免疫算法
- 格式:doc
- 大小:11.32 KB
- 文档页数:12
免疫算法的克隆选择过程% 二维人工免疫优化算法% m--抗体规模% n--每个抗体二进制字符串长度% mn--从抗体集合里选择n个具有较高亲和度的最佳个体进行克隆操作% A--抗体集合(m×n),抗体的个数为m,每个抗体用n个二进制编码(代表参数) % T--临时存放克隆群体的集合,克隆规模是抗原亲和度度量的单调递增函数% FM--每代最大适应度值集合% FMN--每代平均适应度值集合% AAS--每个克隆的最终下标位置% BBS--每代最优克隆的下标位置% Fit--每代适应度值集合% tnum--迭代代数% xymin--自变量下限% xymax--自变量上限% pMutate--高频变异概率% cfactor--克隆(复制)因子% Affinity--亲和度值大小顺序%%clear allclctic;m=65;n=22;mn=60;xmin=0;xmax=8;tnum=100;pMutate=0.2;cfactor=0.1;A=InitializeFun(m,n); %生成抗体集合A,抗体数目为m,每个抗体基因长度为n F='X+10*sin(X.*5)+9*cos(X.*4)'; %目标函数FM=[]; %存放各代最优值的集合FMN=[]; %存放各代平均值的集合t=0;%%while t<tnumt=t+1;X=DecodeFun(A(:,1:22),xmin,xmax); %将二进制数转换成十进制数Fit=eval(F); %以X为自变量求函数值并存放到集合Fit中if t==1figure(1)fplot(F,[xmin,xmax]);grid onhold onplot(X,Fit,'k*')title('抗体的初始位置分布图')xlabel('自变量')ylabel('每代适应度值集合')endif t==tnumfigure(2)fplot(F,[xmin,xmax]);grid onhold onplot(X,Fit,'r*')title('抗体的最终位置分布图')xlabel('自变量')ylabel('每代适应度值集合')end%% 把零时存放抗体的集合清空T=[];%% 把第t代的函数值Fit按从小到大的顺序排列并存放到FS中[FS,Affinity]=sort(Fit,'ascend');%% 把第t代的函数值的坐标按从小到大的顺序排列并存放到XT中XT=X(Affinity(end-mn+1:end));%% 从FS集合中取后mn个第t代的函数值按原顺序排列并存放到FT中FT=FS(end-mn+1:end);%% 把第t代的最优函数值加到集合FM中FM=[FM FT(end)];%% 克隆(复制)操作,选择mn个候选抗体进行克隆,克隆数与亲和度成正比,AAS是每个候选抗体克隆后在T中的坐标[T,AAS]=ReproduceFun(mn,cfactor,m,Affinity,A,T);%% 把以前的抗体保存到临时克隆群体T里T=Hypermutation(T,n,pMutate,xmax,xmin);%% 从大到小重新排列要克隆的mn个原始抗体AF1=fliplr(Affinity(end-mn+1:end));%% 把以前的抗体保存到临时克隆群体T里%从临时抗体集合T中根据亲和度的值选择mn个T(AAS,:)=A(AF1,:);X=DecodeFun(T(:,1:22),xmin,xmax);Fit=eval(F);AAS=[0 AAS];FMN=[FMN mean(Fit)];for i=1:mn%克隆子群中的亲和度最大的抗体被选中[OUT(i),BBS(i)]=max(Fit(AAS(i)+1:AAS(i+1)));BBS(i)=BBS(i)+AAS(i);end%从大到小重新排列要克隆的mn个原始抗体AF2=fliplr(Affinity(end-mn+1:end));%选择克隆变异后mn个子群中的最好个体保存到A里,其余丢失A(AF2,:)=T(BBS,:);enddisp(sprintf('\n The optimal point is:'));disp(sprintf('\n x: %2.4f, f(x):%2.4f',XT(end),FM(end)));%%figure(3)grid onplot(FM)title('适应值变化趋势')xlabel('迭代数')ylabel('适应值')hold onplot(FMN,'r')hold offgrid on。
常见的群体智能算法一、引言群体智能算法是一类仿生算法,通过模拟自然界中群体的行为和智能来解决各种优化问题。
这类算法具有全局搜索能力、适应性强、鲁棒性好等优势,被广泛应用于优化问题的求解。
本文将介绍几种常见的群体智能算法。
二、粒子群优化算法(Particle Swarm Optimization,PSO)粒子群优化算法是由Kennedy和Eberhart于1995年提出的,其灵感来源于鸟群觅食行为。
算法通过维护一群粒子的位置和速度,并根据粒子自身的历史经验和全局最优位置来更新粒子的位置和速度,以实现搜索最优解的目标。
PSO算法简单易实现,但容易陷入局部最优。
三、人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)人工鱼群算法是由Xin-She Yang于2008年提出的,其灵感来源于鱼群觅食行为。
算法通过模拟鱼群的觅食和追随行为来搜索最优解。
每个鱼代表一个解,通过调整鱼的位置和状态来进行搜索。
人工鱼群算法具有全局搜索能力和自适应性,但对参数的选择较为敏感。
四、蚁群优化算法(Ant Colony Optimization,ACO)蚁群优化算法是由Marco Dorigo于1992年提出的,其灵感来源于蚂蚁寻找食物的行为。
算法通过模拟蚂蚁释放信息素和觅食的行为来搜索最优解。
蚂蚁释放的信息素会在路径上积累,其他蚂蚁会根据信息素浓度选择路径。
蚁群优化算法具有全局搜索能力和自适应性,但对问题的建模较为复杂。
五、人工免疫算法(Artificial Immune Algorithm,AIA)人工免疫算法是由De Castro和Von Zuben于2002年提出的,其灵感来源于人类免疫系统的工作原理。
算法通过模拟免疫系统的自我学习和适应性来搜索最优解。
免疫算法通过抗体和抗原之间的相互作用来进行搜索,其中抗体代表解,抗原代表问题。
人工免疫算法具有全局搜索能力和自适应性,但对参数的选择较为困难。
epic免疫浸润算法原理
Epic免疫浸润算法是一种用于分析和识别免疫细胞在肿瘤中的浸润情况的算法。
其原理基于以下几个步骤:
1. 数据预处理:首先,从肿瘤样本中获取免疫细胞的图像数据。
然后,对这些图像进行预处理,包括图像去噪、图像增强等操作,以提高后续分析的准确性。
2. 免疫细胞分割:使用图像分割技术将免疫细胞从肿瘤图像中分割出来。
这通常涉及到使用阈值、边缘检测等方法来区分免疫细胞和其他组织区域。
3. 特征提取:从分割出的免疫细胞图像中提取特征。
这些特征可以包括形状、纹理、颜色、灰度等信息。
常用的特征提取方法有傅里叶描述子、灰度共生矩阵等。
4. 特征选择:根据提取的特征,使用特征选择算法选择最具有区分免疫细胞和非免疫细胞的特征。
常用的特征选择方法有方差阈值、互信息等。
5. 分类器构建:使用选择的特征构建一个分类器,将免疫细胞和非免疫细胞进行分类。
常用的分类器有支持向量机、随机森林等。
6. 浸润程度评估:根据分类器的结果,对肿瘤中的免疫细胞进行浸润程度评估。
通常使用浸润指数或浸润面积等指标来评估免疫细胞
的浸润情况。
通过以上步骤,Epic免疫浸润算法可以帮助研究人员快速、准确地分析和识别肿瘤中的免疫细胞浸润情况,为免疫治疗和肿瘤研究提供重要的支持。
一、遗传算法遗传算法是一种模拟达尔文生物进化理论的优化算法。
它通过模拟自然选择、交叉和变异的过程来寻找最优解。
遗传算法适合于解决复杂的优化问题,特别是那些搜索空间庞大、难以用传统方法求解的问题。
二、模拟退火算法模拟退火算法是一种基于物理学中退火原理的优化算法。
它通过模拟金属退火过程中的原子热运动来寻找最优解。
模拟退火算法在著名的旅行商问题、作业调度问题等优化问题中表现出色。
三、蚁裙算法蚁裙算法是一种基于蚂蚁寻找食物的行为而发展起来的优化算法。
蚁裙算法模拟了蚂蚁在搜寻食物时所遵循的信息素沉积和跟随信息素寻找路径的行为,能够有效地解决组合优化、路径规划等问题。
四、粒子裙算法粒子裙算法是一种模拟鸟裙或鱼裙觅食行为而发展出的优化算法。
该算法通过模拟个体粒子在解空间中的移动和信息共享来不断调整粒子的位置,以寻找最优解。
粒子裙算法在连续优化问题中有着较好的表现。
五、人工神经网络算法人工神经网络算法是一种仿生学算法,模拟人脑神经元之间的连接和作用。
该算法通过对大量样本数据进行训练,建立深度学习模型,能够有效地处理语音识别、图像识别、自然语言处理等领域的问题。
六、蜂裙算法蜂裙算法是一种基于蜜蜂觅食行为的优化算法。
蜂裙算法模拟了蜜蜂在寻找食物和调整蜂巢结构时的行为,能够应用于解决组合优化、调度问题等。
该算法具有较好的全局寻优能力。
七、人工免疫算法人工免疫算法是一种模拟生物免疫系统的优化算法。
它模拟了免疫系统对抗病毒和细菌入侵的过程,通过产生、选择和适应三个基本步骤来搜索最优解。
人工免疫算法能够在解决多峰函数优化、组合优化等问题中取得较好的效果。
以上是常用的几种人工智能优化算法。
它们各自具有独特的优势和适用范围,在不同的问题领域中发挥重要作用。
在未来的人工智能发展过程中,这些优化算法将继续发挥重要作用,为各种复杂问题的解决提供强有力的支持。
随着人工智能技术的不断发展和应用,各种优化算法在实际问题中得到了广泛的应用。
第五章人工免疫算法习题与答案1. 填空题(1)人工免疫算法的缩写是,它是对的一种模拟。
判别优劣的适应度函数这里称为。
(2)利用生物免疫系统的某一方面原理就可以设计新算法,因此人工免疫算法是多个算法的统称,其中最具代表性的算法有、和。
解释:本题考查人工免疫算法的基础知识。
具体内容请参考课堂视频“第5章人工免疫算法”及其课件。
答案:(1)AIA,生物免疫机理,亲和度(2)否定选择算法、免疫规划算法、克隆选择算法2.给出人工免疫算法的定义,并指出其特征。
解释:本题考查人工免疫算法的定义和特点。
具体内容请参考课堂视频“第5章人工免疫算法”及其课件。
答案:人工免疫算法是基于免疫学理论和生物免疫系统机制而提出的计算智能算法,是对生物免疫机理的一种模拟,并受到遗传算法的启发,因此免疫算法与遗传算法有许多相似之处。
AIS算法具有以下特征:(1)具有全局搜索能力。
(2)具有多样性保持机制。
(3)鲁棒性强。
(4)具有并行分布式搜索机制。
3.关于人工免疫算法,下面说法错误的是()。
A)人工免疫算法是一种全局搜索优化方法。
B)抗原对应着优化问题的可行解。
C)免疫操作可以用于产生新的解。
D)优化问题的寻优过程实际上是免疫系统识别抗原并实现抗体进化的过程。
解释:本题考查人工免疫算法的特点。
具体内容请参考课堂视频“第5章人工免疫算法”及其课件。
答案:B(1)生物免疫系统运用多种免疫调节机制产生多样性抗体以识别、匹配并最终消灭外界抗原,免疫应答中的抗体更新过程是一个全局搜索的进化过程,A 选项正确。
(2)抗原对应着问题,抗体对应着优化问题的可行解,B选项错误。
(3)免疫操作中克隆变异、抗体补充等可以产生新的抗体,对应着新解产生的过程,C选项正确。
(4)优化问题的寻优过程对应着免疫系统识别抗原并实现抗体进化的过程,D选项正确。
4.试写出克隆选择算法的基本流程。
解释:本题考查克隆选择算法CSA的步骤。
具体内容请参考课堂视频“第5章人工免疫算法”及其课件。
免疫算法理论与应用近代免疫的概念是指机体对自己或非己的识别并排除非己的功能,目的是维持自身生理平衡与稳定.免疫算法就是模拟免疫系统抗原识别、抗原与抗体结合及抗体产生过程,并利用免疫系统多样性和记忆机理抽象得到的一种免疫算法。
这里介绍免疫算法的算法流程与代码.免疫学中基本概念的思想在免疫算法设计中得到有效应用,即亲和力,相似度,浓度及激励度,根据算法需要给出描述. 定义1 亲和力指抗体与抗原的匹配程度.反映在优化问题上,抗体(NBP)的亲和力定义为函数,与成反比,在此仍表示抗aff:S(0,1)aff(x)f(x)f(x)x体对应的可行解的目标函数.这里选择 1aff(x),0 1 . f(x)1e定义2 相似度指抗体与其他抗体的相似程度,其被定义为,此根据信息熵理论设计.设M为含有m个字符的字符集,群Aff:S S[0,1]体G为由N个长度为的字符串构成的集合,即l,其中G中基因座的信息熵定义为jG{X...,M,1i l}xxxx12lim其中为M中第个符号出现在基因座上的概率. ,ij log(G,N)p pp Hj ij ijiji1定义3 抗体浓度指抗体在抗体群中与其相似的抗体所占的比例,定义为函数即C:X S[0,1],{X|Aff(u,)}C(u),其中为浓度阈值,,在此称为浓度抑01N制半径. 定义 4 激励度是指抗体应答抗原和被其他抗体激活的综合能力,定义为函c(x)/e数,其中为调节因子,.抗体应答1act:X S,act(x)aff(x)抗原综合能力与其亲和力成正比,与其在抗体群中浓度成反比. 定义5 克隆选择是指在给定的选择率下,,在抗体群中选择亲01和力较高的抗体.亲和力低的抗体则被清除. 定义 6 细胞克隆是指在给定的繁殖数M下,抗体群X中所有抗体依据自s2身的亲和力及繁殖率共繁殖M个克隆的映射.,它是确定性映射,:X S Tcmxxxs即设为抗体群的繁殖率函数,为抗体群,则定义X{,,...,}r:12m x抗体繁殖个相同的克隆构成的集合. 由下式确定:mmiiim . N r(X)af(f),Mmxmiiii1定义 7 亲和突变是指抗体空间到自身的随机映射,,其作用方式:S S T m是抗体按与其亲和力成正比的可变概率独立地改变自身的基因,可选 . P(x)exp(aff(x))定义 8 克隆抑制指在抗体群中依据抗体的亲和力和相似度抑制部分抗体的确定性映射,.克隆抑制算子的设计,设X是群体规模为M的抗体群,:SMSTr依据抗体的相似度和抑制半径以及式,将X划分为子群,不妨设Aff(u,)获q个子群,利用处罚函数对中亲和力低的抗体进行处罚. ,1i qPPii定义9 免疫选择是指在抗体群中依据抗体的激励度选择抗体的随机映射,N按其概率规则:S,STisact()xiP{T} . x(X)ii act()xjx X j定义 10 募集新成员指在抗体空间S中随机选择抗体. 免疫算法描述如下: Step 1 确定初始群体规模N,克隆总数M,克隆选择率,抑制半径,募集新成员插入率,. M N Step 2 随机产生N个抗体构成初始抗体群,计算中抗体亲和力. AA00 Step 3 利用克隆选择算子在中选择个抗体构成群体. NABnn1 Step 4 克隆选择算子作用繁殖M个克隆,中抗体进入记忆池,并更BBnn新记忆池中亲和力低的抗体. Step 5 依据亲和突变算子对每个克隆细胞进行突变,获得克隆集.Cn* Step 6 克隆抑制算子作用于,获得克隆集C C nn* Step 7 计算与中亲和力较高的N个抗体的激励度.用比例选择选取CAnn个抗体.其中中亲和力最高的不参与选择.获得新群体. N round(N)1ADnnStep 8 由募集新成员算子任选个自我抗体插入,并计算round(N)Dn个抗体的亲和力,从而获得. round(N)An1 Step 9 若满足终止条件,输出结果,否则,返回step 3. 免疫算法在函数优化中应用举例例Rosebrock函数的全局最大值计算. 222max )(1)f(,)100(xxxxx21121s..t8 2.0i48(1 2.04x i确定编码方法:xx用长度为10的二进制编码串来分别表示俩个决策变量.10位二进制编码串,12xx可以表示从0到1023之间的1024个数,故将的定义域离散化为1023个,12均等的区域,包括俩端点共1024个不同的离散点.从离散点-2.048到 2.048,依次让它们对应于00000000000(0)到11111111111(1023)之间的二进制编码.再将xx,分别表示的两个10位长的二进制编码串接在一起,组成一个20位长的二12进制编码,它就构成了函数优化问题的染色体编码方法.使用这种编码方法,解空间与免疫算法的搜索空间具有一一对应的关系. 确定解码方法:解码时需将20位长的二进制编码串切断为二个10位长的二进制编码串,然后分别将它们转换成对应的十进制整数代码,分别记为和. 依据前述个体编码方yy12yx法和对定义域的离散化方法可知,将代码转换为的解码公式为:iiyx ,(i1,2) 4.0962.048i i1023求函数的全局最大值免疫算法代码如下:Rosebrock #include <stdio.h>#include<stdlib.h> #include<time.h>#include<math.h> #define LENGTH1 10#define LENGTH2 10 #define CHROMLENGTH LENGTH1+LENGTH2 #define POPSIZE 300 int MaxGeneration =500; struct individual { char chrom[CHROMLENGTH+1]; ;//适应度double value ;//亲和力double affective //浓度double concentration; //激励度double activity;}; int generation; int best_index; structindividual population[POPSIZE]; struct individual nextpopulation[POPSIZE]; struct individual array[POPSIZE];struct individual A; struct individual B; struct individual bestindividual; struct individual currentbest; int PopSize =80; double umu =0.08; double r =0.001; double rad =0.3; int clone_total =0;//******************************************************************** void GenerateInitialPopulation(); long DecodeChromosome(char *string,int point,int length); void CalculateObjectValue(struct individual array[],int n); void Calculateaffective(struct individual array[],int n); void EvaluatePopulation(); void affectivesort(struct individualarray[],int n); void clonenum(); void MutationOperator(void);void GenerateNextPopulation(void); double CalculateSimilarity(struct individual A,struct individual B); voidInhibition(void); void chongzu(); void CalculateConcentrationValue(struct individual population[],int n);void CalculateActivityValue(struct individual population[],int n);void activeslect(); void sortnewmember(); void PerformEvolution(); void FindBestIndividual(); voidOutputTextReport();//******************************************************************** void main() { generation=0; GenerateInitialPopulation(); EvaluatePopulation(); while(generation<MaxGeneration) { generation++; GenerateNextPopulation(); EvaluatePopulation(); PerformEvolution(); OutputTextReport(); } }//********************************************************************void GenerateInitialPopulation() { int i,j; srand((unsigned)time(NULL)); //srand((unsigned)time(0));for(i=0;i<PopSize ;i++) { for(j=0;j<CHROMLENGTH;j++) { population[i].chrom[j]=(rand()%10<5)?'0':'1'; } population[i].chrom[CHROMLENGTH]='\0'; } }//******************************************************************** void GenerateNextPopulation(void) {//排序选择亲和力高的进行克隆affectivesort(population,PopSize); clonenum(); MutationOperator(); Inhibition(); chongzu(); activeslect(); sortnewmember(); }//******************************************************************** void EvaluatePopulation(void) { CalculateObjectValue ( population,PopSize); Calculateaffective( population,PopSize); FindBestIndividual(); } //***************************************************************************** long DecodeChromosome(char *string,int point,int length) { int i; long decimal=0L; char *pointer; for(i=0,pointer=string+point;i<length;i++,pointer++){ decimal+=(*pointer-'0')<<(length-1-i); } return(decimal); } //***************************************************************************** void CalculateObjectValue(struct individual array[],int n) { int i; long temp1,temp2; double x1,x2; for (i=0;i<n;i++){ temp1=DecodeChromosome(array[i].chrom,0,LENGTH1); temp2=DecodeChromosome(array[i].chrom,LENGTH1,LENGTH2 ); x1=4.096*temp1/1023.0-2.048; x2=4.096*temp2/1023.0-2.048; array[i].value=100*(x1*x1-x2)*(x1*x1-x2)+(1-x1)*(1-x1); } } //***************************************************************************** void Calculateaffective(struct individual array[],int n) { int i; for(i=0;i<n;i++) { array[i].affective=1.0/(exp(-(r*array[i].value))+1.0); } } //***************************************************************************** void affectivesort(struct individual array[],int n) { int i,j; struct individual a; for(j=0;j<n-1;j++){ for(i=0;i<n-1-j;i++){ if(array[i].affective<array[i+1].affective) { a=array[i+1];array[i+1]=array[i]; array[i]=a; } } } }//****************************************************************** void FindBestIndividual() { int i; bestindividual=population[0]; for(i=0;i<PopSize;i++){ if(population[i].affective>bestindividual.affective){ bestindividual=population[i]; best_index=i; }if(generation==0) { currentbest=bestindividual; } else{ if(bestindividual.affective>currentbest.affective){ currentbest=bestindividual; } } } }//***************************************************************************** void PerformEvolution(){ if(bestindividual.affective>currentbest.affective){ currentbest=population[best_index]; } }//***************************************************************************** void clonenum() { int i,j; int M =100; int m[POPSIZE]; int L=0; double sum1=0; doublesg =0.8; for(i=0;i<(int)(sg*M);i++){ sum1+=array[i].affective;m[i]=(int)(array[i].affective*M/sum1); clone_total+=m[i]; }for(i=0;i<(int)(sg*M);i++) { for(j=0;j<m[i];j++)nextpopulation[L++]=array[i]; } }//***************************************************************************** void MutationOperator(void) { int i,j; doublep,po; for(i=0;i<clone_total;i++){ for(j=0;j<CHROMLENGTH;j++) { po=rand()%1000/1000.0; p=exp((-1)*nextpopulation[i].affective); if(po<p) { nextpopulation[i].chrom[j]=(nextpopulation[i].chrom[j]=='0')?'1':'0'; } } } }//***************************************************************************** double CalculateSimilarity (struct individual A,struct individual B) { int j=0; double sum=0.0; for(j=0;j<CHROMLENGTH;j++){ sum+=(A.chrom[j]=B.chrom[j])?0:1; } sum=sum*(log(2.0))/CHROMLENGTH; return sum; }//***************************************************************************** void Inhibition(void) { int i,j; int L=0; int numinh=0; //double rad =0.3; CalculateObjectValue(nextpopulation,clone_total); Calculateaffective(nextpopulation,clone_total); 排序进行抑制affectivesort(nextpopulation,clone_total);//for(i=0;i<clone_total-1;i++) { for(j=i+1;j<clone_total;j++){ if(CalculateSimilarity(nextpopulation[i],nextpopulation[j])>ra d) { nextpopulation[++L]=nextpopulation[j]; } } clone_total=L+1;L=i+1; } clone_total=L+1; } //***************************************************************************** void chongzu() { int i; for(i=0;i<clone_total;i++) { population[i+PopSize]=nextpopulation[i]; } affectivesort(population,clone_total+PopSize); } //***************************************************************************** void CalculateConcentrationValue(struct individual population[],int n) { int i,j,m=0; for(i=0;i<n;i++) { for(j=0;j<n;j++) { m+=(CalculateSimilarity(population[i],population[j])<rad )?1:0; } } population[i].concentration=m*(1.0)/(n); } //***************************************************************************** void CalculateActivityValue(struct individual population[],int n) { int i; double h=1.5; for(i=0;i<n;i++) { population[i].activity=population[i].affective*exp(-population[i].concentration/h); } } //***************************************************************************** void activeslect() { int i,index; double umu=0.08; int N3=(int)(PopSize*umu); double p;double sum2=0.0; double concent[POPSIZE]; struct individual con_population[POPSIZE]; CalculateConcentrationValue(population,PopSize); CalculateActivityValue(population,PopSize);for(i=0;i<PopSize;i++) { sum2+=population[i].activity; } for(i=0;i<PopSize;i++){ concent[i]=population[i].activity/sum2; } for(i=1;i<PopSize;i++) { concent[i]=concent[i-1]+concent[i]; } for(i=0;i<PopSize;i++) { p=rand()%1000/1000.0; index=0; while (p>concent[index]) { index++; } con_population[i]=population[index]; } for(i=0;i<PopSize-N3;i++){ population[i]=con_population[i]; } } //***************************************************************************** void sortnewmember() { int i,j; intN3=(int)(PopSize*umu); for(i=0;i<N3;i++) { for(j=0;j<CHROMLENGTH;j++) { population[i+PopSize-N3].chrom[j]=(rand()%10<5)?'0':'1'; } population[i+PopSize-N3].chrom[CHROMLENGTH]='\0';} } //***************************************************************************** void OutputTextReport(void) { int i;printf("gen=%d,best=%f,",generation,currentbest.value);printf("chromosome="); for(i=0;i<CHROMLENGTH;i++) { printf("%c",currentbest.chrom[i]); } printf("\n"); } 运行结果为:所以该问题全局最优解为. f( 2.048,2.048)3905.926227参考文献[1] 黄席樾,张著洪等.现代智能算法理论及应用.北京科学出版社,2005. [2] 周明.遗传算法原理及其应用.国防工业出版社,2002.202.。