当前位置:文档之家› PEDOT_PSS薄膜在有机光电子领域的研究进展

PEDOT_PSS薄膜在有机光电子领域的研究进展

PEDOT_PSS薄膜在有机光电子领域的研究进展
PEDOT_PSS薄膜在有机光电子领域的研究进展

旋涂法制备功能薄膜的研究进展

旋涂法制备功能薄膜的研究进展 摘要:作为众多的薄膜制备方法之一,旋涂法具备薄膜厚度精确可控、高性价比、节能、低污染等优势,在微电子技术、纳米光子学、生物学、医学等领域中有着广阔的应用前景. 功能薄膜是发展信息技术、生物技术、能源技术等领域和国防建设的重要表面材料和器件,关系到资源、环境及社会的可持续发展.旋涂法制备的薄膜厚度在30nm一2000nm之间精确可控,其设备结构简单且易于操作,具备优良的性价比.现已广泛应用于微电子行业的光刻图案化( Lithographic patterning process ) 、印刷电路(Printed circuit)和集成电路(Integrated circuit)的制造,以及光储存媒体介质( DVD- R、CD- R等)的感光胶( P h o t o r e s i s t ) 、染料( Dye ) 、粘合剂、物理保护层等聚合物薄膜的涂覆.旋涂法在其它许多新型领域也有一定的应用,如薄膜晶体管、光子晶体材料、光波导、有机发光二极管薄膜、光电转换薄膜电极以及生物/化学功能膜等薄膜类器件的制备.旋涂法涉及到许多物理化学过程,如流体流动、润湿、挥发、粘滞、分散、浓缩等.在研究这些过程时,流体力学传质、传热、传动的原理是非常重要的.其中,需要考虑的参数主要包括薄膜的结构、厚度、面积等性能参数以及转速、粘度、挥发速率等操作参数[1,2,3]。 1、旋涂法原理 旋涂法因其所用流体粘度较大,呈胶体状,所以也被称为匀胶。一个典型的旋涂过程主要分为滴胶、高速旋转和干燥( 溶剂挥发) 三个步骤.首先,滴胶是将旋涂液滴注到基片表面上,然后经高速旋转将其铺展到基片上形成均匀薄膜,再通过干燥除去剩余的溶剂,最后得到性能稳定的薄膜.对于各种粘度、润湿性不同的旋涂液,通常使用的滴胶方法有两种,即静态滴胶和动态滴胶[4],旋涂法中的高速旋转和干燥是控制薄膜厚度、结构等性能的关键步骤,因此这两个阶段中工艺参数的影响成为研究的重点[5].

InGaZnO靶材和薄膜的研究进展

Hans Journal of Chemical Engineering and Technology 化学工程与技术, 2019, 9(3), 203-209 Published Online May 2019 in Hans. https://www.doczj.com/doc/d011902606.html,/journal/hjcet https://https://www.doczj.com/doc/d011902606.html,/10.12677/hjcet.2019.93030 Research Progress of InGaZnO Target and Thin Film Yingdong Lu1, Shicheng Huang1, YingXiang Liang1, Man Mo2, Zhijie Fang2* 1Guangxi Crystal Union Photoelectric Materials Co. Ltd., Liuzhou Guangxi 2College of Science, Guangxi University of Science and technology, Liuzhou Guangxi Received: Apr. 24th, 2019; accepted: May 9th, 2019; published: May 16th, 2019 Abstract The possible technical obstacles in the promotion and application of In-Ga-Zn-O (IGZO) materials were analyzed, including composition analysis of IGZO, technical analysis of IGZO target material preparation, stability analysis of IGZO-TFT, etc. The photoelectric performance of IGZO can be ad-justed by adjusting the proportion of oxide in IGZO. When using the sintering temperature of 1400?C above, we can get IGZO target with high density and uniform composition; the stability of a-IGZO TFT can be improved by adding shading layer, protective layer, adopting double gate structure, designing compensation circuit and other measures. Keywords IGZO TFT, IGZO Target, Stability, Component InGaZnO靶材和薄膜的研究进展 陆映东1,黄誓成1,梁盈祥1,莫曼2,方志杰2* 1广西晶联光电材料有限责任公司,广西柳州 2广西科技大学理学院,广西柳州 收稿日期:2019年4月24日;录用日期:2019年5月9日;发布日期:2019年5月16日 摘要 对In-Ga-Zn-O (IGZO)材料推广应用过程中可能的技术阻碍进行了分析,包括IGZO的成分分析、IGZO靶材制备技术分析、IGZO-TFT (IGZO薄膜晶体管)稳定性分析等。通过调节IGZO中氧化物的成分比例,可

高分子膜材料的制备方法

高分子膜材料的制备 方法 xxx级 xxx专业xxx班 学号:xxxxxxx xxx

高分子膜材料的制备方法 xxx (xxxxxxxxxxx,xx) 摘要:膜技术是多学科交叉的产物,亦是化学工程学科发展的新增长点,膜分离技术在工业中已得到广泛的应用。本文主要介绍了高分子分离膜材料较成熟的制膜方法(相转变法、熔融拉伸法、热致相分离法),而且介绍了一些新的制膜方法(如高湿度诱导相分离法、超临界二氧化碳直接成膜法以及自组装制备分离膜法等)。 关键词:膜分离,膜材料,膜制备方法 1.引言 膜分离技术是当代新型高效的分离技术,也是二十一世纪最有发展前途的高新技术之一,目前在海水淡化、环境保护、石油化工、节能技术、清洁生产、医药、食品、电子领域等得到广泛应用,并将成为解决人类能源、资源和环境危机的重要手段。目前在膜分离过程中,对膜的研究主要集中在膜材料、膜的制备及膜过程的强化等三大领域;随着膜过程的开发应用,人们越来越认识到研究膜材料及其膜技术的重要性,在此对膜材料的制备技术进行综述。 2.膜材料的制备方法

2.1 浸没沉淀相转化法 1963年,Loeb和Sourirajan首次发明相转化制膜法,从而使聚合物分离膜有了工业应用的价值,自此以后,相转化制膜被广泛的研究和采用,并逐渐成为聚合物分离膜的主流制备方法。所谓相转化法制膜,就是配置一定组成的均相聚合物溶液,通过一定的物理方法改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,最终转变成一个三维大分子网络式的凝胶结构。相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为一下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法和浸没沉淀相转化法。 2.1.1 浸没沉淀制膜工艺 目前所使用的膜大部分均是采用浸没沉淀法制备的相转化膜。在浸没沉淀相转化法制膜过程中,聚合物溶液先流延于增强材料上或从喷丝口挤出,而后迅速浸入非溶剂浴中,溶剂扩散进入凝固浴(J2),而非溶剂扩散到刮成的薄膜内(J1),经过一段时间后,溶剂和非溶剂之间的交换达到一定程度,聚合物溶液变成热力学不稳定溶液,发生聚合物溶液的液-液相分离或液-固相分离(结晶作用),成为两相,聚合物富相和聚合物贫相,聚合物富相在分相后不久就固化构成膜的主体,贫相则形成所谓的孔。 浸入沉淀法至少涉及聚合物/溶剂/非溶剂3个组分,为适应不同应用过程的要求,又常常需要添加非溶剂、添加剂来调整铸膜液的配方以及改变制膜的其他工艺条件,从而得到不同的结构形态和性能的膜。所制成的膜可以分为两种构型:平板膜和管式膜。平板膜用于板

膜材料发展前景与展望

膜材料发展前景与展望 一、国内外经济对膜产业的重大需求 近几十年发展起来的膜技术是以具有选择透过性的膜材料作为核心,在膜两侧推动力下,实现混合物分离、提纯、浓缩的分离技术。与过滤、精馏、萃取、蒸发等传统分离技术相比,膜技术具有能耗低、分离效率高、设备简单、无相变、无污染等优点,因此被称为新型高效分离技术。作为一种高新技术,膜技术并不是高不可攀的,实际上,它就在我们身边。比如,随处可购买到的纯净饮用水绝大部分采用膜技术净化得到;为保持乳品的营养价值及水果的风味,牛奶、酸奶、奶酪等也可以采用膜技术进行除菌、浓缩及杂质去除。 在21世纪的多数工业中,膜技术将扮演重要角色,在水资源、能源、环境、传统产业改造等领域发挥重大作用。 在缓解水资源短缺方面,预计到2050年,我国缺水总量将达4000亿m3,因缺水而导致的工业总产值损失大约2000亿元,农业总产值损失大约1500亿元。膜法海水淡化技术、膜法水质净化技术、膜及其集成技术将成为解决我国北方资源性缺水、南方水质性缺水和城市缺水的有效手段。 在化工与石油化工领域,分离过程能耗占到了总能耗的70%左右,分离效率低还导致了严重的环境污染问题。膜分离技术可以高效低能耗地实现高精度分离,是过程工业节能降耗的共性技术之一。譬如,膜法精密过滤代替蒸发,可节能40%以上,减少溶剂消耗量30%以上;膜法渗透汽化技术代替精馏,进行有机物脱水,可节能50%

以上;膜技术是过程工业减排的关键支撑技术,采用膜法处理油田回注水、焦化废水等,可实现工业废水循环利用,减少废水排放量;采用膜法可以实现废酸、废碱资源化利用,实现废液零排放。 此外,膜技术还是改造传统产业、推进相关行业技术进步的高新技术,可以说,膜技术的发展得到了全球范围的高度重视,美国、日本、欧洲等多国政府将膜技术作为21世纪高新技术进行研究与开发,制定了相应的研究开发计划,促进了膜技术和产业的强劲发展。我国政府对膜技术的研究和开发同样十分重视,自“六五”以来,已连续六个五年计划都把膜技术作为重点项目进行支持。2010年出台《国务院关于加快培育和发展战略性新兴产业的决定》将高性能膜材料列入战略性新兴产业,为膜技术和膜产业的自身发展,膜应用市场的培育带来了前所未有的机遇。 经过5O多年的发展.中国膜产业逐渐走向成熟。特别是近20年来,中国膜产业高速增长,总产值从1993年2亿元人民币上升到20O8年200亿元(膜行业总产值是指膜制品、膜组件、膜附属设备及相关工程的总值,膜制品与膜组件是整个行业的核心)。 在21世纪的许多工业中,都将膜技术的重要性提升到了战略高度。2009年我国膜产业总产值约240亿元,2010年约300亿元。按照目前年均30%的增幅,未来5年我国膜产业有望突破1000亿元。可以预见,膜技术将迎来产值大幅增加的黄金十年,它所带动的相关产业产值总量更是不可估量。膜技术将在水资源、能源、环境、传统产业改造等领域发挥重大作用。

二氧化钛薄膜的研究进展(2-24)

二氧化钛薄膜的研究进展 引言 TiO2是一种性能稳定的半导体材料,具有氧化活性高,对人体无毒害、成本低和无污染等特点,在许多领域有广泛的用途。TiO2薄膜具有良好的化学稳定性、电学性能、优良的光催化特性和亲水性,使其在污水处理、空气净化、电子材料、光学材料、生物材料和金属表面防护等方面呈现出巨大应用潜力。目前,TiO2薄膜的制备方法有很多,大体可以分为两大类:物理法和化学法。物理法主要是利用高温产生的物质蒸发或电子、离子、光子等高能粒子的能量所造成的靶物质溅射等方法,在衬底上形成所需要的薄膜;化学法是利用化学反应在基片上形成薄膜的方法。[1] 制备方法 1 溶胶-凝胶法 溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。溶胶-凝胶法制备TiO2薄膜一般以钛醇盐及其相应的溶剂为原料,加入少量水和络合剂,经搅拌和陈化后形成溶胶,然后利用浸渍-提拉法、旋转涂层或喷涂等方法涂在基片表面,经过焙烧后形成薄膜。常用的钛醇盐主要有:钛酸乙酯、钛酸四异丙酯、钛酸丁酯、钛酸四丁酯、四氯化钛和三氯化钛等等。 姚敬华等[2]人以钛白粉厂价格低廉的偏钛酸为原料,采用溶胶-凝胶法,结合微乳化技术和共沸蒸馏的工艺路线,制备了纳米锐钛矿型TiO2粉体。用电镜(TEM)及X射线衍射(XRD)技术进行了表征。结果表明:TiO2结晶良好,分布均匀,无团聚现象。将一定量偏钛酸和NaOH按一定量比混合,再按一定固液比用水稀释,搅拌均匀后转入蒸馏瓶中,在沸腾状态下回流2 h后转入烧杯.在搅拌条件下,缓慢加入一定体积的浓硝酸至沉淀溶解,得到浅白色半透明状溶液。在此溶液中加入一定体积的8%DBS溶液和二甲苯,搅拌30 min静置,液体分为3层(3相),取中间相进行蒸馏,至馏出液中不分层为止,过滤,将滤渣在80℃烘 4 h后,放入茂福炉,在650℃下灼烧3 h后得纳米TiO2微粒。

非晶硅薄膜太阳电池的研究进展及发展方向

第33卷增刊2012年12月 太阳能学报 ACTA ENERGIAE SOLARIS SINICA Vol.33Suppl Dec., 2012收稿日期:2012-07-24基金项目:国家高技术研究发展(863)计划(2011AA050518);国家重点基础研究发展(973)计划(2012CB934302);上海市科委项目 (11DZ2290303) 通讯作者:李海华(1974—),女,博士、副教授,主要从事微纳电子学与器件制造方面的研究。lihaihua@sjtu.edu.cn 文章编号:0254- 0096(2012)增刊-0001-06非晶硅薄膜太阳电池的研究进展及发展方向 李海华,王庆康 (上海交通大学微纳科学技术研究院,“薄膜与微细技术”教育部重点实验室、“微米纳米加工技术”国家级重点实验室,上海200240) 摘要:介绍了非晶硅薄膜太阳电池的最新研究进展,微纳光学结构和金属表面等离子体特性引入到非晶硅薄膜 太阳电池可大大降低薄膜厚度和提高光电转换效率。叠层串联的非晶硅太阳电池及非晶硅和多晶硅、单晶硅组成的异质结结构可增加宽带太阳光谱吸收范围,提高光电转换效率,是非晶硅薄膜电池的发展方向。关键词:非晶硅;太阳电池;叠层;微纳结构;异质结中图分类号:TM615 文献标识码:A 0引言 太阳能是可再生能源领域中最具发展前景的资 源。作为太阳能利用的重要组成部分,光伏发电是一种清洁的、用之不竭的可再生绿色新能源。利用太阳电池可以无任何材料损耗地将太阳能转换为人 类可利用能量的最高级形式— ——电能。太阳电池的应用可解决人类社会发展的能源需求方面的3个问 题:开发宇宙空间时, 利用太阳能提供持续可用地即时转化电能;解决目前地面能源面临的矿物燃料资 源减少与环境污染的问题;日益发展的消费电子产品随时随地的供电问题等。特别是太阳电池在发电 过程中不会给人们带来任何噪声、 辐射和污染,与其他形式的可再生能源(如风力发电)相比,由于不存 在任何可动的部分,所以系统稳定性高,维护成本相对较低;在使用中不释放包括CO 2在内的任何气 体, 这些对满足能源需求、保护生态环境、防止地球温室效应具有重大意义。 制作太阳电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电转换反应,根据所用材料的不同,太阳电池可分为:1)硅太阳电池;2)以无机盐如砷化镓Ⅲ-Ⅴ化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3)功能高分子材料制备的太阳电池;4)纳米晶太阳电池等。不论以何种材料来制作电池,对太阳电池材料的一般要求有:半导体材料的禁带不能太宽;要有较高的 光电转换效率;材料本身对环境不造成污染;材料便 于工业化生产且材料性能稳定。 基于以上几个方面考虑,硅是最理想的太阳电池材料,这也是太阳电池以硅材料为主的主要原因。目前,硅基薄膜太阳电池因其成本低、质量轻、转换 效率较高、 便于大规模生产,而具有较大的优势,从而成为国际上研究最多,发展最快的薄膜电池,也是 目前唯一实现大规模生产的薄膜电池。本文简要地综述了非晶硅太阳电池的国内外现状和最新研究进展,并讨论了非晶硅太阳电池的发展及趋势。 1国内外产业现状 非晶硅(a-Si )薄膜太阳电池虽然早已出现[1],但由于光电转换效率低、衰减率(光致衰退率)较高等问题,一直制约其发展。随着其技术的不断进步, 光电转换效率得到迅速提高[2] 。传统的晶硅太阳电池利用纯硅锭切割而成的硅片将光转换为电流。因为晶硅价高且晶片脆,因此太阳电池模块的加工生产过程需要特殊处理。且该种电池需要封装和其他组件,使得晶硅模块价格昂贵,但其工作寿命达20 25a ,能效为14% 23%。非晶硅薄膜太阳电池为第二代产品,有望实现更低的成本,大多采用连 续性卷对卷生产工艺[3] ,而晶硅电池采用分批生产工艺。虽然仍与晶体硅电池相比存在差距,但其用料少、工艺简单、能耗低,成本有一定优势;尤其因为其沉积分解温度低,可在玻璃、不锈钢板、陶瓷板、柔

薄膜材料的应用与发展

薄膜材料的应用与发展 薄膜材料的发展以及应用,薄膜材料的分类,如金刚石薄膜、铁电薄膜、氮化碳薄膜、半导体薄膜复合材料、超晶格薄膜材料、多层薄膜材料等。各类薄膜在生产与生活中的运用以及展望。 1 膜材料的发展 在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。 自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。生物体生命现象的重要过程就是在这些表面上进行的。细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。细胞膜的这些结构和功能带来了生命,带来了神奇。 2 膜材料的应用 人们在惊叹细胞膜奇妙功能的同时,也在试图模仿它,仿生一直以来就是材料设计的重要手段,这就是薄膜材料。它的一个很重要的应用就是海水的淡化。虽然地球上70%的面积被水覆盖着,但是人们赖以生存的淡水只占总水量的2.5%~3%,随着人口增长和工业发展,当今世界几乎处于水荒之中。因此将浩瀚的海水转为可以饮用的淡水迫在眉睫。淡化海水的技术主要有反渗透法和蒸馏法,反渗透法用到的是具有选择性的高分子渗透膜,在膜的一边给海水施加高压,使水分子透过渗透膜,达到膜的另一边,而把各种盐类离子留下来,就得到了淡水。反渗透法的关键就是渗透膜的性能,目前常用有醋酸纤维素类、聚酰胺类、聚苯砜对苯二甲酰胺类等膜材料.这种淡化过程比起蒸法法,是一种清洁高效的绿色方法。 利用膜两边的浓度差不仅可以淡化海水,还可以提取多种有机物质。工业生产中,可用膜法过滤含酚、苯胺、有机磺酸盐等工业废水,膜法过滤大大节约了成本,有利于我们的生存环境。 膜的应用还体现在表面化学上面。在日常生活中,我们会发现在树叶表面,水滴总是呈圆形,是因为水不能在叶面铺展。喷洒农药时,如果在农药中加入少量的润湿剂(一种表面活性剂),农药就能够在叶面铺展,提高杀虫效果,降低农药用量。 更重要的,研究人员还将膜材料用于血液透析,透析膜的主要功能是移除体内多余水份和清除尿毒症毒素,大大降低了肾功能衰竭患者的病死率[1] 3 膜材料的分类 近年来,随着成膜技术的飞速发展,各种材料的薄膜化已经成为一种普遍趋势。 薄膜材料种类繁多,应用广泛,目前常用的有:超导薄膜、导电薄膜、电阻薄膜、半导体薄膜、介质薄膜、绝缘薄膜、钝化与保护薄膜、压电薄膜、铁电薄膜、光电薄膜、磁电薄膜、磁光薄膜等。目前很受人们注目的主要有一下几种薄膜。 3.1金刚石薄膜 金刚石薄膜的禁带宽,电阻率和热导率大,载流子迁移率高,介电常数小,击穿电压高,是一种性能优异的电子薄膜功能材料,应用前景十分广阔。 近年来,随着科技的发展,人们发展了多种金刚石薄膜的制备方法,比如离子束沉积法、磁控溅射法、热致化学气相沉积法、等离子化学气相沉积法等.成功获得了生长速度快、具有较高质量的膜,从而使金刚石膜具备了商业应用的可能。

薄膜流研究进展

薄膜流研究进展 班级:机械工程专硕1班 学号:6160805020 姓名:程帅 摘要:液体在重力作用下以薄层形式沿壁面向下流动,称为液体薄膜流。它具有小流量、小温差、高传热传质系数、高热流密度、结构简单、动力消耗小等独特优点,己作为一项高效传热传质技术在化工、能源、航天、石油、制冷、电子等许多工业领域得到了广泛应用。本文介绍了非牛顿流体层流降膜流、新型薄膜覆盖材料、薄膜流涎机。正是由于实际应用的重要性和迫切性,在液体薄膜流的水动力过程和传热传质特性力一面,近几十年来开展了大量的深入研究。本文通过全面阐述液体薄膜流动和传热特性的研究现状,分析目前研究中存在的问题与不足,为未来研究提供借鉴。 关键词:液体薄膜流、非牛顿流薄膜流、新型薄膜覆盖材料、薄膜流涎机 1.液体薄膜流表面特征 对于液膜沿倾斜壁或垂直管壁向下流动的情形,从实验上观察到三种不同的流动状态:当Re=4T/v<20~30 (T为单位湿周的体积流率,v为流体的运动粘度),流动为层流,膜表面呈平滑状态且膜厚为常数;当2001000~2000,流动呈波动性剧烈的紊流。 在工业应用的雷诺数范围内,降膜呈现出非常不规则的波动表面。对于波峰高度是底层厚度两倍以上,且其周围存在至少一个波长长度的平坦部分的波,称之为孤立波,如图1所示。它起始于粘性底层,具有陡峭的波前和相对平缓的波后,在波后逐渐没入粘性底层。对于波幅是其底层厚度2}5倍的大波,其携带着大部分流动质量,对波内、波与壁面、波与外界的传热传质速率,起着明显的控制作用。一般说来,界面处的波动会在膜内、特别是 在接近界面处将产生良好的混合。实验测量表明,紊流对动量传递的影响与波动的影响相比要小一些。 (a)波峰高度/底层厚度=2.8 (b)波峰高度/底层厚度=3.68 图1不同波峰高度/底层厚度比下的流动特性,R=600 大多数模拟结果显示:在孤立波内存在与主流方向相反的回流区,而在其周围的微波内不存在回流区(图1)。回流区的存在,加快了界面处和膜内冷热流体的混合,在一定程度上加强了传热效果,而且,液体表面波的存在,尤其是大孤立波,可有效地喇氏平均液膜厚度,.这些特征可以从理论上解释在波动膜状态下具有强传热传质速率的机理。

氢化非晶硅_a_Si_H_薄膜稳定性的研究进展

廖乃镘:男,1979年生,博士研究生,从事氢化非晶硅红外敏感薄膜材料研究 Tel :028********* E 2mail :liaonaiman @https://www.doczj.com/doc/d011902606.html, 李伟:通讯联系人,教授,博士生导师 Tel :028********* E 2mail :wli @https://www.doczj.com/doc/d011902606.html, 氢化非晶硅(a 2Si ∶H )薄膜稳定性的研究进展 廖乃镘,李 伟,蒋亚东,匡跃军,李世彬,吴志明 (电子科技大学电子薄膜与集成器件国家重点实验室,成都610054) 摘要 氢化非晶硅(a 2Si ∶H )是一种重要的光敏感薄膜材料,其稳定性的好坏是决定能否应用于器件的重要因 素之一。介绍了a 2Si ∶H 薄膜稳定性的研究进展,论述了a 2Si ∶H 薄膜的稳定性与Si 2Si 弱键的关系,分析了光致衰退效应(S 2W 效应)产生的几种机理,提出了在薄膜制备和后处理过程中消除或减少Si 2Si 弱键以提高a 2Si ∶H 薄膜稳定性的方法。 关键词 氢化非晶硅 稳定性 光致衰退效应 物理模型 稳定化处理 R ecent Progresses on the Stability of H ydrogenated Amorphous Silicon Thin Films L IAO Naiman ,L I Wei ,J IAN G Yadong ,KUAN G Yuejun ,L I Shibin ,WU Zhiming (State Key Laboratory of Electronic Thin Films and Integrated Devices ,U ESTC ,Chengdu 610054) Abstract The a 2Si ∶H thin film is an important light 2sensitive material that has received significant attention nowadays because of its unique properties.The stability of this thin film is a key factor which is fatal in the application of commercial devices.This paper summarizes and commends some researches on the stability of a 2Si ∶H thin films based on recent literature ,and discusses the relationship between the weak bonding of Si 2Si and the stability of the films.It introduces the mechanisms of light 2induced degeneration of a 2Si ∶H thin films and also recommends some methods of film fabrication and post 2treatment techniques in order to reduce the weak bonding of Si 2Si in a 2Si ∶H thin films. K ey w ords a 2Si ∶H ,stability ,light 2induced degeneration ,physical model ,stabilization treatment 0 前言 氢化非晶硅(a 2Si ∶H )薄膜具有光吸收率高、电阻温度系数 (TCR )相对较大(1.8~8%/K )[1]、禁带宽度可控、可大面积低 温(<400℃)成膜、基片种类不限、生产工艺较简单、与硅半导体工艺兼容等突出优点,在红外成像、太阳能电池、液晶显示、复印机感光鼓等领域得到快速发展。 众所周知,在无掺杂a 2Si 薄膜中,由四配位Si 原子组成的无规网络具有很高的内应力。为了减小内应力,a 2Si 无规网络中的弱Si 2Si 键有自发断裂倾向,形成三配位的Si 原子和1个悬挂键缺陷。所以,无掺杂的a 2Si 薄膜中的悬挂键密度很高(1018cm -3或更高),电学性能很差,不能满足器件的应用要求。 a 2Si ∶H 中引入的H 原子饱和或部分饱和了a 2Si 薄膜中的悬挂键(DB )缺陷态,使它的DB 密度大大下降(可以降低到(1~5)×1015cm -3),使a 2Si ∶H 薄膜成为一种十分重要的光电材料。然 而,可移动H 的存在也带来了一些不利的影响,如H 原子在a 2 Si ∶H 薄膜中扩散,容易引起弱Si 2Si 键的断裂和H 的聚集,导致悬挂键的移动和悬挂键密度的增加等。事实上,10at %的H (约5×1021cm -3)才能大幅度减少DB 密度,比实际a 2Si ∶H 薄膜中的DB 密度大了1~2个数量级,所以H 在a 2Si ∶H 薄膜中的利用效率是很低的[2]。此外,H 在a 2Si 薄膜中不只是以Si 2H 键方式存在,同时还存在(Si H HSi )n 、分子氢(H 2)及双原子氢化 合物等键合方式,而只有Si 2H 键合方式的H 才对增强红外吸收起重要作用。上述a 2Si ∶H 薄膜中的H 在受到光照后会发生不同的反应,如H 扩散、H 逸出、产生新的复合中心和陷阱中心等,从而改变a 2Si ∶H 中薄膜H 的键合方式、分布状态、含量和悬挂键密度,使a 2Si ∶H 薄膜的光电特性发生变化。 要使a 2Si ∶H 材料在器件上得到广泛应用,就要求它具有低的DB 密度和稳定的光电特性(长时间使用后性能不变)。但是,由于光致衰退效应(即S 2W 效应)的存在,会使基于a 2Si ∶H 薄膜材料的器件性能降低甚至失效,这是a 2Si ∶H 器件化应用的重大障碍之一。本文总结了近年来a 2Si ∶H 薄膜材料稳定性的研究进展,分析了S 2W 效应产生的机理及消除或减小这种效应的方法。 1 S 2W 效应机理及物理模型 a 2Si ∶H 薄膜经较长时间的强光照射或电流通过,在其内 部将产生缺陷而使薄膜的使用性能下降,称为Steabler 2Wronski 效应[3]。这是制约a 2Si ∶H 薄膜应用的主要原因。只有正确理解S 2W 效应的机理,才能解决好a 2Si ∶H 薄膜的稳定性问题。对S 2W 效应的起因,至今仍有不少争议,造成衰退的微观机制 也尚无定论,成为迄今国内外非晶硅材料研究的热门课题。总的看法认为,S 2W 效应起因于光照导致在带隙中产生了新的悬挂键缺陷态(深能级),这种缺陷态会影响a 2Si ∶H 薄膜材料的

薄膜材料与技术

薄膜技术在能源材料中的应用——薄膜太 阳能电池 一概述 能源和环境是二十一世纪面临的两个重大问题,据专家估算,以现在的能源消耗速度,可开采的石油资源将在几十年后耗尽,煤炭资源也只能供应人类使用约200年。太阳能电池作为可再生无污染能源,能很好地同时解决能源和环境两大难题,具有很广阔的发展前景。照射到地球上的太阳能非常巨大,大约40 min照射到地球上的太阳能就足以满足全球人类一年的能量需求。因此,制备低成本高光电转换效率的太阳能电池不仅具有广阔的前景,而且也是时代所需。 太阳能电池行业是21世纪的朝阳行业,发展前景十分广阔。在电池行业中,最没有污染、市场空间最大的应该是太阳能电池,太阳能电池的研究与开发越来越受到世界各国的广泛重视。 太阳能电池种类繁多,主要有硅太阳能电池、聚光太阳能电池、无机化合物薄膜太阳能电池、有机薄膜太阳能电池、纳米晶薄膜太阳能电池和叠层太阳能电池等几大类[1]。 二薄膜太阳能电池。 1、薄膜硅太阳能电池 薄膜硅太阳能电池(硅膜厚约50μm)的出现,相对晶体硅太阳能电池,所用的硅材料大幅度减少,很大程度上降低了晶体硅太阳能电池的成本。薄膜硅太阳能电池主要有非晶硅(a—Si)、微晶硅(μc—Si)和多晶硅(p-Si)薄膜太阳能电池,前两者有光致衰退效应,其中μc—Si薄膜太阳能电池光致衰退效应相对较弱但μc-Si薄膜沉积速率低(仅1.2 nm/s) ,光致衰退效应致使其性能不稳定,发展受到一定的限制,而后者则无光致衰退效应问题,因此是硅系太阳能电池

的发展方向[1]。 太阳能电池是制约太阳能发电产业发展的瓶颈技术之一。目前主要的研究工作集中在新材料、新工艺、新设计等方面,其目的是为了提高电池转换效率和降低电池制造成本。制造太阳能电池的材料主要有单晶硅、多晶硅、非晶硅以及其他新型化合物半导体材料,其中非晶硅属直接转换型半导体,光吸收率大,易于制成厚度0.5微米以下、面积l平方米以上的薄膜,并且容易与其他 原子结合制成对近红外高吸收的非晶硅锗集层光电池,这是目前的主攻方向之一;另一种是非晶硅和多晶硅混合薄膜材料,它转换率高、用材省,是新世纪最有前途的薄膜电池之一。 2、无机化合物薄膜太阳能电池 选用的无机化合物主要有CdTe,CdS,GaAs,CulnSe2(CIS)等,其中CdTe的禁带宽度为1.45 eV(最佳产生光伏响应的禁带宽度为1.5 eV),是一个理想的半导体材料,截止2004年,CdTe电池光电转化效率最高为16.5%;CdS的禁带宽度约为2.42 eV,是一种良好的太阳能电池窗口层材料,可与CdTe、SnS和CIS等形成异质结太阳能电池;GaAs的禁带宽度为1.43 eV,光吸收系数很高,GaAs单结太阳电池的理论光电转化效率为27%,目前GaA/Ge单结太阳电池最高光电转换效率超过20%,生产水平的光电转换效率已经达到19~20%,其与GalnP组成的双节、三节和多节太阳能电池有很大的发展前景;CIS薄膜太阳能电池实验室最高光电转化效率已达19.5%,在聚光条件下(14个太阳光强),光电转化效率达到21.5%,组件产品的光电转化效率已经超过13%;CIS 薄膜用Ga部分取代In,就形成Culn1-x Ga x Se2 (简称CIGS)四元化合物,其薄膜的禁带宽度在1.04~1.7 eV范围内可调,这为太阳能电池最佳禁带宽度的优化提供了机会,同时开发了两种新的材料,用Ga完全取代In形成CuGaSe2,用S完全取代Se形成CulnS2,以备In、Se资源不足时可以采用。但是,Cd和As是有毒元素,In和Se是稀有元素,严重地制约着无机化合物薄膜太阳能电池的大规模生

超疏水高分子薄膜的研究进展 (1)

超疏水高分子材料的研究进展 摘要:近十年来,由于超疏水表面在自清洁、防冰冻、油水分离等方面的广泛应用前景,超疏水高分子薄膜的研究受到了极大的关注。本文综述了超疏水高分子材料的制备方法,并对超疏水高分子材料研究的未来发展进行了展望。 关键词:超疏水,高分子材料,自清洁 Developments of super-hydrophobic Ploymeric material Abstract: In the last decades, super-hydrophobic surface has aroused great interest in both academic and industrial fields owing to their potential application in self-cleaning, anti-icing/fogging, water/oil separation, et al. In this paper, the recent development in super-hydrophobic polymeric membrane is reviewed from both preparation and technique, and the future development direction of the superhydrophobic polymeric surface is also proposed in the end. Key Words: super-hydrophobic, polymeric membrane, self-cleaning. 引言 自然界是功能性表面的不竭源泉。植物叶表面的自清洁效果引起了人们的很大的兴趣,在以荷叶为典型代表的自然超疏水表面上充分体现了这种自清洁性质,因此称之为“荷叶效应”[1]。图 1.1中展示的是水滴和汞在荷叶表面的宏观与微观的照片[2]。植物叶表面的微观结构产生自清洁性这一发现不仅为人工构筑超疏水表面提供的灵感,而且植物叶本身也是一个优异的模板,通过对其结构的复制,可望得到具有类似于植物叶表面微结构及自清洁性能的表面。通过对生物体表面结构仿生可以实现结构和性能的完美统一[3-12]。 随着高分子材料在日常生活中的广泛应用,针对高聚物材料存在的表面问题,例如表面的防污性、湿润性,防冰冻,抗菌性等的研究变得越来越重要,特别是智能高分子材料的性能研究尤为引人注目。由于超疏水材料在自清洁、

非晶硅薄膜研究进展

非晶硅薄膜及其制备方法研究进展 摘要:氢化非晶硅(a-Si:H)薄膜在薄膜太阳能电池、薄膜晶体管、辐射探测和液晶显示等领域有着重要的应用,因而在世界范围内得到了广泛的关注和大量的研究。本文主要介绍了a-Si:H薄膜的主要掺杂类型和a-Si:H薄膜的主要制备方法。 关键词:非晶硅薄膜;掺杂;制备方法;研究进展 Research Progress on a-Si:H Thin Films and Related Preparation Method Abstract:Hydrogenated amorphous silicon (a-Si:H) thin film has attracted considerable attention and been a subject of extensive studies worldwide on account of its important applications such as thin film solar cells, thin film transistors, radiation detectors, and liquid crystal displays based on its good electrical and optical properties. In this paper, the progress research on a-Si:H thin films and related preparation method are reviewed. Key words: a-Si:H thin films; doped; preparation method; research progress 1 引言 氢化非晶硅(a-Si:H)是硅和氢的一种合金,网络中Si-H键角和键长的各种分布打乱了晶体硅晶格的长程有序性,从而使非晶硅具有独特的光电性质。本征a-Si:H薄膜中,一般含有8% ~12%(原子分数)的氢,本征的a-Si材料的带隙宽度Eg约为1.7eV[1-3]。 1976年,美国RCA实验室Carlson和Wronski首次报道了非晶硅薄膜太阳电池[4],引起普遍关注,全世界开始了非晶硅电池的研制热潮。一般在太阳能光谱可见光波长范围内,非晶硅的吸收系数比晶体硅大将近一个数量级,其本征吸收系数高达105cm-1。而且非晶硅太阳能电池的光谱响应的峰值与太阳能光谱峰值接近,这就是非晶硅材料首先被用于太阳能电池的原因。首先非晶硅材料高的吸收系数,非晶硅吸收层的厚度可以小于1μm就可以充分的吸收太阳能,这个厚度不及单晶硅电池厚度的1%,可以明显的节省昂贵的半导体材料;其次硅基薄膜电池采用低温沉积工艺技术(200℃左右),这不仅可节能降耗,而且便于采用玻璃、塑料等廉价衬底;最后硅基薄膜采用气体的辉光放电分解沉积而成,通过改变反应气体组分可方便地生长各种硅基薄膜材料,实现pin和各种叠层结构的电池,节省了许多工序,非晶硅薄膜的这些优点都很大程度上促进了非晶硅太阳能电池的开发与研究[5-7]。 但是,非晶硅材料自身存在一些问题,由于薄膜内部存在大量的缺陷态(主要是悬挂键),

第六章 薄膜材料及其应用

第六章 薄膜材料及其应用(1) 主要内容 一、超硬薄膜 二、智能薄膜 三、纳米薄膜 四、三族元素氮化物薄膜 五、巨磁和庞磁薄膜 六、铁电薄膜 七、红外敏感薄膜 八、人工周期调制材料 一、超硬薄膜 材料的硬度不仅取决于材料的宏观性质(弹性和塑性),而且 也取决于材料的微观性质(原子间的相互作用力)。合成超硬材料对于了解原子间相互作用的微观特性与宏观特性间的基本关系,以及纯技术的应用都十分重要。 超硬材料(包括已有超硬材料和理论预言超硬材料)可以分为三类: 1. 由周期表中第2、3周期的轻元素所形成的共价和离子-共价化合物; 2. 特殊共价固体,包括各种结晶和无序的碳材料; 3. 与轻元素形成的部分过渡金属化合物,如:硼化物、碳化物、氮化物和氧化物。 超硬材料的特点 1. 超硬材料在正常条件下大多是亚稳相; 2. 绝大多数超硬材料都是共价型或离子型固体; 3. 过渡金属化合物超硬材料具有共价键和金属键; 4. 超硬材料在元素周期表中都由位于中间位置的主族元素组成,这些元素具有最小离子、共价或金属半径,且固态中的原子间具有最大的结合能; 5. 元素中电子壳层的周期填充使固体中的原子半径或分子体积呈规律性变化; 6. 元素固相在变化时,如具有最小摩尔体积,则具有最大的体弹性模量、最大的结合能和最高的熔点。满足Aleksandrov 关系: k 为体弹性模量,Vm 为摩尔体积,Ec 为结合能 对单一元素的固体, 绝大多数在1-4; (一)由原子序数较小的元素形成的超硬化合物 这些超硬材料由位于第2、3周期中的元素如:铍、硼、碳、氮、氧、铝、硅、磷 的化合物组成。它们能形成三维刚性点阵、原子间具有较强的共价键。典型的离子-共价化合物例子是氧化物,如:刚玉Al2O3,超石英(SiO2的高压相)。 这些超硬化合物主要有:BeO 、B6O 、P2O5、Al-B-O 系统、CNx 、SiC 、Be2C 、Si3N4及其它硼碳化合物、硼磷化物、硼硅化物等。 (二)碳材料 由于C 原子间存在不同类型的化学键合,所以C 存在大量的同素异构体和无序相。如 sp3 C 杂化键合形成的金刚石,是最硬的的已知材料。所以可将碳划到特殊材料。 单晶金刚石的维氏硬度达70-140GPa 。另一sp3 C 杂化键合形成的六方金刚石具有与金刚石类似的力学性质。近年来,利用各种沉积技术,制备了高sp3 键合度的非晶碳膜,也称类金刚石薄膜。它的显微硬度达到70GPa 。足球烯C60是有C 的sp2 原子键合形成m c V E k ∝160.5/E kV c m -≡

功能型聚酰亚胺薄膜研究进展

引言聚酰亚胺(PI )薄膜是以酰亚胺环为结构特征的杂环高分子材料,在200~400℃内具有优异的力学性能、电气性能、耐热性和耐辐射性能等,是一类综合性能优良的绝缘材料[1]。随着航空、轨道交通以及电子信息等诸多技术领域日新月异的发展,市场和产品的不断细分以及新兴研究领域的开拓,传统的PI 膜已经不能满足市场的多元化需求。为此,国内外研究人员一方面通过特殊单体来制备具有特殊功能的PI 膜,另一方面通过添加功能型纳米填料来改性传统PI 膜,以满足不同领域对PI 膜的性能要求,这两种手段都取得了一定的进展[2]。1 透明聚酰亚胺薄膜 传统的PI 膜,例如杜邦公司的Kapton H 系列或者钟渊化学公司的Apical 系列,均为均苯型聚酰亚胺薄膜,可见光透过率低,在400nm 波长附近即被100%吸收,因此薄膜呈棕黄色。目前随着光电通讯领域迅速的发展,光电封装材料、光伏材料、光波导材料以及液晶显示器领域的取向膜材料都迫切需要光学性能好、介电常数低、热稳定性好以及 力学性能优异的薄膜材料,越来越多的人开始关注 透明聚酰亚胺薄膜的研发。 张丽娟等[3]通过自行合成含氟单体3-双(4-氨基-2-三氟甲基苯氧基)苯(DARes-2TF ),与二酐反应并涂膜、热亚胺化,得到无色透明聚酰亚胺薄膜,其吸水率仅为0.66%,具有良好的疏水性;初始分解温度511.9℃,失重5%时的温度为522.5℃,948.8℃时仍有超过50%的残余,说明耐热性能较好;紫外截至波长365nm ,420nm 处的透光率均超过80%。表明材料在相当宽的光谱范围内具有较高的透明性。 刘金刚等[4]分别使用两种含硫芳香足二胺单体4,4′-双(4-氨基苯硫基)二苯硫醚(3SDA )、2,7-双(4-氨基苯硫基)噻蒽(APTT )与脂环族二酐单体2,3,5-三羧基环戊烷基乙酸二酐(TCAAH )反应并制膜,得到两种半脂环透明聚酰亚胺薄膜,在400~700nm 波长范围内具有优良的透明性,在400nm 处的透光率超过85%,但是原材料价格昂贵,难以规模化生产。 B K Chen 等[5]使用不同比例的1,4-双(4-氨基-2-三氟甲基苯氧基)苯(BATB )和2,7-双(4-氨基苯氧基)萘(BAPN )两种二胺与六氟双酚A 二酐反应,并热亚胺化得到一种透明的聚酰亚胺,其介电常数较低,而且随着含氟基团含量的提高,聚酰亚 —————————————收稿日期:2012-11-28 修回日期:2013-03-02 作者简介:廖波(1982-),男(汉族),湖南岳阳人,硕士,主要从事高分子材料的合成及应用研究。 功能型聚酰亚胺薄膜研究进展 廖 波,张步峰,王文进,田苗,周 升 (株洲时代电气绝缘有限责任公司,湖南株洲 412100) 摘要:概述了功能型聚酰亚胺(PI )薄膜的主要种类和特点,分别介绍了透明聚酰亚胺薄膜、耐电晕聚酰亚胺薄膜、黑色聚酰亚胺薄膜、导电聚酰亚胺薄膜和高导热聚酰亚胺薄膜的研究进展,并对功能型薄膜将来的发展趋势进行了展望。关键词:功能型;聚酰亚胺薄膜;纳米;研究进展中图分类号:TM215.3文献标志码:A 文章编号:1009-9239(2013)05-0021-04 Research Progress of Functional Polyimide Film Liao Bo,Zhang Bufeng,Wang Wenjin,Tian Miao,Zhou Sheng (Zhuzhou Times Electric Insulation Co.,Ltd.,Zhuzhou 412100,China ) Abstract :The main types and characteristics of functional polyimide films were summarized,and the re-search progress of transparent polyimide film,corona-resistance polyimide film,black polyimide film,elec-trically conductive polyimide film and high thermal conductive polyimide film was reviewed,and then the future development trend of functional polyimide films was prospected.Key words :functional;polyimide film;nano;research progress

相关主题
文本预览
相关文档 最新文档