当前位置:文档之家› 可视性饱和蒸汽压力和温度关系

可视性饱和蒸汽压力和温度关系

可视性饱和蒸汽压力和温度关系
可视性饱和蒸汽压力和温度关系

饱和蒸汽P-T关系使用实验

一、实验目的

1、通过观察饱和蒸汽压力和温度变化的关系,加深对饱和状态的理解,从而树立液体温度达到对应于液面压力的饱和温度时,沸腾便会发生的基本概念。

2、通过对实验数据的整理,掌握饱和蒸汽 P—T关系图表的编制方法。

3、学会温度计、压力表、调压器和大气压力计等仪表的使用方法。

4、能观察到小容积和金属表面很光滑(汽化核心很小)的饱态沸腾现象。

二、实验设备见图1

图1实验设备简图

1、排气阀

2、可视玻璃及蒸汽发生器

三、使用方法与步骤

1、熟悉实验装置及使用仪表的工作原理和性能。

2、将电功率调压器调节至电压表零位,然后接通电源。

3、调节电功率调压器,并缓慢逐渐加大电压至100v左右,待蒸汽压力升至一定值时迅速记录下水蒸汽的压力和温度;温度和压力逐渐增加,重复上述实验记录,在0~1.0Ma(表压)范围内实验不少于5次,且实验点应尽量分布均匀。

4实验完毕后,将调压器旋回零位,并断开电源。

5、记录室温和大气压力(温度计和大气压力表自备)。

四、数据记录和整理

1、记录和计算:

2、绘制P—t关系曲线:

将实验结果点在坐标上,清除偏离点,绘制曲线。

图2 饱和水蒸气压力和温度的关系曲线

图3饱和水蒸气压力和温度的关系对数坐标曲线

3、总结经验公式:

将实验曲线绘制在双对数坐标纸上,则基本呈一直线,故饱和水蒸气压力和温度的关系可近似整理成下列经验公式:

4

t

100P

4、误差分析:

通过比较发现测量比标准值低1%左右,引起误差的原因可能有以下几个方面:(1)读数误差。

(2)测量仪表精度引起的误差。

(3)利用测量管测温所引起的误差。

五、注意事项

1、实验装置通电后必须有专人看管。

2、实验装置使用压力为0.9Ma(表压),切不可超压操作。

饱和水蒸气热力性质表(按温度排列)

饱和蒸汽压力温度对照表

压力(MPa) 温度(℃) 0.001 6.9491 0.002 12.9751 0.002 17.5403 0.003 21.1012 0.003 24.1142 0.004 26.6707 0.004 28.9533 0.005 31.0533 0.005 32.8793 0.006 34.6141 0.006 36.1663 0.007 37.6271 0.007 38.9967 0.008 40.2749 0.008 41.5075 0.009 42.6488 0.009 43.7901 0.010 44.8173 0.010 45.7988 0.011 47.6934 0.012 49.4281 0.013 51.0488 0.014 52.5553 0.015 53.9705 0.016 55.3401 压力(MPa) 温度(℃) 0.017 56.5955 0.018 57.8053 0.019 58.9694 0.020 60.0650 0.021 61.1378 0.022 62.1422 0.023 63.1237 0.024 64.0596 0.025 64.9726 0.026 65.8628 0.027 66.7074 0.028 67.5291 0.029 68.3280 0.030 69.1041 0.032 70.6106 0.034 72.0144 0.036 73.3611 0.038 74.6508 0.040 75.8720 0.045 78.7366 0.050 81.3388 0.055 83.7355 0.060 85.9496 0.065 88.0154 0.070 89.9556 压力(MPa) 温度(℃) 0.075 91.7816 0.080 93.5107 0.085 95.1485 0.090 96.7121 0.095 98.2014 0.100 99.6340 0.110 102.3160 0.120 104.8100 0.130 107.1380 0.140 109.3180 0.150 111.3780 0.160 113.3260 0.170 115.1780 0.180 116.9410 0.190 118.6250 0.200 120.2400 0.210 121.7890 0.220 123.2810 0.230 124.7170 0.240 126.1030 0.250 127.4440 0.260 128.7400 0.270 129.9980 0.280 131.2180 0.290 132.4030 压力(MPa) 温度(℃) 0.300 133.5560 0.310 134.6770 0.320 135.7700 0.330 136.8360 0.340 137.8760 0.350 138.8910 0.360 139.8850 0.370 140.8550 0.380 141.8030 0.390 142.7320 0.400 143.6420 0.410 144.5350 0.420 145.4110 0.430 146.2690 0.440 147.1120 0.450 147.9330 0.460 148.7510 0.470 149.5500 0.480 150.3360 0.490 151.1080 0.500 151.8670 0.520 153.3500 0.540 154.7880 0.560 156.1850 0.580 157.5430 压力(MPa) 温度(℃) 0.600 158.8630 0.620 160.1480 0.640 161.4020 0.660 162.6250 0.680 163.8170 0.700 164.9830 0.720 166.1230 0.740 167.2370 0.760 168.3280 0.780 169.3970 0.800 170.4440 0.820 171.4710 0.840 172.4770 0.860 173.4660 0.880 174.4360 0.900 175.3890 0.920 176.3250 0.940 177.2450 0.960 178.1500 0.980 179.0400 1.000 179.9160 1.050 18 2.0480 1.100 184.1000 1.150 186.0810 1.200 187.9950 压力(MPa) 温度(℃) 1.250 189.8480 1.300 191.6440 1.350 193.3860 1.400 195.0780 1.450 196.7250 1.500 198.3270 1.550 199.8870 1.600 201.4100 1.650 20 2.8950 1.700 204.3460 1.750 205.7640 1.800 207.1510 1.850 208.5080 1.900 209.8380 1.950 211.1400 2.000 212.4170 2.050 21 3.6690 2.100 214.8980 2.150 216.1040 2.200 217.2890 2.250 218.4520 2.300 219.5960 2.350 220.7220 2.400 221.8290 2.450 222.9180 1 / 2

蒸汽温度与压力的关系

33 第4章 饱和蒸汽压力和温度关系实验 水蒸汽是人类在热机中应用最早的工质。虽然以后也应用燃气和其它工质,由于水蒸汽具有易于获得、有适宜的热力参数和不会污染环境等优点,至今仍是工业上广泛应用的的主要工质。他的物理性质较理想气体复杂的多,不能用简单的数学式来表达。本实验通过研究饱和蒸汽的压力与温度的关系加深对水蒸汽饱和状态的理解。 各种物质由液态转变为汽态的过程为汽化。 4.1实验目的 (1)通过观察饱和蒸汽压力和温度的关系,加深对饱和状态的理解。 (2)通过试验数据的整理,掌握饱和蒸汽P-T 关系图表的编制方法。 (3)学会温度计、压力表、调压器和大气压力计等仪表的使用方法。 4.2 实验装置 蒸汽发生器、压力表、温度计、可控数显温度仪和电流表等,如图4.1。 图4.1 饱和蒸汽温度、压力关系实验装置 1-压力表;2-排气阀;3-缓冲器;4-可视玻璃及蒸汽发生器;5-电源开关;6-电功率调节器;7-温度计;8-可控数显温度仪;9-电流表

34 4.3 实验方法与步骤 (1)熟悉实验装置及使用仪表的工作原理和性能。 (2)将电功率调节器调节至电流表零位,然后接通电源。 (3)调节电功率调节器并缓慢逐渐加大电流,待蒸汽压力升至一定值时,将电流降低0.2安培左右保温,待工况稳定后迅速记录下水蒸气的压力和温度。重复上述实验,在0~1.0MPa(表压)范围内实验不少于6次,且实验点应尽量分布均匀。 (4)实验完毕后,将调压指针旋回零位,并断开电源。 (6)记录室温和大气压力。 4.4 数据记录和整理 (1)数据记录和计算 实验 次数 饱和压力(MPa ) 饱和温度(℃) 误差 备注 压力表读数P ' 大气压力B 绝对压力B P P +'= 温度 计读 数t ' 理论值t t t t ' -=?(℃) %100??t t (%) 1 2 3 4 5 6 (2)绘制P-t 关系曲线 将实验结果点在坐标上,清除偏离点,绘制曲线。 图4.2 饱和水蒸汽压力和温度的关系式

饱和蒸汽压力与温度的关系

当液体在有限的密闭空间中蒸发时,液体分子通过液面进入上面空间,成为蒸汽分子。由于蒸汽分子处于紊乱的热运动之中,它们相互碰撞,并和容器壁以及液面发生碰撞,在和液面碰撞时,有的分子则被液体分子所吸引,而重新返回液体中成为液体分子。开始蒸发时,进入空间的分子数目多于返回液体中分子的数目,随着蒸发的继续进行,空间蒸汽分子的密度不断增大,因而返回液体中的分子数目也增多。当单位时间内进入空间的分子数目与返回液体中的分子数目相等时,则蒸发与凝结处于动平衡状态,这时虽然蒸发和凝结仍在进行,但空间中蒸汽分子的密度不再增大,此时的状态称为饱和状态。在饱和状态下的液体称为饱和液体,其蒸汽称为干饱和蒸汽(也称饱和蒸汽)。 饱和蒸汽与过热蒸汽的区别:饱和蒸汽压力与温度有一一对应关系,如已知饱和蒸汽压力为0.5MPa,则温度为158℃,反之,已知饱和蒸汽温度为180℃,则压力必为0.9MPa,所以从压力与温度数据可以判断是否为饱和蒸汽、过热蒸汽。 饱和蒸汽温度1mpa以下160~170度左右 1mpa以上170~195度左右 过热蒸汽在2mpa以上就400度左右. 饱和蒸汽温度压力对照表

压力MPa 温度 ℃ 压力 MPa 温度 ℃ 压力 MPa 温度 ℃ 压力 MPa 温度 ℃ 0.000 99.5 0.180 131.0 0.000 99.5 -0.072 65.0 0.005 101.0 0.185 131.5 -0.002 99.0 -0.074 64.0 0.010 102.0 0.190 132.0 -0.004 98.5 -0.076 63.0 0.015 103.5 0.195 132.5 -0.006 97.5 -0.078 62.0 0.020 104.5 0.200 133.5 -0.008 97.0 -0.08 60.0 0.025 105.5 0.210 134.5 -0.010 96.5 -0.081 59.0 0.030 107.0 0.220 135.5 -0.012 96.0 -0.082 57.5 0.035 108.0 0.230 136.5 -0.014 95.0 -0.083 56.0 0.040 109.0 0.240 137.5 -0.016 94.5 -0.084 55.0 0.045 110.0 0.250 139.0 -0.018 94.0 -0.085 53.5 0.050 111.0 0.260 139.5 -0.020 93.0 -0.086 52.0 0.055 112.0 0.270 140.5 -0.022 92.5 -0.087 50.0 0.060 113.0 0.280 141.5 -0.024 92.0 -0.088 48.5 0.065 114.0 0.290 142.5 -0.026 91.0 -0.089 47.0 0.070 115.0 0.300 143.5 -0.028 90.5 -0.090 45.5 0.075 115.5 0.310 144.5 -0.030 90.0 -0.091 43.5 0.080 116.5 0.320 145.0 -0.032 89.0 -0.092 41.5 0.085 118.0 0.330 146.0 -0.034 88.5 -0.093 39.0 0.090 119.0 0.340 147.0 -0.036 88.0 -0.094 35.5 0.095 119.5 0.350 147.5 -0.038 87.0 -0.095 32.5

饱和水蒸汽的压力与温度的关系的介绍

饱和水蒸汽的压力与温度的关系 ( 摘自仲元: "水和水蒸气热力性质图表" p4~10 )

真空计算常用公式 1、玻义尔定律 体积V,压强P,P·V=常数(一定质量的气体,当温度不变时,气体的压强与气体的体积成反比。 即P1/P2=V2/V1) 2、盖·吕萨克定律 当压强P不变时,一定质量的气体,其体积V与绝对温度T成正比:(V1/V2=T1/T2=常数)当压强不变时,一定质量的气体,温度每升高(或P降低)1℃,则它的体积比原来增加(或缩小)1/273。 3、查理定律 当气体的体积V保持不变,一定质量的气体,压强P与其他绝对温度T成正比,即:P1/P2=T1/T2 在一定的体积下,一定质量的气体,温度每升高(或降低)1℃,它的压强比原来增加(或减少)1/273。 4、平均自由程: λ=(5×10-3)/P (cm) 5、抽速: S=dv/dt (升/秒)或 S=Q/P Q=流量(托·升/秒) P=压强(托) V=体积(升) t=时间(秒) 6、通导: C=Q/(P2-P1) (升/秒) 7、真空抽气时间: 对于从大气压到1托抽气时间计算式: t=8V/S (经验公式) (V为体积,S为抽气速率,通常t在5~10分钟选择。) 8、维持泵选择: S维=S前/10 9、扩散泵抽速估算: S=3D2 (D=直径cm)

10、罗茨泵的前级抽速: S=(0.1~0.2)S罗 (l/s) 11、漏率: Q漏=V(P2-P1)/(t2-t1) Q漏-系统漏率(mmHg·l/s) V-系统容积(l) P1-真空泵停止时系统中压强(mmHg) P2-真空室经过时间t后达到的压强(mmHg) t-压强从P1升到P2经过的时间(s) 12、粗抽泵的抽速选择: S=Q1/P预 (l/s) S=2.3V·lg(Pa/P预)/t S-机械泵有效抽速 Q1-真空系统漏气率(托·升/秒) P预-需要达到的预真空度(托) V-真空系统容积(升) t-达到P预时所需要的时间 Pa-大气压值(托) 13、前级泵抽速选择: 排气口压力低于一个大气压的传输泵如扩散泵、油增压泵、罗茨泵、涡轮分子泵等,它们工作时需要前级泵来维持其前级压力低于临界值,选用的前级泵必须能将主泵的最大气体量排走,根据管路中,各截面流量恒等的原则有: PnSg≥PgS 或Sg≥Pgs/Pn Sg-前级泵的有效抽速(l/s) Pn-主泵临界前级压强(最大排气压强)(l/s) Pg-真空室最高工作压强(托) S-主泵工作时在Pg时的有效抽速。(l/s) 14、扩散泵抽速计算公式: S=Q/P=(K·n)/(P·t)(升/秒) 式中:S-被试泵的抽气速率(l/s) n-滴管油柱上升格数(格) t-油柱上升n格所需要的时间(秒) P-在泵口附近测得的压强(托)

饱和蒸汽温度压力密度对照表

3 温度密度压力 100 0.6 1.103 101 0.611 1.05 102 0.639 1.088 103 0.66 1.127 104 0.682 1.167 105 0.705 1.208 106 0.728 1.25 107 0.752 1.294 108 0.776 1.339 109 0.801 1.385 110 0.827 1.433 111 0.853 1.482 112 0.88 1.532 113 0.908 1.583 114 0.936 1.636 115 0.965 1.691 116 0.995 1.747 117 1.025 1.804 118 1.057 1.863 119 1.089 1.923 120 1.122 1.985 121 1.155 2.049 122 1.19 2.115

123

1.225 2.182 124 1.261 2.25 125 1.298 2.321 126 1.336 2.393 127 1.375 2.468 128 1.415 2.544 129 1.455 2.622 130 1.497 2.701 131 1.539 2.783 132 1.583 2.867 133 1.627 2.953 134 1.672 3.041 135 1.719 3.131 136 1.766 3.223 137 1.815 3.317 138 1.864 3.414 139 1.915 3.513 140 1.967 3.614 141 2.019 3.717 142 2.073 3.823 143 2.129 3.931 144 2.185 4.042 145 2.242 4.155 146 2.301 4.271 147 2.361 4.398 148 2.422 4.51 149 2.484 4.634 150 2.548 4.76 151 2.613 4.889 152 2.679 5.021 153 2.747 5.155 154 2.816 5.292 155 2.886 5.433 156 2.958 5.577 157 3.032 5.732 158 3.106 5.872 159 3.182 6.025 160 3.26 6.181 161 3.339 6.339 162 3.42 6.502 163 3.502 6.667 164 3.586 6.836 165 3.671 7.008 166 3.758 7.183

蒸汽温度压力对照表

根据1MPa=1000kPa=10.2kgf/cm2(kg/cm2),通过与饱和蒸气压(单位为MPA)和蒸汽标准表的比较,可以计算出饱和蒸气压(kgf/cm2)与蒸汽温度的关系。温度如下:饱和蒸汽的温度和压力之间只有一个自变量。理想饱和蒸汽状态是指温度、压力和蒸汽密度之间存在一一对应关系。如果其中一个已知,其他两个值为常量。有此关系的蒸汽为饱和蒸汽,有饱和蒸汽压力和温度的对照表。饱和蒸汽压力与蒸汽温度标准对照表按国际单位制编制,压力单位为兆帕,温度单位为摄氏度。 扩展数据 测量饱和蒸气压有两种方法 1动态方法。测定液体在不同外压下沸点的方法,又称沸点法。这种方法只能测量接近大气压的饱和蒸气压,精度高。 2静态法。它是指直接测量液体在不同温度下的饱和蒸气压,即在恒定温度下测量饱和压力。静态方法相对简单,用途更广。通常的方法是将被测材料置于密闭容器中,使其处于

气液共存状态,然后放入恒温槽中。通过调节恒温槽的温度,可以测量不同温度下的饱和蒸气压数据。 在封闭条件下,在一定温度下,与固体或液体平衡的蒸气压称为饱和蒸气压。饱和蒸汽压力也称为蒸汽压力。同一种物质在不同的温度下有不同的蒸气压,并且随着温度的升高而增加。对于同一种物质,固体的饱和蒸气压低于液体的饱和蒸气压。 饱和蒸汽是指由于气体分子之间的热运动而处于饱和状态的蒸汽。当液体在有限的封闭空间内蒸发时,液体分子通过液体表面进入上层空间,成为蒸汽分子。因为蒸汽分子处于湍流热运动中,它们相互碰撞。蒸汽压力与饱和蒸汽温度之间存在对应关系,不同压力下存在一定的饱和温度。换言之,在一定的压力下,水完全蒸发并继续吸收热量,但直到温度开始升高,温度才上升,变成饱和蒸汽。

饱和蒸汽压力与温度对照表

饱和蒸汽压力与温度对照表 压力KPa 温度℃压力KPa 温度℃压力MPa 温度℃压力MPa 温度℃9.8 101.76 470.7 156.76 3.43 243.03 7.65 292.73 19.6 104.24 490.3 158.07 3.53 244.62 7.75 293.60 29.4 106.56 509.9 159.35 3.63 246.17 7.85 294.47 39.2 108.73 529.6 160.60 3.72 247.68 7.94 295.32 49 110.78 549.2 161.82 3.82 249.17 8.04 296.17 58.8 112.72 568.8 163.01 3.92 250.63 8.14 297.01 68.6 114.57 588.4 164.17 4.02 252.07 8.24 297.85 78.4 116.32 608 165.30 4.12 253.48 8.34 298.67 88.2 118.00 627.6 166.41 4.21 254.86 8.43 299.49 98 119.61 647.2 167.50 4.31 256.22 8.53 300.30 107.8 121.15 666.9 168.56 4.41 257.56 8.63 301.11 117.6 122.64 686.5 169.60 4.51 258.87 8.73 301.90 127.4 124.07 706.1 170.62 4.61 260.16 8.73 302.69 137.2 125.45 725.7 171.63 4.7 261.44 8.92 303.48 147.1 126.78 745.3 172.61 4.8 262.69 9.02 304.26 156.9 128.08 764.9 173.58 4.9 263.92 9.12 305.03 166.7 129.33 784.5 174.53 5.0 265.14 9.22 305.79 176.5 130.54 882.6 179.03 5.09 266.34 9.32 306.55 186.3 131.72 980.7 183.20 5.19 267.52 9.41 307.30 196.1 132.87 1.079MPa 187.08 5.29 268.68 9.51 308.05 205.9 133.99 1.177 190.71 5.39 269.83 9.61 308.79 215.7 135.08 1.27 194.13 5.49 270.96 9.71 309.52 225.6 136.14 1.37 197.36 5.59 272.08 9.81 310.25 235.4 137.17 1.47 200.43 5.69 273.19 10 310.98 245.2 138.18 1.57 203.35 5.79 274.27 10.2 312.41

(完整版)不同温度下空气中饱和水分含量及饱和蒸汽压

不同温度下空气中饱和水分含量及饱和蒸汽压兰州真空设备有限责任公司

《真空设计手册》 粘滞流—分子流下管道流导 2 1 271(d P) 4790(d P) 2 1 316( d P) d :管道直径 m l :管道长度 m P :管道中平均压力 U n.f.20℃= 12.1 d 3 P =( P 1+P 2)/2

《真空设计手册》 符号:U ——流导(L/s) a 和b——椭圆长半轴、短半轴l ——管长(cm) A ——面积(cm2) d ——管道直径(cm)

材料物理性能

GB 5832.2-86 气体中微量水分的测定- 露点法 1 适用范围 本标准适用于氧、氮、氢、氦、氖、氩、氪、氙、二氧化碳等气体中微量水分露点的测定。其测量范围0℃~-70℃ 2 原理 2.1 术语说明 水分露点——在恒定的压力下,气体中的水蒸气达到饱和时的温度。 2.2 方法原理 本法用露点仪进行测定。 使被测气体在恒定压力下,以一定的流量流经露点仪溅定室中的抛光金属镜面。该镜面的温度可人为地降低并可精确地测量。当气体中的水蒸气随着镜面温度的逐渐降低而达到饱和时,镜面上开始出现露,此时所测量到的镜面温度即为露点。(由露点和气体中水分含量的换算式或查表,即可得到气体中微量水分含量。) 3 仪器 3.1 概述 仪器可以用不同的方法设计,主要的不同在于金属镜面的性质、用于冷却镜面的方法、如何控制镜面的温度、测定温度的方法以及检测出露的方法。镜子和它的附件通常安放在气体样品流经的测定室中。 3.2 仪器的一般要求 提供下述装置、满足基本要求的任何露点仪都可以使用。 3.2.1 当仪器温度高于气体中水分露点至少2℃时,可以控制气体进出仪器的流量。 3.2.2 把流动的样品气冷到足够低的温度,使得水蒸气能凝结,冷却的速度可调。 3.2.3 能观察露的出现和准确地测量露点。 3.2.4 气路系统死体积小且气密性好,露点室内气压应接近大气压力。 3.2.5 用标准样衡量仪器是否符合要求,按GB 4471-84 《化工产品试验方法精密度室间试验重复性和再现性的确定》第 4.3 条进行。 3.3 目视和光电露点仪简单的露点仪以手动调节冷量,控制镜面降温速度,用目视法观察露的生成。该法凭经验操作,人为误差较大。采用光电系统确定露生成的光电露点仪有相当高的准确度和精密度;用户按需要和可能进行选择。 3.4 露的观察 目视露点仪用肉眼观察露的出现。光电露点仪是采用装在测定室的光源照射镜面,光源和光电池能以各种方式排列,当镜面未结露时,无散射发生,硅光电池上没有光照,镜面上结露后,入射光在镜面发生散射,一部分光照射到硅光电池上从而产生光生电压,给出出露信号。 3.5 镜面制冷方法 用下述方法来降低和调节镜子温度,其中3.5.1 和3.5.2 所介绍的方法要求操作人员注意观察而不适用于自动装置。对自动装置,使用两种方法制冷: 3.5.3 和 3.5.4 所介绍的液化气体制冷及热电效应制冷。 3.5.1 溶剂蒸发制冷 用一种挥发性液体与镜子背面接触,用通入低压空气或其他压缩气体鼓泡的办法使液体气化而制冷。

蒸汽温度与压力对照表

饱和蒸汽温度与绝对压力对照 压力温度压力温度压力温度压力温度压力温度压力温度 0.10 0.11 0.12 0.13 0.14 99.634 102.316 104.810 107.138 109.318 0.35 0.36 0.37 0.38 0.39 138.891 139.885 140.855 141.803 142.732 0.70 0.72 0.74 0.76 0.78 164.983 166.123 167.237 168.328 169.397 1.50 1.55 1.60 1.65 1.70 198.327 199.887 201.410 202.895 204.346 2.75 2.80 2.85 2.90 2.95 229.115 230.096 231.065 232.020 232.962 5.0 5.1 5.2 5.3 5.4 263.980 265.221 266.443 267.648 268.835 0.15 0.16 0.17 0.18 0.19 111.378 113.326 115.178 116.941 118.625 0.40 0.41 0.42 0.43 0.44 143.642 144.535 145.411 146.269 147.112 0.80 0.82 0.84 0.86 0.88 170.444 171.471 172.477 173.466 174.436 1.75 1.80 1.85 1.90 1.95 205.764 207.151 208.508 209.838 211.140 3.0 3.1 3.2 3.3 3.4 233.893 235.718 237.499 239.238 240.936 5.5 5.6 5.7 5.8 5.9 270.005 271.159 272.298 273.422 274.530 0.20 0.21 0.22 0.23 0.24 120.240 121.789 123.281 124.717 126.103 0.45 0.46 0.47 0.48 0.49 147.933 148.751 149.550 150.336 151.108 0.90 0.92 0.94 0.96 0.98 175.389 176.325 177.245 178.150 179.040 2.00 2.05 2.10 2.15 2.20 212.417 213.669 214.898 216.104 217.289 3.5 3.6 3.7 3.8 3.9 242.597 244.222 245.812 247.370 248.897 6.0 6.1 6.2 6.3 6.4 275.625 276.706 277.773 278.827 279.868 0.25 0.26 0.27 0.28 0.29 127.444 128.740 129.998 131.218 132.403 0.50 0.52 0.54 0.56 0.58 151.867 153.350 154.788 156.185 157.543 1.00 1.05 1.10 1.15 1.20 179.916 182.048 184.100 186.081 187.995 2.25 2.30 2.35 2.40 2.45 218.452 219.596 220.722 221.829 222.918 4.0 4.1 4.2 4.3 4.4 250.394 251.862 253.304 254.719 256.110 6.5 6.6 6.7 6.8 6.9 280.897 281.914 282.920 283.914 284.897 0.30 0.31 0.32 0.33 0.34 133.556 134.677 135.770 136.836 137.876 0.60 0.62 0.64 0.66 0.68 158.863 160.148 161.402 162.625 163.817 1.25 1.30 1.35 1.40 1.45 189.848 191.644 193.386 195.078 196.725 2.50 2.55 2.60 2.65 2.70 223.990 225.046 226.085 227.110 228.120 4.5 4.6 4.7 4.8 4.9 257.447 258.820 260.141 261.441 262.721 7.0 7.1 7.2 7.3 7.4 285.869 286.830 287.781 288.722 289.654

蒸汽温度压力对照表

饱和蒸汽: 未经过热处理的蒸汽称为饱和蒸汽,饱和蒸汽是在一个大气压下,温度为100度的蒸汽,温度不能再升高,是饱和状态下的蒸汽。饱和蒸汽由气体分子之间的热运动现象造成的。 原理: 当液体在有限的密闭空间中蒸发时,液体分子通过液面进入上面空间,成为蒸汽分子。由于蒸汽分子处于紊乱的热运动之中,它们相互碰撞,并和容器壁以及液面发生碰撞,在和液面碰撞时,有的分子则被液体分子所吸引,而重新返回液体中成为液体分子。开始蒸发时,进入空间的分子数目多于返回液体中分子的数目,随着蒸发的继续进行,空间蒸汽分子的密度不断增大,因而返回液体中的分子数目也增多。当单位时间内进入空间的分子数目与返回液体中的分子数目相等时,则蒸发与凝结处于动平衡状态,这时虽然蒸发和凝结仍在进行,但空间中蒸汽分子的密度不再增大,此时的状态称为饱和状态。在饱和状态下的液体称为饱和液体,其对应的蒸汽是饱和蒸汽,但最初只是湿饱和蒸汽,待蒸汽中的液态水完全蒸发后才是干饱和蒸汽。蒸汽从不饱和到湿饱和再到干饱和的过程温度是不增加的,干饱和之后继续加热则温度会上升,成为过热蒸汽。 特点: 饱和蒸汽具有如下特点: (1)饱和蒸汽的温度与压力之间一一对应,二者之间只有一个独立变量。理想的饱和蒸汽状态,指的是温度、压力及蒸汽密度三者

存在一一对应的关系,知道其中一个,其他二个值就是定数。存在这种关系的蒸汽就是饱和蒸汽,否则都可以视为过热蒸汽进行计量,如图为饱和蒸汽压力与温度对照表; (2)饱和蒸汽容易凝结,在传输过程中如有热量损失,蒸汽中便有液滴或液雾形成,并导致温度与压力的降低。含有液滴或液雾的蒸汽称为湿蒸汽。严格来说,饱和蒸汽或多或少都含有液滴或液雾的双相流体,所以,不同状态下不能用同一气体状态方程式来描述。饱和蒸汽中液滴或液雾的含量反映了蒸汽的质量,一般用干度这一参数来表示。蒸汽的干度是指单位体积饱和蒸汽中干蒸汽所占的百分数,以“x”表示; (3)准确计量饱和蒸汽流量比较困难,因为饱和蒸汽的干度难以保证,一般流量计都不能准确检测双相流体的流量,蒸汽压力波动将引起蒸汽密度的变化,流量计示值产生附加误差。所以在蒸汽计量中,必须设法保持测量点处蒸汽的干度以满足要求,必要时还应采取补偿措施,实现准确的测量。

水露点及温度及压力的关系

天然气的水露点,指的是在特殊环境下,当含水量达到饱和状态时候的实际温度。在特殊环境条件下,影响含水量的主要因素有:温度、强压,当含水量突破最大值的时候,为了预防水化物或者液态水的产生,从而堵塞、污染或者腐蚀管道,所以需要充分减小管道里天然气中的实际含水量;一般来说,天然气在开发气田的时候,就会完成脱水作用,天然气的管道传输是一个压力逐渐降低的过程,可以简化为等温降压或升温降压过程,在上述条件下,不会产生液态水,因此不需要添加排水设备。 相关概念 (1).天然气绝对湿度 绝对湿度,指的是在每立方米的天然气里,含有的水汽总质量,使用字母e 进行表达; (2)。天然气的相对湿度 相对湿度,指的是在特殊温度、压强环境条件下,天然气里水汽的总质量e,和在相同环境中的饱和水汽的总质量的比值; (3)。天然气的水露点 水露点,指的是天然气在特殊压强条件下,水汽达到最大饱和值时的温度,也被称之为露点;可以采用天然气的露点分布图,查阅可知;气体水合物产生作用线是一条临界线,代表在特殊环境条件下,气体和水合物之间的相互平衡作用。 在下图里,水合物产生作用区,位于气体水合物产生作用线的下方,达标气体和水合物的达到相互平衡的状态;由图可知,在纯水接触作用下,绘制出实际密度是0.6的水合物产生作用线;假如天然气的实际密度高于或低于0.6,又或是接触水是含盐水的时候,需要根据图中的修正系数进行调整;中性的天然气中,饱和水含量通常根据下列公式完成运算: (4—2) W0.983WdCrdCs 式中W一一非酸性天然气饱和水含量,mg/m3 Wd一一由图查得的含水量,Ing/m3; Crd一一相对密度校正系数 Cs一一含盐量校正系数 当系统压力小于2100kPa(绝对压力)时,针对含有H2S或CO2的酸性天然气,不需要进行修正调整;当环境压强超过2100kPa的时候,则必须进行修正;

水的饱和蒸汽压与温度对应表

水的饱和蒸汽压与温度对应表 一、水的饱和蒸汽压与温度的关系 蒸汽压是一定外界条件下,液体中的液态分子会蒸发为气态分子,同时气态分子也会撞击液面回归液态。这是单组分系统发生的两相变化,一定时间后,即可达到平衡。平衡时,气态分子含量达到最大值,这些气态分子对液体产生的压强称为蒸气压。 水的表面就有水蒸气压,当水的蒸气压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100摄氏度时水的蒸气压等于一个大气压。蒸气压随温度变化而变化,温度越高,蒸气压越大,当然还和液体种类有关。 一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸气所产生的压强叫饱和蒸气压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方气相的压力,即水的蒸气所具有的压力就不断增加。但是,当温度一定时,气相压力最终将稳定在一个固定的数值上,这时的气相压力称为水在该温度下的饱和蒸气压力。当气相压力的数值达到饱和蒸气压力的数值时,液相的水分子仍然不断地气化,气相的水分子也不断地

冷凝成液体,只是由于水的气化速度等于水蒸气的冷凝速度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸气所具有的压力为其饱和蒸气压力时,气液两相即达到了相平衡。饱和蒸气压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸气压越大,表示该物质越容易挥发。 二、水的饱和蒸汽压与温度对应表 水的饱和蒸汽压与温度对应表

三、水的饱和蒸汽压与温度的换算公式 当10℃≤T≤168℃时,采用安托尼方程计算:lgP=7.07406-(1657.46/(T+227.02)) 式中:P——水在T温度时的饱和蒸汽压,kPa; T——水的温度,℃ 四、水的饱和蒸汽压曲线

饱和蒸汽压力和温度关系实验

实验报告评分 13系07级第二大组实验室力一楼日期2010-03-23 姓名钟伟PB07013076 实验题目:饱和蒸汽压力和温度关系实验 实验目的:通过观察饱和蒸汽压力和温度变化的关系,加深对饱和状态的理解,从而建立液体温度达到对应液面压力的饱和温度时,沸腾便会发生的基本概念。通过对实验数据的整理,掌握饱和蒸汽p-t关系图表的编制方法,观察小容积的泡态沸腾现象。 实验原理: 考察水在定压下加热时水的状态的变化过程。随着热量的加入,水的温度不断升高。当温度上升到某温度值t时水开始沸腾。此沸腾温度称为该压力下的饱和温度。同样,此时的压力称为饱和压力。继续加热,水中不断产生水蒸汽,随着加热过程的进行,水蒸汽不断增加,直至全部变为蒸汽,而达到干饱和蒸汽状态。对干饱和蒸汽继续加热,由蒸汽的温度由饱和温度逐渐升高。水在汽化过程中,呈现出五种状态,即未饱和水、饱和水、湿饱和蒸汽、干饱和蒸汽、过热蒸汽。在汽化阶段,处于汽液两相平衡共存的状态,它的特点是定温定压,即一定的压力对应着一定的饱和温度,或一定的温度对应着一定的饱和压力。 实验步骤: 熟悉实验装置的工作原理、性能和使用方法。 1.将调压器指针置于零位,然后接通电源。 2.将电接点压力表的上限压力指针拨到稍高于最高试验压力(如: 0.7MPa)的位置。 3.将调压器输出电压调至170V,待蒸汽压力升至接近于第一个待测定 的压力值时,将电压降至20-50V左右(参考值)。由于热惯性,压

力将会继续上升,待工况稳定(压力和温度基本保持不变)时,记 录下蒸汽的压力和温度。重复上述实验,在0~0.6Pa(表压)范围内, 取5个压力值,顺序分别进行测试。实验点应尽可能分布均匀。 4.实验完毕后,将调压器指针旋回零位,并断开电源。记录实验环境 的温度和大气压力B。 注意事项:本装置允许使用压力为0.8MPa(表压),不可超压操作。 实验处理: 数据记录 绘制p - t 关系曲线,并将实验结果在p - t坐标系中标出如下:

饱和水蒸汽压力与温度密度蒸汽焓汽化热的关系对照表

饱和水蒸汽压力与温度、密度、蒸汽焓、气化热的关系对照表 一.什么是水和水蒸气的焓? 水或水蒸气的焓h,是指在某一压力和温度下的1千克水或1千克水蒸气内部所含有的能量,即水或水蒸气的内能u与压力势能pv之和(h=u+pv)。水或水蒸气的焓,可以认为等于把1千克绝对压力为兆帕温度为0℃的水,加热到该水或水蒸气的压力和温度下所吸收的热量。焓的单位为“焦/千克”。 (1)非饱和水焓:将1千克绝对压力为兆帕温度为0℃的水,加热到该非饱和水的压力和温度下所吸收的热量。 (2)饱和水焓:将1千克绝对压力为兆帕温度为0℃的水,加热到该饱和水的压力对应的饱和温度时所吸收的热量。饱和温度随压力增大而升高,因此饱和水焓也随压力增大而增大。例如:绝对压力为兆帕时,饱和水焓为 x 103焦/千克;在绝对压力为兆帕时,饱和水焓则为 x 103焦/千克。 (3)饱和水蒸气焓:分为干饱和水蒸气焓和湿饱和水蒸气焓两种。干饱和水蒸气焓等于饱和水焓加水的汽化潜热;湿饱和水蒸气焓等于1千克湿饱和蒸汽中,饱和水的比例乘饱和水焓加干饱和汽的比例乘干饱和汽焓之和。例如:绝对压力为兆帕时,饱和水焓为 x103焦/公斤;汽化潜热为1328 x103焦/公斤。因此,干饱和水蒸气的焓等于: x103+1328x103= x 103焦/千克。又例如:绝对压力为兆帕的湿饱和水蒸气中,饱和水的比例为,(即湿度为20%)干饱和水蒸气比例为(即干度为80%),则此湿饱和水蒸气的焓为 x103 x 十 = x 103焦/千克。 (4)过热水蒸气焓:等于该压力下干饱和水蒸气的焓与过热热之和。例如:绝对压力为兆帕,温度为540℃的过热水蒸气的干饱和水蒸气的焓为 x 103焦/千克,过热热为 x 103焦/千克。则该过热水蒸气的焓为: x 103+ x 103= x 103焦/千克。

水蒸气温度与压力关系

中文"饱和水蒸气压力"英文water vapor saturation pressure; "饱和水蒸气压力" 在学术文献中的解释1、当空气中所含水蒸气的量达到最大时就称这种空气为“饱和湿空气”,与饱和湿空气对应的压力称为“饱和水蒸气压力”,用符号Ps表示.水蒸气压力p与饱和水蒸气压力Ps的比值称为相对湿度Rh,与饱和水蒸气压力Ps对应着的相对湿度为:Rh=100%编辑本段饱和水蒸气压力表 温度t/℃绝对压强 p/kPa 水蒸汽的密 度 ρ/kg·m-3 焓 H/kJ·kg-1 汽化热 r/kJ·kg-1 液体水蒸汽 0 0.61 0.00 0.00 2491.10 2491.10 5 0.87 0.01 20.94 2500.80 2479.86 10 1.23 0.01 41.87 2510.40 2468.53 15 1.71 0.01 62.80 2520.50 2457.70 20 2.33 0.02 83.74 2530.10 2446.30 25 3.17 0.02 104.67 2539.70 2435.00 30 4.25 0.03 125.60 2549.30 2423.70 35 5.62 0.04 146.54 2559.00 2412.10 40 7.38 0.05 167.47 2568.60 2401.10 45 9.58 0.07 188.41 2577.80 2389.40 50 12.34 0.08 209.34 2587.40 2378.10 55 15.74 0.10 230.27 2596.70 2366.40 60 19.92 0.13 251.21 2606.30 2355.10 65 25.01 0.16 272.14 2615.50 2343.10 70 31.16 0.20 293.08 2624.30 2331.20 75 38.55 0.24 314.01 2633.50 2319.50 80 47.38 0.29 334.94 2642.30 2307.80 85 57.88 0.35 355.88 2651.10 2295.20 90 70.14 0.42 376.81 2659.90 2283.10 95 84.56 0.50 397.75 2668.70 2270.50 100 101.33 0.60 418.68 2677.00 2258.40 105 120.85 0.70 440.03 2685.00 2245.40 110 143.31 0.83 460.97 2693.40 2232.00 115 169.11 0.96 482.32 2701.30 2219.00 120 198.64 1.12 503.67 2708.90 2205.20 125 232.19 1.30 525.02 2716.40 2191.80 130 270.25 1.49 546.38 2723.90 2177.60 135 313.11 1.72 567.73 2731.00 2163.30

蒸汽温度压力对照表

蒸汽温度压力对照表 压水堆核电站哪些地方存在饱和状态呢? (1)一回路冷却剂系统稳压器中为大容积池式沸腾饱和状态; (2)压水对堆芯最热通道允许出现过冷沸腾,通道出口处允许出现低含汽量饱和泡核沸腾; (3)蒸汽发生器、除氧器、二回路混合式低加、凝汽器等加热器和冷凝器。 众所周知,饱和温度和饱和压力一一对应,我们经常用到水的饱和温度压力对照表,此表中列举的都是整数参数,使用过程中请自行插值计算,或者哪位兄台帮我开发一个微信小程序(可以自动进行插值计算)方便大家使用也未可知。 搬砖客在此先行谢过! 压水堆核电机组使用的饱和水和饱和蒸汽表,供学习使用,需注意此表主要用于日常学习,若工作或工程计算需要使用,请查询专业图标或软件。 一定温度下的液体置于密闭容器中,当单位时间由液体变为蒸气

的分子数目与由蒸气变为液体的分子数目相等时,气液两相处于动平衡状态,此时饱和蒸气所呈现的压力称为蒸气压。 蒸气压的大小与液体的种类、温度的高低有关。 当空气中所含水蒸气的量达到最大时就称这种空气为“饱和湿空气”,与饱和湿空气对应的压力称为饱和水蒸气压力。 饱和水蒸气压力表 蒸汽需要减压的原因相当简单。每一个用汽设备都有其最大允许工作压力(MAWP)。如果该压力比蒸汽供应压力低,那么就需要一个减压阀将供汽压力降低到MAWP。在减压阀可能失效的情况下,系统中还必须安装安全阀。 大多数蒸汽锅炉的设计压力都相对较高,且不应运行在较低的压力下,那样会导致蒸汽干度下降。由于这个原因,通常比较经济的做法是高压输送蒸汽,然后在使用点进行减压。这样布置还有另外一个优点,即可以减少蒸汽主管的口径,因为在高压下,蒸汽的比容较小。由于饱和蒸汽的温度和压力是一一对应的,压力控制比较简单且可以提供精确的温度控制。这一点在杀菌锅和接触式干燥器上比较普遍,因为这些设备的表面温度很难通过温度感应器测量。

相关主题
文本预览
相关文档 最新文档