当前位置:文档之家› 微电子器件期末试题

微电子器件期末试题

微电子器件期末试题
微电子器件期末试题

一、填空题

1.PN 结中P 区和N 区的掺杂浓度分别为A N 和D N ,本征载流子浓度为i n ,

则PN 结内建电势bi V 的表达式2ln i

D A bi n N N q kT V =。 2.对于单边突变结N P +结,耗尽区主要分布在N 区,该区浓度越低,则耗尽区宽度值越大,内建电场的最大值越小;随着正向偏压的增加,耗尽区宽度值降低,耗尽区内的电场降低,扩散电流提高;为了提高N P +结二极管的雪崩击穿电压,应降低N 区的浓度,这将提高反向饱和电流S I 。

)()(I ])()ln(

2[)2(||||12||)(21||1||)11(|

|||||||221221

0max 2

max 0

max max 0max max max max max

A

n n D p p i p n n n p p

S D A s i D A D A s bi s p n x x bi s A D s A s D

s d A s p D

s n N L D N L D qn n L qD p L qD N N n N N N kTN V qN E E N q E x x Edx V E N q E N N q qN E qN E x qN E x qN E x n p +=+=+===+=-==+=+==

=?-反向饱和电流崩击穿电压。

使势垒区拉宽来提高雪的掺杂浓度,过适当降低轻掺杂一侧对于单边突变结,可通解析:

εεεεεεεεε

3.在设计和制造晶体管时,为提高晶体管的电流放大系数,应当增加

发射区和基区的掺杂浓度的比值

B E N N ,降低基区宽度。 解析:)1)(1()1]()(211[2*B

E B b E E B B B E B B R R N W D N W D L W 口口--=--==ττγβα 4.对于硅PN 结,当V<0.3V 时,电流密度J 满足关系式kT V J 2q ln ∝

,此时以势垒区复合电流为主;当V>0.45V 时,电流密度J 满足关系式kT

V J q ln ∝,此时以正向扩散电流为主;在室温下,反向电流以势垒区产生电流为主,该电流与i n 存在i n ∝关系。

解析:当温度较低时,总的反射电流中以势垒区产生电流为主;当温度较高时,则以反射扩散电流为主。对于硅PN 结,在室温下以势垒区产生电流为主,只有在很高的温度下才以反向扩散电流为主。反向扩散电流含2n i 因子,势垒区产生电流则含i n ∝因子。

5.势垒区电容s C 反映势垒区边缘的电离杂质电荷随外加电压的变化;

扩散电容D C 反映的是中性区的非平衡载流子电荷随外加电压的变化;

变容二极管是使用的势垒区电容。

6.PN 结电击穿有齐纳击穿和雪崩击穿两种机制,其中雪崩击穿机制决定的击穿电压具有正温度系数。

7.在小电流的情况,双极结型晶体管的α会降低,这是此时发射极电流中复合的比例增大;大电流时α会降低,这是由于大注入的基区扩展效应。

8.PN 结反射饱和电流随结温升高而升高。MOSFET 导通状态下,饱和输出电流随半导体温度增加升高而降低,这主要是由于迁移率下降造成的。

解析:对于同一种半导体材料和相同的掺杂浓度,温度越高,则

n越

i

大在,反向饱和电流就越大在,所以J具有正温度系数。

9.由于栅氧化层中通常带正电,这使得N沟道MOSFET的阈值电压绝对值变大,可动钠离子从金属/绝缘层界面移向绝缘层/半导体界面,阈值电压绝对值变小。

10.短沟道MOSFET漏极电流饱和是由于载流子速度饱和,随着沟道长度缩短,阈值电压降低。长沟道MOSFET漏极电流饱和是由于沟道夹断。

11.为了提高双极结型晶体管的基区输运系数,应降低基区宽度,降

1,低基区掺杂浓度;当基区宽度减半时,基区渡越时间变为原来的

4

这将降低基区穿通电压。

12.双极结型晶体管工作在放大区,发射结正偏,集电结反偏,此时用于模拟电路;工作在截止区,发射结反偏,集电结反偏。

13.PN结的少子存储效应产生PN结的反向恢复时间,存储电荷消失的两个途径是:反向电流的抽取和少子的复合。

14.均匀基区晶体管,少子在基区中主要作扩散运动,又称为均匀基区晶体管。缓变基区晶体管,少子在基区主要作漂移运动,又称为漂移晶体管。由于内建电场的存在使漂移晶体管少子的基区渡越时间低于扩散晶体管。

15.对PN结外加反向电压时,势垒区宽度增大,势垒区内的电场增强。

16.PN结在较小偏压下的反向电流由空穴扩散电流、电子扩散电流和势垒区产生电流三部分所组成。

17.PN 结的击穿有三种机理:它们分别是雪崩倍增、隧道效应和热击穿。

18.在同一个N 型衬底上形成两个PN 结,结深一样,但P 区掺杂浓度不一样,问:此时,高P 区浓度PN 结的击穿电压应小于低P 区浓度PN 结的击穿电压。

19.对P 沟道MOSFET ,栅氧化层中的固定电荷ox Q 将降低阈值电压。

20.在反偏的N P +结中,电场峰值出现在冶金结处,且N 掺杂浓度越低,则耗尽区宽度越宽,耐压越高。向+P 区扩展的耗尽区宽度比N 区的扩展的耗尽区宽度小,N 区耗尽区电荷总数与P 区耗尽区电荷总数相等。

21.对于硅材料,++N P 结的主要击穿机理是隧道击穿,-+N P 结的主要击穿机理是雪崩击穿。其中,雪崩击穿是由于碰撞电离现象所造成的,雪崩击穿的判定条件是满足表达式?=dx α或碰撞电压积分为∞。

22.当P N P -+结构的-N 区全耗尽时,该结构的电流电压特性呈现穿通击穿的状态;当N N P -+结构的-N 区全耗尽时,该结构的电流电压特性呈现反向阻断,正向导通状态。 23.晶体管的共基电流增益与基区输运系数和发射结发射效率有关。其中,基区输运系数被定义为集电结处电子电流与发射结处电子电流之比。影响它的主要结构和材料参数为基区宽度。发射结发射效率被定义为发射结处电子电流和发射结处总电流之比,影响它的结构和材料主要参数为发射极与基极的浓度比。

24.随着电极电流逐渐增加,在小注入和中等注入水平情况,晶体管

电流增益会增大,进入大注入状态,会出现Webster 效应。在极低电流水平下,电流增益是较小的,要提高该状态下的电流增益,应降低体内陷阱。

25.降低基区电阻的工艺和版图措施有增大基区掺杂和结深,采用无源基区重掺杂、采用细线条,并增加基极条数目。

26.在高频晶体管中,当B W 较大时,提高T f 的主要措施是减小B W 和减小集电结耗尽区,但是上述做法会带来击穿电压的下降,因此需要折中。

27.在高频晶体管中,工作频率每增加一倍,||ωβ减小一半,功率增益降为41,可定义功率增益和频率平方的乘积为高频优质,记为M 。 28.对于MOSFET 当T GS V V <时,MOSFET 电流仍然存在,这称为亚阈区导电。此时,沟道表面处于弱反型状态。在计算亚阈值电流时通常只计入扩散电流,而忽略漂移电流。

29.对于MOSFET ,改变阈值电压是主要通过改变沟道掺杂浓度和改变栅氧化层厚度来实现的。而栅氧化层中的固定主要呈正电荷特性,栅氧化层中电荷对阈值电压的影响是使阈值电压减小。此外,衬底偏置效应对阈值电压也有影响,栅氧化层越厚,沟道掺杂浓度越高,衬底偏置效应越严重。

30.当发射区掺杂浓度太高时,发射效率变小,这是由于禁带变窄和俄歇复合。

31.在PN 结开关管中,在外加电压从正向变为反射后的一段时间内,会出现一个较大的反射电流。引起这个原因是存储在中性区中的非平

衡少子电荷。这个电荷的消失途径有两条,即反向电荷的抽取和载流子复合。

32.在高频下,晶体管基区渡越时间b τ对基区输运系数*β有三个作用,它们是:复合损失使*β小于1、时间延迟引起相位延迟和渡越时间的分散使||*β减小。当基区宽度加倍时,基区渡越时间增大到原来的4倍。

33.小电流时α会下降,这是由于小电流时,发射极电流中复合电流的比例增大。大电流时α会下降,这是由于大注入效应和基区扩展效应。

34.从器件本身的角度,提高开关管的开关速度的主要措施是降低少子寿命和减薄轻掺杂区浓度。

35.雪崩击穿和齐纳击穿的条件分别为:10=?d x dx α和qE

E d G =min 足够小。 36.要降低基极电阻b b R ',应当提高基区掺杂浓度,增大基区宽度。

37.在分析PN 电流电压特性时,肖克莱方程做了如下假设:突变结近似、波尔兹曼统计近似、小注入假设,在耗尽层中不存在产生-复合电流,此处也未计入中性区的串联电阻。如果考虑耗尽区的产生-复合过程,则总的反向电流为扩散电流和耗尽区产生复合电流之和。 二、简答题

V V m E V m V m V N P B c

B d B

C 80])3

2(1[V 92x N 3N 144V N ,32E N .12'B 1=-====?=---+-+μμμ为

雪崩击穿的耗尽层宽度区足够长时,开始发生解:当时,击穿电压是多少?区的长度缩短为,试求当击穿电压区的长度足够长时,当结的雪崩击穿临界电场某

2.说明PN 结二极管为什么具有整流特性?肖特基势垒二极管和PN 结二极管有均具有整流特性,比较两种器件的异同。

答:Pn 结二极管正向电流主要由多子电流,电流随外加电压迅速增大;反射电流主要由少子形成电流,电流随着外加电压变化很小,且电流很小,故具有整流特性。肖特基势垒二极管是多子(单极)器件,开关速度快,反向泄漏电流大;PN 结二极管存在少子存储效应,开关速度慢,但反向泄漏电流小。

3.给PN 结外加集团电压V ,分别写出P 区和N 区的耗尽区边缘处少子浓度)(p p x n -和)(n n x p 与V 的关系式。基于此,比较工作在放大区的PNP 晶体管的发射结耗尽区边缘的少子浓度)(p p x n -和)(n n x p 与平衡少子浓度0p n 和no p 的大小。 答:kT qV

p p p e n x n 0)(=-、kT qV

n n n e p x p 0)(=。放大区的PNP 晶体管的发

射结正偏,故有0)(p p p n x n >-、0)(n n n p x p <

4.对于长沟道MOSFET ,当沟道长度缩短为原来的一半,而其它尺寸,掺杂浓度、偏置条件等都保持不变时,与原来相比,说明下列参数发生什么变化:阈值电压T V 、饱和漏极电流Dsat I ,跨导m g 和沟道电导on R 。

答:阈值电压T V 保持不变,饱和漏极电流Dsat I 降低50%,沟道电导on R 增加一倍,跨导m g 降低50%。

5.什么是厄尔利效应,简述减小厄尔利效应的方法,并尝试说明这些方法对其他电参数的影响。

答:当ce V 增加时,集电结上的反向偏压增加,集电区势垒区宽度变宽。势垒区的右侧向中性集电区扩展,左侧向中性基区扩展。这使得中性基区的宽度B W 减小。基区宽度的减小使基区少子浓度梯度增加,必然导致电流放大系数和集电极电流的增大。这就是基区宽度调变效应(也称为厄尔利效应)。为减小厄尔利效应,应增大基区宽度B W ,减小集电结耗尽区在基区内的宽度dB x ,即增大基区掺杂浓度B N 。 但增加B W 和B N 都将降低基区输运系数,进而降低电流放大系数。

6.给出双极结型晶体管的特征频率、最高振荡频率以及CEO BV 的定义。说明提高双极型晶体管的高频优值的主要措施。

答:特征频率:1||=ωβ时对应的频率;

最高振荡频率:1||max =p K 时对应的频率;

CEO BV :基极开路,集电结反偏,CEO I 趋于无穷大时的CE V 。

提高双极型晶体管的高频优值的主要措施:提高特征频率,降低基极电阻以及集电结势垒电容。

7.在实际工作中,一般是怎样测量双极型晶体管的特征频率T f 的? 答:在实际测量晶体管的特征频率T f 时,一般并不需要按T f 的定义使||ωβ下降到1时的频率,而是在T f f f <<β的频率范围内测量||ωβ值,然后利用f f 0

0||ββω=和ββf f T 0=就可以根据测试频率f 和所测得的|

|ωβ计算出:

f f T ||ωβ=

式中,1||>ωβ而T f f <,这样可以降低对测量仪器和信号源的要求。

三、计算题

1.某晶体管的600=β,当M H z f 15=时测得4||=ωβ,pF C TE 1=,pF C DE 12=,

pF C TC 2.0=,Ω=K r 500。试求该晶体管的T f 、βf ,以及当mA I C 10=时的本征混合p 参数μππr r ,C g m ,,和μC 。

解:

f f f f f βωβωβωβββββββ00

||f 2||f f =

>>===<<时,当时,当时,得当

晶体管的特征频率MHz f f T 60||==ωβ

当mA I c 10=时, 发射结的高频小信号等效电路的发射结增量电阻Ω=≈=6.2C E e qI kT qI kT r BE C m V I g ??=代表集电极电流受发射结电压变化的影响,

称为晶体管的转移电导,或跨导。

S r kT qI V I g e

C BE C m 385.01=≈=??= pF C C r r C M r r C C C r r TE DE O

e O TE DE e 2.0315615600=+=Ω

==Ω

=+=Ω

==μββμππ

微电子器件 课程复习题

“微电子器件”课程复习题 一、填空题 1、若某突变PN 结的P 型区的掺杂浓度为163A 1.510cm N -=?,则室温下该区的平衡多子 浓度p p0与平衡少子浓度n p0分别为( )和( )。 2、在PN 结的空间电荷区中,P 区一侧带( )电荷,N 区一侧带( )电荷。内建电场的方向是从( )区指向( )区。 3、当采用耗尽近似时,N 型耗尽区中的泊松方程为( )。由此方程可以看出,掺杂浓度越高,则内建电场的斜率越( )。 4、PN 结的掺杂浓度越高,则势垒区的长度就越( ),内建电场的最大值就越( ),内建电势V bi 就越( ),反向饱和电流I 0就越( ),势垒电容C T 就越( ),雪崩击穿电压就越( )。 5、硅突变结内建电势V bi 可表为( ),在室温下的典型值为( )伏特。 6、当对PN 结外加正向电压时,其势垒区宽度会( ),势垒区的势垒高度会( )。 7、当对PN 结外加反向电压时,其势垒区宽度会( ),势垒区的势垒高度会( )。 8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关系可表示为 ( )。若P 型区的掺杂浓度173A 1.510cm N -=?,外加电压V = 0.52V ,则P 型区与耗尽区边界上的少子浓度n p 为( )。 9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度( );当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度( )。 10、PN 结的正向电流由( )电流、( )电流和( )电流三部分所组成。

11、PN结的正向电流很大,是因为正向电流的电荷来源是();PN结的反向电流很 小,是因为反向电流的电荷来源是()。 12、当对PN结外加正向电压时,由N区注入P区的非平衡电子一边向前扩散,一边()。 每经过一个扩散长度的距离,非平衡电子浓度降到原来的()。 13、PN结扩散电流的表达式为()。这个表达式在正向电压下可简化 为(),在反向电压下可简化为()。 14、在PN结的正向电流中,当电压较低时,以()电流为主;当电压较高时,以() 电流为主。 15、薄基区二极管是指PN结的某一个或两个中性区的长度小于()。在薄 基区二极管中,少子浓度的分布近似为()。 16、小注入条件是指注入某区边界附近的()浓度远小于该区的() 浓度,因此该区总的多子浓度中的()多子浓度可以忽略。 17、大注入条件是指注入某区边界附近的()浓度远大于该区的() 浓度,因此该区总的多子浓度中的()多子浓度可以忽略。 18、势垒电容反映的是PN结的()电荷随外加电压的变化率。PN结 的掺杂浓度越高,则势垒电容就越();外加反向电压越高,则势垒电容就越()。 19、扩散电容反映的是PN结的()电荷随外加电压的变化率。正向 电流越大,则扩散电容就越();少子寿命越长,则扩散电容就越()。 20、在PN结开关管中,在外加电压从正向变为反向后的一段时间内,会出现一个较大的 反向电流。引起这个电流的原因是存储在()区中的()电荷。这个电荷的消失途径有两条,即()和()。 21、从器件本身的角度,提高开关管的开关速度的主要措施是()和

832微电子器件-电子科技大学2015硕士入学考试真题

电子科技大学 2015年攻读硕士学位研究生入学考试试题电子科技大学2016年硕士研究生入学考试初试自命题科目及代码汇总 ?111单独考试政治理论 ?241法语(二外) ?242德语(二外) ?243日语(二外) ?244英语(二外仅日语方向) ?288单独考试英语 ?601数学分析 ?602高等数学 ?613分子生物学 ?615日语水平测试 ?616公共管理综合 ?621英语水平测试 ?622心理学综合 ?623新闻传播理论 ?625宪法学 ?688单独考试高等数学 ?689西方行政史 ?690中国近现代史 ?691政治学原理 ?692数学物理基础?694生物学综合 ?694生物学综合 ?695口腔综合 ?804行政法与行政诉讼法学 ?805新闻传播实务 ?806行政管理综合 ?808金融学基础 ?809管理学原理 ?811大学物理 ?812地理信息系统基础 ?813电磁场与电磁波 ?814电力电子技术 ?815电路分析基础 ?818固体物理 ?820计算机专业基础 ?821经济学基础 ?824理论力学 ?825密码学基础与网络安全 ?830数字图像处理 ?831通信与信号系统 ?832微电子器件 ?834物理化学 ?835线性代数 ?836信号与系统和数字电路 ?839自动控制原理 ?840物理光学 ?845英美文学基础知识及运用 ?846英语语言学基础知识及运用 ?847日语专业基础知识及应用 ?852近代物理基础 ?853细胞生物学 ?854国际政治学 ?855辩证唯物主义和历史唯物主 义 ?856测控通信原理 ?857概率论与数理统计 ?858信号与系统 ?859测控通信基础 ?860软件工程学科基础综合

微电子器件_刘刚前三章课后答案

课后习题答案 1.1 为什么经典物理无法准确描述电子的状态?在量子力学 中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。然而,电子和光子是微观粒子,具有波粒二象性。因此,经典物理无法准确描述电子的状态。 在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率ω和波矢建立联系的,即 c h p h E ====υω υ 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率ω和波矢。 1.2 量子力学中用什么来描述波函数的时空变化规律? 解:波函数ψ是空间和时间的复函数。与经典物理不同的是,它描述的不是实在的物理量的波动,而是粒子在空间的概率分布,是一种几率波。如果用()t r ,ψ表示粒子的德布洛意波的振幅,以()()()t r t r t r ,,,2 ψψψ*=表示波的强度,那么,t 时刻在r 附近的小体积元z y x ???中检测到粒子的概率正比于()z y x t r ???2,ψ。

1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图1.3所示,从能带的观点 来看,半导体和绝缘体都存在着禁 带,绝缘体因其禁带宽度较大 (6~7eV),室温下本征激发的载流子 近乎为零,所以绝缘体室温下不能 导电。半导体禁带宽度较小,只有1~2eV ,室温下已经有一定数量的电子从价带激发到导带。所以半导体在室温下就有一定的导电能力。而导体没有禁带,导带与价带重迭在一起,或者存在半满带,因此室温下导体就具有良好的导电能力。 1.4 为什么说本征载流子浓度与温度有关? 解:本征半导体中所有载流子都来源于价带电子的本征激发。由此产生的载流子称为本征载流子。本征激发过程中电子和空穴是同时出现的,数量相等,i n p n ==00。对于某一确定的半导体材料,其本征载流子浓度为kT E V C i g e N N p n n ==002 式中,N C ,N V 以及Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。 1.5 什么是施主杂质能级?什么是受主杂质能级?它们有何异同?

微电子器件可靠性复习题

1、什么是可靠性 答:可靠性是指产品在规定条件下和规定的时间内,完成规定功能的能力。 2、固有可靠性 答:指产品的原材料性能及制成后在工作过程中所受应力,在设计阶段所赋予的,在制造过程中加以保证的可靠性。 3、使用可靠性 答:指产品在实际使用中表现出的可靠性。 4、失效 答:产品(器件)失去规定的功能称为失效。 5、可靠度,及其表达式 答:可靠度是指产品在规定的条件下,在规定的时间内,完成规定功能的概率。 表达式:R(t)=P{ξ>t}。 6、失效概率 答:失效概率是指产品在规定的条件下载时间t以前失效的概率。 7、失效概率密度 答:失效密度是指产品在t时刻的单位时间内,发生失效的概率 8、瞬时失效率

答:失效率是指在时刻t尚未失效的器件在单位时间内失效的概率。 9、平均寿命 答:器件寿命这一随机变量的平均值称为平均寿命。 10、可靠寿命 答:对一些电子产品,当其可靠度降到r时的工作时间称为产品的可靠寿命。 11、菲特的定义 答:简单地说就是100万个器件工作1000h后只出现一个失效。 12、解释浴盆曲线的各个周期的含义 答:第一区:早期失效阶段:此阶段失效率较高,失效随时间增加而下降,器件失效主要是由一种或几种具有普遍性的原因所造成,此阶段的延续时间和失效比例是不同的。第二区:偶然失效阶段:失效率变化不大,是器件的良好阶段,失效常由多种而又不严重的偶然因素造成。第三区:损耗失效阶段:失效率上升,大部分器件相继失效,失效是由带全局性的原因造成,损伤严重,寿命即将终止。 13、指数分布的可靠度,失效率,寿命方差,可靠寿命,中位寿命 答:指数分布可靠度:f(t)=λe-λt(0≤t<∞,0<λ<∞)失效率:λ=λe-λt/e-λt寿命方差:D(ξ)=1/λ2可靠寿命:tr(R)=ln(1/R)1/λ中位寿命:tr (0.5)=0.693*1/λ 14、什么是系统

微电子器件与IC设计基础第二版第1章习题

第一章 思考题: 1.1简单解释原子能级和晶体能带之间的联系和区别。 答:在孤立原子中,原子核外面的电子受到这个原子核所带正电荷的作用,按其能量的大小分布在不同的电子轨道上绕核运转。 原子中不同轨道上电子能量的大小 用彼此有一定间隔的横线段组成的 能级图来表示(见图1.1b)。能级的 位置越高,表示该能级上电子的能量 就越大。原子结合成晶体后,一个原 子核外的电子除了受到这个原子核 所带正电荷以及核外电子所带负电 荷的作用以外,还要受到这个原子周 围其它原子所带正负电荷的作用。也 就是说,晶体中的电子是在原子核的 正电荷形成的周期性势场中作如图 1.1(a)中箭头所示的共有化运动。 正因为如此,原来描述孤立原子中电 子能量大小的能级就被分裂成为一 系列彼此相距很近的准连续的能级, 其形状好似一条条反映电子能量大小的带子,故称之为能带,见图1.1(b)。 1.2以硅为例,解释什么是施主杂质和施主能级?什么是受主杂质和受主能级? 答:以硅为例,见图1.2(a), 如果在单晶硅中掺入Ⅴ族元素 的杂质磷(P+),磷原子()P将 取代Ⅳ族的硅(Si)原子的位置 而成为所谓的施主杂质。因为 磷原子外层有五个价电子,它 和周围的四个硅原子形成共价 键后还多出一个电子,这个多 余的电子受到磷原子核的微弱 束缚力而绕着该原子核做一定 半径的圆周运动,它只需要吸 收很小的能量(百分之几个电 子伏特)就能挣脱磷原子核的 束缚而成为可以在整个晶体中 运动的准自由电子,原来的磷 原子则成为了磷离子()+P,称 之为正电中心。从电子能量大小的观点来看,导带底能量E C表示导带中速度为零的电子所

微电子器件课程复习题教学内容

微电子器件课程复习 题

“微电子器件”课程复习题 一、填空题 1、若某突变PN 结的P 型区的掺杂浓度为163A 1.510cm N -=?,则室温下该区的平衡多子 浓度p p0与平衡少子浓度n p0分别为( )和( )。 2、在PN 结的空间电荷区中,P 区一侧带( )电荷,N 区一侧带( )电荷。内建电场 的方向是从( )区指向( )区。 3、当采用耗尽近似时,N 型耗尽区中的泊松方程为( )。由此方程可以看出,掺 杂浓度越高,则内建电场的斜率越( )。 4、PN 结的掺杂浓度越高,则势垒区的长度就越( ),内建电场的最大值就越( ), 内建电势V bi 就越( ),反向饱和电流I 0就越( ),势垒电容C T 就越( ),雪崩击穿电压就越( )。 5、硅突变结内建电势V bi 可表为( ),在室温下的典型值为( )伏特。 6、当对PN 结外加正向电压时,其势垒区宽度会( ),势垒区的势垒高度会( )。 7、当对PN 结外加反向电压时,其势垒区宽度会( ),势垒区的势垒高度会( )。 8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关系可表示为 ( )。若P 型区的掺杂浓度173A 1.510cm N -=?,外加电压V = 0.52V ,则P 型 区与耗尽区边界上的少子浓度n p 为( )。 9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓 度( );当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度( )。 10、PN 结的正向电流由( )电流、( )电流和( )电流三部分所组 成。

832微电子器件考试大纲详细

考试科目832微电子器件考试形式笔试(闭卷) 考试时间180分钟考试总分150分 一、总体要求 主要考察学生掌握“微电子器件”的基本知识、基本理论的情况,以及用这些基本知识和基本理论分析问题和解决问题的能力。 二、内容 1.半导体器件基本方程 1)半导体器件基本方程的物理意义 2)一维形式的半导体器件基本方程 3)基本方程的主要简化形式 2.PN结 1)突变结与线性缓变结的定义 2)PN结空间电荷区的形成

4)耗尽区宽度、内建电场与内建电势的计算5)正向及反向电压下PN结中的载流子运动情况6)PN结的能带图 7)PN结的少子分布图 8) PN结的直流伏安特性 9)PN结反向饱和电流的计算及影响因素 10)薄基区二极管的特点

11)大注入效应 12)PN结雪崩击穿的机理、雪崩击穿电压的计算及影响因素、齐纳击穿的机理及特点、热击穿的机理13)PN结势垒电容与扩散电容的定义、计算与特点 14)PN结的交流小信号参数与等效电路 15)PN结的开关特性与少子存储效应

2)基区输运系数与发射结注入效率的定义及计算 3)共基极与共发射极直流电流放大系数的定义及计算 4)基区渡越时间的概念及计算 5)缓变基区晶体管的特点 6)小电流时电流放大系数的下降 7)发射区重掺杂效应 8)晶体管的直流电流电压方程、晶体管的直流输出特性曲线图

9)基区宽度调变效应 10)晶体管各种反向电流的定义与测量 11)晶体管各种击穿电压的定义与测量、基区穿通效应12)方块电阻的概念及计算

13)晶体管的小信号参数 14)晶体管的电流放大系数与频率的关系、组成晶体管信号延迟时间的四个主要时间常数、高频晶体管特征频率的定义、计算与测量、影响特征频率的主要因素

微电子工程学复习题

第一章: 1、电子器件微型化和大规模集成的含义是什么?其具有怎样的实际意义。 答:电子器件微型化主要是指器件的最小尺寸,也就是特征尺寸变小了。大规模集成是指在单个芯片上所继承的电子器件数量越来越多。 电子器件微型化和大规模集成的意义: 1)提高速度和降低功耗只有提高集成度,才能减少电子系统内部的连线和最大限度地减少封装管壳对速度的影响。提高速度和提高集成度是统一的,前者必须通过后者来实现。同时采用低功耗、高速度的电路结构(器件结构) 2)提高成品率与可靠性大规模集成电路内部包含的大量元件都已彼此极其紧密地集成在一块小晶片上,因此不像中、小规模集成电路组成的电子系统那样,由于元件与元件,或电路与电路之间装配不紧密,互连线长且暴露在外,易受外界各种杂散信号的干扰,所以说大规模集成电路提高了系统可靠性。 为了提高为电子器件的成品率,需要在少增加电路芯片面积的前提下尽可能容纳更多的电子元件,也就是采取提高元件密度的集成方法。 3)低成本大规模集成电路制造成本和价格比中、小规模集成电路大幅度下降是因为集成度和劳动生产率的不断提高。 综上所述,大规模和超大规模集成电路的微型化、低成本、高可靠和高频高速四大特点,正是电子设备长期追求的技术指标和经济指标,而这四大特点中后三个特点皆源于微型化的特点。因此这四大特点是统一的、不可分割的。 2、超大规模集成电路面临哪些挑战? 答:首先是大直径的硅材料, 随着集成电路技术的发展,硅单晶直拉生产技术,在单晶尺寸、金属杂质含量、掺杂元素和氧分布的均匀性及结晶缺陷等方面得到了不断的改进。目前,通常使用的硅单晶抛光片的直径已达到300mm,400mm硅单晶片的制造也已经开始。如何控制400mm晶体中点缺陷将是面临的重大挑战。 其次是光刻技术:在微电子制造技术中,最为关键的是用于电路图形生成和复制的光刻技术。更短波长光源、新的透镜材料和更高数字孔径光学系统的加工技术,成为首先需要解决的问题;同时,由于光刻尺寸要小于光源波长,使得移相和光学邻近效应矫正等波前工程技术成为光学光刻的另一项关键技术。 最后是器件工艺。当器件的沟道长度缩小到0.1um时,已开始逼近传统的半导体物理的极限。随之而来的是栅氧化层不断减薄,SiO2作为传统的栅氧化层已经难以保证器件的性能。同时随着半导体器件工艺的特征尺寸不断地缩小,芯片内部的多层内连线工艺也逐渐成为半导体工艺发展的挑战。 3、阐述微电子学概念及其重要性。 答:微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、子系统及系统的电子学分支。 微电子学作为电子学的一门分支学科,主要是研究电子或离子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学。 微电子学是以实现电路和系统的集成为目的的,故实用性极强。微电子学中所实现的电路和系统又称为集成电路和集成系统。 微电子学是信息领域的重要基础学科,在信息领域中,微电子学是研究并实现信息获取、传输、存储、处理和输出的科学,是研究信息载体的科学,构成了信息科学的基石。其发展水平直接影响着整个信息技术的发展。 微电子科学技术是信息技术中的关键之所在,其发展水平和产业规模是一个国家经济实力的重要标志。

电子科技大学《微电子器件》课程教学大纲

电子科技大学 《微电子器件》课程教学大纲 课程编号:65030145适用专业:电子科学与技术 集成电路设计与集成系统 学时数:72(含实验12)学分数:4.5 先修课程:《半导体物理》 考核方式:考试 执笔者:张庆中编写日期:2006年4月 一、课程性质和任务 本课程的授课对象是“电子科学与技术(微电子技术方向)”专业和“集成电路设计与集成系统”专业的本科生,属于专业方向选修课。本课程的目的是使学生掌握二极管、双极型与场效应晶体管的基本理论,这些内容都是本领域高级专业技术人员所必须掌握的。本课程同时也是本专业其它后续课程如《集成电路原理》等的先修课程。 二、课程教学内容和要求 1、理论教学(60学时) 基本半导体方程(3学时): 掌握一维形式的泊松方程、电子与空穴的电流密度方程、电子与空穴的连续性方程,掌握基本半导体方程的主要简化形式。 PN结(18学时): 了解突变结与线性缓变结、PN结的平衡状态,理解空间电荷区的形成,了解耗尽近似的适用性(自学),掌握内建电场与扩散电势差、PN结在正向及反向电压下的能带图、少子分布与伏安特性,理解正向导通电压、大注入效应,掌握PN结的击穿特性、PN结的势垒电容与扩散电容、交流小信号参数与等效电路、PN结的开关特性。 这部分内容的重点是PN结空间电荷区的形成、耗尽层宽度与扩散电势差的推导与计算、PN结伏安特性的推导、势垒电容与扩散电容的概念及其计算、PN结的交流小信号参数与等效电路、少子存储效应、雪崩击穿的概念及击穿电压的计算。 这部分内容的难点是PN结内建电场的计算、少子分布的推导与少子分布图、大注入时的内建电场与Webster效应、扩散电容表达式的推导、雪崩倍增因子的推导等。 双极型晶体管(25学时): 了解均匀基区与缓变基区,理解晶体管的基区输运系数与发射结注入效率,掌握晶体管的直流电流放大系数,理解发射区重掺杂效应,

微电子技术概论期末试题

《微电子技术概论》期末复习题 试卷结构: 填空题40分,40个空,每空1分, 选择题30分,15道题,每题2分, 问答题30分,5道题,每题6分 填空题 1.微电子学是以实现电路和系统的集成为目的的。 2.微电子学中实现的电路和系统又称为集成电路和集成系统,是微小化的。 3.集成电路封装的类型非常多样化。按管壳的材料可以分为金属封装、陶瓷封装和塑料封装。 4.材料按其导电性能的差异可以分为三类:导体、半导体和绝缘体。 5. 迁移率是载流子在电场作用下运动速度的快慢的量度。 6.PN 结的最基本性质之一就是其具有单向导电性。 7.根据不同的击穿机理,PN 结击穿主要分为雪崩击穿和隧道击穿这两种电击穿。 8.隧道击穿主要取决于空间电荷区中的最大电场。 9. PN结电容效应是PN结的一个基本特性。 10.PN结总的电容应该包括势垒电容和扩散电容之和。 11.在正常使用条件下,晶体管的发射结加正向小电压,称为正向偏置,集电结加反向大电压,称为反向偏置。 12.晶体管的直流特性曲线是指晶体管的输入和输出电流-电压关系曲线, 13.晶体管的直流特性曲线可以分为三个区域:放大区,饱和区,截止区。 14.晶体管在满足一定条件时,它可以工作在放大、饱和、截止三个区域中。 15.双极型晶体管可以作为放大晶体管,也可以作为开关来使用,在电路中得到了大量的应用。 16. 一般情况下开关管的工作电压为 5V ,放大管的工作电压为 20V 。 17. 在N 型半导体中电子是多子,空穴是少子; 18. 在P 型半导体中空穴是多子,电子是少子。 19. 所谓模拟信号,是指幅度随时间连续变化的信号。 20. 收音机、收录机、音响设备及电视机中接收、放大的音频信号、电视信号是模拟信号。 21. 所谓数字信号,指在时间上和幅度上离散取值的信号。 22. 计算机中运行的信号是脉冲信号,但这些脉冲信号均代表着确切的数字,因而又叫做数字信号。 23. 半导体集成电路是采用半导体工艺技术,在硅基片上制作包括电阻、电容、二极

微电子材料与器件复习题(终极版)(1)

《微电子材料与器件》复习题 1.设计制备NMOSFET的工艺,并画出流程图。 概括的说就是先场氧,后栅氧,再淀多晶SI,最后有源区注入 (1)衬底P-SI;(2)初始氧化;光刻I;场区注硼,注硼是为了提高场区的表面浓度,以提高场开启;场区氧化;去掉有源区的SI3N4和SIO2;预栅氧,为离子注入作准备;调整阈电压注入(注硼),目的是改变有源区表面的掺杂浓度,获得要求的晶硅;光刻II,刻多晶硅,不去胶;离子注入,源漏区注砷,热退火;去胶,低温淀积SIO2;光刻III刻引线孔;蒸铝;光刻IV刻电极; 形成N阱初始氧化 淀积氮化硅层 光刻1版,定义出N阱 反应离子刻蚀氮化硅层 N阱离子注入,注磷 形成P阱去掉光刻胶 在N阱区生长厚氧化层,其它区域被氮化硅层保护而不会被氧化 去掉氮化硅层 P阱离子注入,注硼 推阱退火驱入 去掉N阱区的氧化层 形成场隔离区 生长一层薄氧化层 淀积一层氮化硅 光刻场隔离区,非隔离区被光刻胶保护起来 反应离子刻蚀氮化硅 场区离子注入 热生长厚的场氧化层 去掉氮化硅层 形成多晶硅栅 生长栅氧化层 淀积多晶硅 光刻多晶硅栅 刻蚀多晶硅栅 形成硅化物 淀积氧化层 反应离子刻蚀氧化层,形成侧壁氧化层 淀积难熔金属Ti或Co等 低温退火,形成C-47相的TiSi2或CoSi 去掉氧化层上的没有发生化学反应的Ti或Co 高温退火,形成低阻稳定的TiSi2或CoSi2 形成N管源漏区 光刻,利用光刻胶将PMOS区保护起来 离子注入磷或砷,形成N管源漏区 形成P管源漏区

光刻,利用光刻胶将NMOS区保护起来 离子注入硼,形成P管源漏区 形成接触孔 化学气相淀积磷硅玻璃层 退火和致密 光刻接触孔版 反应离子刻蚀磷硅玻璃,形成接触孔 形成第一层金属 淀积金属钨(W),形成钨塞 淀积金属层,如Al-Si、Al-Si-Cu合金等 光刻第一层金属版,定义出连线图形 反应离子刻蚀金属层,形成互连图形 形成穿通接触孔 化学气相淀积PETEOS 通过化学机械抛光进行平坦化 光刻穿通接触孔版 反应离子刻蚀绝缘层,形成穿通接触孔 形成第二层金属 淀积金属层,如Al-Si、Al-Si-Cu合金等 光刻第二层金属版,定义出连线图形 反应离子刻蚀,形成第二层金属互连图形 合金形成钝化层 在低温条件下(小于300℃)淀积氮化硅 光刻钝化版 刻蚀氮化硅,形成钝化图形 测试、封装,完成集成电路的制造工艺 2.集成电路工艺主要分为哪几大类,每一类中包括哪些主要工艺,并简述各工 艺的主要作用。 要制造一块集成电路,需要经过集成电路设计、掩膜版制造、原始材料制造、芯片加工、封装、测试等工序。集成电路设计主要包括功能设计、逻辑设计、电路设计、掩膜版图设计、计算机仿真等,芯片加工包括图形转换、刻蚀、掺杂、制膜。图形转换:将设计在掩膜版(类似于照相底片)上的图形转移到半导体单晶片上掺杂:根据设计的需要,将各种杂质掺杂在需要的位置上,形成晶体管、接触等制膜:制作各种材料的薄膜 图形转换:将设计在掩膜版(类似于照相底片)上的图形转移到半导体单晶片上掺杂:根据设计的需要,将各种杂质掺杂在需要的位置上,形成晶体管、接触等制膜:制作各种材料的薄膜 3.简述光刻的工艺过程。 光刻工序:光刻胶的涂覆→爆光→显影→刻蚀→去胶。光刻的基本要素是掩模板和光刻胶。在光刻过程中将液态的光刻胶滴在高速旋转的硅片上;或者先把液态的光刻胶滴在硅片上,之后再高速旋转硅片。其目的是在硅片表面上形成一层胶膜。然后对硅片进行前烘,经过前烘的光刻胶称为牢固附着在硅片上的一层固态薄膜,经过曝光之后,使用特定的溶剂对光刻胶进行显影,部分区域的光刻胶将被溶解掉(对负胶,没曝光区域光刻胶被溶解,对正胶,曝光区域

(完整word版)微电子器件与IC设计基础_第2版,刘刚,陈涛,课后答案.doc

课后习题答案 1.1 为什么经典物理无法准确描述电子的状态?在量子力学中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。然而,电子和光子是微观粒子,具有波粒二象性。因此,经典物理无法准确描述电子的状态。 在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率和波矢 k 建立联系的,即 E h h p n k c 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率和波矢k。 1.2量子力学中用什么来描述波函数的时空变化规律? 解:波函数是空间和时间的复函数。与经典物理不同的是,它描述的不是实在的物理量 的波动,而是粒子在空间的概率分布,是一种几率波。如果用r , t 表示粒子的德布洛意 r ,t 2 r , t 表示波的强度,那么,t 时刻在 r 附近的小体积元 波的振幅,以r ,t x y z 中检测到粒子的概率正比于 2 r ,t x y z 。 1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图 1.3 所示,从能带的观点来看,半导体和 绝缘体都存在着禁带,绝缘体因其禁带宽度较大 (6~7eV) ,室温下本征激发的载流子近乎为零,所 以绝缘体室温下不能导电。半导体禁带宽度较小, 只有1~2eV ,室温下已经有一定数量的电子从价 带激发到导带。所以半导体在室温下就有一定的 导电能力。而导体没有禁带,导带与价带重迭在 一起,或者存在半满带,因此室温下导体就具有 良好的导电能力。 1.4 为什么说本征载流子浓度与温度有关? 解:本征半导体中所有载流子都来源于价带电子的本征激发。由此产生的载流子称为本征载流子。本征激发过程中电子和空穴是同时出现的,数量相等,n0 p0 n i。对于某一确定 的半导体材料,其本征载流子浓度为 2 n0 p0 N C N V e E g kT n i 式中, N C,N V以及 Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。

2014年电子科技大学微电子器件考研真题

电子科技大学 2014年攻读硕士学位研究生入学考试试题 考试科目:832 微电子器件 注:所有答案必须写在答题纸上,写在试卷或草稿纸上均无效。 一、填空题(共48分,每空1.5分) 1、PN结二极管用途广泛,在作为变容二极管使用时,主要利用其()向偏置的 ()电容;在作为温度传感器使用时,主要利用其正向导通压降会随温度的升高而()。 2、一个P+N型的二极管,电子和空穴的寿命分别为τn和τp,在外加正向直流电压V1时电流 为I1,当外加电压反向为-V2时,器件会经历一段反向恢复过程,这主要是由正向导通时存储在()型中性区中的非平衡少子造成的,该非平衡少子的总量为 ()。 3、防止PN结发生热击穿,最有效的措施是降低器件的()。同时,禁带宽带越 ()的半导体材料,其热稳定性越好。(第二个空填“大”或“小”) 4、双极型晶体管的基区宽度调变效应越严重,其厄尔利电压越(),共发射极增量输 出电阻越()。(填“大”或“小”) 5、已知双极型晶体管的基区度越时间和基区少子寿命分别为τb和τB,则1/τB表示的物理 意义为(),因此τb/τB可以表示 ()。 6、MOSFET的亚阈区摆幅S反应了在亚阈区中()的控制能力。 栅氧化层越厚,则S越(),该控制能力越()。(第二个空填“大”或“小”,第三个空填“强”或“弱”) 7、当金属和P型半导体形成金-半接触时,如果金属的功函数大于半导体的功函数,半导体表 面将形成(),该结构()单向导电性。(从以下选项中选择) A 电子阻挡层 B 电子反阻挡层C空穴阻挡层 D 空穴反阻挡层 E 具有 F 不具有 微电子器件试题共6页,第1页

8、MOSFET的跨导是()特性曲线的斜率,而漏源电导是()特性曲 线的斜率。在模拟电路中,MOSFET一般工作在()区,此时理想情况下漏源电导应为零,但实际上由于()和(),漏源电导通常为正的有限值。 9、短沟道MOSFET中采用偏置栅结构或漏端轻掺杂结构,是为了降低漏端附近的电场强度, 从而抑制()效应,防止器件电学特性退化。 10、如果以SiGe来制作BJT的发射区,Si来制作BJT的基区,则与全部采用Si材料的双极 型晶体管相比,其共基极电流放大系数α将()。(填“增大”、“减小”或“不变”) 11、根据恒场等比例缩小法则,当MOSFET的沟道长度缩小K倍时,其阈值电压变为之前的 (),总电容变为之前的(),最高工作频率变为之前的()。 12、研究发现硅-二氧化硅系统中,存在四种形式的电荷或能量状态,包括Na+、K+等可动离 子、()、()以及二氧化硅层中的电离陷阱电荷,通常它们都带正电,因此()型MOSFET的衬底表面更容易反型。 13、PMOS的衬底相对于源端应该接()电位。当|V BS|增加时,PMOS的阈值电压绝对值 将(),该效应叫做()。(第二个空填“增大”、“减小” 或“不变”) 二、简答与作图题(共57分) 1、如图所示,一块掺杂浓度为N D的无限长均匀N型半导体材料,在x的负半轴有一束光稳定地照射在半导体表面,产生体密度为G0的电子-空穴对。(9分) (1)写出该半导体材料在x正半轴的少子扩散方程。(只考虑少子在x方向的运动) (2)如果要通过上述扩散方程求解x正半轴的少子分布,应该采用什么样的边界条件?(3)如果该半导体材料在x正半轴的长度缩短为W(W远小于少子扩散长度),又应该采用什么样的边界条件求解? 微电子器件试题共6页,第2页

最新微电子器件基础题

微电子器件基础题

“微电子器件”课程复习题 一、填空题 1、若某突变PN 结的P 型区的掺杂浓度为163A 1.510cm N -=?,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为( )和( )。 2、在PN 结的空间电荷区中,P 区一侧带(负)电荷,N 区一侧带(正)电 荷。内建电场的方向是从(N )区指向(P )区。 3、当采用耗尽近似时,N 型耗尽区中的泊松方程为( )。由此方程可以看出,掺杂浓度越高,则内建电场的斜率越( )。 4、PN 结的掺杂浓度越高,则势垒区的长度就越(短),内建电场的最大值就 越(大),内建电势V bi 就越(大),反向饱和电流I 0就越(小),势垒电容C T 就越( ),雪崩击穿电压就越(低)。 5、硅突变结内建电势V bi 可表为( ),在室温下的典型值为(0.8)伏 特。 6、当对PN 结外加正向电压时,其势垒区宽度会(减小),势垒区的势垒高度 会(降低)。 7、当对PN 结外加反向电压时,其势垒区宽度会(变宽),势垒区的势垒高度 会(增高)。 8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关系可 表示为( )。若P 型区的掺杂浓度173 A 1.510cm N -=?,外加电压V = 0.52V ,则P 型区与耗尽区边界上的少子浓度n p 为( )。 9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平 衡少子浓度(高);当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(低)。 10、PN 结的正向电流由(空穴扩散Jdp )电流、(电子扩散电流Jdn )电流和 (势垒区复合电流Jr )电流三部分所组成。 11、PN 结的正向电流很大,是因为正向电流的电荷来源是(多子);PN 结的 反向电流很小,是因为反向电流的电荷来源是(少子)。 12、当对PN 结外加正向电压时,由N 区注入P 区的非平衡电子一边向前扩散,一边(复合)。每经过一个扩散长度的距离,非平衡电子浓度降到原来的( )。 13、PN 结扩散电流的表达式为( )。这个表达式在正向电压下可简 化为( ),在反向电压下可简化为( )。 14、在PN 结的正向电流中,当电压较低时,以(复合)电流为主;当电压较 高时,以(扩散)电流为主。 15、薄基区二极管是指PN 结的某一个或两个中性区的长度小于(少子扩散长 度)。在薄基区二极管中,少子浓度的分布近似为(线性)。 16、小注入条件是指注入某区边界附近的(非平衡少子)浓度远小于该区的 (平衡多子)浓度,因此该区总的多子浓度中的(非平衡)多子浓度可以忽略。 17、大注入条件是指注入某区边界附近的(非平衡少子)浓度远大于该区的 (平衡多子)浓度,因此该区总的多子浓度中的(平衡)多子浓度可以忽略。

中山学院微电子器件填空题复习(2019)

表达式无法显示请下载原版 第2章PN结 1、若某突变PN结的P型区的掺杂浓度为N A=1.5×1016cm-3,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为( 1.5×1016cm-3)和( 1.5×104cm-3)。 【质量作用定律n0p0=ni2;p p0 与n p0的下角标“p”或“n”分别表示在P区或N区,下角标“0”代表平衡状态】 2、在PN结的空间电荷区中,P区一侧带(负)电荷,N区一侧带(正)电荷。 内建电场的方向是从(N)区指向(P)区。 3、当采用耗尽近似时,N型耗尽区中的泊松方程为()。 由此方程可以看出,掺杂浓度越高,则内建电场的斜率越(大)。 4、 PN结的掺杂浓度越高,则势垒区的长度就越(小),内建电场的最大值就越(大),内建电势V bi就越(大),反向饱和电流I0就越(小),势垒电容C T就越(大),雪崩击穿电压就越(小)。 【掺杂浓度越高,耗尽区(势垒区或空间电荷区)就越薄】 5、硅突变结内建电势Vbi可表示为(),在室温下的典型值为(0.8)伏特。 【锗PN结的V bi为0.35V】 6、当对PN结外加正向电压时,其势垒区宽度会(减小),势垒区的势垒高度会(降低)。 7、当对PN结外加反向电压时,其势垒区宽度会(增大),势垒区的势垒高度会(提高)。 8、在P型中性区与耗尽区的边界上,少子浓度n p与外加电压V之间的关系可表示为(), 若P型区的掺杂浓度N A=1.5×1017cm-3,外加电压V= 0.52V,则P型区与耗尽区边界上的少子浓度n p为(7.35×1025cm-3)。 9、当对PN结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(大); 当对PN结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(小)。 10、PN结的正向电流由(空穴扩散)电流、(电子扩散)电流和(势垒区复合)电流三部分所组成。 11、PN结的正向电流很大,是因为正向电流的电荷来源是(多子);PN结的反向电流很小,是因为反向电流的电荷来源是(少子)。 12、当对PN结外加正向电压时,由N区注入P区的非平衡电子一边向前扩散,一边(复合)。每经过一个扩散长度的距离,非平衡电子浓度降到原来的()。 13、PN结扩散电流的表达式为()。 这个表达式在正向电压下可简化为(),在反向电压下可简化为()。 14、在PN结的正向电流中,当电压较低,以(势垒区复合)电流为主;当电压较高,以(扩散)电流为主。

微电子器件复习题

一、填空题 1.突变PN 结低掺杂侧的掺杂浓度越高,则势垒区的长度就越 小 ,建电场的最 大值越 大 ,建电势V bi 就越 大 ,反向饱和电流I 0就越 小 , 势垒电容C T 就越 大 ,雪崩击穿电压就越 小 。P27 2.在PN 结的空间电荷区中,P 区一侧带 负 电荷,N 区一侧带 正 电 荷。建电场的方向是从 N 区指向 P 区。 3.当采用耗尽近似时,N 型耗尽区中的泊松方程为 。由此方程可以看出,掺 杂浓度越高,则建电场的斜率越 大 。 4.若某突变PN 结的P 型区的掺杂浓度为183A 1.510cm N -=?,则室温下该区的平 衡多子浓度p p0与平衡少子浓度n p0分别为 和 。 5.某硅突变PN 结的153D N 1.510cm -=?,31810.51N -?=cm A ,则室温下n0n0p0n p p 、、和p0n 的分别为 、 、 和 , 当外加0.5V 正向电压时的p p ()n x -和 n n ()p x 分别为 、 ,建电 势为 。 6.当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓 度 大 ;当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处 的平衡少子浓度 小 。 7.PN 结的正向电流很大,是因为正向电流的电荷来源是 多子 ;PN 结的反向电 流很小,是因为反向电流的电荷来源是 少子 。 8.PN 结的正向电流由 空穴扩散电流 电流、 电子扩散电流 电流和 势垒区复和电流 电流三部分所组成。 9.PN 结的直流电流电压方程的分布为 。 10.薄基区二极管是指PN 结的某一个或两个中性区的长度小于 该区的少子扩散长 度 。在薄基区二极管中,少子浓度的分布近似为 线性 ;薄基区二极 管相对厚基区二极管来说,其它参数都相同,则PN 结电流会 大的多 。 11.小注入条件是指注入某区边界附近的 非平衡少子 浓度远小于该区的 平衡多子 浓度。 12.大注入条件是指注入某区边界附近的 非平衡少子 浓度远大于该区的 平衡多子 浓度。 13.势垒电容反映的是PN 结的 微分 电荷随外加电压的变化率。PN 结的掺杂浓 度越高,则势垒电容就越 大 ;外加反向电压越高,则势垒电容就越 小 。 14.扩散电容的物理含义为中性区中 非平衡载流子 随外加电压的变化率;外加 正向电压越高,则势垒电容就越 大 。

微电子器件课程复习题

1、若某突变PN 结的P 型区的掺杂浓度为163A 1.510cm N -=?,则室温下该区的平衡多子浓度p p0与平 衡少子浓度n p0分别为(316105.1-?=cm N A )和(314105.1-?=cm N A )。 2、在PN 结的空间电荷区中,P 区一侧带(负)电荷,N 区一侧带(正)电荷。建电场的方向是从(N ) 区指向(P )区。[发生漂移运动,空穴向P 区,电子向N 区] 3、当采用耗尽近似时,N 型耗尽区中的泊松方程为(D S E u q dx d ε=→ )。由此方程可以看出,掺杂浓度越高,则建电场的斜率越(大)。 4、PN 结的掺杂浓度越高,则势垒区的长度就越(小),建电场的最大值就越(大),建电势V bi 就越 (大),反向饱和电流I 0就越(小)[P20],势垒电容C T 就越( 大 ),雪崩击穿电压就越(小)。 5、硅突变结建电势V bi 可表为(2ln i D A bi n N N q KT v =)P9,在室温下的典型值为(0.8)伏特。 6、当对PN 结外加正向电压时,其势垒区宽度会(减小),势垒区的势垒高度会(降低)。 7、当对PN 结外加反向电压时,其势垒区宽度会(增大),势垒区的势垒高度会(提高)。 8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关系可表示为()exp()(0KT qv p p p n x n =-)P18。若P 型区的掺杂浓度173A 1.510cm N -=?,外加电压V = 0.52V ,则P 型区与耗尽区边界上的少子浓度n p 为(3251035.7-?cm )。 9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(大);当对 PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(小)。 10、PN 结的正向电流由(空穴扩散)电流、(电子扩散)电流和(势垒区复合)电流三部分所组成。 11、PN 结的正向电流很大,是因为正向电流的电荷来源是(多子);PN 结的反向电流很小,是因为反 向电流的电荷来源是(少子)。 12、当对PN 结外加正向电压时,由N 区注入P 区的非平衡电子一边向前扩散,一边(复合)。每经过一个扩散长度的距离,非平衡电子浓度降到原来的(e 分之一)。 13、PN 结扩散电流的表达式为(]1)[exp(0-=+=KT qv dn dp d I J J J )。这个表达式在正向电压下可简化为()exp(0KT qv d J J =),在反向电压下可简化为(J J d -=)。 14、在PN 结的正向电流中,当电压较低时,以(势垒区复合)电流为主;当电压较高时,以(扩散) 电流为主。 15、薄基区二极管是指PN 结的某一个或两个中性区的长度小于(该区的少子扩散长度)。在薄基区二 极管中,少子浓度的分布近似为(线性分布)。 16、小注入条件是指注入某区边界附近的(非平衡少子)浓度远小于该区的(平衡多子)浓度,因此该 区总的多子浓度中的(非平衡)多子浓度可以忽略。 17、大注入条件是指注入某区边界附近的(非平衡少子)浓度远大于该区的(平衡多子)浓度,因此该 区总的多子浓度中的(平衡)多子浓度可以忽略。 18、势垒电容反映的是PN 结的(微分)电荷随外加电压的变化率。PN 结的掺杂浓度越高,则势垒电容 就越( 大 );外加反向电压越高,则势垒电容就越( 小 )。P44 19、扩散电容反映的是PN 结的(非平衡载流子)电荷随外加电压的变化率。正向电流越大,则扩散电容

电子科技大学微电子器件习题

第二章PN结 填空题 1、若某突变PN结的P型区的掺杂浓度为N A=1.5×1016cm-3,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为()和()。 2、在PN结的空间电荷区中,P区一侧带()电荷,N区一侧带()电荷。内建电场的方向是从()区指向()区。 3、当采用耗尽近似时,N型耗尽区中的泊松方程为()。由此方程可以看出,掺杂浓度越高,则内建电场的斜率越()。 4、PN结的掺杂浓度越高,则势垒区的长度就越(),内建电场的最大值就越(),内建电势V bi就越(),反向饱和电流I0就越(),势垒电容C T就越(),雪崩击穿电压就越()。 5、硅突变结内建电势V bi可表为(),在室温下的典型值为()伏特。 6、当对PN结外加正向电压时,其势垒区宽度会(),势垒区的势垒高度会()。 7、当对PN结外加反向电压时,其势垒区宽度会(),势垒区的势垒高度会()。 8、在P型中性区与耗尽区的边界上,少子浓度n p与外加电压V之间的关系可表示为()。若P型区的掺杂浓度N A=1.5×1017cm-3,外加电压V= 0.52V,则P型区与耗尽区边界上的少子浓度n p为()。 9、当对PN结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度();当对PN结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度()。 10、PN结的正向电流由()电流、()电流和()电流三部分所组成。 11、PN结的正向电流很大,是因为正向电流的电荷来源是();PN结的反向电流很小,是因为反向电流的电荷来源是()。 12、当对PN结外加正向电压时,由N区注入P区的非平衡电子一边向前扩散,一边()。每经过一个扩散长度的距离,非平衡电子浓度降到原来的()。 13、PN结扩散电流的表达式为()。这个表达式在正向电压下可简化为(),在反向电压下可简化为()。 14、在PN结的正向电流中,当电压较低时,以()电流为主;当电压较高时,以()电流为主。 15、薄基区二极管是指PN结的某一个或两个中性区的长度小于()。在薄基区二极管中,少子浓度的分布近似为()。 16、小注入条件是指注入某区边界附近的()浓度远小于该区的()浓度,因此该区总的多子浓度中的()多子浓度可以忽略。 17、大注入条件是指注入某区边界附近的()浓度远大于该区的()浓度,因此该区总的多子浓度中的()多子浓度可以忽略。 18、势垒电容反映的是PN结的()电荷随外加电压的变化率。PN 结的掺杂浓度越高,则势垒电容就越();外加反向电压越高,则势垒电容就越()。 19、扩散电容反映的是PN结的()电荷随外加电压的变化率。正向电流越大,则扩散电容就越();少子寿命越长,则扩散电容就越()。 20、在PN结开关管中,在外加电压从正向变为反向后的一段时间内,会出现一个较大

相关主题
文本预览
相关文档 最新文档