负极—Pb 正极—PbO2 电解液—稀硫酸) 放电时:负极:Pb-2e-+SO42-==PbSO4正极:PbO2+2e-+4H++SO42-==PbSO4+2H2O 总化学方程式Pb+PbO2 + 2H2SO4==2PbSO4+2H2O 2、镍镉电池(负极--Cd、正极—NiOOH、电解液: KOH溶液) 放电时负极:Cd-2e—+ 2 OH– == Cd(OH)2 Ni(OH)2+Cd(OH)2 正极:2NiOOH + 2e—+ 2H2O == 2Ni(OH)2+ 2OH– 总化学方程式Cd + 2NiOOH + 2H2O===Cd(OH)2 + 2Ni(OH)2

铝熔炼炉除尘方案

铝熔炉除尘系统 设 计 方 案 目录 一、前言(设计依据和目标) 二、新建工程概述 三、设计内容 四、方案的设计依据及原则 五、治理方案实施后环保性能指标 六、铜熔炼炉车间粉尘治理方案 七、技术方案 八、除尘设备技术说明

九、高效除尘装置工艺流程及使用特点 十、工程投资概算 十一、工期 十二、项目实施效益分析 十三、结论意见 一、前言 随着经济的快速发展,环境污染已成为制约我国经济发展的重要因素。贵单位地处山东省济南地区,执行国家关于工业窑炉相关大气排放环境标准。今贵单位领导非常重视环保治理,受贵单位委托,我公司技术人员对贵单位所需废气治理工程现场进行了实地考察。并初步拟定选用高效复合除尘装置及系列专利技术承担此项任务。现将初步治理设计方案提请贵单位审查、决策。待审定后,作为施工及设备制作等相关设计依据。 二、新建工程概述 本工程所涉及治理范围为铝熔炼炉熔炼过程中,产生大量烟尘。 严重地污染了生产现场环境,更重要的是直接危害了操作工人的身体健康。冶炼产生的粉尘具有较高的回收再利用价值。为了改善岗位条件和厂区的工作环境,必须新建除尘环保设施以满足保护工人身体健康,及回收利用价值粉尘的实际需要。铜在熔炼过程中产生大量的有价值粉尘,为了便于回收价值粉尘,在整个收尘系统中采用袋除尘设计,由于从熔炼炉烟道的烟气温度过高,且偶尔带有火星,在除尘系统前,布置火花捕集器。由于回收原料内杂质内含塑料、橡胶,在燃烧过程中会产生大量焦油,需设计干粉喷吹脱硫布袋保护系统。针对烟气内含有爆燃气体,整个系统做防爆设计。

三、设计内容 1、治理范围铝熔炼炉在生产过程中,从炉内产生大量烟尘。 2、设计内容 尘气捕集罩的设计车间内外除尘管道的布置;火花捕集器的设计;烟气净化设备(除尘器)设计;滤布保护系统设计;布袋除尘器防爆设计。 除尘系统参数设定及主要设备选型;除尘系统的总布置图。 四、方案的设计依据及原则 1.设计依据 1.1 贵厂提供的有关资料; 1.2 我公司技术人员现场测量数据; 1.3 我公司在冶金行业除尘治理的成功经验; 1.4 我公司所采取的先进工艺; a、低阻、高温流量管道系统工艺; b、吸尘罩、手动切换阀、吸尘罩最佳实用技术; c、火花捕集器、布袋除尘器干粉喷吹系统2.设计原则 2.1 不影响操作工艺为生产服务宗旨; 2.2 满足国家及行业对环保的要求并达标; 2.3 所采用的技术经得起实践检验,并能保证长期可靠稳定的运行。;

炭素材料真密度的测定方法

炭素材料真密度的测定方法 一、定义 炭素材料的质量与真实体积的比值。 二、测定真密度的意义 1.材料真密度的大小可以说明材料基本质点的质密程度及排列规正化程度。 2.测定不同品种炭质材料、原料、焙烧半成品或石墨电极的真密度可以了解原料的炭化程度及在不同条件下的热处理程度,如煅烧、焙烧、石 墨化程度等。 3.测量真密度的大小可以推测炭素材料的其他物理化学性能,如真密度与电阻率成反比,与抗氧化性能成正比。 三、需要测定真密度的炭素材料 1.原料针状焦≥2.13沥青焦≥1.96 冶金焦≥1.95 普煅无烟煤1.71―1.75 (附,沥青焦、冶金焦不作常规分析) 2.煅烧料焙烧品石墨化 四、真密度测定方法 常用的方法有:溶剂置换法,气体置换法及X射线衍射仪测定法。 1.溶剂置换法 此方法是先将试样破碎至0.05mm以下,用酒精、甲苯或蒸馏水,在一定温度下浸润(用酒精、甲苯或蒸馏水去填充试样颗粒的孔隙),然后用比较称量法,求得真比重的大小。因为溶剂分子也不能全部进入所有孔隙(例如孔径极小的毛细孔和一些即使颗粒破碎到很小仍然封闭的孔),因而得到的溶剂置换体积只是被测试样骨架的近似体积(一般略大于真实体积),所以用溶剂置换法测出的真比重只是一个近似数,用不同大小的试样颗粒,不同溶剂及不同浸润条件时测出的真比重也略有不同。 2.气体置换法 此方法主要用于精确的科学研究中,如用氦气去填充试样颗粒之间和颗粒上的孔隙,氦气能进入除封闭气孔外的全部毛细孔,因而用氦气置换法求出被测试样骨架的体积更接近真实体积,但费用高。 3.X射线衍射仪测定法

本方法用此测定仪测出晶格参数再按下式计算: 五、用溶剂置换法测定试样的真密度 1.质量m用天平即可,本测定方法的关键是求试样的体积v 2.测真实体积v主要存在两个难点a、有封闭气孔b、形状不规则解决方法:a、破碎,把试样破至一定粒度级,我们认为此粒度 下的颗粒是实心的,规程上要求是100目以下 (0.15mm)。 b、将试样装在一定范围容积容器中加一定压力(4 0Kg/)使试样变为一定直径和高度的试体后根据公式 计算。 用二甲苯做溶剂,抽真空、恒温、称重、计算 此方法的弊端:a、有毒;b、抽真空时易溅料;c、测定用时 长;d、步骤复杂 现在实际生产所执行的标准是部标YB4091-92 计算公式 六、校密度瓶 1.空重 将密度瓶浸在浓硫酸重铬酸钾饱和溶液中浸泡1-2小时,取出用水冲洗,再分别用乙醇、丙酮冲洗,最后用蒸馏水冲洗,放入干燥箱中在120±2℃下,烘干2小时。取出放入干燥器中,冷却至室温称量,精确至 0.0001g。重复几次测定,至少有三次称量误差在0.0004g以内,取平 均值为密度瓶质量。 2.测水值 将蒸馏水注入瓶中,在25±0.5℃的水浴中保温30分钟以上,然后将 瓶中液面吸至刻度线处,擦净后称其质量,精确至0.0001g,重复测定几次,至少有三次以上密度瓶水值称量误差不大于0.0024g,取其平均值为密度瓶水值。 3.求密度瓶容积 上式可转化为→①

电化学中电极反应式的书写技巧

电化学中电极反应式的书写不仅是电化学教学的重点和难点,更是高考的热点题型之一,下面就如何正确书写电极反应式进行了较为详尽的归纳总结,旨在“抛砖引玉”。 一、原电池中电极反应式的书写 1、先确定原电池的正负极,列出正负极上的反应物质,并标出相同数目电子的得失。 2、注意负极反应生成的阳离子与电解质溶液中的阴离子是否共存。若不共存,则该电解质溶液中的阴离子应写入负极反应式,如Al-Cu-NaHCO3溶液构成的原电池中,因Al失去电子生成的Al3+能与HCO3-反应: Al3+ +3HCO3-=Al(OH)3↓+3CO2↑,故铝件(负极)上发生的反应为: Al-3e-+3HCO3-=Al(OH)3↓+3CO2↑,而不是仅仅写为: Al-3e-=Al3+。 3、若正极上的反应物质是O2,且电解质溶液为中性或碱性,电极反应式中不能出现H+,且水必须写入正极反应式中,与O2结合生成OH-,若电解质溶液为酸性,电极反应式中不能出现OH-,且H+必须写入正极反应式中,与O2结合生成水。如例 1、例2。 4、正负极反应式相加(电子守恒)得到电池反应的总反应式。若已知电池反应的总反应式,可先写出较易书写的电极反应式,然后在电子守恒的基础上,总反应式减去较易写出的电极反应式,即得到较难写出的电极反应式。如例2。 例1、有人设计以Pt和Zn为电极材料,埋入人体内作为某种心脏病人的心脏起搏器的能源。它依靠跟人体内体液中含有一定浓度的溶解氧、H+和Zn2+进行工作,试写出该电池的两极反应式。 解析:

金属铂是相对惰性的,金属锌是相对活泼的,所以锌是负极,Zn失电子成为Zn2+,而不是ZnO或Zn(OH)2,因为题目已告诉H+参与作用。正极上O2得电子成为负二价氧,在H+作用下肯定不是O2-、OH-等形式,而只能是产物水。故发生以下电极反应: 负极:2Zn-4e-= 2Zn2+,正极: O2 + 4H++ 4e-= 2H2O。 例2、用金属铂片插入KOH溶液中作电极,在两极上分别通入甲烷和氧气,形成甲烷—氧气燃料电池,该电池反应的离子方程式为: CH4+2O2+2OH-=CO32-+3H2O,试写出该电池的两极反应式。 解析: 从总反应式看,O2得电子参与正极反应,在强碱性溶液中,O2得电子与H2O结合生成OH-,故正极反应式为:2O2+4H2O+8e-=8OH-。负极上的反应式则可用总反应式减去正极反应式(电子守恒)得CH4+10OH--8e-=CO32-+7H2O。 二、电解池中电极反应式的书写 1、首先看阳极材料,如果阳极是活泼电极(金属活动顺序表Ag以前),则应是阳极失电子,阳极不断溶解,溶液中的阴离子不能失电子。 2、如果阳极是惰性电极(Pt、Au、石墨),则应是电解质溶液中的离子放电,应根据离子的放电顺序进行书写电极反应式。阳极(惰性电极)发生氧化反应,阴离子失去电子被氧化的顺序为: S2->SO32->I->Br ->Cl->OH->水电离的OH->含氧酸根离子>F-。阴极发生还原反应,阳离子得到电子被还原的顺序为: Ag+>Hg2+>Fe3+>Cu2+>(酸电离出的H+)>Pb2+>Sn2+>Fe2+>Zn2+>(水电离出的H+)>Al3+>Mg2+>Na+>Ca2+>K+。(注:

相关主题
文本预览
相关文档 最新文档