当前位置:文档之家› EMC training-塑封树脂技术

EMC training-塑封树脂技术

环氧塑封料在半导体封装中的应用

环氧塑封料在半导体封装中的应用 发表时间:2018-04-19T12:44:39.070Z 来源:《防护工程》2017年第35期作者:沈国芳 [导读] 最终确定了环氧塑封,这种材料具有体积小巧,结构简单和耐化学腐蚀的优点,所以应用范围越来越广。 江苏长电科技股份有限公司江苏江阴 214400 摘要:当前,我国微电子封装材料行业,绝大邠的封装材料都是环氧塑封,因为这种材料特有的成本低,工艺简单,适合量化等优点的存在,所以在各种半导体器件和集成电路中都有极其广泛的使用,这也就意味着环氧塑封材料出现在了汽车,军事,建筑等等各个领域,目前,环氧塑封材料正在迎来其空前的发展机遇,但是,由于其当前的技术水平还不能够完全满足封装的要求,所以也是在面对着极大的挑战,如何抓住机遇,迎接挑战是环氧塑封需要解决的一大问题。 关键词:环氧塑封;半导体;分装 1.前言 自从上世纪50年代以来,国内外半导体工艺逐渐开始发展,随之而来的是与之相关的工艺例如集成电路等迅速开始发展,传统的封装工艺和陶瓷金属等封装材料由于技术水平不足以及成本高昂等原因已经不能够满足工业化快速发展的需求,所以人们开始考虑能不能用别的材料来代替,这时候,塑料进入了研究人员的眼帘,在经过不断地筛选和淘汰以后,最终确定了环氧塑封,这种材料具有体积小巧,结构简单和耐化学腐蚀的优点,所以应用范围越来越广。 2.环氧塑封材料的性能 作为一种新型材料,能够在半导体材料封装上具有广泛应用,是因为其具有独特的性能,下面将从这种材料的导热性能,化学性能和物理性能三方面来简要介绍环氧塑封的独特性能。 2.1导热性能 我们都知道,评价一种材料的导热性能,主要的评价指标是导热系数,一般而言,导热系数越大意味着这种材料的散热性能越好,对于环氧树脂这种材料,其导热系数的影响因素主要是树脂基体和材料中的填充物的种类及数量等,作为半导体材料的包装材料,意味着我们对于环氧树脂材料的导热性能要求更高,因为一旦导热性能不好,意味着半导体器件表面就极易开裂,进而使采用这种材料的部件发生故障,给使用方带来安全隐患,所以你,环氧材料的导热性能必须得有提高。 2.2化学性能 环氧树脂的制造主要是通过化学合成,对于合成以后的杂质,进行提纯主要是利用相对密度的不同采用化学萃取的方法,对于分离后材料纯度的测定,主要是通过测定其PH值以及其中的Cl-和Na+的含量来判断,而后者是重点,在环氧树脂的成品中,应该尽可能的减少这两种离子的含量,因为这两种离子的含量如果过多,那么一旦集成电路的周围环境比较潮湿,那么这两种离子就会在电路表面形成一个个的化学电解池,使得芯片上的铝线遭到电化学腐蚀,最终导致元件失去效果。 2.3物理性能 考察环氧塑封材料的物理性能,主要是通过以下几个方面来表现的:首先是颜色,环氧塑封材料在颜色上有许多不同的选择,一般会根据用户的需求来选择,常见的一般有红色,黑色和绿色,其中最常用的是黑色;其次是材料成型时的凝胶时间,这是指在一定的温度下,环氧塑封材料在熔融的流动状态下到不再流动的状态所需要花费的时间,这个数据反映的是环氧塑封材料在成型时的填充时间,按照行业规定,一般在10秒到30秒之间就可以视为合格,有极少数的特殊场合甚至要求有更长的凝胶时间;最后是材料的熔融粘度,熔融粘度是指在150±1度条件下的熔化粘度,一般用流动仪即可测定,一般的规律是熔融粘度越大,流动长度就越长,所以在工业上进行实际运用时,应该根据不同的使用环境来选择合适的粘度,以防出现冲断金丝等故障的发生,确定仪器的使用安全。 3.对环氧塑封材料目前的缺陷的解决措施 针对目前的环氧塑封材料,由于发展的时间并不是很长,所以还存在有许多的缺陷,当前产生封装方面的缺陷的原因有很多,主要是来自于封装工艺和模具,压机等原因,下面将就几种主要缺陷产生的原因及其解决方法来进行探讨。 3.1脱模性差 一般,在环氧树脂进行封装时需要用到磨具,而当前的脱模工艺并不是十分的完善,导致封装还有缺陷,所以,为了解决这个问题,需要我们对脱模剂进行合理的选择,对脱模材料的原料配比进行相应的优化,提高材料自身的脱模性能,另一方面呢,也需要我们在封装工艺方面进行相应的改进,比如说提高磨具内部的温度,延长材料从流动性转变为固体的时间,最后,需要我们增加相应的工艺验证,从而进一步确定模具自身的工艺斜度的工艺合理性,增加模具的在使用准确性。 3.2塑封件内部的质量问题 在塑封件内部本身,经常会出现一些质量问题,例如塑封件内部的引线断裂,或者内部部件断开等,而这种材料自身的质量问题是需要我们坚决避免的,所以为了能够使材料拥有更高的质量,首先我们需要改进环氧塑脂这种材料本身的特性,为了实现这个目的,我们可以改善进行环氧塑封料的原材料,挑选更加适合我们使用的优质原材料,其次需要我们改进材料的流动性,降低其熔融粘度,最后,需要我们在封装时降低模具内部的温度,并且降低注料时的速度,尽量保证注塑压力的稳定以及注塑速度的一致性。 3.3填充材料装不满 在环氧树脂材料方面,经常会出现塑封封不满这种填充性问题,主要的解决方法还是对原材料环氧树脂,固化剂和其他填充材料,对他们填充时的比例进行优化,争取能够提高流动性,降低粘度,并且在装填时放慢速度,改变工艺上的预热时间,对一系列方案进行对比试验,挑选最优方案,努力改善这一问题。 4.发展前景 近年来,半导体技术取得了极大的发展,一方面,通过大型芯片的使用,使得布线更加细密,电路结构更加复杂,另一方面,在电子行业为了配合高密度封装,相应的开发出来了SMD工艺,使得当前的封装趋向于小型化和薄型化,此外,同时还有多引线结构的大型封装出现,都是为了能够满足半导体材料的高功能化和高集成化。另外为了实现这个功能,我们一方面可以优化环氧塑封料的配方设计另外还有以下几种方法可以采用以下几种方法:①对原材料进行分离和纯化,对其中的主要原料比如环氧树脂、酚醛树脂等进行提纯,同时要注意降低原材料的水分含量,最大限度的减少环氧塑封料中Na+和Cl一的含量,从而减轻潮湿条件下对半导体的腐蚀。②不能满足与现状,要

化学功能材料 第七章 环氧塑封料

环氧塑封料 按包封材料分类的封装类型: ?陶瓷封装:气密性封装 ?金属封装:气密性封装 ?塑料封装:非气密性封装, >90%, 民用产品 塑料封装用树脂选择原则: ?优良的介电性能 ?耐热、耐寒、耐湿、耐大气、耐辐射,散热性能好?CTE匹配好,粘结性能好 ?固化收缩率小,尺寸稳定 ?不污染半导体器件表面 ?加工性能好

环氧塑封料的组分与性能 环氧塑封料是由环氧树脂及其固化剂酚醛树脂等组分组成的模塑粉,在热和固化促进剂作用下, 环氧树脂与固化剂发生反应, 产生交联固化作用, 成为热固性树脂。 ?优良的粘结性 ?优异的电绝缘性能 ?机械强度高 ?耐热性、耐化学腐蚀性良好 ?吸水率低 ?成型收缩率低, 成型工艺性能良好 ?应用范围宽

环氧塑封料组成 环氧树脂 固化剂 10-30% 6% 固化促进剂 惰性填充剂 阻燃剂 < 1% 60-90% < 8% 痕量 脱模剂 偶联剂 痕量 着色剂 < 2% < 2.5% < 2% 释放应力添加剂 其它

1. 环氧树脂 ?作为基体树脂将其它成分结合到一起; ?决定塑封料成型时的流动性和反应性; ?决定固化物的机械、电气、耐热性能。 环氧当量是环氧树脂最重要技术指标。 环氧当量低(官能团密度高),交联密度高,Tg 高,塑封料弯曲强度高,耐热性及介电性能好。 若交联密度过高,材料变脆。 选择合适的基质树脂分子量、环氧当量和交 联密度是制备模塑料的关键。

2. 固化剂 与环氧树脂发生化学反应形成交联结构的化合物。 固化剂与环氧树脂共同影响塑封料的流动性、热性能、机械性能、电性能。 环氧交联剂:胺、酸酐、酚类 微电子封装常用:苯酚酚醛树脂、邻甲酚醛树脂 成型性、电学性能、热学性能和抗潮性良好。

环氧塑封料工艺选择和封装失效分析流程

塑封料\环氧塑封料工艺选择和封装失效分析流程 一环氧塑封料的工艺选择 1.1预成型料块的处理 (1)预成型塑封料块一般都储存在5℃-10℃的环境中,必会有不同程度的吸潮。因此在使用前应在干燥的地方室温醒料,一般不低于16小时。 (2)料块的密度要高。疏松的料块会含有过多的空气和湿气,经醒料和高频预热也不易挥发干净,会造成器件包封层内水平增多。 (3)料块大小要适中,料块小,模具填充不良;料块大,启模困难,模具与注塑杆沾污严重并造成材料的浪费。 1.2模具的温度 生产过程中,模具温度控制在略高于塑封料玻璃化温度Tg时,能获得较理想的流动性,约160℃-180℃。模具温度过高,塑封料固化过快,内应力增大,包封层与框架粘接力下降。同时,固化过快也会使模具冲不满;模具温度过低,塑封料流动性差,同样会出现模具填充不良,包封层机械强度下降。同时,保持模具各区域温度均匀是非常重要的,因为模具温度不均匀,会造成塑封料固化程度不均匀,导致器件机械强度不一致。 1.3注塑压力 注塑压力的选择,要根据塑封料的流动性和模具温度而定,压力过小,器件包封层密度低,与框架黏结性差,易发生吸湿腐蚀,并出现模具没有注满塑封料提前固化的情况;压力过大,对内引线冲击力增大,造成内引线被冲歪或冲断,并可能出现溢料,堵塞出气孔,产生气泡和填充不良。 1.4注模速度 注模速度的选择主要根据塑封料的凝胶化时间确定。凝胶化时间短,注模速度要稍快,反之亦然。注模要在凝胶化时间结束前完成,否则由于塑封料的提前固化造成内引线冲断或包封层缺陷。 1.5塑封工艺调整 对工艺调整的同时,还应注意到预成型料块的保管、模具的清洗、环境的温湿度等原因对塑封工序的影响。 2塑封料性能对器件可靠性的影响 2.1塑封料的吸湿性和化学粘接性 对塑封器件而言,湿气渗入是影响其气密性导致失效的重要原因之一。湿气渗入器件主要有两条途径:

环氧塑封料的工艺选择

环氧塑封料的工艺选择 1.1 预成型料块的处理 (1)预成型塑封料块一般都储存在5℃-10℃的环境中,必会有不同程度的吸潮。因此在使用前应在干燥的地方室温醒料,一般不低于16小时。 (2)料块的密度要高。疏松的料块会含有过多的空气和湿气,经醒料和高频预热也不易挥发干净,会造成器件包封层内水平增多。 (3)料块大小要适中,料块小,模具填充不良;料块大,启模困难,模具与注塑杆沾污严重并造成材料的浪费。 1.2 模具的温度 生产过程中,模具温度控制在略高于塑封料玻璃化温度Tg时,能获得较理想的流动性,约160℃-180℃。模具温度过高,塑封料固化过快,内应力增大,包封层与框架粘接力下降。同时,固化过快也会使模具冲不满;模具温度过低,塑封料流动性差,同样会出现模具填充不良,包封层机械强度下降。同时,保持模具各区域温度均匀是非常重要的,因为模具温度不均匀,会造成塑封料固化程度不均匀,导致器件机械强度不一致。 1.3 注塑压力 注塑压力的选择,要根据塑封料的流动性和模具温度而定,压力过小,器件包封层密度低,与框架黏结性差,易发生吸湿腐蚀,并出现模具没有注满塑封料提前固化的情况;压力过大,对内引线冲击力增大,造成内引线被冲歪或冲断,并可能出现溢料,堵塞出气孔,产生气泡和填充不良。 1.4 注模速度 注模速度的选择主要根据塑封料的凝胶化时间确定。凝胶化时间短,注模速度要稍快,反之亦然。注模要在凝胶化时间结束前完成,否则由于塑封料的提前固化造成内引线冲断或包封层缺陷。 1.5 塑封工艺调整 对工艺调整的同时,还应注意到预成型料块的保管、模具的清洗、环境的温湿度等原因对塑封工序的影响。 2 塑封料性能对器件可靠性的影响 2.1 塑封料的吸湿性和化学粘接性 对塑封器件而言,湿气渗入是影响其气密性导致失效的重要原因之一。湿气渗入器件主要有两条途径: ①通过塑封料包封层本体;②通过塑封料包封层与金属框架间的间隙。 当湿气通过这两条途径到达芯片表面时,在其表面形成一层导电水膜,并将塑封料中的Na+、CL-离子也随之带入,在电位差的作为下,加速了对芯片表面铝布线的电化学腐蚀,最终导致电路内引线开路。随着电路集成度的不断提高,铝布线越来越细,因此,铝布线腐蚀对器件寿命的影响就越发严重。 针对上述问题,我们必须要求: λ塑封料要有较高的纯度,Na+、CL离子降至最低; λ塑封料的主要成分:环氧树脂与无机填料的结合力要高,以阻止湿气由本体的渗入; 塑封料与框架金属要有较好的粘接性;λ λ芯片表面的钝化层要尽可能地完善,其对湿气也有很好的屏蔽作用。 2.2 塑封料的内应力 由于塑封料、芯片、金属框架的线膨胀系数不匹配而产生的内应力,对器件密封性有着不可忽视的影响。因为塑封料膨胀系数(20-26E-6/℃)比芯片、框架(-16E-6/℃)的较大,在注模成型冷却或在器件使用环境的温差较大时,有可能导致压焊点脱开,焊线断裂甚至包封

环氧塑封料知识

环氧塑封料知识 一.国外国内塑封料厂家情况 国外:环氧塑封料生产厂家主要集中在日本、美国、韩国、新加坡等国,主要有住友电木、日东电工、日立化成、松下电工、信越化学、东芝,Hysol、Plaskon、Samsung等,现在,环氧塑封料的主流产品是适用于0.35μm-0.18μm特征尺寸集成电路的封装材料,研究水平已经达到0.1μm-0.09μm,主要用于SOP、QFP、BGA、CSP、MCM、SIP等 国内:环氧塑封料厂家总共有8家,分别是汉高华威电子有限公司、北京科化所、成都齐创、浙江新前电子、佛山亿通电子、浙江恒耀电子、住友(苏州)电子、长兴(昆山)电子,台湾长春和日立化成也已经分别在常熟和苏州建厂。现在,国内大规模生产技术能够满足0.35μm-0.25μm技术用,开发水平达到0.13μm -0.10μm,主要应用于SIP、DIP、SOP、PQFP、PBGA等形式的封装。 另外,国内还有部分外资环氧塑封料生产厂家,由于他们依靠国外比较成熟的技术和先进的研发手段,以及强大的实力作为后盾,所以他们的产品主要处在中高档水平,主要应用于QFP、BGA、CSP等比较先进的封装形式以及环保封装领域,基本上占据了国内大部分的中高端市场 二环氧塑封料的工艺选择 1.1 预成型料块的处理 (1)预成型模塑料块一般都储存在5℃-10℃的环境中,必会有不同程度的吸潮。因此在使用前应在干燥的地方室温醒料,一般不低于16小时。 (2)料块的密度要高。疏松的料块会含有过多的空气和湿气,经醒料和高频预热也不易挥发干净,会造成器件包封层内水平增多。 (3)料块大小要适中,料块小,模具填充不良;料块大,启模困难,模具与注塑杆沾污严重并造成材料的浪费。 1.2 模具的温度 生产过程中,模具温度控制在略高于模塑料玻璃化温度Tg时,能获得较理想的流动性,约160℃-180℃。模具温度过高,塑封料固化过快,内应力增大,包封层与框架粘接力下降。同时,固化过快也会使模具冲不满;模具温度过低,模塑料流动性差,同样会出现模具填充不良,包封层机械强度下降。同时,保持模具各区域温度均匀是非常重要的,因为模具温度不均匀,会造成塑封料固化程度不均匀,导致器件机械强度不一致。 1.3 注塑压力 注塑压力的选择,要根据模塑料的流动性和模具温度而定,压力过小,器件包封层密度低,与框架黏结性差,易发生吸湿腐蚀,并出现模具没有注满塑封料提前固化的情况;压力过大,对内引线冲击力增大,造成内引线被冲歪或冲断,并可能出现溢料,堵塞出气孔,产生气泡和填充不良。 1.4 注模速度 注模速度的选择主要根据模塑料的凝胶化时间确定。凝胶化时间短,注模速度要稍快,反之亦然。注模要在凝胶化时间结束前完成,否则由于模塑料的提前固化造成内引线冲断或包封层缺陷。 1.5 塑封工艺调整 对工艺调整的同时,还应注意到预成型料块的保管、模具的清洗、环境的温湿度等原因对塑封工序的影响。 2 塑封料性能对器件可靠性的影响 2.1 模塑料的吸湿性和化学粘接性 对塑封器件而言,湿气渗入是影响其气密性导致失效的重要原因之一。湿气渗入器件主要有两条途径: ①通过塑封料包封层本体;②通过塑封料包封层与金属框架间的间隙。

环氧塑封料MSDS(EC-11)

EPOXY MOLDING COMPOUND MATERIAL SAFETY DATA SHEET 1. Product and Company Identification Product name Epoxy molding compound Synonyms Not applicable Chemical Formula Not applicable Product Codes EC-11 Supplier Information Chang Chun Plastics Co. Ltd. Hsin-Chu Factory Emergency phone numbers 886-3-5981-511 2. Composition / Information on Ingredients Ingredient CAS Number Percent (by weight) silica (SiO2)14808-60-760-90% epoxy resin phenolic resin 29690-82-2 9003-35-4 10-30% 5-20% Antimony trioxide Brominated epoxy resin 1309-64-4 40039-93-8 0-5% 0-5% 3. Hazards Identification

Environmentally Preferred Disposal 14. Transport Information International regulations N ot particular. Not applicable. UN classification number Specific Precautionary Not applicable. Transport Measures and Conditions 15. Regulatory Information Applicable Not applicable. Regulations 16. Other Information NFPA Ratings Not applicable. Not applicable. Label Hazard Warning Literature Not available. References ALL OF THE MSDS DATA ARE FOR REFERENCE ONLY. THE USERS SHOULD JUDGE THE USABILITY BY THEMSELVES.

环氧塑封料的发展现状与未来

环氧塑封料的发展现状与未来 伴随着微电子技术以及微电子封装技术的发展,环氧塑封料作为主要的电子封装材料也得到了快速的发展。环氧塑封料以其高可靠性、低成本、生产工艺简单、适合大规模生产等特点,占据了整个微电子封装材料97%以上的市场。现在,已经广泛地应用于半导体器件、集成电路、消费电子、汽车、军事、航空等各个封装领域。对推动和促进微电子技术以及微电子封装技术的发展,起着越来越重要的作用。应该说,微电子封装材料在电子封装技术的更新换代过程中具有决定性的作用,已经形成了一代整机、一代封装、一代材料的发展模式。所以要发展先进的封装技术,必须首先研究和开发先进的封装材料。 1 环氧塑封料的发展历程 早在20世纪中期,塑料封装半导体器件生产的初期,人们曾使用环氧、酸酐固化体系塑封料用于塑封晶体管生产。但是由于玻璃化温度(Tg)偏低、氯离子含量偏高等原因,而未被广泛采用。1972年美国Morton化学公司成功研制出邻甲酚醛环氧-酚醛树脂体系塑封料,此后人们一直沿着这个方向不断的研究、改进、提高和创新,也不断出现很多新产品。1975年出现了阻燃型环氧塑封料,1977年出现了低水解氯的环氧塑封料,1982年出现了低应力环氧塑封料,1985年出现了有机硅改性低应力环氧塑封料,1995年前后分别出现了低膨胀、超低膨胀环氧塑封料、低翘曲环氧塑封料等。随后不断出现绿色环保等新型环氧塑封料。直到2004年,江苏中电华威公司在国内率先成功研制了不含卤不含锑的绿色环保塑封料,并且能够满足无铅焊料工艺高温回流焊的性能要求。随着环氧塑封料性能不断提高、新品种不断出现,产量也逐年增加。 国内环氧塑封料起步较晚,从20世纪80年代中后期才开始生产,当时仅是作坊式手工操作,年生产仅几十吨,真正大规模生产阶段是1992年,由江苏中电华威公司实施完成"八五"技术改造项目,引进国外第一条自动化生产线,年生产能力从几十吨一下提升到2 000吨以上,实现了第一次跨越式发展。通过十几年的发展,国内塑封料得到长足的发展,目前国内生产规模已达30 000吨左右(仅中电华威公司一家生产规模达12 000吨),产品档次从仅能封装二极管、高频小功率管到封装大功率器件、大规模、超大规模集成电路,封装

环氧塑封料使用指南

环氧塑封料使用指南 病状一:脱膜性差 现象:1、启模时塑封件及料筋不自动出模,需用外力拉力。 2、出模时引线把塑封件拉坏。 病因:1、模具型腔工艺斜度设计不合理(出模斜度偏小) 2、模具型腔沾污。 3、变换塑封料,使型腔玷污。 4、模具温低,固化未充分进行,使塑封件强度下降,出模时被引线拉坏。 5、固化时间不够。 措施方法: 一、增加模具型腔工艺斜度(出模斜度一般设计在5-7℃左右)。 二、用清模剂定期清模。 三、更换塑封料时,用清模剂清模。 四、提高模温,控制在(160-180)℃范围内。 五、增加固化时间。 病状二:表面有气孔 现象:1、进料口一侧有小气孔。 2、表面有气孔。 1

病因:1、模具设计不合理(型腔口、料槽终点没有排气槽,料斗剩余空间大。 2、料的传递速度太快,槽内气体未能排出。 3、传递压力低,槽内气体未能赶走。 4、排气槽未清洗干净,导致堵塞。 措施方法: 一、增加型腔口,料槽终点的排气槽料斗空间应是实际体积的1.2-1.3倍。 二、降低传递速度(6mm/sec) 三、提高传递压力(70㎏/cm2 ) 四、清模时加强排气槽位置清洗。 病状三:上凸 现象:塑封件表面有局部凸起。 病因:1、模塑料受潮,固化时膨胀。 2、注塑时间型腔中引线出模后膨胀。 3、固化时间不足,出模后局部膨胀。 措施方法: 一、使用模塑料前一定要醒料24hr再打开包装。 二、料斗与料的直径匹配尺寸2-4mm为佳,料斗空间应是实际加料体积的1.2-1.3倍。病状四:体积膨大 2

现象:实际体积大于设计体积。 病因:1、固化时间不足,出模时膨胀变形。 2、模温低,固化未充分进行,出模后膨胀变形。措施方法: 一、增加模内固化时间,使固化充分进行。 二、提高模温(160-190℃)使固化充分进行。 病状五:水纹 现象:表面有波浪形花纹。 病因:1、两种模塑料相混。 2、模温高,反映快,进入型腔就固化(﹥190℃)。 3、模塑料未混炼均。 4、外在因素(保管、操作等)。 5、模塑料自己问题。 措施方法: 一、加强模塑料管理,模具清理。 二、降低模温160-180℃范围,使固化充分进行。 三、加强工序检验,提高产品质量。 病状六:溢料 3

相关主题
文本预览
相关文档 最新文档