当前位置:文档之家› 沿程阻力的实验报告

沿程阻力的实验报告

沿程阻力的实验报告
沿程阻力的实验报告

中国石油大学(华东)工程流体力学实验报告

实验日期:成绩:

班级:学号:姓名:教师:

同组者:

实验七、沿程阻力实验

一、实验目的

1.掌握测定镀锌铁管管道沿程阻力系数的方法。

2.在双对数坐标纸上绘制λ-Re关系曲线。

3.进一步理解沿程阻力系数随雷诺数的变化规律。

二、实验装置

本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。

另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。

F1—— 文丘利流量计 ; F2—— 孔板流量计 ;F3—— 电磁流量计 ; C —— 量水箱 ; V —— 阀门 ; K —— 局部阻力试验管路

图7-1 管流综合实验装置流程图

三、实验原理

本实验所用的管路水平放置且等直径,因此利用能量方程可以推导出管路两点间的沿程水力损失计算公式为:

g

v D L H f

22

?

=λ (1-7-1) 式中 λ——沿程阻力系数;

L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ;

h f ——沿程水头损失(由压差计测定),m 。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 22v

h L D g

f

?=λ (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,在紊流时与雷诺数、管壁粗糙度都有关。

当实验管路粗糙度保持不变时,可以得到该管的λ-Re 关系曲线。

四、实验要求

1.有关常数 实验装置编号:No. 4 管路直径:D =21058.1-?m ;水的温度:T = 20.0 ℃; 水的密度:ρ= 998.23 kg/m 3;动力粘度系数:μ= 101.055-3? Pa ?s ; 运动粘度系数:ν=610007.1-? m 2/s ; 两测点之间的距离:L = 5 m

2.实验数据记录及处理见表7-1和表7-2

表7-1 沿程阻力实验数据记录表

16 8.39 4.28 0.5 0.5 0.1692

671.25 17

5.53

2.82

0.4

0.4

0.3115

442.47

以其中一组数据写出计算实例。 以第一组数据为例: 流量

s m t h h A Q d u /1029.39928.45/10)4.106.55(10400/)(3624---?=?-??=-= 由v A Q ?=,则管内平均流速为

s m D Q A Q v /1065.2034/)1058.1(1029.3994/22

26

2---?=???=?==ππ 29.3195310

007.11065.2031058.1Dv

e 1423.0)1065.2203(1056.95251058.18.9221056.952106.75)16.13()16.13(106.752.198.94''-6

2

22

22

2222'221'=????===??????=?=?=??-=??-=?=-=-=?---------νλR v h L D g m

h h m

h h h f f 雷诺数沿程阻力系数沿程水头损失水压差计压差汞

3.在双对数坐标纸上绘制λ-Re 的关系曲线。

沿程阻力系数表

在模型图中可以找到沿管道的阻力系数,即λ、re和K/D的关系曲线,这是液压系统中常用的。K是管内壁的绝对粗糙度。 管道沿线水头损失计算:H=λ(L/D)[v^2/(2G)] 对于管内层流:λ=64/re(雷诺数re=VD/ν) 圆管粗糙过渡区:1/√(λ)=-2*LG[K/(3.7d)+2.51/re√(λ)] 对于管的湍流粗糙区:1/√(λ)=-2*LG[K/(3.7d)]也可用作λ=0.11(K/D)^0.25还有许多经验公式: 例如,钢管和铸铁管的Shevlev公式为:过渡粗糙区(V<1.2m/s):λ=(0.0179/D^0.3)*(1+0.867/V)^0.3;阻力平方面积(V>=1.2m/s):λ=0.21/D^0.3 摩擦阻力:流体流经一定直径的直管时,由于流体的内摩擦而产生阻力。电阻与距离的长度成正比。 简介

在计算管道沿程阻力损失(直管阻力)的公式中,λ-摩擦系数与雷诺数Re和壁面粗糙度ε有关,可以通过实验测量或计算。 层流 如何确定一个通道的阻力系数 对于层流,可以从理论上严格推断。 在工程中,湍流的确定有两种方法:一种是基于湍流半经验理论结合实验结果,另一种是直接根据实验结果综合阻力系数的经验公式。前者具有更一般的含义。 沿途阻力系数变化规律3-8计算沿途水头损失的经验公式3-3--8沿途水头损失的经验公式3-9局部水头损失3-9局部水头损失3-7沿程阻力系数的变化规律可从本章各节中了解。对于层流,沿程阻力系数的规律是已知的。到目前为止,还没有一个沿程阻力系数的理论公式。为了探索沿程阻力系数的变化规律,尼古拉斯进行了一系列实验研究,揭示了沿途水头损失的规律。下面介绍这一重要的实验研究成果。1尼古拉斯试验条件。

管路沿程水头损失实验

管路沿程水头损失实验 一、实验目的要求 1.加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制 l g V l g f h 曲线; 2.掌握管道沿程阻力系数的量测技术和应用水压差计及电测仪测量压差的方法; 3.将测得的Re-f 关系值与莫迪图对比,分析其合理性,并且与莫迪图比较,进一步提高实验成果分析能力。 二、实验装置 本实验的实验装置,如图1所示。 图1 自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器; 2.实验台; 3.回水管; 4.水压差计; 5.测压计; 6.实验管道 8.滑动测量尺; 9.测压点; 10.实验流量调节阀; 11.供水管与供水阀; 12.旁通管路与旁通阀; 13.稳压筒

实验装置配备如下: 1.测压装置:U形管水压差计和电子量测仪。 低压差用U形管水压差计量测,而高压差需要用电子量测仪来量测。电子量测仪(见图2)由压力传感器和主机两部分组成,经由连通管将其接入测点。压差读数(以厘米水柱为单位)通过主机显示。 图2 电子量测仪 1.压力传感器; 2.排气旋钮; 3.连通管; 4.主机 2.自动水泵与稳压器: 自循环高压恒定全自动供水器由离心泵、自动压力开关、气--水压力罐式稳压器等组成。压力超高时能自动停机,过低能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。 3.旁通管与旁通阀: 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动。为避免这种情况出现,供水器设有与蓄水箱直通的旁通管,通过分流可使水泵持续稳定运行。旁通管中设有调节分流量至水箱的阀门,即旁通阀。实验流量随旁通阀开度减小(分流量减小)而增大。设计上旁通阀又是本装置用以调节流量的阀门之一。所以调节流量有两种方法:一是调节实验流量调节阀(见图1);二是调节旁通阀。 4.稳压筒: 为了简化排气,并防止实验中再进气,在传感器前连接稳压筒(2只充水不满顶的密封立筒)。

流体阻力实验报告

. 北京化工大学化工原理实验报告 实验名称:流体阻力实验 班级:化工11 姓名: 学号:2011011 序号: 同组人: 设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第套实验日期:2013-11-4

一、实验摘要 本实验使用104实验室UPRS Ⅲ型第7套实验设备,测量了水流经不锈钢管、镀锌管、突扩管、阀门、层流管的阻力损失。确定了摩擦系数和局部阻力系数的变化规律和影响因素。该实验提供了一种测量实际管路阻力系数的方法,其结果可为管路实际应用和工艺设计提供重要的参考。 关键词:流量,压降,雷诺数,摩擦系数,局部阻力系数 二、实验目的 1、测量湍流直管道的阻力,确定摩擦阻力系数。 2、测量湍流局部管道的阻力,确定局部阻力系数。 3、测量层流直管道的阻力,确定摩擦阻力系数。 三、实验原理 1、直管道和局部管道阻力损失e f h u p gZ u p gZ h +++-++=)2()2(2 2 22211 1ρρ (1) 其中h e =0,z 1=z 2,所以测出管道上下游截面的静压能、动能,代入方程即可求得阻力。 2、根据因次分析法可得: (1)直管道阻力损失2 2 u d l h f ?=λ……(2)。其中,l 为管道长度,d 为管道内 径,u 为管内平均流速。只要测定l ,d ,u ,和λ,代入方程即可求得阻力h f 。

其中,λ的理论值计算方法为:25 .0Re 3163.0=湍流λ ; Re 64 = 层流λ。 对于水平无变径直管道,根据式(1)、(2)可得到摩擦系数的计算方法 为221) (2u l p p d ??-=ρλ测量。 (2)管道局部阻力损失2 2 1 u h f ?=ζ……(3)。其中,ζ为管道局部阻力系数, u 为平均流速(突扩管对应细管流速u 1)。将ζ和u 代入方程即可求得局部阻力h f 。 其中,ζ的理论值计算方法为:2 2 1)1(A A - =突扩管ζ ;常数截止阀=ζ;常数球阀=ζ。 对于水平放置的管件,根据式(1)、(3)可得到局部阻力系数的计算方 法为2 21) 2u p p ?-=ρζ(阀门;2 1 122 2) (2-1u p p u ρ ζ-+ =突扩管。 四、实验流程和设备

沿程阻力 中国石油大学(华东)流体力学实验报告

实验七、沿程阻力实验 一、实验目的填空 1.掌握测定镀锌铁管管道沿程阻力系数的方法; 2.在双对数坐标纸上绘制λ-Re的关系曲线; 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 在图1-7-1下方的横线上正确填写实验装置各部分的名称 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文秋利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-7-1 管流综合实验装置流程图 三、实验原理在横线正确写出以下公式 本实验所用的管路是水平放置且等直径,因此利用能量方程式可推得管路两点间的沿程水头

损失计算公式: 2 2f L v h D g λ = (1-7-1) 式中: λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ; h f ——沿程水头损失,由压差计测定。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 2 2f h D g L v λ= (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,而在紊流时则与雷诺数、管壁粗糙度有关。 当实验管路粗糙度保持不变时,可得出该管的λ-Re 的关系曲线。 四、实验要求 填空 1.有关常数 实验装置编号:No. 7 管路直径:D = 1.58 cm ; 水的温度:T = 13.4 ℃; 水的密度:ρ= 0.999348g/cm 3; 动力粘度系数:μ= 1.19004 mPa ?s ; 运动粘度系数:ν= 0.011908 cm 2/s ; 两测点之间的距离:L = 500 cm

局部阻力系数测定(给学生)

局部阻力系数测定 实 验 报 告 班级:___________ 学号:___________ 姓名:___________ 课程:___________

一、实验目的 1、学会量测突扩、突缩圆管局部阻力损失系数的方法。 2、加深对局部阻力损失的感性认识 3、加深局部阻力损失机理的理解。 二、实验原理 1、有压管道恒定流遇到管道边界局部突变的情况时,流动会分离形成剪切层, 剪切层流动不稳定,引起流动结构的重新调整,并产生旋涡,造成不可逆的能量耗散。与沿程因摩擦造成的分布损失不同,这部分损失可以看成是集中在管道边界的突变处,单位质量流体的能量损失称为局部水头损失,参见图1。 2、局部水头损失系数是局部水头损失与速度水头的比例系数,即 2 h j ζ= 当上下游断面平均流速不同时,应明确它对应的是那个速度水头。例如对于 突扩圆管就有 =ζj h 1和2h j ζ=之分。其他情况的局部水头损失系数在查表或使用经验公式确定时也应该注意这一点。通常情况下对应下游的速度水头。 3、局部水头损失的机理复杂,除了突扩圆管的情况以外,一般难于用解析

方法确定,而要通过实测来得到各种局部水头损失系数。 对于突扩圆管,在不考虑突扩段沿程阻力损失的前提下,可推导出局部阻力损失因数的表达式 ( )-1=1ζ2 , 2ζ2=1 -A 2 ( )1 2 1A 对于突缩圆管,局部阻力损失因数的经验公式: 1-( )=ζ1 2 0.5 三、实验步骤 1、做好实验前的各项准备工作,记录与实验有关的常数。 2、往恒压水箱中充水,排除实验管道中的滞留气体。待水箱溢流后,检查泄水阀全关时,各测压管液面是否齐平,若不平,则需排气调平。 3、打开泄水阀至最大开度,等流量稳定后,测记测压管读数,同时用体积法测量流量。 4、调整泄水阀不同开度,重复上述过程5次,分别测记测压管读数及流量。 5、实验完成后关闭泄水阀,检查测压管液面是否齐平,如平齐,关闭电源实验结束,否则,需重做。 四、实验数据及整理 1、基础数据:d 1= m; d 2= m; d 3= m ; 水温= ℃

沿程水头损失实验报告

竭诚为您提供优质文档/双击可除沿程水头损失实验报告 篇一:沿程水头损失实验 沿程水头损失实验 一、实验目的要求 1、加深了解圆管层流和紊流的沿程水头损失随平均流速变化的规律,绘制 lghf~lgv曲线; 2、掌握管道沿程阻力系数的量测技术和应用气—水压差计及电测仪测量压差的方法; 3、将测得的Re~?关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。二、实验装置 本实验的装置如图7.1所示 图7.1自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器;2.实验台;3.回水管;4.水压差计;6.实验管道;7.水银压差计;8.滑支测量尺;9.测压点;10.实验流量调节阀;11.供水管与供水阀;12.旁通管与旁通阀;13.稳压筒。

根据压差测法不同,有两种方式测压差:1、低压差时 用水压差计量测; 2、高压差时用电子量测仪(简称电测仪)量测(但本仪器暂时不能测定高压)。 本实验装置配备有:1、自动水泵与稳压器 自循环高压恒定全自动供水器由离心泵、自动压力开关、气—水压力罐式稳压器等组成。压力超高时能自动停机,过低时能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。 2 4 图7.2 1.压力传感器; 2.排气旋钮; 3.连接管; 4.主机 2、旁通管与旁通阀 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动,为了避免这种情况出现,供水器设有与蓄水箱直通的旁通管(图中未标出)。通过分流可使水泵持续稳定运行。旁通管中设有调节分流量至蓄水箱的阀门,即旁通阀,实验流量随旁通阀开度减小(分流量减小)而增大。实际上旁通阀又是本装置用以调节流量的重要阀门之一。

沿程阻力系数测定-实验报告

沿程水头损失实验 实验人 XXX 合作者 XXX XX 年XX 月XX 日 一、实验目的 1.加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制lgh f ~-lg v 曲线; 2.掌握管道沿程阻力系数的量测技术和应用压差计的方法; 3.将测得的R e -λ关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。 二、实验设备 本装置有下水箱、自循环水泵、[供水阀、稳压筒、实验管道、流量调节阀]三组,计量水箱、回水管、压差计等组成。实验时接通电源水泵启动,全开供水阀,逐次开大流量调节阀,每次调节流量时,均需稳定2-3分钟,流量越小,稳定时间越长;测流量时间不小于8-10秒;测流量的同时,需测记压差计、温度计[自备,应挂在水箱中]读数。三根实验管道管径不同,应分别作实验。 三、实验原理 由达西公式g v d L h r 22 ??=λ 得2 22422?? ? ??==d Q L gdh Lv gdh f f πλ=K ×h f /Q 2 另有能量方程对水平等直径圆管可得γ 2 1P P h f -= 对于多管式水银压差有下列关系 h f =(P 1-P 2)/γw =(γm /γw -1)(h 2-h 1+h 4-h 3)=12.6△h m Δh m = h 2-h 1+h 4-h 3 h f —mmH 2O 四、实验结果与分析 实验中,我们测量了三根管的沿程阻力系数,三根管的直径分别为10mm ,14mm ,20mm 。对每根管进行测量时,我们通过改变水的流速,在相距80cm 的两点处分别测量对应的压强。

得到表1至表3中的实验结果。 相关数据说明: 水温29.4℃,对应的动力学粘度系数为2 0.01/cm s ν= 流量通过水从管中流入盛水箱的体积和时间确定。水箱底面积为2 202 0S cm =?,记录水箱液面升高12h cm =(从5cm 到17cm 或者从6cm 到18cm )的时间t ,从而计算出流量 34800(/)() Sh Q cm s t t s = =; 若管道直径为D ,则水流速度为2 4Q v D π= ; 对三根管进行测量时,测量的两点之间距离均为80L cm =; 雷诺数Re vD ν = ;计算沿程阻力系数:层流164Re λ= ;紊流0.25 20.316R e λ-= 测量沿程阻力系数:2/f Kh Q λ=,其中25K /8gD L π=,29.8/g m s = 第一根管 表-1(52 1110,15.113/D mm K cm s ==)

局部阻力损失实验报告

局部阻力损失实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

局部阻力损失实验 前言: 工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。 在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。 摘要: 本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。进而加深对局部阻力损失的理解。 三、实验原理 写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得: 1.突然扩大 采用三点法计算,下式中12 f h -由 23 f h -按流长比例换算得出。 实测 2 2 1 12 21212[()][()]22je f p p h Z Z h g g αυαυγ γ -=+ + -+ + + 理论 212 (1)e A A ζ'=-

(行业报告)沿程水头损失实验报告(报告范文)

沿程水头损失实验 一、实验目的要求 1、加深了解圆管层流和紊流的沿程水头损失随平均流速变化的规律,绘制v h f lg ~lg 曲线; 2、掌握管道沿程阻力系数的量测技术和应用气—水压差计及电测仪测量压差的方法; 3、将测得的 ~e R 关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。 二、实验装置 本实验的装置如图7.1所示 图7.1 自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器; 2.实验台; 3.回水管; 4.水压差计; 6.实验管道; 7.水银压差计;8.滑支测量尺; 9.测压点; 10.实验流量调节阀; 11.供水管与供水阀; 12.旁通管与旁通阀; 13.稳压筒。 根据压差测法不同,有两种方式测压差: 1、低压差时用水压差计量测;

2、高压差时用电子量测仪(简称电测仪)量测(但本仪器暂时不能测定高压)。 本实验装置配备有: 1、自动水泵与稳压器 自循环高压恒定全自动供水器由离心泵、自动压力开关、气—水压力罐式稳压器等组成。压力超高时能自动停机,过低时能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。 4 2 1.压力传感器; 2.排气旋钮; 3.连接管; 4.主机 2、旁通管与旁通阀 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动,为了避免这种情况出现,供水器设有与蓄水箱直通的旁通管(图中未标出)。通过分流可使水泵持续稳定运行。旁通管中设有调节分流量至蓄水箱的阀门,即旁通阀,实验流量随旁通阀开度减小(分流量减小)而增大。实际上旁通阀又是本装置用以调节流量的重要阀门之一。 3、稳压筒为了简化排气,并防止实验中再进气,在传感器前连接由2只充水(不满顶)之密封立筒构成。 4、电测仪由压力传感器和主机两部分组成,经由连通管将其接入测点(图7.2),压差读数(以厘米水柱为单位)通过主机显示。 三、实验原理

沿程阻力的实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验七、沿程阻力实验 一、实验目的 1.掌握测定镀锌铁管管道沿程阻力系数的方法。 2.在双对数坐标纸上绘制λ-Re关系曲线。 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力试验管路 图7-1 管流综合实验装置流程图

三、实验原理 本实验所用的管路水平放置且等直径,因此利用能量方程可以推导出管路两点间的沿程水力损失计算公式为: g v D L H f 22 ? =λ (1-7-1) 式中 λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ; h f ——沿程水头损失(由压差计测定),m 。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 22v h L D g f ?=λ (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,在紊流时与雷诺数、管壁粗糙度都有关。 当实验管路粗糙度保持不变时,可以得到该管的λ-Re 关系曲线。 四、实验要求 1.有关常数 实验装置编号:No. 4 管路直径:D =21058.1-?m ;水的温度:T = 20.0 ℃; 水的密度:ρ= 998.23 kg/m 3;动力粘度系数:μ= 101.055-3? Pa ?s ; 运动粘度系数:ν=610007.1-? m 2/s ; 两测点之间的距离:L = 5 m 2.实验数据记录及处理见表7-1和表7-2

流体流动阻力实验报告

西南民族大学学生实验报告 课程名称:化工原理实验教师:实验室名称:BS-305 教学单位:化环学院专业:中药学班级:1101班 姓名:学号:实验日期:10.31 实验成绩:批阅教师:日期: 一.实验名称:实验一流体流动阻力的测定 二.实验目的: ① 握测定流体流动阻②测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。③测定层流管的摩擦阻 力。④验证湍流区内摩擦系数λ为雷诺数Re和相对粗糙度的函数。⑤识别组成管路的各种管件、阀门,并了解其作用。 三.基本原理: 1.直管摩擦阻力系数λ测定 流体在水平等径直管中稳定流动时,阻力损失为: 2 2 f p l u h d λ ρ ? ==?即, 2 2 lu p d ρ λ? = 式中 f h——直管阻力,J/kg;l——被测管长,m;d——被测管内径,m;u——平均流速,m/s;λ——摩擦阻力系数。 滞流(层流)时, 64 Re λ=湍流时,雷诺数 du Re ρ μ = A q u v = 2.局部阻力系数ξ的测定: 2 2 f u hξ =,即 2 2 u p ρ ξ ' ? = 四.实验装置与流程: 1、装置组成部分 本实验装置如图1;装置相关参数在化工原理实验指导书上p21的表2-1所示。由于管子的材质存在批次的差异,所以可能会产生管径的不同,所以表2-1中管内径只能做参考。

图1:流体阻力实验装置图 1—水箱;2—离心泵;3—压力表;4—孔板流量计;5—上水阀;6—高位水槽 7—曾流光流量调节阀;8—阀门管线开关阀;9—球阀;10—截止阀;11—光滑管开关阀 12—粗糙管开关阀;13—突然扩大管开关阀;14—流量调节阀 2、开车前准备 3、流体流动阻力实验步骤 ①启动离心泵,打开被测管线上的开关阀及面板上与其对应的切换阀,关闭其他开关阀和切换阀,确 保测压点一一对应。 ②系统要排净气体使液体连续流动。设备和测压管线中的气体都要排净,检验的方法是当流量为零时, 观察U形压差计的两液面是否水平。 ③读取数据时,应注意稳定后再读数。测定直管摩擦阻力时,流量由大到小,充分利用面板量程测取 7组数据。本次实验层流管不做测定。 ④测完一根管数据后,应将流量调节阀关闭,观察压差计的两液面是否水平,水平时才能更换另一条 管路,否则全部数据无效。同时要了解各种阀门的特点,学会使用阀门,注意阀门的切换,同时要 关严,防止内漏。 4、停车操作 五、实验数据处理 1、原始数据记录表如下: 根据金属温度计读出来的温度,然后通过查表找出对应水的密度以及粘度并且填入下表: 数据记录与处理表 光滑管 水流量/ m3.h-1 1.0 1.2 1.5 1.7 2.0 2.5 3.0 水温/℃15.5 15.8 16.0 16.2 16.5 16.7 17.0 密度ρ(kg/m3 999.0 998.9 998.9 998.9 998.8 998.8 998.7 粘度 μ(3 10- ?Pa·s) 1.1258 1.1111 1.1111 1.1111 1.0970 1.0970 1.0828 管内径:20.0 mm 粗糙管 水流量/m3.h-1 1.0 1.2 1.5 1.7 2.0 2.5 3.0 水温/℃12.0 12.5 13.0 13.5 14.0 14.2 14.8 密度ρ(kg/m3999.5 999.4 999.3 999.2 999.2 999.2 999.1 粘度μ(3 10- ? Pa·s) 1.2363 1.2195 1.2028 1.1869 1.1709 1.1700 1.1404 管内径:21.0 mm 局部阻力 水流量/ m3.h-1 1.0 1.2 1.5 1.7 2.0 2.5 3.0 水温/℃17.8 18 18.1 18.2 18.2 18.2 18.2 密度ρ(kg/m3998.6 粘度μ( 3 10- ? Pa·s) 1.0559

管路阻力实验报告

实验三 管路阻力的测定 一、实验目的 1.学习管路阻力损失h f ,管子摩擦系数λ及管件、阀门的局部阻力系数ζ的测定方法,并通过实验了解它们的变化,巩固对流体阻力基本理论的认识; 2.测定直管摩擦系数λ与雷诺数Re 的关系; 3.测定管件、阀门的局部阻力系数。 二、基本原理 流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会产生流体阻力损失。流体在流动时的阻力有直管摩擦阻力(沿程阻力)和局部阻力(流体流经管体、阀门、流量计等所造成的压力损失。 1.λ-Re 关系的测定: 流体流经直管时的阻力损失可用下式计算: 2 2u d L h f ?= λ ;-直管阻力损失,式中:kg J h f / L -直管长度,m ; d -直管内径,m ; u -流体的流速,m/s ; λ-摩擦系数,无因次。 已知摩擦系数λ是雷诺数与管子的相对粗糙度(△/d )的函数,即 λ=(Re ,△/d )。为了测定λ-Re 关系,可对一段已知其长度、管径及相对粗糙度的直管,在一定流速(也就是Re 一定)下测出阻力损失,然后按下式求出摩擦系数λ: 为: 对于水平直管,上式变: 可根据伯努利方程求出阻力损失=2 )(2 22 212 1212 u u p p g Z Z h h u L d h f f f -+ -+ -=?ρ λ ρ 2 1p p h f -= J/kg 其中,21p p -为截面1与2间的压力差,Pa ;ρ流体的密度,kg/m 3。 用U 形管压差计测出两截面的压力,用温度计测水温,并查出其ρ、μ值,即可算出h f ,并进而算出λ。由管路上的流量计可知当时的流速,从而可计算出此时的Re 数;得到一个λ-Re 对应关系,改变

实验报告:管路沿程水头损失实验

实验报告:管路沿程水头损失实验 一、实验目的 1、掌握管道沿程阻力系数的测量技术及电测仪测量压差的方法。 2、掌握沿程阻力系数 λ 与雷诺数Re 等的影响关系。 二、实验原理 由达西公式 g d L h 22 f υλ= 2f 2 2f 2f /4212Q h K Q d L gdh L gdh =?? ? ??= =πυλ (1) L gd K 8/5 2π= 式中:h f 为管流沿程水头损失;d 为实验管段内径;L 为管段长度;υ为断面平 均流速;g 为重力加速度;Q 为过流流量;λ 为沿程阻力系数。 另由能量方程应用于水平等直径圆管可得 2121f /h h P P h -=-=γ)( (2) 式中:P 1、P 2为实验管段起点、终点处压强;h 1、h 2为研究管段起点、终点处测 压管水头高度。压差可用压差计或电测。由上述(1)、(2)两式可求得管流在不同流量状态下的水头损失系数 λ 值。 雷诺数: υ vd R e = 其中 24d Q v π= 式中:Re 为雷诺数;v 为断面平均流速;d 为实验管道内径;υ 为流体运动 粘度; Q 为过流流量。 三、实验装置 实验装置为自循环水流系统,水泵2将蓄水箱1中的水抽出,沿上水管3流入实1—蓄水箱; 2—水泵; 3—上水管; 4—实验管道; 5—回水管; 6—回水通道; 7—差压计; 8—量水箱; 9—秒表; 10—活动接头; 11—水位计; 12—底阀; 13—分流管; 14—分流及流量调节阀; 15—实验管道阀门。

验管段4,经回水管5通过回水通道6又流回蓄水箱1。差压计7用作测量沿程水头损失,量水箱8和秒表9用作测量流量。 四、实验步骤 1、记录有关实验常数。测定并记录水的温度。 2、将所选实验管路的阀15开到最大,同时关闭其它实验管路的阀门,然后接通电源,启动水泵。 3、流量调节通过阀14(注意实验过程中不再旋动其它阀门),顺时针旋动阀14流量增大,逆时针旋阀流量减小。当流量调至一定时,开始测定流量Q 及沿程水头损失h f 。 Q 的测定为体积法(t V Q =),它的测量由量水箱8及秒表9实现,先通过量水 箱的水位计记录量水箱内的起始水位,然后将活动接头10拨至量水箱,同时用秒表记录下接水的时间,读取接水的终了水位,就可计算流量Q 。 同时读取差压计7的读数1h 、2h ,以计算沿程水头损失f h 。 4、改变流量重复步骤3,需测定10组以上数据。 5、测定结束再测记水的温度,两次水温的平均值用作计算运动粘度。 6、关闭仪器及电源。 五、实验原始记录 1、记录有关常数 管径d = 1.0 cm 测量段长度L = 160 cm 水温1t = 22.9 ?C 2t = 23.4 ?C 运动粘度2 000221.00337.0101775.0t t ++= υ= 9.349×10-3 cm 2/s , 式中221t t t +== 23.15 ?C 常数K=π2gd 5/8L = 7.54876 cm 5/s 2 2、记录测量值 测 次 水箱水位高度 时间 / s 水银柱高度 h 1 / ㎝ h 2 / ㎝ 水位高度差/ Δh/cm h 3 / ㎝ h 4 / ㎝ 水银柱高度差/ Δh '/cm 1 7.3 13.5 6. 2 4.9 16.9 63.9 47 2 13.5 21.0 7.5 6. 3 19 61.7 42.7 3 3.7 8.5 4.8 4.3 21. 4 59.1 37.7 4 8. 5 13. 6 5.1 4.8 23.3 57.2 33.9 5 13.6 18.3 4. 7 4. 8 24. 9 55.5 30.6 6 18.3 22.9 4.6 4.7 26.1 54.1 28 7 22.9 27.1 4.2 5 30.1 50.2 20.1 8 7.8 12.6 4.8 5.8 29.4 50.9 21.5 9 12.6 16.1 3.5 4.6 31 49.4 18.4 10 16.1 21.2 5.1 7.1 31.7 48.4 16.7

流体流动阻力的测定实验报告

银纳米粒子制备及光谱和电化学性能表征 - 1 - 流体流动阻力的测定 王晓鸽 一、实验目的 1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。 2. 测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。 3. 测定流体流经管件、阀门时的局部阻力系数ξ。 4. 学会流量计和压差计的使用方法。 5. 识辨组成管路的各种管件、阀门,并了解其作用。 二、实验原理 流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管阻力摩擦系数 的测定 流体在水平等径直管中稳定流动时,阻力损失为: 即, 式中: —直管阻力摩擦系数,无因次; —直管内径, ; —流体流经 米直管的压力降, ; —单位质量流体流经 米直管的机械能损失, ;

—流体密度,; —直管长度,; —流体在管内流动的平均流速,。 层流流时, 湍流时是雷诺准数和相对粗糙度的函数,须由实验确定。 欲测定,需确定、,测定、、、等参数。、为装置参数(装置参数表格中给出),、通过测定流体温度,再查有关手册而得,通过测定流体流量,再由管径计算得到。可用型管、倒置型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。求取和后,再将和标绘在双对数坐标图上。 2.局部阻力系数的测定 局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。本实验采用阻力系数法。 流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。即: 因此, 式中:—局部阻力系数,无因次; -局部阻力压强降,;(本装置中,所测得的压降应扣除两测压口间直管段的压降,直管段的压降由直管阻力实验结果求取。)—流体密度,; —流体在管内流动的平均流速,。 根据连接阀门两端管径,流体密度,流体温度(查流体物性、),

局部阻力损失实验报告

局部阻力损失实验 前言: 工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。 在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。 摘要: 本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。进而加深对局部阻力损失的理解。 三、实验原理 写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得: 1.突然扩大 采用三点法计算,下式中12 f h -由 23 f h -按流长比例换算得出。 实测 2 2 1 12 21212[()][()]22je f p p h Z Z h g g αυαυγ γ -=+ + -+ + + 理论 212 (1)e A A ζ'=- 2.突然缩小 采用四点法计算,下式中B 点为突缩点,4f B h -由 34 f h -换算得出, 5 fB h -由 56 f h -换算 得出。 实测 2 2 5 54 44455[()][()]22js f B fB p p h Z h Z h g g αυαυγ γ --=+ + --+ + +

沿程水头损失实验

§3-4 沿程水头损失实验 一、实验目的 1加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制~曲线; 2掌握管道沿程阻力系数的量测技术和应用气—水压差计及电测仪测量压差的方法; 3将测得的~关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。 二、实验装置 本实验的装置如图4.1所示。 图4.1自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器;2.实验台;3.回水管;4.水压差计;5.测压计;6.实验管道;7.电子量测仪;8.滑动测量尺;9.测压点;10.实验流量调节阀;11.供水管与供水阀;12.旁通管与旁通阀;13.稳压管。 根据压差测法不同,有两种型式: 形式 I 压差计测压差。低压差仍用水压差计量测;高压差用水银多管式压差计量测。装置简图如图4.1所示。 形式 II 电子量测仪测压差。低压差仍用水压差计量测;而高压差用电子量测仪(简称电测仪)量测。与型式I 比较,该型唯一不同在于水银多管式压差计被电测仪(图4.2)所取代。 本实验装置配备有: 1.自动水泵与稳压器 自循环高压恒定全自动供水器由离心泵、自动压力开关、气—水压力罐式稳牙器等组成。压f h lg υlg e R λ

力超高时能自动停机,过低时能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。 图4.2 1.压力传感器;2.排气旋钮;3.连通管;4.主机 2.旁通管与旁通阀 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动。为了避免这种情况出现,供水器设有与蓄水箱直通的旁通管(图中未标出),通过分流可使水泵持续稳定运行。旁通管中设有调压分流量至蓄水箱的阀门,即旁通阀,实验流量随旁通阀开度减小(分流量减小)而增大。实际上旁通阀又是本装置用以调节流量的重要阀门之一。 3.稳压筒 为了简化排气,并防止实验中再进气,在传感器前连接由2只充水(不满顶)之密封立筒构成。 电测仪 由压力传感器和主机两部分组成。经由连通管将其接入测点(图4.2)。压差读数(以厘米水柱为单位)通过主机显示。 三、实验原理 由达西公式 得 (7.1) 另由能量方程对水平等直径圆管可得 (7.2) 压差可用压差计或电测。 四、实验方法与步骤 准备I 对照装置图和说明,搞清各组成部件的名称、作用及其工作原理;检查蓄水箱水位g d L h f 22 υλ=2222)/4(212Q h K Q d L gdh L gdh f f f === πυλL gd K 852π=γ)(21p p h f -=

管道沿程损失实验(总)

实验三 管道沿程损失实验 实验类型:验证性实验 学 时: 2 适用对象:热能与动力工程专业、建筑环境与设备工程专业、环境工程专业、测控技术与仪器专业 一、实验目的 1、通过实验理解和掌握管道沿程损失的计算方法; 2、了解沿程损失的影响因素。 二、实验要求 1、掌握管道沿程损失系数与雷诺数和管壁相对粗糙度间的定性和定量关系; 2、学会用三角堰测量流量的方法和波纹管差压计的使用方法。 三、实验原理 1、沿程损失的表达式 流体沿等直径管道流动时,将产生沿程损失f h ,f h 与管长L 、管内径d 、管壁当量粗糙度?、平均流速υ、流体密度ρ、动力粘度μ及流态间存在一个复杂的函数关系。 根据相似原理分析,f h 可表示如下: 2f Re,2L h f d d g υ?? ?= ??? 令 Re, f d λ?? ?= ??? 则 g d L h 22 f υλ= (3-1) 式中 λ——沿程损失系数。 2、沿程损失的测量原理 沿程损失f h 由实验方法求得。在水平实验管道的两个测点处,取I-I 和II-II 两个缓变流截面,以管道中心线为基准面,则管内不可压缩定常流动在两缓变流面间的伯努利方程为: f 2 2 22211122h g g p z g g p z +++=++ υρυρ (3-2) 由于管道水平放置,故上式中,z 1=z 2;同时因实验管道为等直径圆管,所以有g g 222 2 2 1υυ= 。 因此,式(3-2)可改写为: g p p h ρ2 1f -= (3-3)

式中 ()12p p -——两缓变流截面间的压强差(Pa ),由波纹管差压计测得。 实验管道内的平均流速υ由三角堰所测流量及管道内径计算求得: 2 4πV q d υ= (3-4) 实验管道两测点间的长度L 和管道内径d 均已知,因此,可求出该管道在某一工况下 的沿程损失系数: 2 f 2υ λL gdh = (3-5) 通过调节实验管道上流量调节阀的开度可改变管道内流体的平均流速υ,从而可测得不同Re 数下的沿程损失系数。 3、沿程损失的变化规律 沿程损失f h 服从以下四种不同的规律: (1)层流区 沿程损失f h 与平均流速成一次方关系,λ可按下式计算: Re 64 = λ , 2300Re < (3-6) (2)紊流水力光滑管区 沿程损失f h 与平均流速的1.75次方成正比,λ可按下面的经验公式计算: 25 .03164.0Re = λ ,5 400010Re << (3-7) 0.237 0.2210.0032Re λ=+ ,56 10310Re <

流体流动阻力实验报告

化工原理实验报告 实验名称:流体流动阻力测定 学院:化学工程学院 专业:化学工程与工艺 班级:化工093班 姓名:曾学礼学号09402010337 同组者姓名:周锃刘翰卿 指导教师:金谊 日期:2011年11月1日

一、 实验目的 1、掌握流体经直管和管阀件时阻力损失的测定方法。通过实验了解流体流动中能量损失的变化规律。 2、测定直管摩擦系数λ于雷诺准数Re 的关系。 3、测定流体流经闸阀等管件时的局部阻力系数ξ。 4、学会压差计和流量计的适用方法。 5、观察组成管路的各种管件、阀件,并了解其作用。 二、 实验原理 流体在管内流动时,犹豫粘性剪应力和涡流的存在,不可避免得要消耗一定的机械 能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。 1、 沿程阻力 流体在水平均匀管道中稳定流动时,阻力损失表现为压力降低。即 影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通过实验研究其规律。为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。根据因次分析,影响阻力损失的因素有, (1)流体性质:密度ρ、粘度μ; (2)管路的几何尺寸:管径d 、管长l 、管壁粗糙度ε; (3)流动条件:流速μ。 可表示为: 则 式中,λ称为摩擦系数。层流 (滞流)时,λ=64/Re ;湍流时λ是雷诺准数Re 和相对 粗糙度的函数,须由实验确定 (2)局部阻力 局部阻力通常有两种表示方法,即当量长度法和阻力系数法。 (a)当量长度法 流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径长度的直管阻力损失,这个直管长度称为当量长度,用符号le 表示。 则流体在管路中流动时的总阻力损失 为 (2)阻力系数法 ρ ρp p p h f ?= -= 2 1) ,,,,,(ερμu l d f p =?2 2 u d l p h f λρ=?=∑f h 22u d le l h f ∑∑+=λ

管路沿程水头损失实验

管路沿程水头损失实验 一、实验目的要求 1.加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制h曲线; l g V l g f 2.掌握管道沿程阻力系数的量测技术和应用水压差计及电测仪测量压差的 方法; 3.将测得的Re-f关系值与莫迪图对比,分析其合理性,并且与莫迪图比较,进一步提高实验成果分析能力。 二、实验装置 本实验的实验装置,如图1所示。 图1自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器; 2.实验台; 3.回水管; 4.水压差计; 5.测压计; 6.实验管道 8.滑动测量尺; 9.测压点; 10.实验流量调节阀; 11.供水管与供水阀; 12.旁通管路与旁通阀; 13.稳压筒

实验装置配备如下: 1.测压装置:U形管水压差计和电子量测仪。 低压差用U形管水压差计量测,而高压差需要用电子量测仪来量测。电子量测仪(见图2)由压力传感器和主机两部分组成,经由连通管将其接入测点。压 差读数(以厘米水柱为单位)通过主机显示。 图2 电子量测仪 1.压力传感器; 2.排气旋钮; 3.连通管; 4.主机 2.自动水泵与稳压器: 自循环高压恒定全自动供水器由离心泵、自动压力开关、气--水压力罐式稳压器等组成。压力超高时能自动停机,过低能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐, 经稳压后再送向实验管道。 3.旁通管与旁通阀: 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动。为避免这种情况出现,供水器设有与蓄水箱直通的旁通管,通过分流可使水泵持续稳定运行。旁通管中设有调节分流量至水箱的阀门, 即旁通阀。实验流量随旁通阀开度减小(分流量减小)而增大。设计上旁通阀又是本装置用以调节流量的阀门之一。所以调节流量有两种方法:一是调节实验流量调节阀(见图1);二是调节旁通阀。 4.稳压筒: 为了简化排气,并防止实验中再进气,在传感器前连接稳压筒(2只充水不满顶的密封立筒)。

相关主题
文本预览
相关文档 最新文档