当前位置:文档之家› 最新高考立体几何压轴题精选

最新高考立体几何压轴题精选

最新高考立体几何压轴题精选
最新高考立体几何压轴题精选

A

B

C

D

E F

1.甲烷分子由一个碳原子和四个氢原子组成,其空间构型为一正四面体,碳原子位于该正四 面体的中心,四个氢原子分别位于该正四面体的四个顶点上.若将碳原子和氢原子均视为一 个点(体积忽略不计),且已知碳原子与每个氢原子间的距离都为a ,则以四个氢原子为顶点 的这个正四面体的体积为( ) A,

3827a

3 C,313a D,38

9

a 2.夹在两个平行平面之间的球,圆柱,圆锥在这两个平面上的射影都是圆,则它们的体积之

比为( )

A,3:2:1 B,2:3:1 C,3:6:2 D,6:8:3

3.设二面角a αβ--的大小是0

60,P 是二面角内的一点,P 点到,αβ的距离分别为1cm, 2cm,则点P 到棱a 的距离是( )

A,

3

B,3cm C,2

3

cm

D,3cm 4.如图,E,F 分别是正三棱锥A -BCD 的棱AB,BC

的中点,且DE ⊥EF.若BC=a ,则此正三棱锥的体积是( )

A,3

24

a

B,324a

C,

312a

D,3

12

a 5.棱长为的正八面体的外接球的体积是( ) A,

6

π

B,

27

C,3

D,3 6.若线段AB 的两端点到平面α的距离都等于2,则线段AB 所在的直线和平面α

的位置关系是 .

7.若异面直线,a b 所原角为0

60,AB 是公垂线,E,F 分别是异面直线,a b 上到A,B 距离为 2和平共处的两点,当3EF =时,线段AB 的长为 .

8.如图(1),在直四棱柱1111A B C D ABCD -中,当底面四边形ABCD 满足条件 时,有1A C ⊥1B 1D (注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)

C

D

F A

B

O

C

D E

O

A

A B C D P Q

9.如图(2),是一个正方体的展开图,在原正方体中,有下列命题: ①AB 与EF 所连直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成0

60; ④MN 与CD 所在直线互相垂直.

其中正确命题的序号为 .(将所有正确的都写出)

10.如图,在ABC ?中,AB=AC=13,BC=10,DE//BC 分别交AB,AC 于D,E.将ADE ?沿 DE 折起来使得A 到1A ,且1A DE B --为0

60的二面角,求1A 到直线BC 的最小距离.

11.如图,已知矩形ABCD 中,AB=1,BC=a (0)a >,PA ⊥平面ABCD,且PA=1.

(1)问BC 边上是否存在点Q 使得PQ ⊥QD?并说明理由;

(2)若边上有且只有一个点Q,使得PQ ⊥QD,求这时二面角Q PD A --的正切.

12. 已知三角形ABC 的顶点分别是A (1, 2, 3)、B (3, 4, 5)、C (2, 4, 7), 求三角形ABC 的面积.

A B

C

D

A B

C D

图(1)

A B

E

N

M 图(2)

P

z

13.在正四棱柱1111ABCD A B C D -中,122AB BB ==,

P 为B 1C 1的中点.

(1)求直线AC 与平面ABP 所成的角;

(2)求异面直线AC 与B P 所成的角; (3)求点B 到平面APC 的距离.

14.如图,正四棱锥P-ABCD 中,侧棱P A 与底面ABCD 所成的角的正切值为2

6

(1)求侧面P AD 与底面ABCD 所成二面角的大小 ;

(2)若E 是PB 中点,求异面直线PD 与AE 所成的角的正切值 ;

(3)在侧面P AD 上寻找一点F 使EF ⊥侧面PBC

15:在正方体的8个顶点、12条棱的中点、6个面的中心及正方体的中心共计27个点中,问

共线的三点组的个数是多少

16.如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12

PA , 点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC . (Ⅰ)求证OD ∥平面PAB ; (Ⅱ) 求直线OD 与平面PBC 所成角的正弦.

P

P E

D

C

B A

17. 如图1,已知ABCD 是上.下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角,如图2 (Ⅰ)证明:AC ⊥BO 1;

(Ⅱ)求二面角O -AC -O 1的余弦.

18.已知圆柱的底面半径为3,高为4,A 、B 两点分别在两底面圆周上,并且AB=5,求异面直线AB 与轴OO /之间的距离。

19.简单选填题

1、已知?Skip Record If...?是平面,m ,n 是直线,给出下列命题:

①若?Skip Record If...?; ②若?Skip Record If...?; ③如果?Skip Record If...?相交;

图1

④若?Skip Record If...? 其中正确命题的个数是( ) A .4

B .3

C .2

D .1

2、已知三条不重合的直线m 、n 、l 两个不重合的平面?Skip Record If...?,有下列命题

①若?Skip Record If...?; ②若?Skip Record If...?; ③若?Skip Record If...?; ④若?Skip Record If...?; 其中正确的命题个数是 ( )

A .1

B .2

C .3

D .4

3、α、β为两个互相垂直的平面,a 、b 为一对异面直线,下列条件:①a //α、b ?Skip Record

If...?;②a ⊥α、b ?Skip Record If...?;③a ⊥α、b ?Skip Record If...?;④a //α、b ?Skip Record If...?且a 与α的距离等于b 与β的距离.其中是a ⊥b 的充分条件的有 ( )

A .①④

B .①

C .③

D .②③

4、已知三条不重合的直线m 、n 、l ,两个不重合的平面?Skip Record If...?,有下列命题 ①若?Skip Record If...?; ②若?Skip Record If...?; ③若?Skip Record If...?; ④若?Skip Record If...?; 其中正确的命题个数是

A .1

B .2

C .3

D .4

5、若l 、m 、n 是互不相同的空间直线,?Skip Record If...?是不重合的平面,则下列命题中为真命题的是

A .若?Skip Record If...?∥β,?Skip Record If...?,则?Skip Record If...?∥n

B .若?Skip Record If...?⊥β,?Skip Record If...?,则?Skip Record If...?⊥β

C .若?Skip Record If...?⊥n ,m ⊥n ,则?Skip Record If...?∥m

D .若?Skip Record If...?⊥?Skip Record If...?, ?Skip Record If...?∥β,则?Skip Record If...?⊥β

6、若二面角?Skip Record If...?为 ?Skip Record If...?,直线?Skip Record If...?,直线?Skip Record If...?,则直线?Skip Record If...?与?Skip Record If...?所成的角取值范围是

A .?Skip Record If...?

B .?Skip Record If...?

C .?Skip

Record If...?

D . ?Skip Record If...?

7、已知直线?Skip Record If...?与平面?Skip Record If...?成?Skip Record If...?角,直线?Skip Record If...?,若直线?Skip Record If...?在?Skip Record If...?内的射影与直线?Skip Record If...?也成45°角,则?Skip Record If...?与?Skip Record If...?所成的角是

A .30°

B .45°

C .60°

D .90°

[,]

62ππ[,]

32

ππ[,]63

ππ(0,)2π

8、设正方体ABCD-A1B1C1D1中E,F分别是棱A1A,B1B中点,G为BC上一点,若C1F⊥EG,则?Skip

Record If...?为()

A.60°B.90°C.120°D.150°

9、已知三棱锥?Skip Record If...?中,?Skip Record If...?,点E、F分别在AC、AD上,使面?Skip Record If...?,则平面BEF与平面BCD所成的二面角的正弦值为()

A ?Skip Record If...?

B ?Skip Record If...?

C ?Skip

Record If...? D ?Skip Record If...?

10、从P点出发三条射线PA,PB,PC两两成60°,且分别与球O相切于A,B,C三点,若球

的体积为

3

,则OP的距离为()

A. 2 B. 3 C.

3

2

D.2

11、直线?Skip Record If...?与平面?Skip Record If...?成45°角,若直线?Skip Record

If...?在?Skip Record If...?内的射影与?Skip Record If...?内的直线?Skip Record If...?成45°角,则?Skip Record If...?与?Skip Record If...?所成的角是()A.30°B.45°C. 60°D.90°

12、一个正方体的体积是8,则这个正方体的内切球的表面积是()

A.8?Skip Record If...? B.6?Skip Record If...?C.4?Skip Record If...?

D.?Skip Record If...?

13、已知线段AB在平面?Skip Record If...?外,AB两点到平面?Skip Record If...?的距离分别是1和3,则线段AB中点到平面?Skip Record If...?的距离是__________.

14、正三棱锥P-ABC的四个顶点同在一个半径为2的球面上,若正三棱锥的侧棱长为23,则正三棱锥的底面边长是____________.

15、(江苏省启东中学高三综合测试三)三棱锥P-ABC的四个顶点点在同一球面上,若PA⊥底面ABC,底面ABC是直角三角形,PA=2, AC=BC=1,则此球的表面积为。

16、四面体ABCD中,共顶点A的三条棱两两相互垂直,且其长分别为?Skip Record If...?,若四面体的四个顶点同在一个球面上,则这个球的表面积为。

答案:1.过顶点A,V与高作一截面交BC于点M,点O为正四面体的中心,

1

O为底面ABC的中心,

设正四面体VABC的棱长为m,则=VM,

1

O M=

1

3

AM=, 1

2

33

O A AM

==,

13

VO m

==,得

113

OO VO VO m a

=-=-6

6

7

7

4

2

3

1

在1Rt AOO ?中,22211AO OO AO =+,

即2

22(

)()33a m a m =-+,

得3

m a =. 则1VO =

4

3

a ,

有203111(sin 60)3227V ABC V m VO a -=????=

.选B. 温馨提示:正四面体外接球的半径VO :内切球的半径1OO =1

:3:13

a a =. 2. 32212341

::(

):(2):(2)2:3:133

V V V R R R R R πππ=???=,选B. 3.设PA ⊥棱a 于点A,PM ⊥平面α于点M,PN ⊥平面β于点N,PA=t ,PAM θ∠=,则

sin 1sin(60)2t t αα=??-=?

,

5sin αα=,

有sin α=

或(舍去),

所以1sin 3

t α=

=

cm ,选B. 4.由DE ⊥EF,EF//AC,有DE ⊥AC,又AC ⊥BD,DE

BD=D,得AC ⊥平面ABD.

由对称性得0

90BAC CAD BAD ∠=∠=∠=,

于是2

AB AC AD a ===

. 3

11()32B ACD V -=?=,选B.

5.可由两个相同的四棱锥底面重合而成,

有2r =

得2

r =

,

外接球的体积3433

V r π=

=,选D. 6.当2AB <时,AB//α;当2AB =时,AB//α或AB ⊥α;当2AB >时,AB//α或与α斜交. 7.由EF EA AB BF =++,得2

222

2cos EF

EA AB BF EA BF θ=+++??

(1)当0

60θ=时,有2

1

9412212

AB =+++???

,得2AB =(2)当0

120θ=时,有219412212

AB

=++-???,得6AB =.

8. AC ⊥BD.(或ABCD 是正方形或菱形等)

9.将展开的平面图形还原为正方体NACF EMBD -,可得只②,④正确.

10.解:设ABC ?的高AO 交DE 于点1O ,令1AO x =, 由12=,有112OO x =-,

立体几何高考真题大题

立体几何高考真题大题 1.(2016 高考新课标 1 卷)如图 , 在以 A,B,C,D,E,F为顶点的五面体中, 面 ABEF为正方形 ,AF=2FD,AFD 90 ,且二面角D-AF-E与二面角C-BE-F都是 60 . D C F (Ⅰ)证明:平面ABEF平面EFDC; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析;(Ⅱ) 2 19 19 【解析】 试题分析:(Ⅰ)先证明 F平面FDC ,结合F平面 F ,可得平面F 平面 FDC .(Ⅱ)建立空间坐标系, 分别求出平面C的法向量 m 及平面 C 的法 向量 n ,再利用 cos n, m n m 求二面角.n m 试题解析:(Ⅰ)由已知可得F DF, F F, 所以F平面 FDC . 又F平面F,故平面 F 平面FDC . (Ⅱ)过 D 作DG F ,垂足为 G ,由(Ⅰ)知 DG平面 F . 以 G 为坐标原点,GF 的方向为 x 轴正方向, GF 为单位长度, 建立如图所示的空间直角坐标系 G xyz . 由(Ⅰ)知DF为二面角D F的平面角,故DF60,则DF 2, DG3,可得1,4,0 ,3,4,0,3,0,0, D0,0, 3 . 由已知 ,// F,所以//平面FDC . 又平面CD平面FDC DC,故//CD , CD// F . 由//F,可得平面FDC ,所以 C F为二面角 C F 的平面角, C F60 .从而可得C2,0,3.

设 n x, y, z 是平面C的法向量,则 n C 0, 即x 3z 0, n0 4 y0 所以可取 n3,0, 3 . 设 m 是平面 m C0 CD 的法向量,则, m0 同理可取 m0, 3, 4 .则 cos n, m n m 2 19. n m19 故二面角C 219的余弦值为. 19 考点:垂直问题的证明及空间向量的应用 【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明, 空间中线面位置关 系的证明主要包括线线、线面、面面三者的平行与垂直关系, 其中推理论证的关键是结 合空间想象能力进行推理, 要防止步骤不完整或考虑不全致推理片面, 该类题目难度不 大 , 以中档题为主.第二问一般考查角度问题, 多用空间向量解决. 2 .( 2016 高考新课标 2 理数)如图,菱形ABCD 的对角线AC 与BD交于点 O , AB 5,AC 6,点 E, F 分别在 AD,CD 上, AE CF 5 ,EF交BD于点H.将4 DEF 沿 EF 折到 D EF 位置,OD10. (Ⅰ)证明: D H平面 ABCD ; (Ⅱ)求二面角 B D A C 的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)295 .25

高考立体几何大题20题汇总情况

高考立体几何大题20 题汇总情况 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

(2012江西省)(本小题满分12分) 如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5, BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG. (1) 求证:平面DEG ⊥平面CFG ; (2)求多面体C DEFG 的体积。 2012,山东(19) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点,求证:DM ∥平面BEC . 2012浙江20.(本题满分15分)如图,在侧棱锥垂直 底面的四棱锥1111ABCD A B C D -中,,AD BC //AD 11,2,2,4,2,AB AB AD BC AA E DD ⊥====是的中 点,F 是平面11B C E 与直线1AA 的交点。 (Ⅰ)证明:(i) 11;EF A D //ii ()111;BA B C EF ⊥平面 (Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值。 (第20题图) F E C 1 B 1 D 1A 1 A D B C

(2010四川)18、(本小题满分12分)已知正方体''''ABCD A B C D -中,点M 是棱'AA 的中点,点O 是对角线'BD 的中点, (Ⅰ)求证:OM 为异面直线'AA 与'BD 的公垂线; (Ⅱ)求二面角''M BC B --的大小; 2010辽宁文(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面11A B C ⊥平面11A BC ; (Ⅱ)设D 是11A C 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。

立体几何高考真题大题

立体几何高考真题大题 1.(2016高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD, 90AFD ∠=o ,且二面角D-AF-E 与二面角C-BE-F 都是60o . (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析; (Ⅱ)19 - 【解析】 试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ?平面F ABE ,可得平面F ABE ⊥平 面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m u r 及平面C B E 的法向量 n r ,再利用cos ,n m n m n m ?=r r r r r r 求二面角. 试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ?平面F ABE ,故平面F ABE ⊥平面FDC E . (Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE . 以G 为坐标原点,GF u u u r 的方向为x 轴正方向,GF u u u r 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(Ⅰ)知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =o ,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E - ,(D . 由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB I 平面FDC DC E =,故//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角, C F 60∠E =o .从而可得(C -. 所以(C E =u u u r ,()0,4,0EB =u u u r ,(C 3,A =--u u u r ,()4,0,0AB =-u u u r . 设(),,n x y z =r 是平面C B E 的法向量,则 C 0 0n n ??E =???EB =??u u u r r u u u r r , 即040x y ?=?? =??, 所以可取(3,0,n =r .

高考立体几何大题及答案理

1.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上, ∠ABM=60 。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB =AC (Ⅱ)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小 3.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ; (II )求 AD 与平面ABE 所成角的正弦值. 4.如图,四棱锥P ABCD -的底面是正方形, PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中 点 时,求AE 与平面PDB 所成的角的大小. 5.如图,在四棱锥P ABCD -中,底面ABCD 是矩形, PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . B C D E O A P B M

(1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 6.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠=(I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 7.如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1), 都有AC ⊥BE : (Ⅱ)若二面角C -AE -D 的大小为600C ,求λ的值。 8.如图3,在正三棱柱111ABC A B C -中,AB =4, 17AA =,点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E .(Ⅰ)证明:平面1A DE ⊥平面 11ACC A ;(Ⅱ)求直线AD 和平面1A DE 所成角的正弦值。 9.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面;

立体几何高考真题大题

立体几何咼考真题大题 1. (2016高考新课标1 卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方 形,AF=2FD, NAFD =90:且二面角 D-AF-E 与二面角 C-BE-F 都是 60: (I )证明:平面 ABEF 丄平面EFDC (n )求二面角 E-BC-A 的余弦值. 【答案】(I )见解析;(n ) -2蜃 19 【解析】 试题分析:(I )先证明AF 丄平面E FDC ,结合直F U 平面AB E F ,可得平面ABE F 丄 平面E FDC . (n )建立空间坐标系,分别求出平面E C E 的法向量m 及平面E C E 的法 试题解析:(I )由已知可得 A F 丄DF, A F 丄F E|,所以A F 丄平面E FDC . 又A F U 平面 AE E F ,故平面AEE F 丄平面|E F D C . _ (n )过D 作DG 丄E F ,垂足为G ,由(I )知DG 丄平面[A E 百F . 以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直 角坐标系G —xyz . 由(I )知N DF E 为二面角D -A F -E 的平面角,故N DF E =60:贝U DF = 2 , DG|=3,可得九(1,4,0 ), B(—3,4,0 ), E(—3,0,0 ), D (0,0, 73 ). 由已知,AE //E F ,所以AE //平面E FDC . 又平面 A ECD n 平面 |E FDC = DC ,故〕AB //CD , CD//EF . 由EE //A F ,可得EE 丄平面I E F DC ,所以N C E F |为二面角C —EE —F 的平面角, 向量n ,再利用cos (n,m ) 求二面角. n ||m |

(完整)2019-2020年高考数学大题专题练习——立体几何(一)

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

立体几何高考真题大题

立体几何高考真题大题 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

立体几何高考真题大题 1.(2016高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD, 90AFD ∠=,且二面角D-AF-E 与二面角C-BE-F 都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析;(Ⅱ) 【解析】 试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ?平面F ABE ,可得平面F ABE ⊥平面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m 及平面C B E 的法向量 n ,再利用cos ,n m n m n m ?= 求二面角. 试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ?平面F ABE ,故平面F ABE ⊥平面FDC E . (Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE . 以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(Ⅰ)知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG 3=,可 得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D . 由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB 平面FDC DC E =,故//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角, C F 60∠E =.从而可得(C -.

2016年_2018年立体几何全国卷高考真题

2015-2017立体几何高考真题 1、(2015年1卷6题)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛 【答案】B 【解析】设圆锥底面半径为r ,则 12384r ??==16 3 r =,所以米堆的体积为211163()5433????=3209,故堆放的米约为 320 9 ÷1.62≈22,故选B. 考点:圆锥的性质与圆锥的体积公式 2、(2015年1卷11题)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=( ) (A )1 (B )2 (C )4 (D )8 【答案】B 【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为221 42222 r r r r r r πππ?+?++?=2254r r π+=16 + 20π,解得r=2,故选B. 考点:简单几何体的三视图;球的表面积公式、圆柱的测面积公式 3、(2015年1卷18题)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.

立体几何高考真题汇编

高中数学立体几何专题训练 1、(2017?山东)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线 为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP 的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小. 2、(2017?浙江)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB; (Ⅱ)求直线CE与平面PBC所成角的正弦值. 3、(2017?江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.(Ⅰ)求异面直线A1B与AC1所成角的余弦值;(Ⅱ)求二面角B﹣A1D﹣A的正弦值.

4、(2017?北京卷)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD, 点M在线段PB上,PD∥平面MAC,PA=PD= ,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值. 5、(2017?新课标Ⅰ卷)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°. (1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.

6.在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O'的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC; (II)已知EF=FB=1 2 AC ==BC.求二面角F BC A --的余弦值 . 7(本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,5 AB=,6 AC=,点E,F 分别在AD,CD上, 5 4 AE CF ==,EF交BD于点H.将△DEF沿EF折到△D EF ' 的位置OD'=(I)证明:D H'⊥平面ABCD; (II)求二面角B D A C ' --的正弦值 . 8.(15年山东理科)如图,在三棱台DEF ABC -中,2, AB DE = (Ⅰ)求证:// BD平面FGH; (Ⅱ)若CF⊥平面ABC,,,45, AB BC CF DE BAC ⊥=∠= 求平面FGH与平面ACFD所成角(锐角)的大小.

立体几何(小题)专题 历年高考真题模拟题汇总(解析版)

立体几何 一、考试大纲 1.空间几何体 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图. (3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. (4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). (5)了解球、棱柱、棱锥、台的表面积和体积的计算公式. 2.点、直线、平面之间的位置关系 (1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内. 公理2:过不在同一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理. 理解以下判定定理. 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明. 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行. 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行. 垂直于同一个平面的两条直线平行. 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直. 3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题. 4.空间直角坐标系 (1)了解空间直角坐标系,会用空间直角坐标表示点的位置. (2)会推导空间两点间的距离公式. 二、新课标全国卷命题分析 立体几何小题常考的题型包括:(1)球体;(2)多面体的三视图、体积、表面积或角度,包括线线角、

立体几何高考真题大题

立体几何高考真题大题 1.(2016高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD , 90AFD ∠=,且二面角D-AF-E 与二面角C-BE-F 都是60. (Ⅰ)证明:平面AB EF ⊥平面E FDC ; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析; (Ⅱ)19 - 【解析】 试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ?平面F ABE ,可得平面F ABE ⊥平面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m 及平面C B E 的法向量n ,再利用cos ,n m n m n m ?= 求二面角. 试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ?平面F ABE ,故平面F ABE ⊥平面FDC E . (Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE . 以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(Ⅰ)知 DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则 DF 2=,DG 3=,可得()1,4,0A ,()3,4,0 B -,()3,0,0E -,(D . 由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB 平面FDC DC E =,故//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角, C F 60∠E =.从而可得( C -. 所以(C E =,()0,4,0EB =,(C 3,A =--,()4,0,0AB =-. C A B D E F

(完整版)2018高考文科立体几何大题

立体几何综合训练 1、证明平行垂直 1.如图,AB是圆O的直径,PA⊥圆O 所在的平面,C是圆O上的点. (1)求证:BC⊥平面PAC; (2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC. 2.如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证: (Ⅰ)PA⊥底面ABCD; (Ⅱ)BE∥平面PAD; (Ⅲ)平面BEF⊥平面PCD. 3.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD 上,且CE∥AB. (Ⅰ)求证:CE⊥平面PAD;

(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P﹣ABCD的体积. 4.如图,在四棱锥P﹣ABCD中,底面ABCD 是矩形.已知 .M是PD的中点. (Ⅰ)证明PB∥平面MAC (Ⅱ)证明平面PAB⊥平面ABCD (Ⅲ)求四棱锥p﹣ABCD的体积.2、求体积问题 5.如图,已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1. (Ⅰ)求证:AB∥平面PCD; (Ⅱ)求证:BC⊥平面PAC; (Ⅲ)若M是PC的中点,求三棱锥M ﹣ACD的体积.

6.(2011?辽宁)如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,OA=AB=PD . (Ⅰ)证明PQ ⊥平面DCQ ; (Ⅱ)求棱锥Q ﹣ABCD 的体积与棱锥P ﹣DCQ 的体积的比值. 7.如图,四棱锥P ﹣ABCD 的底面ABCD 是边长为2的菱形,∠BAD=60°,已知PB=PD=2,PA=. (Ⅰ)证明:PC ⊥BD (Ⅱ)若E 为PA 的中点,求三棱锥P ﹣BCE 的体积.

立体几何高考真题大题

1.(2016高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD, 90AFD ∠=o ,且二面角D-AF-E 与二面角C-BE-F 都是60o . (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析; (Ⅱ)19 - 【解析】 试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ?平面F ABE ,可得平面F ABE ⊥ 平面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m u r 及平面C B E 的法 向量n r ,再利用cos ,n m n m n m ?=r r r r r r 求二面角. 试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ?平面F ABE ,故平面F ABE ⊥平面FDC E . (Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE . 以G 为坐标原点,GF u u u r 的方向为x 轴正方向,GF u u u r 为单位长度,建立如图所示的空间直 角坐标系G xyz -. 由(Ⅰ)知 DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =o ,则 DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E - ,(D . 由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB I 平面FDC DC E =,故//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角, C F 60∠E =o .从而可得(C -. 所以(C E =u u u r ,()0,4,0EB =u u u r ,(C 3,A =--u u u r ,()4,0,0AB =-u u u r . 设(),,n x y z =r 是平面C B E 的法向量,则 C A B D E F

高考理科立体几何大题(供参考)

一, [2017·山东济南调研]如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5. (1)求证:AA 1⊥平面ABC ; (2)求二面角A 1-BC 1-B 1的余弦值; (3)在线段BC 1上是否存在点D ,使得AD ⊥A 1B ?若存在,试求出 BD BC 1 的值. (1)[证明] 在正方形AA 1C 1C 中,A 1A ⊥AC . 又平面ABC ⊥平面AA 1C 1C , 且平面ABC ∩平面AA 1C 1C =AC ,AA 1?平面AA 1C 1C . ∴AA 1⊥平面ABC . (2)[解] 由(1)知,AA 1⊥AC ,AA 1⊥AB , 由题意知,在△ABC 中,AC =4,AB =3,BC =5, ∴BC 2=AC 2+AB 2,∴AB ⊥AC . ∴以A 为坐标原点,建立如图所示空间直角坐标系A -xyz . A 1(0,0,4),B (0,3,0),C 1(4,0,4),B 1(0,3,4), 于是A 1C 1→ =(4,0,0),A 1B →=(0,3,-4), B 1 C 1→=(4,-3,0),BB 1→=(0,0,4). 设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1), 平面B 1BC 1的法向量n 2=(x 2,y 2,z 2). ∴????? A 1C 1→·n 1=0,A 1 B →·n 1=0?????? 4x 1=0,3y 1-4z 1=0, ∴取向量n 1=(0,4,3). 由????? B 1C 1→·n 2=0,BB 1→·n 2 =0?????? 4x 2-3y 2=0,4z 2=0, ∴取向量n 2=(3,4,0). ∴cos θ=n 1·n 2|n 1||n 2|=165×5=1625 . 由题图可判断二面角A 1-BC 1-B 1为锐角,

(完整版)历年高考立体几何大题试题

2015年高考立体几何大题试卷 1.【2015高考新课标2,理19】 如图,长方体1111ABCD A B C D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B , 11C D 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方 形. (1题图) (Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值. 2.【2015江苏高考,16】 如图,在直三棱柱111C B A ABC -中,已知BC AC ⊥, 1CC BC =,设1AB 的中点为D ,E BC C B =11I .求证:(1)C C AA DE 11//平面; (2)11AB BC ⊥. (2题图) (3题图) 3. 【2015高考安徽,理19】如图所示,在多面体111A B D DCBA ,四边形11AA B B , 11,ADD A ABCD 均为正方形,E 为11B D 的中点,过1,,A D E 的平面交1CD 于F. (Ⅰ)证明:1//EF B C ; (Ⅱ)求二面角11E A D B --余弦值. D D C A E F A B C B A B C D E A B C

4. 【2015江苏高考,22】如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且 四边形ABCD 为直角梯 形,2 ABC BAD π ∠=∠= ,2,1PA AD AB BC ==== (1)求平面PAB 与平面PCD 所成二面角的余弦值; (2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长 (4题图) G F B A C D E (5题图) 5 .【2015高考福建,理17】如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ^平面BEC ,BE ^EC ,AB=BE=EC=2,G ,F 分别是线段BE ,DC 的中点. (Ⅰ)求证://GF 平面ADE ; (Ⅱ)求平面AEF 与平面BEC 所成锐二面角的余弦值. 6.【2015高考浙江,理17】如图,在三棱柱111ABC A B C --中,90BAC ∠=o , 2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明:1A D ⊥平面1A B C ; (2)求二面角1A -BD-1B 的平面角的余弦值. P A B C D Q

2016年-2019年立体几何大题全国卷高考真题

1、(2015年1卷18题)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AFC⊥平面AEC;(Ⅱ)求直线AE与直线CF所成有的余弦值。 (2016年1卷18题)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD, 2、

90AFD ∠=o ,且二面角D -AF -E 与二面角C -BE -F 都是60o . (I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值. 3(2016年2卷19题)(本小题满分12分) C A B D E F

如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF '的位置10OD '=. (I )证明:D H '⊥平面ABCD ; (II )求二面角B D A C '--的正弦值. 4、(2017年1卷18题)如图,在四棱锥P ABCD -中,AB CD ∥中,且90BAP CDP ∠=∠=?.

(1)证明:平面PAB ⊥平面PAD ; (2)若PA PD AB DC ===,90APD ∠=?,求二面角A PB C --的余弦值. 5.(2018年1卷18题) 如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. ⑴证明:平面PEF ⊥平面ABFD ;

2017年高考立体几何大题(文科)

2017年高考立体几何大题(文科) 1、(2017新课标Ⅰ文数)(12分) 如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,90APD ∠= ,且四棱锥P-ABCD 的体积为 83 ,求该四棱锥的侧面积.

如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2 AB BC AD BAD ABC ==∠=∠=? (1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为P ABCD -的体积.

如图,四面体ABCD中,△ABC是正三角形,AD=CD. (1)证明:AC⊥BD; (2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.

如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点. (Ⅰ)求证:PA⊥BD; (Ⅱ)求证:平面BDE⊥平面PAC; (Ⅲ)当PA∥平面BD E时,求三棱锥E–BCD的体积.

由四棱柱ABCD-A1B1C1D1截去三棱锥C1- B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD. AO∥平面B1CD1; (Ⅰ)证明: 1 (Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.

如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(1)EF∥平面ABC; (2)AD⊥AC.

-立体几何全国卷高考真题

2015-2017立体几何高考真题 1、(2015年1卷6题)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为 1.62立方尺,圆周率约为3,估算出堆放斛的米约有( ) (A)14斛 (B)22斛 (C)36斛 (D)66斛 【答案】B 【解析】设圆锥底面半径为r,则12384r ??==163 r =,所以米堆的体积为211163()5433????=3209,故堆放的米约为3209÷1.62≈22,故选B. 考点:圆锥的性质与圆锥的体积公式 2、(2015年1卷11题)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=( ) (A )1 (B)2 (C)4 (D)8 【答案】B 【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r,圆柱的高为2r,其表面积为 22142222 r r r r r r πππ?+?++?=2254r r π+=16 + 20π,解得r=2,故选B. 考点:简单几何体的三视图;球的表面积公式、圆柱的测面积公式 3、(2015年1卷18题)如图,四边形ABCD 为菱形,∠AB C=120°,E,F 是平面ABCD同一侧的两点,BE ⊥平面A BCD,D F⊥平面AB CD,BE=2DF ,A E⊥EC.

近年高考理科立体几何大题汇编

近几年高考理科立体几何大题汇编 1.(2018年III 卷)如图,边长为2的正方形 所在的平面与半圆弧所在平面垂直,是 上异于,的点. (1)证明:平面平面; (2)当三棱锥体积最大时,求面与面所成二面角的正弦值. 2、[2014·新课标全国卷Ⅱ] 四棱锥P -ABCD 中,底面 ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ; (2)设二面角D -AE -C 为60°,AP =1,AD = 3 求三棱锥E -ACD 的体积. ABCD CD M CD C D AMD ⊥BMC M ABC MAB MCD

3.(2017?新课标Ⅰ卷)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°. (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值. 4.(菱形建系)[2014·新课标全国卷Ⅰ] 如图 三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形

AB⊥B1C. (1)证明:AC=AB1; (2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.

5.(菱形建系)【2015高考新课标1】如图,四边形ABCD为菱形,∠ABC=120°, E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AEC⊥平面AFC; (Ⅱ)求直线AE与直线CF所成角的余弦值. AD BC的中点,以6.(翻折)(2018年I卷)如图,四边形ABCD为正方形,,E F分别为, ⊥. DF为折痕把DFC △折起,使点C到达点P的位置,且PF BF (1)证明:平面PEF⊥平面ABFD; (2)求DP与平面ABFD所成角的正弦值.

2020年高考立体几何大题理科(供参考)

2017年高考立体几何大题(理科) 1、(2017新课标Ⅰ理数)(12分) 如图,在四棱锥P -ABCD 中,AB//CD ,且90BAP CDP ∠=∠=. (1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值. 2、(2017新课标Ⅱ理)(12分) 如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直 于底面ABCD ,o 1,90,2 AB BC AD BAD ABC == ∠=∠= E 是PD 的中点. (1)证明:直线CE ∥平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角 为o 45,求二面角M AB D --的余弦值. 3、(2017新课标Ⅲ理数)(12分) 如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD . (1)证明:平面ACD ⊥平面ABC ; (2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值. 4、(2017北京理)(本小题14分) 如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD//平面MAC ,PA =PD =,AB=4. 6

(I )求证:M 为PB 的中点; (II )求二面角B -PD -A 的大小; (III )求直线MC 与平面BDP 所成角的正弦值. 5、(2017山东理)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120?得到的,G 是DF 的中点. (Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小. 6、(2017江苏)(本小题满分14分) 如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E , F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC . 7、如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,∠BAC =90°,点D 、E 、N 分别为棱PA 、PC 、BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2 (1)求证:MN ∥平面BDE ; (2)求二面角C -EM -N 的正弦值; (3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为 217,求线段AH 的长。 8、(2017浙江)(本题满分15分)如图,已知四棱锥P –ABCD ,△PAD 是以 AD 为斜边的等腰直角三角形,,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点. //BC AD

相关主题
文本预览
相关文档 最新文档