当前位置:文档之家› 毕业设计--汽包锅炉给水水位自动控制系统的设计

毕业设计--汽包锅炉给水水位自动控制系统的设计

毕业设计--汽包锅炉给水水位自动控制系统的设计
毕业设计--汽包锅炉给水水位自动控制系统的设计

目录

引言 (1)

第一章第一章给水控制系统的动态特性 (3)

1.1锅炉给水控制系统的任务 (3)

1.2 给水控制对象和各种扰动下水位变化的动态特性 (3)

1.2.1 给水控制对象的动态特性 (3)

1.2.2 各种扰动下水位的动态特性 (5)

第二章给水自动控制系统的基本要求和基本结构 (9)

2.1 给水控制系统的基本要求 (9)

2.2 给水控制系统的基本结构及分析 (9)

2.2.1 单冲量给水控制系统 (9)

2.2.2 前馈-反馈三冲量给水控制系统 (10)

2.2.3 串极三冲量给水控制系统分析 (16)

第三章给水控制系统的无扰切换 (20)

3.1 测量信号的自动校正 (20)

3.1.1 水位信号的压力校正 (20)

3.1.2 过热蒸汽气流信号的压力、温度校正 (22)

3.1.3 给水流量信号的温度校正 (23)

3.2 给水控制系统的切换 (24)

3.2.1 给水流量测量装置切换系统 (24)

3.2.2 大小给水调节阀门的切换 (28)

3.2.3 系统的无扰切换 (29)

第四章系统的参数整定及MATLAB仿真 (32)

4.1 控制系统的参数整定方法 (32)

4.1.1 广义频率特性法 (32)

4.1.2 工程整定法 (33)

4.2 调节器的选取 (35)

4.3 参数整定及MATLAB仿真 (36)

4.3.1 单冲量调节系统的参数整定及MATLAB仿真 (36)

1

4.3.2 串级三冲量调节系统的参数整定 (37)

4.3.3 整个系统和各种扰动量下的SIMULINK结构图和仿真图 (41)

结论 (45)

参考文献 (46)

谢辞 (47)

2

引言

自动控制技术在工程和科学发展中起着极为重要的作用,在火电厂的生产过程中也采用了自动控制技术。在火电厂的生产过程中采用的热工自动控制系统,是伴随着社会对电能需求的日益增加、单机容量的日益扩大和自动控制技术在火力发电厂中应用的深度与广度与日俱增而逐步发展起来的。

电厂热工自动化水平的高低是衡量电厂生产技术的先进与否和企业现代化的重要标志。其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制,在不需要操作人员干预的情况下,可以很好的完成生产过程中的给水及水位控制,大大提高了生产效率。汽包锅炉给水控制系统的任务是使给水量适应锅炉蒸发量,并使汽包中水位保持在一定的范围内。只有保证汽包水位的波动在允许范围内,才能实现机组安全经济运行。因此,汽包水位是影响整个机组安全经济运行的重要因素,所以就要有一套较好的控制方案,来实现汽包水位的控制。

从传统的控制方式来看,它们要么系统结构简单成本低,却不能有效的控制锅炉汽包“虚假水位”现象,要么能够在一定程度上控制“虚假现象”,系统却过于复杂,成本投入过大。目前工业控制急需一种系统简单,并且能够控制“虚假水位”,具有高性价比的控制系统。汽包锅炉的给水调节系统有三种基本结构:单冲量调节系统结构、单级三冲量调节系统结构、串级三冲量调节系统结构,低负荷阶段,由于疏水和锅炉排污等因素的影响,给水和蒸汽流量存在着严重的不平衡,而且流量太小时,测量误差大,故在低负荷阶段,很难采用三冲量调节方式,一般均采用单冲量调节方式。负荷达到一定值以上时,疏水和排污阀逐渐关闭,汽、水趋于平衡,流量逐渐增大,测量误差逐渐减小,这时原则上可采用三冲量调节方式。但由于单级三冲量调节系统要求蒸汽流量和给水流量信号在稳态时必须相等,否则汽包水位存在静态偏差,而且由于测量装置及变送器的误差等因素的影响,实际上现场这两个信号在稳态时,经常难以做到完全相等,而且单级三冲量调节系统一个调节器参数整定需兼顾的因素多。因此单级三冲量事实上一般也难以采用。

串级三冲量调节方式,采用主、副两个调节器。两调节器任务分工明确,整定相对容易,而且不要求稳态时给水流量信号与蒸汽流量信号完全相等,易于得到较好的调节品质,因此现场多采用此控制方式。

在串级控制系统中,参数的整定也是非常重要的,由于在系统中所设计的对象是

3

确定的,所以只有对调节器进行整定,控制系统的参数整定有理论计算方法和工程整定方法,理论计算方法是基于一定的性能指标,结合组成系统各环节的动态特征,通过理论计算求得调节器的动态参数设定值;而工程整定法,则是源于理论分析,结合实验、工程实际经验等一套工程上的方法,其具体方法将在本设计中体现。

本设计的目的是采用串级三冲量给水控制系统控制汽包水位,使其平稳运行,并通过MATLAB仿真,证明所设计的系统可以很好的克服系统的内外扰动,实现汽包锅炉水位控制的要求。

4

第一章概述

1.1自动控制技术在电厂的应用

电能由于其固有的优点而成为国民经济各领域最广泛使用的能量,从而成为人类社会生产和生活中时刻不能离开的二次能源,电力已经深入到社会生产和生活的各个领域,一个国家的电气化程度已成为国民经济现代化的一个重要标志。只有电力产业的迅速发展才有可能保证整个国民经济的迅速而稳步的发展。热力发电厂是电力工业的重要组成部分。热力发电厂包括燃化石燃料(煤、油、气)的火力发电厂与使用核燃料的核动力电厂,迄今为止,热力发电厂在世界大多数国家中仍占着各种发电形式中的主导地位,我国的火力发电占70%左右,而且根据我国国情,火力发电厂基本是燃煤电厂。目前的大型燃煤电厂都已经有了非常先进的自动控制系统,自动控制水平的高低是衡量一个国家的生产技术和科学水平先进与否的一项重要标志。电力工业中电厂热工生产过程自动化技术相对于其它民用工业部门有较长的历史和较高的自动化水平,电厂热工自动化水平的高低是衡量电厂生产技术的先进与否和企业现代化的重要标志。

早期的自动控制系统因热力发电机组单机容量小,对控制系统要求也不高,所以非常简单,只需对给水、汽温、汽压和汽机的转速作简单的控制。这些控制系统大多分散在锅炉和汽机车间就地安装,整个电厂的机、炉、电也是分散控制的。随着现代科学技术的发展,发电机组已由中温、中压、中小容量发展到今天的大容量、高参数的单元机组。

1.2锅炉概述

锅炉由汽锅和炉子组成。炉子是指燃烧设备,为化石烯料的化学能转换成热能提供必要的燃烧空间。汽锅是为汽水循环和汽水吸热以及汽水分离提供必要的吸热和分离空间。

锅炉作为一种把煤、石油或天然气等化石燃料所储藏的化学能转换成水或水蒸气的热能的重要设备,长期以来在工业生产和居民生活中都扮演着极其重要的角色,它已经有二百多年的历史了,但是锅炉工业的迅猛发展却是近几十年的事情。国外的锅炉控制工业50~60年代发展最快,70年代达到高峰。我国的锅炉工业是在新中国成立后才建立和发展起来的,1953年在上海首创了上海锅炉厂,从其在生产和生活中所起的作用不同,锅炉可分为电站锅炉,主要用于发电;工业锅炉,主要用于直接供给工农业生产或驱动机械能源;生产锅炉,主要用于为居民提供热水和供

5

居民取暖。应该说锅炉控制问题伴随着锅炉的出现也就相应的出现了,它长期以来就是控制领域的一个典型问题。伴随着控制理论和控制技术的发展,锅炉自动化控制的水平也在逐步提高。锅炉的自动化控制,经历了三四十年代单参数仪表控制,四五十年代单元组合仪表综合参数仪表控制,以及六十年代初期的计算机过程控制几个阶段,随着六十年代第一台计算机在控制中的应用以及此后计算机和通信技术的迅猛发展,计算机逐渐进入了锅炉控制领域并正在成为这一领域的主要角色。计算机很强的记忆功能,逻辑判断功能以及快速计算功能为实现任意的控制算法提供了可能,这样,先进的控制理论和控制算法进入锅炉控制已经有了可能性。

从系统角度看,锅炉包括燃烧负荷控制系统、送引风系统、给水控制系统和辅助控制系统。其结构如图1-1:

图1-1 锅炉控制系统总图

锅炉汽包水位是锅炉安全运行的一个主要参数,水位过高会使蒸汽带水带盐,严重的将引起整体品质下降,严重影响生产和安全;水位过低又将破坏部分水冷壁的水循环,引起水冷壁局部过热而损坏,尤其是大型锅炉,一旦控制不当,容易使汽包满水或汽包内的水全部汽化,造成重大事故。故锅炉汽包给水控制系统的任务是保证汽包水位在允许的范围内,并兼顾锅炉的稳定运行。

对蒸汽锅炉来说,汽包水位是其正常运行的主要指标之一,是一个重要的被调节参数。由于汽包水位在锅炉运行中占首要地位,所以这类锅炉的生产自动化一般是从给水自动调节开始的。

随着锅炉参数的提高和容量的扩大,对给水控制提出了更高的要求,其主要原因有:

(1)汽包的个数和体积减小,使汽包的蓄水量和蒸发面积减少,从而加快了汽

6

包水位的变化速度;

(2)锅炉容量增大,显著的提高了锅炉蒸发受热面的热负荷,使锅炉负荷对水位的影响加剧了;

(3)提高了锅炉的工作压力,使给水调节阀和给水管道系统相应复杂,调节阀的流量特性更不易满足控制系统的要求。

由此可见,随着锅炉朝大容量、高参数的发展,给水系统采用自动控制是必不可少的,它可以大大减轻运行人员的劳动强度,保证锅炉的安全运行。

1.3 主要设备介绍

汽包:一般汽包采用夹层结构,并且汽包上、下两半部采用不等壁厚,以减轻汽包重量,节约钢材。来自水冷壁的汽水混合物从汽包顶部两侧进入汽包的内夹层,冲刷汽包上半部内壁,然后再进入涡流式分离器,在分离器做第一次分离,每只分离器顶部都装有立式波形板分离器,作为二次分离元件。汽包顶部还配有立式波形板分离器,作为三次分离元件,经三次分离的饱和蒸汽由汽包顶部的引出管送到过热器去,下降管安置于汽包最底部,在下降管入口处还装有十字架,用来消除由于入口产生旋涡而将蒸汽带入下降管的现象。此外,汽包内还装有给水管和连续排污管。

变速泵:变速泵又分为电动变速泵和气动变速泵。电动变速泵的驱动电动机经液力联轴器与水泵相连接,通过改变液力联轴器中勺管的径向行程,改变联轴器的工作油量,实现给水泵转速的改变,气动给水泵由小汽轮机直接驱动,通过控制小汽轮机的进气量,改变气动泵的转速。气动给水泵可直接将蒸汽的热能转变为机械能,有较高的效率。但由于驱动小汽轮机的蒸汽一般采用主汽轮机的抽汽,在机组启动和低负荷时,汽轮机抽汽气压太低,无法维持气动泵运行,因此采用气动给水泵的系统,一般都配有一定容量的电动泵,作为机组启停和低负荷时使用以及气动泵故障时的备用泵。

图1-2变速泵的压力-流量特性

7

8

变速泵的压力-流量特性如图1-2所示,为了保证锅炉和泵的安全经济运行,泵必须工作在泵的上限特性、下限特性、锅炉允许最高给水压力max P 和最低给水压力min P 以及泵的最高转速max n 和最低转速min n 包围的区域,该区域称为泵的安全工作区。泵的上限特性曲线亦称为最小流量曲线,它表示给水泵在不同转速下必须满足的最小流量,正如前所述,低于这个流量,不但运行效率很低,而且还会产生汽蚀现象。这是由于低流量时,泵内机械能做功产生的热量不能及时带走,使得给水加热并汽化,导致汽蚀。泵的下限特性曲线,亦称为最大流量曲线,它表示给水泵在不同转速下允许的最大流量,大于这个流量,泵的工作效率降低,而且可能使泵内静压最低值低于给水温度下的饱和压力,在流道静压最低值部分给水将发生汽化,导致汽蚀。因此采用变速泵的给水控制系统,在控制给水流量的过程中必须保证泵的工作点在安全工作区内。一般采用的保护措施是:当工作点进入上限特性曲线之外时,打开泵出口至除氧器再循环管路上的最小流量再循环阀,称之为最小流量保护;当工作点进入下限特性之外时,关小管路的给水调节阀或提高水泵转速,称之为最大流量保护,从而保证泵的工作点始终在泵的安全经济工作区内。

1.4 给水调节的任务

给水自动调节也叫水位自动调节,其主要任务是:

(1)维持锅炉水位在允许的范围内,使锅炉的给水量适应于蒸发量。锅炉的水位是影响安全运行的重要因素。水位过高会影响汽水分离装置的正常工作,严重时会导致蒸汽带水增加,使过热器管壁和气轮机叶片结垢,造成事故;对于工业锅炉,蒸汽带水量过多,也要影响用户的某些工艺过程。水位过低,则会破坏汽水正常循环,以致烧坏受热面。水位过高或过低,都是不允许的。所以,正常运行时汽包水位应在给定值的 15mm 上下范围波动。

(2)保持给水量稳定。给水量稳定,有助于省煤器和给水管道的安全运行。

上述两个任务中,第一个任务尤为重要。实践证明,无论是电站锅炉,或者是工业锅炉,用人工操作调节水位,既不安全,也不经济,其最有效的方法是实现给水自动调节。

第二章给水被控对象的动态特性

在讨论给水自动控制系统之前,必须先分析被控对象的动态特性,然后才能设计出一个合理的给水控制系统。给水调节对象的动态特性是指汽包水位的变化与引起水位变化的各种因素之间的动态关系。汽包水位是汽包中储水量和水面下汽泡容积的综合反映。所以,水位不仅受汽包储水量变化的影响,而且还受到汽水混合物中汽泡容积变化的影响。从水位反映储水量来看,调节对象是一个无自平衡能力的对象,这是因为储水量的变化是由给水流量和蒸汽流量变化引起的,而水位变化后既不能影响给水流量,又不能影响蒸发量,所以说水位调节对象是没有自平衡能力的。影响汽包水位变化的因素主要有:蒸汽流量D,给水量W,炉膛热负荷(燃料量M),汽包压力P 等。

2.1汽包水位的动态特性

工业锅炉的汽包水位是正常运行的重要指标之一,水位过高,产生蒸汽带水现象,影响用汽单位的正常生产。汽包水位过低,会影响锅炉的汽水自然循环,如不及时调节,就会使汽包里的水全部汽化掉,可能导致锅炉烧塌和爆炸事故。因此,锅炉运行中,保持汽包水位在一定范围是十分重要的自动控制问题。

影响汽包水位变化的因素很多,主要有燃煤量、给水量和蒸汽流量。燃煤量对水位变化的影响是非常缓慢的,比较容易克服。因此,我们主要考虑给水量和蒸汽流量对水位的影响。锅炉水位调节对象的原理结构如图2-1所示。

图2-1 给水调节对象结构图

1-给水母管;2-调节阀;3-省煤器;4-汽包;5-管路;6-过热器;7-蒸汽管给水调节对象的动态特性是指各种扰动下的汽包水位随时间变化的特性。当扰动为阶跃扰动时,对象的动态特性称为阶跃响应曲线。影响水位变化的原因是很多的,其中锅炉的蒸发量和给水流量的变化是主要的,其它还有炉膛热负荷、汽包压力的变化等原因。

9

10

2.2 各种扰动下水位变化的动态特性

2.2.1 给水流量扰动下对象的动态特性

图2-2为给水量扰动下水位阶跃响应曲线。图2-2中曲线1为沸腾式省煤器情形下水位的动态特性,曲线2为非沸腾式省煤器情形下水位的动态特性。

图2-2 给水量扰动下水位阶跃响应曲线

在给水流量突然增加的瞬间,锅炉的蒸发量还未改变,给水流量大于蒸发量,但水位一开始并不立即增加,这是因为温度较低的给水进入省煤器及水循环系统的流量增加了,从原有的饱和汽水混合物中吸取了一部分热量,使水面下的汽泡容积有所减少。事实上也就是因为给水温度远低于省煤器的温度,即给水有一定的过冷度,水进入省煤器后,使一部分汽变成了水,特别是沸腾式省煤器,给水减轻了省煤器内的沸腾度,省煤器内汽泡总容积减少,因此,进入省煤器内的水首先用来填补省煤器中因汽泡破灭容积减少而降低的水位,经过一段迟延甚至水位下降后,才能因给水不断从省煤器进入汽包而使水位上升。在此过程中,负荷还未变化,汽包中水仍在蒸发,因此水位也有下降趋势。由H 曲线可以清楚地看出给水被控对象内扰的特点是:给水扰动刚刚加入时,由于给水的过冷度影响,水位H 的变化很慢,经过一段时间之后其变化速度才逐渐增加,最后变为按一定速度直线上升,这时就是物质不平衡在起主要作用了,如果给水量和蒸汽量不能平衡,水位就不能确定。下面简单介绍一下水位在给水扰动下的传递函数。

水位在给水扰动下的传递函数可表示为: )

1(1)(s s s s W H s W h τετετε+=+-==

其扰动传递函数方框图如图2-3所示,可近似认为是一个积分环节和一个惯性环节的并联或串联的两种形式。其扰动传递函数方框图如图2-3所示,可近似认为是一个积分环节和一个惯性环节的并联或串联的两种形式。

图2-3 给水扰动传递函数方框图

2.2.2蒸汽流量扰动下对象的动态特性

蒸汽流量扰动下水位的阶跃起反应曲线如图2-4所示。当蒸汽流量突然增加(假定供热量及时跟上)时,锅炉的蒸发量大于给水流量,汽包的贮水量应等速下降,又因为汽包是无自平衡对象,所以水位的变化曲线应如图中曲线H

1

所示:实际上当蒸发量突然增加时,在汽水循环系统中的蒸发强度也将成比例的增大,使汽水混合物中汽泡的容积增大;又因炉膛内的发热量并不能及时增加,从而使汽包压力不断下降,降低了饱和温度,促使蒸发速度加快,汽泡膨胀,加大了汽水混合物的总体积,使水

位变化过程如图中曲线H

2所示。水位实际变化曲线是H

1

和H

2

之和。

图2-4 蒸汽流量扰动下水位阶跃响应曲线

H1-只考虑贮水量变化的水位反应曲线;H2-只考虑水面下汽泡容积变化的水位反应曲线;

H-实际水位反应曲线(H=H1+H2)

两曲线的叠加,即图中的曲线H,由图可知,负荷变化时汽包水位的动态特性具

11

12

有特殊的形式:负荷增加时,蒸发量大于给水量,但水位不是下降反而迅速上升;负荷突然减小时,水位却先下降,然后迅速上升,这就是“虚假水位”现象。虚假水位的变化情况和锅炉的特性有关,燃料突然减小时(如锅炉灭火),“虚假水位”约在2~4分钟内即达到最低值。在外部负荷突然减小时(如汽轮机甩负荷),“虚假水位”约在20秒内即达到最低值,并且,“虚假水位”达到最低值的时间和负荷达到的最低值的时间基本相同。汽轮机甩负荷扰动下的“虚假水位”现象是相当严重的,这给组成水位自动调节系统带来了困难。为了维持水位在允许的范围内,运行中应对负荷的一次变动量及负荷变化速度加以限制。

2.2.3 炉膛热负荷扰动下对象的动态特性

当燃料M 增加时,炉膛热负荷随着增加,水循环系统内的汽水混合物的气泡比例增加,蒸发强度增加。如果负荷设备的进气阀不加调节,则汽包饱和压力升高,蒸汽流出量增加,蒸发量大于给水量,水位应该下降。随着汽包压力的升高,汽水混合物中汽泡的比例将减小,又使得汽水总容积下降;其次,在汽压升高时,汽的比容变小,水的比容变大,总的效果是汽水混合物的比容变化不大。所以在燃料量扰动下,汽包水位也会因汽包容积的增加水位先上升,因此也会出现“虚假水位”现象,至蒸发量与燃料量相适应时,水位才开始下降,即经过了T m 时间后水位开始下降。由于热惯

性的原因,这种“虚假水位”没有蒸汽流量扰动下的“虚假水位”那样严重。

图2-5 燃料量扰动下水位阶跃响应曲线

应当指出,蒸汽量、给水量和燃料量在运行中是经常变化的,为保持气压稳定,燃料量与蒸发量必须相互适应,因此这两种扰动总是相伴发生,只是有先后发生的差别。

从各种扰动下水位的动态特性可估计到水位调节的一些缺点:由于存在延迟,等到水位偏离规定值后再去进行调节,水位必然会有较大的变化

(尤其是水位反应快的

锅炉),水位的偏差也大;在负荷变化时,由于“虚假水位”现象,水位将迅速变化,这种变化幅度不可能用调节给水量来减小。为维持水位在允许的范围内,必须限制负荷的一次改变量和负荷变化速度;在负荷变化后的开始阶段,给水流量和负荷的变化方向相反,如果忽视“虚假水位”现象的存在,盲目根据“水位”来调节给水量,将会扩大锅炉进出流量的不平衡,使水位波动加剧,实际工作中应当防止和避免。

13

第三章串级三冲量给水系统的信号校正与系统切换

3.1 锅炉给水设备及管路连接

锅炉给水管路连接是和机炉连接方式相适应的,可分母管制与单元制两类。母管制给水系统是指具有全厂锅炉共用的给水母管系统。全厂所有的给水泵都连在给水母管上;而每台锅炉的给水调节则用各自连接在给水母管上的给水调节门进行。典型的连接如图3-1所示。

图3-1母管制锅炉给水系统示意图

在图3-1中,#1门是主给水调节阀,#2门是备用主给水调节阀,这两个阀门允许通过100%负荷的给水量;#3门是旁路给水调节阀,允许通过25%~30%左右负荷的给水量。为了防止调节阀全闭时漏流,各条管路上都安装了电动截止门#4,#5和#6。为了检修方便,在主给水管路上又安装了总的电动截门#7。此外还装有锅炉点火时省煤器用再循环门和事故放水电动截止门#8和#9。

另一类是单元制给水系统,每台单元机组都有自己独立的给水管路系统。比较典型的有汽动泵、电动泵混合型及单纯电动泵组两种。

汽动泵电动泵混合型给水系统共有三台主给水泵,其中两台是可变速的汽动泵,它们在高负荷时使用。另一台是定速电动泵,在单元机组启动及低负荷时使用。由于机组启动阶段还不能得到稳定的气源,汽动变速泵无法使用,故先用电动泵。这时电动泵通常是工作在定速工况,所以需用给水调节阀调节给水量。为了保证泵在低负荷

14

15

时出口有足够的流量,防止给水泵产生汽蚀现象,安装了再循环管路。

电动泵组单元制给水系统结构的典型形式是三台可变速电动给水泵并联,两台运行一台备用,泵的转速变化依靠液压联轴节(靠背轮)滑差实现。为了保证泵的安全运行特性,通常也装有再循环门和调节阀门。

3.2 测量信号的自动校正

锅炉从启动到正常运行或是从正常运行到停炉过程中,蒸汽参数和负荷在很大范围内变化,这就使水位、给水流量和蒸汽流量测量信号的准确性受到影响。为了实现全程自动控制,要求这些信号能够自动地进行压力、温度校正。

测量信号自动校正的基本方法是:先推导出被测参数随温度、压力变化的数学模型,然后利用各种元件构成运算电路进行运算,便可实现自动校正。按参数变化范围和要求的校正精度不同,可建立不同的数学模型,因而可设计出不同的自动校正方案。

1.水位信号的压力校正

由于汽包中饱和水和饱和蒸汽的密度随压力变化,所以影响水位测量的准确性。通常可以采用以下方法进行压力校正。

采用电气校正回路进行压力校正,就是在水位差压变送器后引入校正回路。

图3-2 汽包水位测量系统

b p -汽包压力;H-汽水连通管之间垂直距离,即最大变化范围;h-汽包水位高度;1p ,2p -夹在差压变送器两侧的压力;s γ-饱和蒸汽的密度;G γ-饱和水的密度;a γ-汽包外平衡容器内凝结水的密度

图3-2表示单元单容器平衡测量系统。从图中可以看出:

)(1h H h p s G -+?=γγ

H p a γ=2

12p p p -=?=h H h H h H s G s a s s G a )()(γγγγγγγγ---=+--

16

s

G s a p H h γγγγ-?--=)( (3-1) 当H 一定时,水位h 是压差和汽、水密度的函数。密度a γ与环境温度有关,一般可取50℃时水的密度。在锅炉启动过程中,水温略有增加,但由于同时压力也升高,两种因素对a γ的影响基本上可抵消,即可近似地认为a γ时恒值。而饱和水和饱和蒸汽的密度G γ和s γ均为汽包压力b p 的函数,即

)

()(b b s G b a s a p f p f =-=-γγγγ 由式(3-1)可以改写成 )

()(b b b a p f p p f h ?-= (3-2) 按照式(3-2)可以设计出水位压力自动校正线路,如图3-3所示。

图3-3 水位压力自动校正线路

图3-3中函数组件1f (x )、2f (x )分别模拟式(3-2)中)(b a p f 和)(b b p f 。计算和试验表明,密度与汽包之间的函数曲线可以看出s a γγ-与b p 的关系在较大范围内可以近似地认为是线性关系,即

'1)(k s a =-γγ-b p k '2

)()('2'1b s a p k k H H -=-γγ

b s a p k k H 21)(-=-γγ

17

则式(3-1)可以改写为 )

(21b b b p f p p k k h ?--= (3-3) 按式(3-3)可设计出较为简便的水位自动校正线路,如图3-4所示。

图3-4 水位压力自动校正线路二

2.过热蒸汽流量信号的压力、温度校正

过热蒸汽流量测量通常采用标准喷嘴。这种喷嘴基本上是按定压运行额定工况参数设计,在该参数下运行时,测量精度是较高的。但在对系统进行控制时,运行工况不能基本固定。当被测过热蒸汽的压力和温度偏离设计值时,蒸汽的密度变化很大,这就会给流量测量造成误差,所以要进行压力和温度的校正。

可以按下列公式进行校正:

10061.566.110057.182.10p T p

p k p k D -+?=??=γ (3-4)

式中 D--------过热蒸汽流量;

18

P--------过热蒸汽压力;

T--------过热蒸汽温度;

p ?-------节流件差压;

γ--------过热蒸汽密度;

k--------流量系数。

按式(3-4)可设计出过热蒸汽流量信号的压力,温度自动校正线路如图3-5所示。

图3-5 过热蒸汽流量信号的压力、温度自动校正线路图

3.给水流量信号的温度校正

计算和实验结果表明:当给水温度为100℃不变,压力在0.196-19.6Mpa 范围内变化时,给水流量的测量误差为0.47%;若给水压力为19.6Mpa 不变,给水温度在100-290℃温度范围内变化时,给水量测量误差为13%。所以,对给水流量测量信号可以只采用温度校正,其校正回路如图3-6所示。若给水温度变化不大,

则不必对给

水流量测量信号进行校正。

3.3给水流量测量装置切换系统

图3-6给水流量信号温度校正线路

给水流量测量信号的准确性与压力、温度的校正精度有关,但主要取决于高、低负荷时流量的测量精度。一般,大型单元机组的给水管路系统如图3-7所示。上面的一路为主给水,在高负荷时使用;下面一路为流量较小的旁路给水,锅炉启停过程中及低负荷运行时用它供水;中间一路为辅助给水,当主给水管路发生故障或因水压过低而主给水供不应求时使用。图中#1,#2,#3为截止阀,#4,#5,#6为调节阀,#7为总截止阀。旁路给水管路中的最大流量只有主给水管路流量的30%左右,如果采用一个孔板测量给水流量,在低负荷时必然会产生较大的测量误差。为此,给水泵系统中安装了1、2两个孔板。在锅炉启停及低负荷运行时,用旁路孔板2测量给水量,高负荷时用主管路孔板1测量给水量。对于这种采用两个测量元件的给水流量测量系统,需要用一个流量信号运算回路,如图3-8所示。

19

图3-7 给水管路系统示意图

图3-8 给水流量信号运算回路

由于旁路给水管路中的实际流量为主给水管路的1/4左右,因此测量旁路给水流量的变送器输出信号要用乘法器乘以0.25的系数,以便使旁路给水流量信号与主给

20

锅炉汽包水位控制系统设计

过程控制系统实验报告 专业 ****** 班级 ****** 学生 ****** 学号 ******

锅炉汽包水位控制系统设计 一、控制要求 设计一个汽包水位控制系统,使汽包水位维持在120cm,稳态误差±0.4cm,满足生产要求。G(s)=1/(s^3+10s^2+29s+20),σ%<20%,Ts<10s,Ess=0. 二、完成的主要任务 1.掌控锅炉生产蒸汽工及其工作流程 2.对被控对象进行特性分析,画出汽包水位控制系统方框图和流程图 3.选择被控参数和被控变量,说明其选择依据 4.设计控制系统方案,如何选择检测仪表,说明其选择原则和仪表性能指标 5.说明单回路控制系统4个环节的工作形式对控制过程 6.对控制进行PID控制说明其参数整定理论 7.对锅炉汽包水位进行simulink仿真,对参数进行整定,其仿真图要满足动 态性能指标 8.总结实验课程设计的经验和收获

目录 第一章锅炉汽包水位控制系统的组成原理 1了解锅炉生产蒸汽工艺及其工作流程-------------------------------------------3 1.1锅炉汽包水位自动控制的意义--------------------------------------------------3 1.2了解锅炉生产蒸汽工艺及其工作流程-----------------------------------------3 第二章锅炉汽包水位控制系统方案的设计 2.1液位控制系统的方框图------------------------------------------------------------5 2.2液位控制系统的方案图------------------------------------------------------------5 2.3检测变送器的选择------------------------------------------------------------------6 2.4调节阀的选择------------------------------------------------------------------------6 2.5仪器性能指标的计算---------------------------------------------------------------6 2.6调节器的选择------------------------------------------------------------------------8 2.7调节器作用方向的选择------------------------------------------------------------8 第三章PID控制 3.1控制规律的比较--------------------------------------------------------------------9 3.2 PID参数的整定--------------------------------------------------------------------10 第四章仿真 4.1 simulink 仿真---------------------------------------------------------------------11 4.2 系统参数整定--------------------------------------------------------------------13 第五章心得体会-----------------------------------------------------------15

锅炉汽包水位测量问题分析及技术措施

浙江省火电厂锅炉汽包水位测量问题分析及改进 孙长生1,蒋健1,刘卫国2,丁俊宏1,王蕙1 (1.浙江省电力试验研究院,杭州市,310014;2.国华浙能发电有限公司,浙江省宁波 市,315612) 摘要:汽包水位是表征锅炉安全运行的重要参数。由于配置、安装、运行及维护不当等因素,导致汽包水位测量系统存在测量值与实际值不符的情况,影响机组安全、经济、稳定运行。本文对浙江省火电厂汽包水位测量、水位保护投入状况进行现场调查,总结存在的问题,分析问题产生的原因,探讨并提出消除或减少这些问题的技术改进措施,供同行参考。 关键词:汽包水位测量;偏差分析;技术措施;锅炉;水位保护;水位计 doi:10.3969/j.issn.1000-7229.2010.10.000 Analysis of Running Status and Research of T echnical Proposal to the Drum Water Level Measurement Systems of Zhejiang Fired Power Plant SUN Chang-sheng1,JIANG Jian1,LIU Wei-guo2,WANG Huo (1.Zhejiang Provincial Electric Power Test and Research Institute,Hangzhou 310014,China;2.Zhejiang Guohua Zheneng Power Generation Co. Ltd.,Ningbo 315612,Zhejiang Province, China) ABSTRACT:Because of many reasons during installment, operation and maintenance, the drum water level measurement systems often have been found the difference between the observed value and the actual value, that seriously affectes unit's stable operation.This article has investigated many power plants in the Zhejiang Province closely, surveyed the situation of the drum water level measurement and the water level protection conditions of Zhejiang fired power plant, and has gived useful suggestion.of the reference water column. KEYWORDS:drum water level measurement;warp analysis;technical proposal;boiler;water level protection;water level meter 0 引言 汽包水位是表征锅炉安全运行的重要参数,其测量的准确性与其偏差问题(以下简称“水位测量问题”)的解决,是一直困扰火电机组热工测量与安全、经济运行的难题。针对水位测量问题,在浙江省内火电厂进行了专题调查,就存在的水位测量问题进行了深入的专题探讨,提出了提高汽包水位测量系统运行可靠性的改进意见,供同行参考。 1 存在的主要问题 1.1 模拟量测量信号系统存在的问题 目前浙江省蒸发量为400 t/h及以上的汽包炉共有57台,这些锅炉运行中模拟量测量信号系统存在的主要问题包括以下几方面: (1)测量显示偏差。不同测量变送器显示的示值不一致,两侧显示偏差高的超过100 mm,即使是同侧偏差,有时也高达几十mm,且随着机组负荷的变化而不同,难以找出其变化规律。 (2)逻辑故障判断功能不完善。一些机组不具备《防止电力生产重大事故的二十五项重点要求》(请核实是否修改正确)中的汽包水位信号故障后的逻辑判断自动转换功能、水位和补偿用的汽包压力信号坏信号判别功能。 (3)共用测量孔。由于汽包上给出的取样孔不足,因此存在共用取样孔和平衡容器情况,未能做到全程独立。

锅炉汽包水位控制系统设计-毕业论文

摘要 汽包水位是影响锅炉安全运行的一个重要参数,汽包水位过高或者过低的后果都非常严重,因此对汽包水位必须进行严格控制。PLC技术的快速发展使得PLC 广泛应用于过程控制领域并极提高了控制系统性能,PLC已经成为当今自动控制领域不可缺少的重要设备。 本文从分析影响汽包水位的各种因素出发,重点分析了锅炉汽包水位的“假水位现象”,提出了锅炉汽包水位控制系统的三冲量控制方案。按照工程整定的方法进行了PID参数整定,并进行了仿真研究。根据控制要求和所设计的控制方案进行硬件选型以及系统的硬件设计,利用PLC编程实现控制算法进行系统的软件设计,最终完成PLC在锅炉汽包水位控制系统中应用。 关键词:汽包水位、三冲量控制、PLC、PID控制

ABSTRACT The steam drum water level is a very important parameter for the boiler safe operation, both high and low steam drum water level may lead to extremely serious consequence; therefore it must be strictly to be controlled. With the rapid development of PLC technology, it can widely be applied to the process control domain and enhances the performance of control system enormously. PLC has already become the essential important equipment in automatic control domain. Based on the analysis of all kinds of factors which influence steam drum water level, “unreal water level phenomenon”is analyzed specially, and three impulses control plan for steam drum water level control system is proposed. PID parameters are regulated by engineering regulation method, and simulation study is done. According to the needs of control, the selection of control requirements hardware and system hardware design as well as system software design are carried out. Finally the application of PLC in boiler steam drum water control system is completed. Key words:Steam drum water level、Three impulses control、PLC、PID control

锅炉汽包水位补偿公式

锅炉汽包水位补偿公式: 1、汽包水位补偿 水位补偿公式:H=[ L*(ρ1-ρ3)*g-ΔP ] / (ρ2-ρ3)g 然后用H减去水位零点相对平衡容器下取样点的距离,得到的值就是修正后的汽包水位。 L为平衡容器两个取样管间高度(m) ρ1为凝结水密度(kg/m3) ρ2为饱和水密度(kg/m3) ρ3为饱和蒸汽密度(kg/m3) ΔP为变送器差压(Pa) H为水位高度(m) h0为汽包水位零点至下取样管高度(m),H为补偿后水位(m)。 补偿后水位:h=[ L*(ρ1-ρ3)*g-ΔP ] / (ρ2-ρ3)g -h0. 再把单位从米转为毫米。 如果L、h0、h单位为毫米,ΔP单位为mmH2O, ρ1、ρ2、ρ2单位为kg/m3。则公式为h=[ L*(ρ1-ρ3)-ΔP*1000 ] / (ρ2-ρ3) -h0 汽包水位测量分析及补偿 [摘要]汽包水位的准确测量值是电厂重要的测量参数之一,其测量方式很多,目前常用的是静压式测量方法中的连通式液位计和压差式液位计。但当液位计与被测汽包中的液体温度有差异时,显示的液位不同于汽包中的液位,而且其误差还会随汽包压力的改变而改变。襄樊电厂300MW机组,应用汽包水位模拟量信号采用差压变送器测量,并进行汽包压力补偿的测量方法,结果表明,汽包水位运行正常,测量准确,满足运行要求。 [关键词]汽包水位测量差压变送器压力补偿 1 准确测量汽包水位的重要性 大型机组都设计全程给水控制系统,在机组启动到满负荷或停机减负荷及负荷波动中,汽包压力在不断地变化,汽包内的蒸汽和水的密度也随之变化,从而影响汽包水位测量的准确性和全程给水控制系统的投运,危及机组的安全。因为汽包水位过高可能造成蒸汽带水,使蒸汽品质恶化,轻则加重管道和汽轮机积垢,降低出力和效率,重则使汽轮机发生事故;汽包水位过低,则对水循环不利,可能导致水冷壁局部过热甚至爆管。因此汽包水位的准确测量值是电厂最重要的测量参数之一。 2 汽包水位的测量方式及存在问题 汽包水位测量方式很多,一般可分为:(1)静压式;(2)浮力式;(3)电气式;(4)超声波式;(5)核辐射式。目前电厂中最常用的是静压式测量方法中的连通式液位计和压差式液位计。连通式液位计包括云母水位计和电接点水位计,这类液位计直观,便于读数,但它们共同的缺点是:当液位计与被测汽包中的液温有差别时,其显示的液位不同于汽包中的液位,而且此误差还会随汽包压力的改变而改变。为了减小因温度差异而引起的误差,

锅炉汽包水位单冲量控制系统设计

目录 1 概述 (2) 3 液位控制系统方案 (3) 3.1 系统方框图 (3) 3.2 系统方案图 (4) 4 控制系统的设计 (4) 4.1 系统控制过程分析 (5) 4.1.1 系统平衡阶段分析 (5) 4.1.2 系统抗扰动阶段分析 (5) 4.2 单回路反馈控制系统 (6) 4.3 检测变送器的选择 (7) 4.3.1 选取原则 (7) 4.3.2 压差变送器 (7) 4.4 调节阀的选择 (8) 4.5 仪表性能指标的计算 (9) 4.5.1 精度 (9) 4.5.2 灵敏度和灵敏性 (9) 4.5.3 回差 (9) 4.6 调节器的选择 (9) 4.7 调节器作用方向的选择 (10) 4.8 系统的投运和整定 (10) 4.8.1 系统的投运 (10) 4.8.2 简单控制系统的参数整定 (11) 5 系统工作原理简述 (11) 5.1 当汽包液位下降时 (11) 5.2 当汽包液位上升时 (12) 6 心得体会 (12) 参考文献 (13)

锅炉汽包水位单冲量控制系统设计 1 概述 在过程自动化技术出现之前,工厂操作员必须人工监测设备性能指标和产品质量,以确定生产设备处于最佳运行状态,而且必须在停机时才能实施各种维护,这降低了工厂运营效率,且无法保障操作安全。 过程自动化技术可以简化这一过程。通过在工厂各个区域安装数千个传感器,过程自动化系统可以收集温度、压力和流速等数据,然后利用计算机对这些信息进行储存和分析,再用简洁明了的形式把处理后的数据显示到控制室的大屏幕上。操作人员只要观察大屏幕就可以监控整个工厂的每项设备。 过程自动化系统除了能够采集和处理信息,还能自动调节各种设备,优化生产。在必要时,工厂操作员可以中止过程自动化系统,进行手动操作。 工厂所有者希望他们的设备能以最低的成本生产最多的产品,而在石油、天然气和石化等多个行业,能源成本占总生产成本的30—50%。因此,通过过程自动化技术增效节能是降低生产成本的有效途径。 对于过程自动化技术而言,计算机程序不仅能够监测和显示工厂的运行状况,还能模拟不同的运行模式,找到最佳策略以提高能效。这些程序的独特优势是能够“学习”和预测趋势,提高了对外界条件变化的响应速度。 过程自动化系统中的软件和控制装置能够对设备进行调节,使其在最佳速度下运行,从而大大降低能耗。它们还能够确保质量的一致性,降低次品率,减少浪费。过程自动化系统还能预测何时需要对生产设备进行维护,从而减少了对设备进行常规检查的次数。常规检查次数的降低可以减少停止和重新启动机器所花费的时间和能源。 过程控制系统分为多种,有简单控制系统和复杂控制系统,而复杂过程控制系统又可分为:串级控制系统、前馈控制系统、比值控制系统和均值控制系统等几种。在本次控制系统的选择中,因为设计题目要求是:锅炉汽包水位单冲量控制系统的设计,所以本着简单、实用的原则我把它设计成一个简单的单回路系统来满足题目要求。 2 锅炉生产蒸汽工艺简述 锅炉汽包水位系统流程如图1所示。

锅炉汽包水位控制系统设计

西安建筑科技大学课程设计(论文)任务书 专业班级: 自动化1002 学生姓名: 马千云 指导教师(签名): 一、课程设计(论文)题目 锅炉汽包液位控制 二、本次课程设计(论文)应达到的目的 本次课程设计是自动化专业学生在学习了《计算机控制技术与系统》和《过程控 制及仪表》两门专业必修课程及《单片机原理与应用》、《可编程控制器》等相关专业 选修课程之后进行的一次全面的综合训练,其主要目的是加深学生对计算机控制技术 相关理论和知识的理解,进一步熟悉计算机控制系统工程设计的基本理论、方法和技 能;掌握工程应用的基本内容和要求,整合各专业课程的理论知识和方法,做到理论 联系实际;培养学生分析问题、解决问题的能力和独立完成系统设计的能力,并按要 求编写相关的设计说明书、技术文档和总结报告等。 三、本次课程设计(论文)任务的主要内容和要求(包括原始数据、技术 参数、设计要求等) 锅炉汽包液位的阶跃响应曲线数据如下表所示,控制量阶跃变化5u ?=。试根据 实验数据设计一个超调量 25%p δ≤的无差控制系统。 具体要求如下: (1) 根据实验数据选择一定的辨识方法建立对象的数学模型; (2) 根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等); (3) 根据设计方案选择相应的控制仪表;

对设计的控制系统进行仿真,整定运行参数。 (4)撰写课程设计报告一份,要求字数3000~5000字。 四、应收集的资料及主要参考文献: 1.王再英等.过程控制系统与仪表.机械工业出版社,2006 2.潘新民,王燕芳.微型计算机控制技术.高等教育出版社,2001 3.王锦标.计算机控制系统.清华大学出版社,2008 五、审核批准意见 教研室主任(签字) 摘要 锅炉是典型的复杂热工系统,目前,中国各种类型的锅炉有几十万台,由于设备分散、管理不善或技术原因,使多数锅炉难以处于良好工况,增加了锅炉的燃料消耗,降低了效率。锅炉的建模与控制问题一直是人们关注的焦点,而汽包水位是工锅炉安全、稳定运行的重要指标,保证水位控制在给定范围内,对于高蒸汽品质、减少设备损耗和运行损耗、确保整个网络安全运行具有要意义。 锅炉汽包水位高度,是确保安全生产和提供优质蒸汽的重要参数,对现代工业生产来说尤其是这样。因为现代锅炉的特点之一就是蒸发量显著提高,汽包容积相对变小,水位变化速度很快,稍不注意就容易造成汽包满水或者烧成干锅。在现代锅炉操作中,即使是缺水事故,也是非常危险的,这是因为水位过低,就会影响自然循环的正常进行,严重时会使个别上水管形成自由水面,产生流动停滞,致使金属管壁局部过热而爆管。无论满水或缺水都会造成事故,因此,必须严格

影响锅炉汽包水位的因素

影响汽包水位的因素主要有两个方面,一是给水流量的扰动导致的水位变化,另一个是蒸汽流量的变化导致的汽包水位变化。 在通常情况下,增加给水流量,水位应该是增加的,但是由于给水温度低于汽包内饱和水的温度,给水吸收了原有饱和水中的部分热量使水面下气泡容积减小,所以扰动初期水位不会立即升高。当水面下气泡容积的变化过程逐渐平衡,水位就反映出汽包中储水量的增加而逐渐上升的趋势,最后当水面下气泡容积不再变化时,由于进、出物质的不平衡,水位将以一定的速度直线上升。图1中曲线H1为不考虑水面下气泡容积变化,仅考虑物质不平衡时水位变化曲线,为积分环节的特性曲线;H3为不考虑物质不平衡关系,只考虑给水流量变化时,水面下气泡容积变化所引起的水位变化,可以认为是惯性环节的特性。在给水流量扰动下实际水位的变化曲线H2可以认为是H1和H3的合成。因此,水位控制对象的动态特性表现出有惯性的无自平衡能力的特点。 图1 给水流量对汽包水位的影响 图2 蒸汽流量对汽包水位的影响

蒸汽流量的扰动主要来自汽轮机发电机组的负荷变化。如图2所示,当蒸汽流量突然阶跃增大时,如果仅从物质平衡角度来看,这时蒸发量大于给水量,且汽包水位对象是无自平衡能力的,水位曲线如H1所示。但实际水位如H2所示,是先上升再下降,这种现象被称为“虚假水位”现象,当负荷突然减少时,水位反而先下降再升高。产生虚假水位的原因是当锅炉蒸发量突然增加时,汽包水下面的气泡容积也迅速增大,即锅炉的蒸发强度增加,从而使水位升高。但蒸发强度的增加是有一定限度的,其气泡容积增大而引起的水位变化如图中的H3,当气泡容积与负荷适应而不再变化时,水位的变化就仅由物质平衡关系来决定了,这时水位就随负荷的增大而降低。因此,实际水位的变化曲线H2是H1和H3的合成。虚假水位变化的幅度与锅炉的气压和蒸发量变化的大小有关。 图3 炉膛热负荷变化对汽包水位的影响 此外,炉膛热负荷扰动对汽包水位的影响也是很大的(见图3)。此处的热负荷主要指的是燃烧率的扰动,例如燃料量的增加使炉膛负荷增强,从而使锅炉蒸发强度增大。若此时汽轮机负荷尚未增加,锅炉出口压力提高,蒸汽流量也相应增加,这样蒸汽流量大于给水流量,水位应该下降,但是蒸发强度增大的同时也使得水面下气泡容积增大,因此也会出现虚假水位现象。在这种情况下,蒸汽流量增加的同时气压也增大了,因而气泡体积的增加比蒸气流量扰动时要小一些,但持续时间长。

锅炉汽包液位课程设计

锅炉汽包液位课程 设计

天津城建大学 课程设计任务书 - 第 2学期 控制与机械工程学院电气工程及其自动化专业班级电气12班姓名:学号: 课程设计名称:过程控制 设计题目:锅炉汽包液位控制 完成期限:自年 6 月 20 日至年 6 月 26 日共 1 周 设计依据、要求及主要内容: 一、设计任务 加热炉出口温度控制系统,测取温度对象的过程为:当系统稳定时,在温度调节阀上做3%变化,输出温度记录如下: 试根据实验数据设计一个超调量25% δ≤的无差控制系统。具体要 p 求如下: (1)根据实验数据选择一定的辨识方法建立对象的数学模型;(2)根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等); (3)根据设计方案选择相应的控制仪表; (4)对设计的控制系统进行仿真,整定运行参数。

二、设计要求 采用MATLAB仿真;需要做出以下结果: (1)超调量 (2)峰值时间 (3)过渡过程时间 (4)余差 (5)第一个波峰值 (6)第二个波峰值 (7)衰减比 (8)衰减率 (9)振荡频率 (10)全部P、I、D的参数 (11)PID的模型 (12)设计思路 三、设计报告 课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。 四、参考资料 [1] 何衍庆.工业生产过程控制(1版).北京:化学工业出版社, [2] 邵裕森.过程控制工程.北京:机械工业出版社

[3] 过程控制教材 指导教师(签字): 教研室主任(签字): 批准日期:年月日 摘要 锅炉是典型的复杂热工系统,当前,中国各种类型的锅炉有几十万台,由于设备分散、管理不善或技术原因,使多数锅炉难以处于良好工况,增加了锅炉的燃料消耗,降低了效率。锅炉的建模与控制问题一直是人们关注的焦点,而汽包水位是工锅炉安

锅炉汽包水位控制系统的设计说明

过程控制系统实验报告 专业 xxxxxx 班级 xxxxxxxxx 学生 xxxxxx 学号 xxxxxxxx

锅炉汽包水位控制系统设计 一、控制要求 设计一个汽包水位控制系统,使汽包水位维持在90CM,稳态误差±0,5CM,以满足生产要求。 二、完成的主要任务 1.掌控锅炉生产蒸汽工及其工作流程 2.对被控对象进行特性分析,画出汽包水位控制系统方框图和流程图 3.选择被控参数和被控变量,说明其选择依据 4.设计控制系统方案,如何选择检测仪表,说明其选择原则和仪表性能指标 5.说明单回路控制系统4个环节的工作形式对控制过程 6.对控制进行PID控制说明其参数整定理论 7.对锅炉汽包水位进行simulink仿真,对参数进行整定,其仿真图要满足动态性能 指标 8.总结实验课程设计的经验和收获

过程控制系统实验报告............................... - 0 -第一章锅炉汽包水位控制系统的组成原理............ - 3 - 1.1概述............................................ - 3 - 1.2锅炉生产蒸汽工艺简述 ............................ - 3 - 1.3锅炉生产蒸汽工作流程 ............................ - 4 - ............... - 5 - 2.1 对被控对象进行特性分析 ............................ - 5 - 2.2汽包水位控制系统方框图和流程图..................... - 5 - 2.2.1液位控制系统的方框图.................................. - 5 - 2.2.2液位控制系统的方案图.................................. - 6 - 2.3选择被控参数和被控变量............................. - 6 - 2.4选择检测仪表,说明其选择原则和仪表性能指标 ......... - 7 - 2.4.1传感器、变送器选择 ..................................... - 7 - 2.4.2执行器的选择........................................... - 8 - 2.4.3关于给水调节阀的气开气关的选择。 ....................... - 8 - 2.4.4 关于给水调节阀型号的选择。............................. - 8 - 2.4.5 给水流量蒸汽流量..................................... - 8 - 2.5 四个环节的工作形式对控制过程............................... - 8 - ................................... - 10 - 3.1对控制进行PID控制.......................................... - 10 - ........................................... - 11 -

锅炉汽包水位计标定的方法

锅炉汽包水位计标定的方法 一、锅炉水位测量原理: 差压式水位计的水位------差压转换原理如图一所示: 图一、差压转换原理 我们在不考虑温度变化而造成水的密度的变化和汽包压力的变化导致水密度的变化等情况,及不考虑补偿的情况下,公式(2)可以简化为: g H L g H g L P P P 水水水ρρρ)(-=-=-=?-+ (3) 式中:L 为平衡容器中参比水柱的高度;H 为汽包实际水位高度;水ρ水的密度, g 为重力加速度;(由式中可知:L 、水ρ、g 是固定的常数,只有H 是瞬时值, 在变化中)。 从公式和图一我们知道(当找零位和满位时,要关闭与汽包的链接的两个阀门): (1)、当H=L 时,△P=0时;证明锅炉汽包处于满水状态,此时变送器输出为20mA;(可以这样理解,当冷凝罐和水侧引压管灌满水后,打开变送器中间阀时,H=L,L=L,P_=P + ,则说明汽包水位处于满水状态)

时;证明锅炉汽包处于缺水状态,此时变送(2)、当H=0时,△P=g L 水 器输出为4mA。(可以这样理解,当冷凝罐和水侧引压管灌满水后,关闭变送器中间阀时,H=0,L=L,则说明汽包水位处于缺水状态) 注:从满位和零位标定看,变化的只有H,且H的变化范围为0~L;L是一直处于满水状态,没有变化。 二、广西四合工贸锅炉水位计结构和变送器安装形式: 图二、锅炉水位计内部结构和变送器安装图 其中:A、B为水位计一次阀;C、D为入变送器的控制阀;E、F为引压管排污阀;P1、P2、P3为压差变送器自带阀门,P1为变送器正端入口切断阀;P2为变送器负端入口切断阀;P3为变送器正负端连通阀。 三、锅炉水位计标定步骤: 1、A、B两个一次阀首先关闭,切断与汽包之间的联系;然后关闭E、F、P3阀,打开C、D、P1、P2阀,准备好灌水工作; 2、把排气孔堵头打开,往单室平衡器内灌水,直到水从排气孔溢流;

锅炉水位的自动控制

锅炉水位的自动控制 摘要:本文介绍了锅炉汽包水位的动态特性,单冲量、双冲量、三冲量控制方案的特点及工程中需注意的问 题,着重介绍了汽包三冲量控制方案。 关键词:汽包水位;动态特性;控制方案;单冲量;双冲量;三冲量 引言 汽包水位是锅炉运行的主要指标,是一个非常重要的被控变量,维持水位在一定范围内是保证锅炉安全运行的首要条件,这是因为: (1) 水位过高会影响汽包内汽水分离,饱和水蒸汽带水过多,同时过热蒸汽温度急剧下降。该过热蒸汽作为汽轮机动力的话,将会 损坏汽轮机叶片,影响运行的安全性与经济性。(2) 水位过低,说明汽包内的水量较少,而当负荷很大时,水的汽化速度加快,则汽包内的水位变化速度亦随之加快,如不及时调节,就会使汽包内的水全部汽化,导致炉管烧坏,甚至引起爆炸。因此,锅炉汽包水位必须严加控制。 1 汽包水位的动态特性 锅炉汽水系统结构如图1 所示。汽包水位不仅受汽包(包括循环水管) 中储水量的影响,亦受水位下汽泡容积的影响。而水位下汽泡容积与蒸汽负荷蒸汽压力炉膛热负荷等有关。因此,影响水位变化的因素很多,其中主要的因素是锅炉蒸发量(蒸汽流量S) 和给水流量W。 1. 1 汽包水位在给水流量作用下的动态特性,见图2 : 图1 锅炉的汽水系统

图2 给水流量作用下水位阶跃响应曲线 上图所示是给水流量W 作用下,水位L 的阶跃响应曲线。如果把汽包的给水看作单容量无自衡过程,水位阶跃响应曲线如上图L1 曲线。但由于给水温度比汽包内饱和水的温度低,所以给水流量W增加后,从原有饱和水中吸收部分热量,这使得水位下汽泡容积有所减少。当水位下汽泡容积的变化过程逐渐平衡时,水位就由于汽包中储水量的增加而逐渐上升,最后当水位下汽泡容积不再变化时,水位变化就完全反映了由于储水量的增加而逐渐上升。因此,实际水位曲线如图中L 线。即当给水量作阶跃变化后,汽包水位一开始不立即增加,而要呈现出一段起始惯性段。给水温度越低,时滞τ亦越大。 1. 2 汽包水位在蒸汽流量作用下的动态特性,见图3 :

火力发电厂锅炉汽包水位测量系统技术规定

火力发电厂锅炉汽包水位测量系统技术规定 A 01 备案号:0401-2004 DRZ 电力行业热工自动化标准化技术委员会标准 DRZ/T 01-2004 火力发电厂锅炉汽包水位测量系统技术规定 Code for level Measuremet System of Boiler drum in Fossil Fuel Power Plant 2004-10-20发布2004-12-20实施 电力行业热工自动化标准化技术委员会发布 前言 本标准根据电力行业热工自动化标准化委员会的安排进行编制。 本标准为电力行业热工自动化标准化技术委员会颁发的新编标准。 本标准由电力行业热工自动化标准化技术委员会提出并归口。 本标准主要起草单位:电力行业热工自动化标准化技术委员会标准起草工作组。 本标准主要起草人:侯子良。 本标准由电力行业热工自动化标准化委员会解释。 目次 1 适用范围 2 汽包水位测量系统的配置 3 汽包水位测量信号的补偿 4 汽包水位测量装置的安装 5 汽包水位测量和保护的运行维护 编制说明

1 适用范围 本标准规定了火力发电厂锅炉汽包水位测量系统的配置、补偿、安装和运行维护的技术要求。 本标准适用于火力发电厂高压、超高压及亚临界压力的汽包锅炉。 2 汽包水位测量系统的配置 2.1 锅炉汽包水位测量系统的配置必须采用两种或以上工作原理共存的配置方式。 锅炉汽包至少应配置1套就地水位计、3套差压式水位测量装置和2套电极式水位测量装置。新建锅炉汽包应配置1套就地水位计、3套差压式水位测量装置和3套电极式水位测量装置或1套就地水位计、1套电极式水位测量装置和6套差压式水位测量装置。 2.2 锅炉汽包水位控制和保护应分别设置独立的控制器。在控制室,除借助DCS监视汽包水位外,至少还应设置一个独立于DCS及其电源的汽包水位后备显示仪表(或装置)。 2.3 锅炉汽包水位控制应分别取自3个独立的差压变送器进行逻辑判断后的信号。3个独立的差压变送器信号应分别通过3个独立的输入/输出(I/O)模件或3条独立的现场总线,引入分散控制系统(DCS)的冗余控制器。 2.4 锅炉汽包水位保护应分别取自3个独立的电极式测量装置或差压式水位测量装置(当采用6套配置时)进行逻辑判断后的信号。当锅炉只配置2个电极式测量装置时,汽包水位保护应取自2个独立的电极式测量装置以及差压式水位测量装置进行逻辑判断后的信号。3个独立的测量装置输出的信号应分别通过3个独立的I/O模件引入DCS的冗余控制器。 2.5 每个汽包水位信号补偿用的汽包压力变送器应分别独立配置。 2.6水位测量的差压变送器信号间、电极式测量装置信号间,以及差压变送器和电极式测量装置的信号间应在DCS中设置偏差报警。 2.7 对于进入DCS的汽包水位测量信号应设置包括量程范围、变化速率等坏信号检查手段。 2.8 本标准要求配置的电极式水位测量装置应是经实践证明安全可靠,能消除汽包压力影响,全程测量水位精确度高,能确保从锅炉点火起就能投入保护的产品,不允许将达不到上述要求或没有成功应用业绩的不成熟产品在锅炉上应用。汽包水位测量系统的其它产品和技术也应是先进的、且有成功应用业绩和成熟的。 3 汽包水位测量信号的补偿 3 .1 差压式水位测量系统中应设计汽包压力对水位-差压转换关系影响的补偿。应精心配置补偿函数以确保在尽可能大的范围内均能保证补偿精度。 3.2 差压式水位表应充分考虑平衡容器下取样管参比水柱温度对水位测量的影响。 应采用参比水柱温度稳定、接近设定温度的平衡容器,或采用经实践证明有成功应用经验的参比水柱温度接近饱和温度的平衡容器。

锅炉汽包水位控制系统的设计

/ 过程控制系统实验报告( 专业 xxxxxx 班级 xxxxxxxxx 学生姓名 xxxxxx < 学号 xxxxxxxx

锅炉汽包水位控制系统设计 < 一、控制要求 设计一个汽包水位控制系统,使汽包水位维持在90CM,稳态误差±0,5CM,以满足生产要求。 二、完成的主要任务 1.掌控锅炉生产蒸汽工及其工作流程 2.对被控对象进行特性分析,画出汽包水位控制系统方框图和流程图 3.选择被控参数和被控变量,说明其选择依据 4.】 5.设计控制系统方案,如何选择检测仪表,说明其选择原则和仪表性能指标 6.说明单回路控制系统4个环节的工作形式对控制过程 7.对控制进行PID控制说明其参数整定理论 8.对锅炉汽包水位进行simulink仿真,对参数进行整定,其仿真图要满足动态性能 指标 9.总结实验课程设计的经验和收获 (

* 过程控制系统实验报告............................... - 0 -第一章锅炉汽包水位控制系统的组成原理............ - 3 -概述............................................ - 3 -! 锅炉生产蒸汽工艺简述 ............................ - 3 - 锅炉生产蒸汽工作流程 ............................ - 4 - ............... - 5 -对被控对象进行特性分析 ............................... - 5 -汽包水位控制系统方框图和流程图......................... - 5 -液位控制系统的方框图.................................. - 5 - 液位控制系统的方案图.................................. - 6 -选择被控参数和被控变量 ................................ - 6 -; 选择检测仪表,说明其选择原则和仪表性能指标............. - 7 -传感器、变送器选择........................................... - 7 -执行器的选择................................................. - 8 -关于给水调节阀的气开气关的选择。............................. - 8 - 关于给水调节阀型号的选择。.................................. - 8 -

DCS液位控制课程设计

锅炉汽包水位控制系统 概述 蒸汽锅炉是企业重要的动力设备,其任务是供给合格稳定的蒸汽产品,以满足负荷的需要。锅炉是一个十分复杂的控制对象,为保证提供合格的蒸汽产品以适应负荷的需要,与其配套设计的控制系统必须满足各主要工艺参数的需要。保持锅炉汽包水位在正常范围内是锅炉运行的一项重要的安全性能指标,由于负荷、燃烧状况及给水流量等因素的变化,汽包水位会经常发生变化。因此锅炉汽包水位应当根据设备的运行状况进行实时调节加以严格控制以保证锅炉的安全运行。 工业蒸汽锅炉汽包水位控制的任务是控制给水流量使其与蒸发量保持动态平衡,维持汽包水位在工艺允许的范围内,是保证锅炉安全生产运行的必要条件,锅炉汽包水位也是锅炉运行中一个重要的监控参数,它间接地体现了锅炉负荷和给水之间的平衡关系。 采用PLC控制技术,能实现对锅炉运行过程的自动检测、自动控制等多项功能。它的被控量是汽包水位,而调节量则是汽包给水流量,通过对汽包水位的实时检测并进行反馈,PLC对反馈信号和给定信号进行比较,然后根据控制算法对二者的偏差进行相应的运算,运算结果输出给执行机构从而实现给水流量的调节,使汽包内部的物料达到动态平衡,汽包水位变化在允许范围之内。 1.1 锅炉汽包水位的控制方案 锅炉汽包水位控制系统采用三冲量控制系统,三冲量控制系统实际上是前馈一串级控制系统,它的主回路是一个定值调节系统,副回路是一个随动调节系统,主调节器按照对象操作条件及负荷情况而随时校正副调节器的给定值,从而使副参数能随时跟踪操作条件或负荷的变化而变化,最终达到保持主参数恒定的目的。其中主变量是汽包液位,副变量是给水流量蒸汽流量信号作为前馈信号引入流程。(见图1和图2)。

锅炉汽包水位控制系统的设计

锅炉汽包水位控制系统的设计

过程控制系统实验报告 专业 xxxxxx 班级 xxxxxxxxx 学生姓名 xxxxxx 学号 xxxxxxxx 锅炉汽包水位控制系统设计

一、控制要求 设计一个汽包水位控制系统,使汽包水位维持在90CM,稳态误差±0,5CM,以满足生产要求。 二、完成的主要任务 1.掌控锅炉生产蒸汽工及其工作流程 2.对被控对象进行特性分析,画出汽包水位控制系统方框图和流程图 3.选择被控参数和被控变量,说明其选择依据 4.设计控制系统方案,如何选择检测仪表,说明其选择原则和仪表性 能指标 5.说明单回路控制系统4个环节的工作形式对控制过程 6.对控制进行PID控制说明其参数整定理论 7.对锅炉汽包水位进行simulink仿真,对参数进行整定,其仿真图要 满足动态性能指标 8.总结实验课程设计的经验和收获

过程控制系统实验报告................................................ 错误!未定义书签。第一章锅炉汽包水位控制系统的组成原理 ........ 错误!未定义书签。 1.1 概述.............................................................. 错误!未定义书签。 1.2 锅炉生产蒸汽工艺简述 ............................... 错误!未定义书签。 1.3 锅炉生产蒸汽工作流程 ............................... 错误!未定义书签。第二章锅炉汽包水位控制系统的方案设计 ................. 错误!未定义书签。 2.1 对被控对象进行特性分析 ................................ 错误!未定义书签。 2.2汽包水位控制系统方框图和流程图................. 错误!未定义书签。 2.2.1 液位控制系统的方框图.......................... 错误!未定义书签。 2.2.2 液位控制系统的方案图.......................... 错误!未定义书签。 2.3选择被控参数和被控变量................................ 错误!未定义书签。 2.4选择检测仪表,说明其选择原则和仪表性能指标错误!未定义书 签。 2.4.1传感器、变送器选择 .............................. 错误!未定义书签。 2.4.2执行器的选择.......................................... 错误!未定义书签。

锅炉汽包水位控制系统

1.汽包水位的动态特性描述 (1) 1.1.汽包在给水流量作用下的动态特性 (1) 1.2.汽包水位在蒸汽流量扰动下的动态特性 (2) 2.汽包水位控制方案的选择及其原理 (4) 2.1.三冲量控制原理及各部分的作用 (4) 2.1.1.控制原理 (4) 2.1.2.各部分的作用 (5) 3.前馈-串级控制系统的特点和调节器作用方式判断 (7) 3.1.控制系统的特点 (7) 3.1.1.前馈控制系统的特点 (7) 3.1.2.串级控制系统特点 (7) 3.2.调节器作用方式判断 (7) 3.2.1.判断副调节器的作用方式 (7) 3.2.2.判断主调节的作用方式 (7) 4.控制仪表及技术参数 (8) 4.1.控制仪表的选定 (8) 4.2.各元器件的型号及参数 (8) 5.总结与体会 (10) 参考文献 (11)

在锅炉运行中,水位是一个很重要的参数。若水位过高,则会影响汽水分离的效果,使用气设备发生故障;而水位过低,则会破坏汽水循环,严重时导致锅炉爆炸。同时高性能的锅炉发生的蒸汽流量很大,而汽包的体积相对来说较小,所以锅炉水位控制显得非常重要。锅炉水位自动控制的任务,就是控制给水流量,使其与蒸发量保持平衡,维持汽包内水位在允许的范围内变化。 锅炉汽包水位是一种非线性、时变大、强耦合的多变量系统,讨论了目前通常采用的控制方法,分析了水位对象模型的动静特性。首先从锅炉汽包内水的热平衡、物质平衡原理出发,推导出了用来描述锅炉水位对象的通用机理控制模型,通过对几种控制方案的分析、研究与比较,选三冲量系统作为最佳控制方案,并着力研究三冲量系统的特点。 关键词:锅炉汽包水位控制三冲量控制系统

相关主题
文本预览
相关文档 最新文档