当前位置:文档之家› 生物工程生物技术专业英语翻译(四)

生物工程生物技术专业英语翻译(四)

生物工程生物技术专业英语翻译(四)
生物工程生物技术专业英语翻译(四)

第四章发酵技术

4.1 发酵的本质

发酵技术的起源是大量利用微生物生产食品和饮料,像奶酪、酸乳酪、酒精饮料、醋、泡菜、腌菜及sausages、酱油和许多其他Oriental fermentation(表4.1)。今天这些产品的大规模生产过程是过去家庭内部生产活动的放大版本。与产品形成的发展齐头并进的是对微生物在除去不喜欢的废物过程中所扮演的角色的认识,这使得大规模世界范围服务业的出现,包括水的净化、污水处理及垃圾处理。发酵技术新的扩展利用微生物(1)过量生产重要的特殊的代谢物像甘油、醋酸、乳酸、丙酮、butyl alcohol, butane diol,有机酸、氨基酸、维生素、多糖和黄原胶;(2)生产有用的次级代谢物(代谢物群体其在生产它们的微生物的生命中发挥的作用好像不能很快的被认识到)像青霉素、链霉素、土孢菌素、头孢菌素、赤霉素、生物碱、放线菌素;和(3)生产酶作为想要的工业产品像胞外酶淀粉酶、蛋白酶、果胶酶或者胞内酶像转化酶、天冬酰胺酶、尿酸氧化酶、限制性核酸内切酶和DNA连结酶。最近,发酵技术开始利用高等植物和动物细胞进行我们所知道的细胞或组织培养。植物细胞培养主要针对生产次级代谢物如生物碱、香水和调味品,而动物组织培养开始关注的是蛋白质分子形成如干扰素、单

克隆抗体和许多其它的蛋白质。

大大肯定了发酵产品的未来市场,由于limited exception, 通过化学方法不能经济的生产这些产品。而且,经济性也发生在基因工程有机体而具有独特的和更高的生产能力。发酵技术产品的商业市场是无限的但是最终要取决于经济与安全性方面的考虑。商业发酵过程是in essence非常相似的不管选择的是什么有机体、用的是什么培养基及形成什么产物。在所有的情况下,大量的具有一致特征的细胞在限制的控制的条件下生长。同一个装置经过微小改动就可以用来生产酶、抗生素、有机化学试剂或者单细胞蛋白。发酵过程最简单的形式就是仅仅是with a nutrient broth微生物的混合,并使组分发生反应。更为先进和复杂的大规模生产过程需要对整体环境的控制从而使发酵过程能够有效地进行,更为重要的是,能够准确地进行重复,用相同量的原料、broth和cell inoculum生产出相同量的产物。

所有的生物工程过程都是在一个容器或者生物反应器中进行的。在过去的三十年里,大部分共同的生物反应器的物理形式没有发生多大的改动。然而,近来,设计出了许多新型的生物反应器,它们将越来越积极的参与到生物工程中。生物反应器的主要功能是减少一个产品或这服务的生产成本,而位于设计和功能不断改进后面的驱动力是提高产品形成速度和产品或者服务质量的需求。研究开始考虑更好的

aseptic 设计和操作、更好的过程控制包括计算机的使用及怎样去更好的理解一个系统尤其是热量和质量转移系统的速度控制步骤。

在生物工程中,处理过程可认为是成本转化(conversion cost intensive)或者成本回收(recovery cost intensive)。对于conversion cost intensive,体积生产力Qp是重要的,而对于recovery cost intensive,产品的浓度P是减少成本的主要标准。表4.2列出了生物化工工业利用生物反应器生产出的各种不同的产品,而表4.3分辨了生物工程中所采用的各种培养方法。

用于生物工程的生物反应器有三种主要的操作方式和两种形式的生物催化。生物反应器可在分批式、半连续(分批给料fed-batch)或者连续基础上进行操作。反应可以在稳定的或者搅动的(agitated)培养液中,在有氧或者无氧、水溶液或者低湿度(固体底物发酵)条件下进行。Biocatalyst 可以是处于生长状态或者不处于生长状态的细胞或者是分离的酶用作可溶的或固定的catalyst。总体上,生物反应器中发生的反应是在温和的pH(近中性)和温度(20-65℃)条件下进行的。在大部分生物反应器里,反应过程是在水相中进行的,产品streams就相对被稀释了。

对生物反应器过程的优化包括减少原料(例如,养分、前体、酸/碱、空气)和能量(能量消耗以平均每年16%的

速度上涨)的使用,在回收前提高broth中产物的纯度和质量。过程优化是通过控制过程的物理和化学参数来实现的。表4.4列出了过程变化的范围它对于过程的发展是重要的并且在后面进行讨论。

这章余下的内容将关注在生物反应器中微生物进行生长的原理,而且更为关注的用于产品形成的微生物细胞。

不管酶是以水溶液还是固定化形式发挥作用的,针对于它所采用的生物反应器与特定类型的固定化微生物细胞系统一起将在第五章中讲述。

4.2 水溶液系统中微生物培养的原理

有机体的生长可以看作是以质量形式或是以细胞数目形式所反映的细胞物质的增加,而且是高度一致(coordinated)的一系列(series)以酶催化的生物步骤的结果。

生长的最佳表达取决于必需养分传递到细胞表面(质量传递)与维持的最佳环境参数如温度和pH。

生物反应器中细胞物质(X)或者是生物体的数量由重量gravimetrically(用干重、湿重、DNA或者蛋白质)或者数量numerically(用细胞数)决定。倍增时间(t d)指生物体重量倍增所需要的时间,而传代时间(g)指细胞数倍增所需要的时间。在平衡生长或者指数生长过程中,当生长过程只由细胞固有的intrinsic活性所控制的话,如果g= t d,则

每一个细胞都可以进行分裂。平均倍增时间随着细胞大小与复杂性的增加而增加;随后时间里值的范围可以进行实验获得:细菌为0.25-1、酵母为1.15-2、霉菌为2-6.9以及植物细胞为20-40。

在理想条件下,微生物合成的潜力是非常巨大的,对于某些类型的细菌,倍增时间仅为15min。然而,最佳生长条件不适用于任意时间长度,而且实际中,生长过程取决于一个限制因素,例如一种关键养分。当这个因素的浓度降到0,那么这个有机体的生长潜力也就下降。Monod(1942)的经典研究得到表述生物反应器中微生物生长关键性质的数学方程。最初数学方程描述比生长速率μ由S的浓度而作用:(方程式1)

这种情况下,S是培养基中一种底物的浓度,与其它重要的养分相比,这种底物的浓度是有限的,μmax是有机体的最大比生长速率,而Ks代表一个饱和常数。Ks为底物浓度,此时μ=μmax/2。这样,如果把底物浓度一直保持为一个合适的值(对于连续培养是重要的),就进行指数生长,比生长速率的值在0到μmax之间。对生长过程关键养分的鉴定和进行生长所需要的最佳条件来源于分批式与连续式生物反应器系统。有机体浓度的增加速率(d x/d t)就是生长速率,而比生长速率是有机体浓度的单位增加速率(1/x)(d x/d t)。微生物生长与底物利用之间存在一种简单的关系。在简单的

系统中,生长速率是底物利用速率的一个恒定的部分,Y:(方程式2)

Y是生长得率系数over生长过程的任何时间段。

知道了三种生长常数μmax、Ks和Y的意义,方程式(1)和(2)就给出了一次分批式发酵生长周期的完整数量描述。

在分批式发酵中,在最佳的温度、pH和混合条件下,把生长所需的inoculum与养分一同置于一个容器中。这代表了一个封闭的系统除了耗氧有机体,可以连续不断的向生物反应器供应空气。

在分批式培养中,生长速率与比生长速率不是一个常数,反映了系统养分不断变化的特点。图4.1示意了微生物分批生长的复杂的本质。最开始的滞后期是没有可见的微生物生长的时期,但是化学分析表明有许多隐蔽的转向代谢暗示着细胞正在适应新的环境并且将要开始生长in due coure。inoculum的生理条件被认为不仅是滞后期持续时间的一个主要影响因素而且还影响未来生长过程和形成产物的特征,例如抗生素的合成。在inoculum 生长之后与指数生长发生之前,有一个过渡的加速期。这个时期无法从生理和数学上很好的理解,因为细胞群有不同的年龄结构和代谢过程。在指数生长期,在有过量养分和没有抑制剂存在的条件下,微生物生长是无限制的。比生长速率达到最大值,μ=μmax。然而,在大部分分批式培养过程中,指数生长是短暂

的。由于养分被生长细胞群用光,无限制的生长就被有限生长所代替,同时,尽管细胞群仍在增加,但是任何特定点的比生长速率将变得越来越小,<μmax。跟随这个降速期之后的是稳定期,在稳定期,由于养分已经耗尽,整体生长将不再进行。生物体平衡产生,因为

生长速率= 死亡速率

许多重要的生物工程产品是在生长周期的这个时期optimally形成的,例如抗生素。周期的最后一个时期是死亡期,此时比生长速率为负值(μ<0)。在到达这个时期之前,大部分生物工程的分批式过程就已经停止,因为代谢减缓和细胞裂解。

在实际中,分批式培养用作优化有机体或者生物体的生产,然后进行特殊的化学转化,如终产物的形成(抗生素、有机酸)或者物质的降解(垃圾处理)。在分批式培养过程中,许多重要的产物是在生长周期的稳定期optimally形成的。

相对于分批式培养,在连续式培养中,养分的添加和总培养体积相等组分的去除是连续进行的。连续培养的方式使有机体能在稳定的条件下进行生长,即以恒定的速率和恒定不变的环境中进行生长。像pH以及养分和代谢物浓度这些因素在分批式培养的生长周期中必定会发生变化,而在连续式培养却可以保持恒定。这些参数确实可以独立的控制,使

实验人员获得对于有机体生长每个参数所发挥的作用的真实信息。

在一个完全混合的连续式培养系统中,无菌培养基以稳定的流速(f)流加到生物反应器中,同时culture broth 从此开始以同样的速率以保持培养体积为容器(v)常数。通过有效的混合,流入的培养基被迅速统一的分散到生物反应器中。所有搅拌式连续生物反应器系统的特点都可以通过建立细胞、底物、产物等等的平衡方程式以数学形式进行描述,在方程中给出了由所有过程增加或者减少这个组分的速率而引起的任何组分浓度变化的总体速率。实际中,可以是(a)增大原因是这些组分流入到生物反应器中——等于通过流体中组分溶液而增大的流入速度,(b)降低原因是这些组分的流出,(c)细胞数增加原因是有机体生长,(d)底物的减少原因是底物的利用,(e)产物和生物体的增加。

在连续培养中,停留时间不是由流速和容积的绝对值决定的,而是由它们的比值,稀释率D,D=f/v,或者每小时整个体积数的变化。在培养容器中,一个粒子的停留时间等于1/D。假设混合完全,生物反应器中的每个细胞在设定的时间里,有相等的离开或者被洗出的能力。

有机体的增加以简单的方程给出:

增加=生长-放出

d x/d t=μx-Dx

当μ>D,d x/d t为正值,细胞浓度升高;当μ

稀释率也影响生物反应器中底物的浓度。在生物反应器中,底物进入时的浓度为s R,被有机体消耗流出时的浓度为s。由另一个平衡方程获得底物浓度变化的net速率:

增加=输入-输出-消耗

=输入-输出-生长/生长得率系数

d x/d t=DS R-Ds-μx/Y

当稀释率超过μmax时,有机体洗出。

当一个连续培养系统被看作一个生产系统(例如SCP)过程的时候,它的performances用两个标准来评价:(1)单位时间产生的细胞数——ouput速率;和(2)单位重量的底物生成的细胞数——有效生长速率或产量系数。在稳定状态下,总的ouput等于产物流速和有机体的浓度。为了获得最大ouput细胞或者生物体,稀释率必须高但是它显然不能超过μmax。实际上,将高ouput与底物的有效利用相连的最大生产效率可以通过流出速度或低于最大ouput速率以及可用的最高底物浓度而获得。这样的最佳条件只与生物体生成相关。尽管当所想要的产物如乙醇是一个发酵产物的时候,可以利用相类似的条件,这个发酵产物的形成与所消耗的底物的量成比例,但是复杂代谢物如抗生素的生产所需要的条

件是很不相同的。

半连续培养是培养的一种形式,它涉及向初始批次中连续或者系列的添加培养基或者底物,而没有任何缺点。这种系统产物的产量有可能(well)超过传统的分批培养。这个方法在工业中被广泛使用,例如,在面包酵母的生产中。

实际中,分批、半连续以及连续培养系统用在工业中生物体的生产或者细胞产物的生产。出于很多的原因,分批培养技术代表了工业生产的主要形式。为了更加充分的理解进行微生物生长的各种技术的动力学机制,应当参考Pirt 和Fiechter所编的书。

4.3 生物反应器设计

生物反应器是生物工程过程中进行生物反应的容器系统。它为优化有机体的生长和代谢活动提供正确的环境条件;它必须阻止周围环境对生产培养物的污染,同时还要组织培养物释放到环境中,而且有辅助的工具或者探针对最优过程进行控制(表4.5生物反应器设计的基本标准)。

许多生物反应器系统需要在aseptic condition 下进行操作。在许多具有工业重要性的系统中,使用的是生产有机体的纯培养物,而且,不需要的外来污染物的存在会以许多方式影响生产过程——例如,用生物催化剂进行干扰,将破坏产物,产生破坏下游处理过程的物质,而且还将有毒物质引入到系统中。

为了防止出现这个问题,培养基、生物反应器和所有附属工具(pipework)都要进行灭菌(常用高压蒸汽),而且通入的空气需要通过灭菌玻璃wool去除去污染物。在分批发酵培养基中,通常在生物反应器进行灭菌,而在连续系统中,进行外部灭菌。在发酵工业中,会有污染微生物确实进入到生物反应器中并产生破坏的偶然情况发生。由于这个原因,在抗生素工业中,生物反应器很少有大于200m3的,原因就是当污染发生就会造成大量的损失。当采用连续过程,就需要更加严格的灭菌操作。基因工程微生物在工业中期望更大的利用就需要更为昂贵的除菌技术。

对于耗氧过程,设计必须包括通入空气和混合物质的机制,并且所有的系统都必须提供接种和检样及charging and discharging the vessel。需要通过冷却机制除去来自搅拌、通气和氧化代谢过程的能量输入。能量输入的处理低于决定整个混合和通气速率是必要的。

构造材料应该是无毒的、耐蒸汽压并能抵御化学和电子腐蚀。工业生物反应器常常用highly polished不锈钢建造。生物反应器有多种形状和大小,且高径比是重要的工作参数。

工业生物反应器的大小受所需要的产物的浓度影响,无论选择的是分批还是连续操作。尽管连续培养技术在研究中使用广泛,但是发现它们在工业中的应用是有限的,例如,

SCP和乙醇的生产过程及污水处理。几乎所有其他的工业过程采用的是分批或者半连续培养方法。

分批和半连续培养技术在工业中的主导地位出于以下一些原因或者全部原因。

(a)在任意设定的时间内,所需要的产物相对数量较小。

(b)市场要求can be intermittent

(c)某些产物的储存期限短。

(d)需要高的产物浓度以优化下游处理过程。

(e)某些产物只在生长周期的稳定期才产生。

(f)某些生产菌株的不稳定性需要regular renewal.

(g)连续过程有许多技术难题。

尽管工业生物反应器有许多设计,但是建立已久的连续搅拌釜式反应器(CSTR)或者容器一直被广泛使用(图4.2(a))。在没有机械搅拌的生物反应器中,例如,塔式或者环路式生物反应器,通过通入气体来实现搅拌(图4.2(b))。在大规模的这些类型的生物反应器的液体发酵中,已经认为这样的设计可以经济性的与机械搅拌生物反应器相竞争。然而,在所有系统中,黏度的提高将产生关于通气的主要问题,由于小的气泡合并为大的气泡而表面积减少。

总体上,发酵工业所要求的生物反应器应能满足不同的操作条件,包括变化黏度、通气速率、搅拌强度和发酵体积,

而实践中,CSTR已被广为采纳。决定选择的一个进一步的考虑是许多工业需要处理一个植物体内不同的产物;因此,可以容易的进行改动的可变系统将是人们所喜欢的。

CSTR最基本的设计发展于1940s和1950s工业生产青霉素。它常为一个完全直立的有挡板cylinder而且挡板的宽度为罐直径的10%。无菌空气由容器底部通入,通过一个打开的管或者环状鼓泡器。直立shaft with overhead drive 带有一个或者多个搅拌浆叶取决于径高比。搅拌浆叶常常位于中间位置与罐直径相等along the shaft去防止流体湍流运动。大部分生物反应器采用平叶式透平搅拌器,一般3-5 are mounted进行良好的搅拌和分散于系统高度(图4.2(a))。这种搅拌器系统需要输入高的动力,且进行大量的研究以寻找更为有效的设计。一个典型的工业CSTR如图4.3所示。

搅拌浆叶的作用是在生物反应器中进行搅拌和混合并且使通气便于进行(图4.4)。搅拌和通气是CSTR操作成本的重要部分。搅拌的主要作用是使细胞和养分悬浮通过培养基,使养分包括氧气能够被细胞利用并且使热量转移。绝大多数的工业有机体是好氧的,在大多数发酵过程中,有机体是高氧需求。既然氧气是一种在水溶液中sparingly可溶的气体,那么发酵过程可由vigorous aretation of the broth 来支持。搅拌以三种方式影响氧传递系数(K L a):(1)搅拌浆叶将空气打碎为小的气泡增大气体与液体之间的接触面积,

(2)搅拌延缓了空气从生物反应器中的流失,和(3)turbulent shear 可以减少气体与液体接触面的film厚度。

塔式生物反应器可定义为加长的搅拌容器,径高比大于6:1(图4.2(b))。塔式生物反应器没有机械搅拌;空气由塔的底部通入,只能依靠气泡的上升进行混合。由于这个原因,有机体受shear的影响很少。环路式生物反应器在特定的方向引入了一个强大的、可控制的liquid bulk flow(图4.2(c))。这通过引入draft或者挡板tubes 产生一种液体“内部循环”或者通过使用循环管的“外部循环”来实现。

大量来自生活和工业用的废水通常用厌氧和耗氧生物反应器系统来处理。在没有氧气的情况下,某些专门化的微生物能够将可生物降解的有机物质转化为甲烷、二氧化碳和新的新的微生物细胞。初始有机物质中,大约90%化学键合的能量以甲烷的形式回收,5-10%的能量用于新微生物的形成,而约有3%作为热量而浪费掉。这与好氧降解过程形成鲜明的对比,好氧过程中,大约有60%的可利用的能量用于新细胞的生长,而约40%作为过程中热量而损失。

最为典型的厌氧生物反应器或者消化器是CSTR(图4.2(d)),以连续或者半连续方式进行操作。利用这个系统,浓缩的废水——例如,城市污水处理的sludge——与厌氧微生物大约在30℃下混合,选择the hydraulic retention time (反应器中水滞留的平均时间)使废水有效的稳定而获得高的

甲烷产量。对于食品和发酵工业的强的培养基废水,技术设计要能在连续操作系统中,维持微生物生物体较长的时段。由此,固体retention time与液体retention time无关(uncouopled from),在消化罐中可以获得高的微生物浓度,而产生高的降解速率。对于非常稀的废水,例如,城市污水,需要非常长的固体retention time,而且这只能通过流动床过程来实现(见第五章)。

甲烷发酵最杰出的例子就是中国的生物气生产过程,建立了几百万个家庭规模的厌氧生物反应器。这种生物反应器处理粪肥、人类排泄物和秸秆,产生生物气用来做饭和照明,以及垃圾的净化,其后来成为一种很好的肥料,

每立方米生物反应器每天的体积载量为4kg,mean停留时间小至10天,整个规模的甲烷生物反应器可期望每立方米生物反应器生产1立方米气体。

激活的污水sludge处理过程广泛用于污水及其他工业垃圾的氧化处理。这些过程采用的是分批或者连续搅拌生物反应器系统以增加空气的通入来优化有机物质的氧化分解(图4.2(e))。这些生物反应器是很大的,为了使其发挥最佳的功能,有一些或者许多的搅拌单元使容易的进行混合及许多处理城市污水的植物摄取氧。由于它们开放式的本质,有时候会出现气味的问题。

工业废物废水的厌氧生物处理较为采纳的原因是:

(1)通气时不需要能量;

(2)有机物质高效的转化为生物气,用来作为燃料;

(3)没有气味问题;

(4)产生很少的surplus sludge;

(5)经过显微操作,可以生产出高附加值的产物。4.4 培养基设计

培养基设计要满足生产有机体、生产目的和操作规模的营养要求。对于许多大规模的生物工程成本,培养基组分的可利用性和处理特点是决定选择的主要因素。

对于异氧微生物来说,最基本的营养要求是能量或者碳源、一种可利用的氮源,无机物组分及对于某些微生物还要有生长因子。对于大多数生物工程过程,碳源及氮源常常来源于廉价的天然产物或者副产物的复杂的混合物(表4.6),而自来水中或者主要的初原料中常含有足量的稀有金属。当需要生长因子的时候,供应的应是纯品,但是出于经济原因,常常以植物或者动物的提取物来供应。所需要的生长因子的主要的类型是B族维生素或者相关化合物,特定的氨基酸和某些脂肪酸。如果不进行pH控制,碳源及氮源的合适的平衡对于过程的pH类型是重要的。对大多数过程而言,营养物质必须溶于水。在分批系统中,初体积中常常含有所有的营养物质。以特定的速率为基础通过添加某些营养物质的方式(半连续培养),对分批培养中的发酵反应进一步进行调

控。通过这种方式,维持了关键的诱导物溶液。可利用的营养物质将对发酵反应和产物形成过程进行强大的生理控制。

由于原料占到可变的发酵成本的60-80%,那么在按配方配制培养基时,经济性是要paramount考虑的。一个发酵过程摄入的原料主要取决于特定时期原料的成本,因为商品的价格随着季节和其他变化而上下浮动的。原料的选择也取决于处理和储存成本、配制过程的容易性及灭菌,同时还需要考虑到健康和安全性。

发酵过程中培养基的配制和特定养分的可利用性对产物的优化有着极大的影响。因此,如果发酵的目的是生物体或者是一种生长产物(growth-asscoiated)的话,培养基就必须能进行最大潜能的生长。对不是生长限制性的化合物,例如有机酸、抗生素等等,在初生长期后,培养基要成为一种或者多种养分的缺陷型。根据所研究的生产过程的本质,尤其是如果需要的是次级代谢产物,那么成功采用对磷、氮、,碳水化合物或者痕量金属的限制而实现。某些过程需要培养集中含有一种诱导物,而其他过程可能被培养基的一种组分所阻遏。分解代谢物阻遏在酶的生产中是特别普遍的问题,且证实常常发生在含有葡萄糖的培养基中。阻遏可通过用慢发酵的碳水化合物或者特别是水解淀粉取代葡萄糖而避免。在特定的发酵过程中,也采用递增或者连续的补加一种浓缩的组分的方式。

一种工业培养基的组成不仅基于发酵时期的需要而且基于后续的纯化步骤。培养基配制也应该以生产 a final fermentation broth 为目标,这个final fermentation broth要黏度低,具有易分离的细胞质量( mass),且影响终产物特性(specifications)的残余化合物少。

培养基的灭菌方法应以对培养基组分或者参与的矿物质的最小程度的温度损害实现最大程度的杀死污染微生物。细菌内生孢子对于稳定培养基构成一个严重的问题,因为它们在超过100℃才能被杀死。在这些温度下,许多培养基组分是脆弱的(laible)而且会被破坏。在这种情况下,其他可采用的灭菌方法包括过滤或者射线照射。

对于多数培养基,分批灭菌仍是所选择的方法,尽管连续灭菌已被广泛采纳。连续灭菌过程在超过120℃的温度下经过短时间处理可有效的杀死孢子,而对培养基养分不产生有害的影响。实际中,连续灭菌是通过给培养基中穿过一个热交换器来进行的,在那里(where)热交换器在短时间内升至所要求的高温度。接着培养基穿过一个线圈(holding coil),在这个温度下维持所预定的时间,最后通过反向循环的冷培养基的输入或者冷水迅速冷却。高温/瞬时灭菌过程提高了生长因子的保存时间且产生很少的颜色变化。热量的回收是额外的优点。直接通入蒸汽也被用来灭菌。

4.5 仪器化(instrumentation)和生物反应器的过程控制

所有的生命有机体都受到大范围的(a wide range of)细胞内和细胞外调控因子的作用,像温度、pH及O2。这些每个因子的鉴定和作用都源于传统的生理和生化研究。在所有的生物工程过程中,关键的是优化生产力。这只能依靠鉴别和控制这许多已知的调节有机体活性的因子来实现。控制生物活性的环境特征参数可以是物理的、化学的和生物化学的,而且不总是那么容易的辨别和处理(见表4.4)。

生物反应器的仪器化对于控制特定参数、对它们进行记录、然后用这些信息提高和优化过程已经越来越重要了(表4.7)。实际中,过程控制的一种措施是利用传感器,它然后与固定值进行比较。这两项值之间的差异(discrepancy)用来改动对过程进行操作的激励器的位置,这样确保改动的值更接近于固定值。实现这种改动(measurement)与固定值进行比较的物理设备是控制器,而且通过这样的方式,由传感器、控制器和激励器组成的可以调节特定因子的控制环路就构成了。

生物反应器控制措施可以以在线或者离线方式进行。对于在线控制,传感器直接安装在过程流(process stream)中,然而对于离线控制,一个样品从过程流中取出并进行分析。一种理想的传感器是经过蒸汽灭菌的、可产生可靠的连续的信号并且能进行在线操作。它应该容易进行标定、智能的而且对过程无影响。缺乏有效的用于控制的传感器是发酵

技术发展中的一个主要的障碍(bottleneck)。在线控制的比较典型的传感器类型有那些用于温度、pH、压力、液体和气体流速、CO2及O2测定的传感器。完整的生物反应器过程仍由于缺乏能够对像DNA、RNA、酶及生物体这些重要的变量进行控制的可靠工具而受到严重限制。离线分析对这些化合物仍为重要,而由于这些分析结果常常在检样几小时后才可以利用,所以它们不能用来进行快速控制。

一些已证明比较好的在线系统将通过某些未来的工程化在线控制技术来进行检验。

4.6 控制技术

温度温度通过对反映速率的动力学作用和对酶活性和稳定的催化作用影响生物过程。有许多能调节生物反应器温度的传感器类型包括thermocouples, resistance thermometers, thermistors and capillaries.他们都是通过产生一个输出信号而发挥作用,这个信号用在控制环路中。大体积的生物反应器需要一些温度传感器以确保发酵体积中合理的温度分配。

pH 大多数有机体的生长对于pH的变化是敏感的,每群有机体有特定的最优的pH值。产物形成的最佳pH值与生长最佳pH值不同。pH确信它主要影响细胞壁的通透性及有键合于细胞壁外的酶参与的反应速率。pH传感器或者离子-选择性电极在生物反应器中广泛应用。现代pH探头可以耐受

生物工程生物技术专业英语翻译(二)

第二章生长与代谢的生物化学 2.1 前言 一个微生物以生产另一个微生物为目的。在某些情况下,利用微生物的生物学家们希望这样的情况能够快速频繁的发生。在另外一些产物不是生物体自身的情况下,生物学家必须对它进行操纵使微生物的目标发生变化,这样以来,微生物就要努力的挣脱对它们繁殖能力的限制,生产出生物学家希望得到的产物。生物体的生长过程及其生产出的各种产物与微生物代谢的本质特点是密不可分的。 代谢过程是两种互相紧密联系又以相反方向进行的活动过程。合成代谢过程主要是细胞物质的生成,不仅包括构成细胞的主要组成物质(蛋白质、核酸、脂质、碳水化合物等等),同时也包括它们的前提物质——氨基酸、嘌呤与嘧啶、脂肪酸、各种糖与糖苷。合成代谢不是自发进行的,必须由能量所推动,对大多数微生物来说,是通过一系列的产能分解代谢过程来供给能量。碳水化合物分解为CO2和水的过程是最为常见的分解代谢反应,然而微生物以这样的方式还能够利用更大范围的还原性含碳化合物。分解代谢与合成代谢所有微生物生物化学的基础,可以从两者的平衡关系或者分别对它们进行讨论。 实际中,我们要有效的区分那些需要空气中的氧进行需氧代谢的生物与那些进行厌氧代谢的生物。还原性含碳化合物与O2反应生成水和CO2,这是一个高效的放热反应过程。因此,一个进行需氧代谢的生物要使用一小部分底物进行分解代谢以维持某一水平的合成代谢,即成长过程。对于厌氧型生物,其底物的转化的过程基本上是一个不匀称的反应(氧化还原反应),产生很少的能量,因此,大部分底物都要被分解从而

维持一定水平的合成代谢。 在生物体中这种差别能够明显的体现出来,比如酵母,它属于兼性厌氧生物,即它可在有氧条件下生长也可在无氧环境下生存。需氧酵母使糖以同样的速度转化为CO 2和水,相对产生高产量的新酵母。而厌氧条件下,酵母菌生长缓慢,此时酵母被有效的转化为酒精和CO 2。 2.2 代谢与能量 分解代谢与合成代谢间的有效联系在于,各种分解代谢过程促进少量反应物的合成,而后又被用来促进全面的合成代谢反应。在这种重要的中间产物中,其中最为重要的是ATP ,其含有生物学家所说的“高能键”。在ATP 分子中,酐与焦磷酸残基相联。高能键在水解过程中所产生的热量就被用来克服在其形成过程中需要摄入的能量。像ATP 这类分子,为细胞提供了流通能量,当将ATP 用于生物合成反应时,其水解产物为ADP (腺苷二磷酸)或者某些时候为AMP (腺苷一磷酸):(反应式) 仍含有一个高能键的ADP 通过腺苷酸激酶反应也可生成ATP :(反应式)。 磷酸化作用是生物体中普遍的反应,通常由ATP 作用而发生。 经过磷酸化生成的物质通常比最初的化合物更具有反应活性,用无机磷酸进行磷酸化反应是无法进行的,因为,平衡反应式的相反方向生成大量的水(55M )。 细胞的“能量状态”认为是由占有优势的组分:ATP 、ADP 、AMP 作用形成的。为了给出一个量值,Daniel Atksirson 提出了“能荷”这个概念,定义一个细胞的能荷为: 在“满荷”细胞中,仅含有ATP 一种腺嘌呤核苷酸,它的能荷值定义为 1.0。如果三种核苷酸的量相等,即ATP=ADP=AMP ,则细胞的能荷为ATP+0.5 ADP ATP+ ADP+AMP

生物工程生物技术专业英语翻译(七)

第七章仪器化 7.1介绍 本章主要介绍发酵过程中检测和控制的仪表。显然这些仪表并不时专门用于生物发酵领域的,它们在生物工程或相关的领域中也有广泛的应用。在实际中,大多数应用与生物工程的分析仪表并不是由生物工程发展的产物,至今,生物学家常用的仪表是在化学工业中应用的而发掌出来的。但是,这些精确的仪表并不是为更加复杂的生物反应专门设计的,在计算机控制出现以后,这表现的更加明显。 计算机自动化的发展主要基于各种探测器的发展,它们可以将有意义的信号转化成控制动作。现在适合于提供发酵过程详细参数的适当仪器已经有了很大的改进,这可以提高产量和产率。遗憾的是,在商业化中实现这些自动控制还很困难,但是改变这种情况只是时间的问题。本章只讨论现有的仪表和设备,它们目前都有各自的局限性。 计算机控制是目前发酵工程中的惯用语,不久之后,发酵过程也许真的可以和计算机匹配。但是在这一进步过程中,我们开始考虑一句谚语,“工具抑制创造性思维”。计算机控制需要在线仪表,我们在章中会有涉及。 7.2 术语 如果我们所有对生物工程过程的理解需要仪表,我们真正熟悉我们所用的仪表就非常重要,否则我们就会对这些仪

表的适用性和特性产生错误的判断。下面对一些常用的性质加以介绍。 反应时间通常是描述90%输入信号转换成输出信号所需要的时间。作为经验法则,用于生物系统的仪表的反应时间要小于倍增时间的10%。因此,在典型的发酵工程中,如果倍增时间是3h,超过18min反应时间的仪表将无法完成在线控制。很多仪表有更小的反应时间,它们通常被用于一些其它样品的操作,它们的测定和控制动作的之后时间更长。 灵敏度是衡量仪表输出结果变化和输入信号变化之间的关系。通常,考虑到高灵敏度的仪表可以测量微小的输入变化,灵敏度越高的仪表越好。然而,仪表的其它参数,如线性,精确性,和测定范围也是选择仪表的考虑因素。 输入与输出的线性关系是二者最简单的关系,校正过程也最为容易。 分辨率是可以测定的输入信号的最小值,通常以仪表读数最大偏转角的百分数来表示。 残留误差是指输出结果与输入保持恒定时的真实结果的偏离值。 重现性永远不要被忽视,只要有可能,就要对仪表进行校正,尤其是那些测定氧气和二氧化碳测定的仪表。 7.3 过程控制 在过程控制中,有三种可能实现的目标:

常见职务、职位英文翻译

常见职位、职务英文译名 Accounting Assistant 会计助理 Accounting Clerk 记帐员 Accounting Manager 会计部经理 Accounting Stall 会计部职员 Accounting Supervisor 会计主管 Administration Manager 行政经理 Administration Staff 行政人员 Administrative Assistant 行政助理 Administrative Clerk 行政办事员 Advertising Staff 广告工作人员 Airlines Sales Representative 航空公司定座员 Airlines Staff 航空公司职员 Application Engineer 应用工程师 Assistant Manager 副经理 Bond Analyst 证券分析员 Bond Trader 证券交易员 Business Controller 业务主任 Business Manager 业务经理 Buyer 采购员 Cashier 出纳员 Chemical Engineer 化学工程师 Civil Engineer 土木工程师 Clerk/Receptionist 职员/接待员 Clerk Typist & Secretary 文书打字兼秘书 Computer Data Input Operator 计算机资料输入员 Computer Engineer 计算机工程师 Computer Processing Operator 计算机处理操作员 Computer System Manager 计算机系统部经理 Copywriter 广告文字撰稿人 Deputy General Manager 副总经理 Economic Research Assistant 经济研究助理 Electrical Engineer 电气工程师 Engineering Technician 工程技术员 English Instructor/Teacher 英语教师

工程建设标准英文版翻译细则(试行)

工程建设标准英文版翻译细则 (试行) 为规范工程建设标准英文版的翻译工作,根据《工程建设标准翻译出版工作管理办法》,制定本细则。 1 翻译质量及技术要求 1.1 基本要求 1)工程建设标准的翻译必须忠于原文,并遵守完整、准确、规范、统一的原则。 2)标准的译文应当完整。标准的前引部分、正文部分、补充部分都应全文翻译;脚注、附录、图、表、公式以及相应的文字都应翻译并完整地反映在译文中,不得误译、缺译、漏译、跳译。 3)强制性条文的翻译必须准确无误,译文用黑体字注明。 4)译文的内容、术语应当准确,语法应当恰当,行文流畅。 5)标准中的典型语句、术语、计量单位、专业词汇应当前后统一。 6)标准翻译稿的幅面、版面、格式、字体等应当规范并符合《工程建设标准英文版出版印刷规定》,图表、公式的编号应与原文相一致。

1.2 具体要求 1)数字表达应符合英文表达习惯。 2)标准中的符号、代号、计量单位、公式应直接引用原文,时间、货币、标点符号可按英文惯例翻译或表达。 3)日期按译文语言,应采用公历,按月、日、年顺序排列(例如,December 1,2006)。 4)术语的英文翻译,应以中文版中的英文术语为准。如果中文版中英文术语表达不准确或出现错误,应由翻译人员与编制组共同商议后做出必要修正,并在译文中注明。 5)标准名称应以中文版的英文译名为准。如果中文版标准名称的英文译文不准确,翻译人员可向翻译出版办公室提出书面修改建议。 6)人员的中文姓名译成英文时,采用标准汉语拼音。外籍人员的姓名应按其原姓名或相应的英文姓名表达。地名、团体名、机构名,使用惯用译名。无惯用译名的,可自行翻译,必要时附注原文。 7)法律、法规、规范性文件等名称应采用官方或既定译法,其他文件、著作、文献名称采用既定译法。 8)缩写词首次出现时,应附注全称译文。经前文注释过或意义明确的缩写词,可以在译文中直接使用。 9)译文的章节条款项的编号,应与中文版一致。

生物学专业英语课文译文

生物学的基本概念和方法 生物学是研究生命的科学,研究生物的结构、功能、繁殖、生物之间及其与周围非生命环境之间的相互影响。我们能够确定生物学的几个基本概念。 1.生命是高度有序的。在分子水平上,组成生命有机体的化学物质比构成大多数非生命系统的化学物质要复杂得多,而且更加高度有序。反映在生物体有序的结构和功能的。所有生物含有非常相似的化合物种类,而且构成生物机体的化合物与构成非生命环境的不同。 2.生物的基本单位是细胞。大多数细胞如此的小,我们必须借助于显微镜才能看到。诸如细菌、原生生物等许多小生物是由一个细胞组成的。而禾本科植物和动物等较大的生物有多达数亿个细胞。 每个细胞里都有一些分离的、高度有序的生命物质组成的生化工厂。细胞吸收养分和能量,并利用他们生存、生长、对环境的变化产生反应,最终繁殖,直至形成两个新的细胞。因此,细胞是生物的结构、功能及繁殖单位。 3.生物利用从环境中获取能量来维持和提高有序性。大多生物直接或间接地依赖于太阳的能量。绿色植物利用太阳能制造养分,来满足植物自身的需要;植物随后被食用植物的动物所利用,最终又被吃这些动物的动物所利用。所有的生物从他们的食物中获取能量,构建自身、生长、繁殖。 4.生物对环境作出积极反应。大多动物通过采用某种行为,如探险、逃跑、甚至卷成球,对环境的变化作出迅速地反应。植物的反应慢得多,但仍是主动(积极)的:茎和叶向光弯曲,根向下生长。生物对环境刺激的反应是普遍的。 5.生物的发育。万物都随着时间变化着,而生物的变化尤为复杂,称为发育。非生命的晶体因添加了相同或相近的单位而增大,但植物或动物发育成新的结构,如叶片或牙齿,与长出他们的部位有着化学和结构的差异。 6.生物可自我繁殖。新的生物——细菌、原生生物、动物、植物和真菌只能由其他相近生物繁殖而来的,新的细胞仅来源于其他细胞的分裂。 7.每个生物生存、发育和繁殖所需的信息在生物体内是分离的,并可传递给后代。此信息包含在生物的遗传物质——染色体和基因中,从而限定了生物发育、结构、功能和对环境反应可能的范围。生物体把遗传信息传给了后代,这就是为什么后代象他们的父母。然而,遗传信息多少有些不同,所以父母和后代通常相似而不完全相同。 8.生物进化并适应于他们的环境。今天的生物由远古的生命形式,通过遗传和变异进化而来。进化使得生物及其组分很好地适应了他们地生活方式。鱼类、蚯蚓和青蛙都是如此建造,以至于我们仅靠检查就能大概推测他们是如何生存的。生物对环境的适应性是进化的结果。 科学家如何有效地探索生命实质,并发现大量基本的事实呢?产生如此精确结果的思维方式又是怎样的呢?科学的方法是根据因果关系,形式化地回答自然界的问题。尽管科学家的实际工作方式有很多,但一般地说,科学方法有三个主要步骤。第一步是收集观察结果,观察可依靠感觉器官——视觉、听觉、味觉、嗅觉和触觉;也可借助可扩展感觉的特殊设备如显微镜间接地观察。经过实践,我们能够熟练地进行系统观察。这就意谓着可把一种或几种官能集中到环境中的某个特殊目标或事件,同时从中去除与我们注意的目标或事件无关的“背景燥音”。第二步,科学家构思假说,即对所观察到的现象的解释。第三步是实验,进行设计实验来验证一个或多个假说在不同程度上很可能是错的。 假说是对一个观察的暂时解释。没有一个科学家能够提出一个观点,并要求人们相信它是真理,而没有任何疑问。在科学上,没有绝对的正确,仅是就所观察的现象和现有的实验而言,某观点正确的可能性较大。是悬而未决的判断,而不是最终的判断。这就是说,如果一个假说与手上的观察结果一致,我们就说它暂时是正确的。你不会听到,也不该听到某位科学家说:“没有其他解释”;你更可能听到这样的话“基于现有的知识,此解释在目前是最好的”。 一旦有大量令人信服的证据,假说便成为学说或理论:即构成进一步研究的参照系的一系列相关观点。在科学上,词“理论”是不能被轻易使用的。它只能用于高度可信的假说。 通过实验验证假说是科学研究的核心。必须设计实验以使其结果尽人类智慧所能的明确。出于此原因,实验包括对照组和实验组。两者的差异仅在你所关注的因素。 收集和组织实验结果是生物研究的一必需过程。采用数据图表来组织和显示分析的信息;在说明模型的趋势时,图尤其有效。数据分析不象收集和组织信息那样机械,而更需理性。经常需要统计检验来确定实验组数据和对照组数据间的显著性,或者差异仅出于偶然。如果有异议说差异仅是偶然,那么就会有争议说那个单独的变量是无效的。 对实验结果的概括需要仔细和客观地分析收集的数据。通常,经验证的假说是在所得结论的基础上被接受或反驳。最后的陈述要写出获得了什么新的见解。在一段时间内出现相同的数据的话,便会注意到明显的趋势。往往还会进一步提出问题和假说试图引导对问题的进一步研究。 酶 一杯糖,如果不动它放置二十年都不会有什么变化,但如果把杯中糖的一部分放到你的嘴里,它将迅速地发生化学变化。你的细胞分泌出的酶决定了变化的速率。酶是具有巨大催化能力的蛋白质,这就是说酶大大地提高了特定反应达到平衡的速度。 酶不能使原本自身不能进行的反应发生,它只能使本身能进行的反应加速,通常至少加快一百万倍。并且酶不断重复着加速反应,其分子不会在反应中被消耗。 同样,酶对它将催化哪些反应以及它将与哪些称为底物的反应物起作用都有强的选择性。例如:凝血酶只能催化特定两个氨基酸之间肽键的断裂:精氨酸——甘氨酸。为什么酶对特定底物的偏爱如此重要呢?如果我们把代谢途径想象为通过一个细胞的化学通道,那么酶就象交叉路口的滑道和沿着某一路线的交通灯。酶仅容许特定的底物进入反应特定的序列中,并使底物通过此序列。 对不同途径酶的控制使得细胞指挥营养、结构物质、废物、激素等等按照有序的方式流动。当你吃了太多的糖,你肝脏细胞的酶就把多余的糖先转化成葡萄糖,再转化成糖原或脂肪。当你的肌体用掉葡萄糖需要补充时,酶便把糖原分解成葡萄糖亚单位,这个过程中,称为胰高血糖素的激素控制着酶的活性,它刺激糖原降解途径中的关键酶,同时抑制了催化糖原形成的酶。

生物工程生物技术专业英语翻译一

第一章导论 1.1生物工程的特征 生物工程是属于应用生物科学和技术的一个领域,它包含生物或其亚细胞组分在制造业、服务业和环境管理等方面的应用。生物技术利用病毒、酵母、真菌、藻类、植物细胞或者哺乳动物培养细胞作为工业化处理的组成部分。只有将微生物学、生物化学、遗传学、分子生物学、化学和化学工程等多种学科和技术结合起来,生物工程的应用才能获得成功。 生物工程过程一般包括细胞或菌体的生产和实现所期望的化学改造。后者进一步分为: (a)终产物的构建(例如,酶,抗生素、有机酸、甾类); (b)初始原料的降解(例如,污水处理、工业垃圾的降解或者石油泄漏)。 生物工程过程中的反应可能是分解代谢反应,其中复合物被分解为简单物质(葡萄糖分解代谢为乙醇),又或者可能是合成代谢反应或生物合成过程,经过这样的方式,简单分子被组建为较复杂的物质(抗生素的合成)。分解代谢反应常常是放能反应过程,相反的,合成代谢反应为吸能过程。 生物工程包括发酵工程(范围从啤酒、葡萄酒到面包、

奶酪、抗生素和疫苗的生产),水与废品的处理、某些食品生产以及从生物治疗到从低级矿石种进行金属回收这些新增领域。正是由于生物工程技术的应用多样性,它对工业生产有着重要的影响,而且,从理论上而言,几乎所有的生物材料都可以通过生物技术的方法进行生产。据预测,到2000年,生物技术产品未来市场潜力近650亿美元。但也应理解,还会有很多重要的新的生物产品仍将以化学方法,按现有的生物分子模型进行合成,例如,以干扰为基础的新药。因此,生命科学与化学之间的联系以及其与生物工程之间的关系更应阐释。 生物工程所采用的大部分技术相对于传统工业生产更经济,耗能低且更加安全,而且,对于大部分处理过程,其生产废料是经过生物降解的,无毒害。从长远角度来看,生物工程为解决世界性难题提供了一种方法,尤其是那些有关于医学、食品生产、污染控制和新能源开发方面的问题。 1.2生物工程的发展历史 与一般所理解的生物工程是一门新学科不同的是,而是认为在现实中可以探寻其发展历史。事实上,在现代生物技术体系中,生物工程的发展经历了四个主要的发展阶段。 食品与饮料的生物技术生产众所周知,像烤面包、啤酒与

常见职务职位英文翻译

常见职务职位英文翻译 希望对你有帮助哦!总公司Head Office分公司Branch Office营业部Business Office人事部Personnel Department(人力资源部)Human Resources Department总务部General Affairs Department财务部General Accounting Department销售部Sales Department促销部Sales Promotion Department国际部International Department出口部Export Department进口部Import Department公共关系Public Relations Department广告部Advertising Department企划部Planning Department产品开发部Product Development Department研发部Research and Development Department(R&D)秘书室Secretarial PoolAccounting Assistant 会计助理Accounting Clerk 记帐员Accounting Manager 会计部经理Accounting Stall 会计部职员Accounting Supervisor 会计主管Administration Manager 行政经理Administration Staff 行政人员Administrative Assistant 行政助理Administrative Clerk 行政办事员Advertising Staff 广告工作人员Airlines Sales Representative 航空公司定座员Airlines Staff 航空公司职员Application Engineer 应用工程师Assistant Manager 副经理Bond Analyst 证券分析员Bond Trader 证券交易员Business Controller 业务主任Business Manager 业务经理Buyer 采购员Cashier 出纳员Chemical Engineer 化学工程师

周跃进工业工程专业英语翻译-全十章---副本

第一章 IE中的角色 工业工程是新兴的经典和新颖的将计算解决复杂和系统性的问题,在今天的高度科技世界职业之一。,特别是在中国快速发展的经济和其作为世界制造业中心的演技,为IE浏览器的需求将增加,并不断扩大和迫切。 生产系统或服务系统,包括输入,转换和输出。通过改造,增加值的增加,系统的效率和效益都有所提高。转化过程中所使用的技术和管理科学以及它们的组合依靠。 管理生产系统的服务体系,是一个具有挑战性和复杂的,行为科学,计算机和信息科学,经济,以及大量的主题有关的基本原则和技术,生产和服务系统的技术。 对于IE毕业生的需求 工业工程课程设计准备的学生,以满足未来中国的经济和和谐社会建设的挑战。许多即毕业生(IES),事实上,设计和运行现代制造系统和设施。其他选择从事服务活动,如健康,?ìcare交付,金融,物流,交通,教育,公共管理,或咨询等。 为IE毕业生的需求比较旺盛,每年增长。事实上,对于非法入境者的需求大大超过供给。这种需求/供给不平衡是为IE大于其他任何工程或科学学科,并预计在未来多年存在。因此,over165大学或学院于2006年在中国开设了IE浏览器程序。 教科书的目标 这本教科书的主要目的是引入系统化的理论和先进的技术和方法,工业工程,以及他们的英语表达有关科目。教科书的另一个目的是加强和改进学生,AOS与工业工程专业英语文献的阅读和理解能力。 工程与科学 怎么这两个词,?úindustrial,?ùand,?úengineering,?ùget相结合,形成长期,?úindustrial工程,非盟是什么?工业工程和其他工程学科之间的关系,企业管理,社会科学?为了了解工业工程的作用,在今天,AOS经济和知识为基础的的时代,它是有利于学习,希望在IE的演变历史的发展,有许多半途而废写历史发展的工程。治疗本单位是短暂的,因为我们的利益,在审查工程发展的意义,尤其是作为一个专业工业工程的,更完整的历史参考。工程与科学发展并行,相辅相成的方式,虽然他们是电机始终以同样的速度,而科学是有关基本知识的追求,工程与科学知识的应用关注问题的解决方案,并,?úbetter生活的追求,?ù.Obviously,知识不能被应用,直到它被发现的,一经发现,将很快投入使用,在努力解决问题,工程在新知识的地方,提供反馈,以科学因此,科学和工程工作在手的手。 工程应用 - 工具 虽然“科学”和“工程”各有特色,为不同学科,在某些情况下,?úscientist,非盟和?úengineer,非盟可能是同一个人。这是在更早的时候,尤其是当有很少沟通的基本知识的手段。发现知识的人也把它用。 当然,我们也想到如此出色的成绩,在埃及的金字塔,中国长城,罗马的建设项目,等等,当我们回顾早期的工程成就。这些都涉及一个令人印象深刻的应用程序的基本知识。 正如根本,但是,不作为众所周知的成就。斜面,弓,螺旋状,水车,帆,简单的杠杆,以及许多其他方面的发展都非常希望在工程师,AO努力提供更好的生活。 工程的基础 几乎所有的工程发展到1800年之前与物理现象:如克服摩擦,起重,储存,搬运,构造,紧固后的发展,关注与化学和分子现象:如电力,材料,热加工工艺性能,燃烧,和其他的化学过程。 几乎所有的工程发展的基本原则是在数学方面取得的进展。,准确地测量距离,角度,重量和时间的程序进行了细化,实现了更大的成就。

生物专业英语翻译+蒋悟生+第3版

Lesson One(4 学时) Inside the Living Cell: Structure and Function of Internal Cell Parts : The Dynamic, Mobile Factory 细胞质:动力工厂Most of the properties we associate with life are properties of the cytoplasm. Much of the mass of a cell consists of this semifluid substance, which is bounded on the outside by the plasma membrane. Organelles are suspended within it, supported by the filamentous network of the cytoskeleton. Dissolved in the cytoplasmic fluid are nutrients, ions, soluble proteins, and other materials needed for cell functioning. 生命的大部分特征表现在细胞质的特征上。细胞质大部分由半流体物质组成,并由细胞膜(原生质膜)包被。细胞器悬浮在其中,并由丝状的细胞骨架支撑。细胞质中溶解了大量的营养物质,离子,可溶蛋白以及维持细胞生理需求的其它物质。 2.The Nucleus: Information Central (细胞核:信息中心) The eukaryotic cell nucleus is the largest organelle and houses the genetic material (DNA) on chromosomes. (In prokaryotes the hereditary material is found in the nucleoid.) The nucleus also contains one or two organelles-the nucleoli- that play a role in cell division. A pore-perforated sac called the nuclear envelope separates the nucleus and its contents from the cytoplasm. Small molecules can pass through the nuclear envelope, but larger molecules such as mRNA and ribosomes must enter and exit via the pores. 真核细胞的细胞核是最大的细胞器,细胞核对染色体组有保护作用(原核细胞的遗传物质存在于拟核中)。细胞核含有一或二个核仁,核仁促进细胞分裂。核膜贯穿许多小孔,小分子可以自由通过核膜,而象mRNA 和核糖体等大分子必须通过核孔运输。 : Specialized Work Units (细胞器:特殊的功能单位) All eukaryotic cells contain most of the various kinds of organelles, and each organelle performs a specialized function in the cell. Organelles described in this section include ribosomes, the endoplasmic reticulum, the Golgi complex, vacuoles, lysosomes, mitochondria, and the plastids of plant cells. 所有的真核细胞都含有多种细胞器,每个细胞器都有其特定功能。本节主要介绍核糖体,内质网,高尔基体系,液泡,溶酶体,线粒体和植物细胞中的质体。 The number of ribosomes within a cell may range from a few hundred to many thousands. This quantity reflects the fact that, ribosomes are the sites at which amino acids are assembled into proteins for export or for use in cell processes. A complete ribosome is composed of one larger and one smaller subunit. During protein synthesis the two subunits move along a strand of mRNA, "reading" the genetic sequence coded in it and translating that sequence into protein. Several ribosomes may become attached to a single mRNA strand; such a combination is called a polysome. Most cellular proteins are manufactured on ribosomes in the cytoplasm. Exportable proteins and membrane proteins are usually made in association with the endoplasmic reticulum. 核糖体的数量变化从几百到几千,核糖体是氨基酸组装成蛋白质的重要场所(其数量表明了核糖体是细胞过程中将氨基酸组装成蛋白质输出或供细胞所用的场所) 。一个完整的核糖体由一个大亚基和一个小亚基组成。核糖体沿着mRNA 移动并阅读遗传密码,翻译成蛋白质。一条mRNA 上可能有多个核糖体,称多聚核糖体。大多数细胞蛋白是由细胞质中核糖体生产。输出蛋白和膜蛋白通常与内质网有关。 The endoplasmic reticulum, a lacy array of membranous sacs, tubules, and vesicles, may be either rough (RER) or smooth (SER). Both types play roles in the synthesis and transport of proteins. The RER, which is studded with polysomes, also seems to be the source of the nuclear envelope after a cell divides. 内质网,带有花边的生物囊,有管状,泡状之分,以及光滑和粗糙面区别。两种都与蛋白质的合成和运输有关。粗糙内质网上分布许多核糖体,也可能提供细胞分裂后所需的核膜。 SER lacks polysomes; it is active in the synthesis of fats and steroids and in the oxidation of toxic substances in the cell. Both types of endoplasmic reticulum serve as compartments within the cell where specific products can be isolated and subsequently shunted to particular areas in or outside the cell. 光滑内质网上无核糖体,主要作用是脂肪和类固醇的合成以及细胞内有毒亚物质的氧化。这两种内质网在细胞中作为分隔,使特定产品分隔开,随后将他们转移到细胞内外特定的部分或细胞外。 Transport vesicles may carry exportable molecules from the endoplasmic reticulum to another membranous organelle, the Golgi complex. Within the Golgi complex molecules are modified and packaged for export out of the cell or for delivery else where in the cytoplasm. 运输小泡能够将可运输分子从内质网运输到高尔基复合体上。在高尔基复合体中修饰,包装后输出细胞或传递到细胞质中的其他场所。 Vacuoles in cells appear to be hollow sacs but are actually filled with fluid and soluble molecules. The most prominent vacuoles appear in plant cells and serve as water reservoirs and storage sites for sugars and other molecules. Vacuoles in animal cells carry out phagocytosis (the intake of particulate matter) and pinocytosis (vacuolar drinking). 细胞中的液泡好象是中空的,但实际上充满了液体和可溶分子。最典型的液泡存在于植物细胞中,储备水,糖以及其它分子。动物中的液泡起吞噬和胞饮作用。 A subset of vacuoles are the organelles known as lysosomes, which contain digestive enzymes (packaged in lysosomes in the Golgi complex) that can break down most biological macromolecules. They act to digest food particles and to degrade damaged cell parts. 溶酶体是液泡亚单位,含有消化酶,降解大部分生物大分子。消化食物微粒和降解损伤的细胞残片。 Mitochondria are the sites of energy-yielding chemical reactions in all cells. In addition, plant cells contain plastids that utilize light energy to manufacture carbohydrates in the process of photosynthesis. It is on the large surface area provided by the inner cristae of mitochondria that ATP-generating enzymes are located. Mitochondria are self-replicating, and probably they are the evolutionary descendants of what were once free-living prokaryotes.

生物工程生物技术专业英语翻译二

生物工程生物技术专业英 语翻译二 The Standardization Office was revised on the afternoon of December 13, 2020

第二章生长与代谢的生物化学 前言 一个微生物以生产另一个微生物为目的。在某些情况下,利用微生物的生物学家们希望这样的情况能够快速频繁的发生。在另外一些产物不是生物体自身的情况下,生物学家必须对它进行操纵使微生物的目标发生变化,这样以来,微生物就要努力的挣脱对它们繁殖能力的限制,生产出生物学家希望得到的产物。生物体的生长过程及其生产出的各种产物与微生物代谢的本质特点是密不可分的。 代谢过程是两种互相紧密联系又以相反方向进行的活动过程。合成代谢过程主要是细胞物质的生成,不仅包括构成细胞的主要组成物质(蛋白质、核酸、脂质、碳水化合物等等),同时也包括它们的前提物质——氨基酸、嘌呤与嘧啶、脂肪酸、各种糖与糖苷。合成代谢不是自发进行的,必须由能量所推动,对大多数微生物来说,是通过一系列的产能分解代谢过程来供给能量。碳水化合物分解为CO2和水的过程是最为常见的分解代谢反应,然而微生物以这样的方式还能够利用更大范围的还原性含碳化合物。分解代谢与合成代谢所有微生物生物化学的基础,可以从两者的平衡关系或者分别对它们进行讨论。 实际中,我们要有效的区分那些需要空气中的氧进行需氧代谢的生物与那些进行厌氧代谢的生物。还原性含碳化合

物与O2反应生成水和CO2,这是一个高效的放热反应过程。因此,一个进行需氧代谢的生物要使用一小部分底物进行分解代谢以维持某一水平的合成代谢,即成长过程。对于厌氧型生物,其底物的转化的过程基本上是一个不匀称的反应(氧化还原反应),产生很少的能量,因此,大部分底物都要被分解从而维持一定水平的合成代谢。 在生物体中这种差别能够明显的体现出来,比如酵母,它属于兼性厌氧生物,即它可在有氧条件下生长也可在无氧环境下生存。需氧酵母使糖以同样的速度转化为CO2和水,相对产生高产量的新酵母。而厌氧条件下,酵母菌生长缓慢,此时酵母被有效的转化为酒精和CO2。 代谢与能量 分解代谢与合成代谢间的有效联系在于,各种分解代谢过程促进少量反应物的合成,而后又被用来促进全面的合成代谢反应。在这种重要的中间产物中,其中最为重要的是ATP,其含有生物学家所说的“高能键”。在ATP分子中,酐与焦磷酸残基相联。高能键在水解过程中所产生的热量就被用来克服在其形成过程中需要摄入的能量。像ATP这类分子,为细胞提供了流通能量,当将ATP用于生物合成反应时,其水解产物为ADP(腺苷二磷酸)或者某些时候为AMP(腺苷一磷酸):(反应式)

常见职位职务英文翻译

常见职位职务英文翻译 Accounting Assistant会计助理 Accounting Clerk记帐员 Accounting Manager会计部经理 Accounting Stall会计部职员 Accounting Supervisor会计主管 Administration Manager行政经理 Administration Staff行政人员 Administrative Assistant行政助理 Administrative Clerk行政办事员 Advertising Staff广告工作人员 Airlines Sales Representative航空公司定座员 Airlines Staff航空公司职员 Application Engineer应用工程师 Assistant Manager副经理 Bond Analyst证券分析员 Bond Trader证券交易员 Business Controller业务主任 Business Manager业务经理 Buyer采购员 Cashier出纳员 Chemical Engineer化学工程师 Civil Engineer土木工程师 Clerk/Receptionist职员/接待员 Clerk Typist&Secretary文书打字兼秘书 Computer Data Input Operator计算机资料输入员Computer Engineer计算机工程师 Computer Processing Operator计算机处理操作员Computer System Manager计算机系统部经理 Copywriter广告文字撰稿人 Deputy General Manager副总经理 Economic Research Assistant经济研究助理 Electrical Engineer电气工程师 Engineering Technician工程技术员 English Instructor/Teacher英语教师 Export Sales Manager外销部经理 Export Sales Staff外销部职员 Financial Controller财务主任 Financial Reporter财务报告人 F.X.(Foreign Exchange)Clerk外汇部职员 F.X.Settlement Clerk外汇部核算员 Fund Manager财务经理 General Auditor审计长 General Manager/President总经理

工程英语翻译

1、土木工程中的各种业务工程是一种专业,这就是说工程师必须受过专业大学教育,许多政府行政区还有签发执照的程序,要求工科大学毕业生在积极开始他们的事业之前要通过一次考试,就象律师得通过律师资格考试一样。在大学工科的课程设置中,一直十分重视数学、物理和化学,特别是在头两、三年内。数学在各种工程分科中都非常重要,所以一向特别强调它。现在,数学包括统计学课程,这是一门涉及数据或一些资料的搜集、分类和运用的科目。统计学的一个重要部分是概率论,当存在着可以改变一个问题结果的各种不同的因素或变量时,它将论及可能发生什么情况。例如,在建设一座桥梁之前,要对预期承受的交通量进行统计研究。在设计这座桥梁时,必须考虑到各种变量,如作用于基础上的水压,冲力、各种风力的作用,以及许多其它因素。因为解决这些问题需要进行大量的计算,所以目前计算机程序编制已列入几乎所有工科课程中。诚然,计算机能比人更快,更精确地解决许多计算问题。但是,除非赋予它们清楚而精确的指令和信息——换句话说,就是编制良好的程序,否则计算机就毫无用处。尽管工科的课程设置中特别强调技术科目,当前的倾向还是要求学生学习一些社会科学和语言艺术方面的课程。工程与社会之间的关系日益密切,因而有充分理由再次提出,工程师所做的工作会在他(她)应当意识到的许多不同而重要的方面影响到社会。一个工程师还需要足够的驾驭语言的能力,能写出条理清楚并在许多情况下具有说服力的报告。从事科研的工程师需要能够将他或她的科研成果写成文章提供给科学刊物。最后两年的工科教学计划包括学生所学专业范围内的课程。对准备成为土木工程师的学生来说,这种专业课程可涉及到如大地测量、土力学或水力学等这类科目。现行的招聘工程师的工作往往在大学最后一年之前就开始进行。近年来,许多公司和政府机构竞相争取录用工程师。在当今这个注重科学的社会中,当然是需要受过技术训练的人才。例如,年轻的工程师们可选择参加环境工程或卫生工程工作,在这个领域中环境事业提供了许多就业的机会。或者他们可以选择专门从事公路工程的工程公司,或者他们可能更愿意到与水资源有关的政府机构中工作。确实,选择的机会是广泛的,多样的。当年轻的工程师终于开始实际业务工作时,就必须能应用从大学里学来的理论知识。他(她)在开始时可能被派去和一个工程师小组一道工作。这样,就能获得实际工作的训练,使主管人了解他(她)将理论应用于实践的能力。 土木工程师可从事科研、设计、施工管理、维修等工作,甚至可以从事销售或经营管理。这些领域内的每种工作,都有不同的职责、不同的重点,并且工程人员的知识和经验也有不同的用途。科研是科学和工程实践中最重要的一个方面,科研工作者通常是科学家和工程师小组的成员之一。他(她)往往在一个由政府或工业企业资助的实验室里工作。与土木工程有关的科研领域包括土力学、土壤稳定技术、以及新型建筑材料的研制和试验。土木工程项目几乎都有其独特性,即各有其特有的问题及设计特点。所以,甚至设计还没有开始就要对每项工程进行仔细的研究。这种研究包括对拟建场地的地形和地下土质特征进行勘测。还包括考虑各种选择方案,例如,选用混凝土重力坝还是填土坝。对每种可能方案的经济因素也要权衡。现在,研究工作通常还包括考虑工程项目对环境的影响。这些可行性研究要由许多工程师来完成。他们往往是组成一个小组一道工作,其中有测量员、土力学专家、以及设计和施工方面的专家。许多土木工程师从事设计工作,其中有些是这个领域中的杰出人才。正如我们所看到的,土木工程师们要承担许多不同种类构筑物的工作,所以一般情况是一个工程师只擅长某一种构筑物。在设计建筑时,工程师往往被聘作建筑公司或工程公司的顾问。水坝、桥梁、给水系统和其它大型工程,一般都招聘几位工程师;由一位负责整个工程的系统工程师来协调他们的工作。在许多情况下,还需要其它专业的工程师。例如,在一项水坝工程中,电力工程师和机械工程师就要承担发电站及其设备的设计工作。在另外一些情况下,土木工程师也被派去参与其它领域中的 工程,例如,在航天工程规划中,就需要土木工程师设计和建筑发射台、导弹库这类构筑物。对几乎所有的工程项目来说,施工都是一个复杂的过程。它涉及到安排进度、使用设备和材料,以求尽可能地降低成本。因为施工有可能非常危险,因此还必须考虑安全因素。因此,有许多土木工程师专门从事施工阶段的工作。

相关主题
文本预览
相关文档 最新文档