当前位置:文档之家› 钢材断裂现象分析

钢材断裂现象分析

钢材断裂现象分析
钢材断裂现象分析

钢材断裂现象分析

如今,用于各行业的钢材品种达数千种之多。每种钢材都因不同的性能、化学成分或合金种类和含量而具有不同的商品名称。虽然断裂韧性值大大方便了每种钢的选择,然而这些参数很难适用于所有钢材。主要原因有:第一,因为在钢的冶炼时需加入一定数量的某种或多种合金元素,成材后再经简单热处理便可获得不同的显微组织,从而改变了钢的原有性能;第二,因为炼钢和浇注过程中产生的缺陷,特别是集中缺陷(如气孔、夹杂等)在轧制时极其敏感,并且在同一化学成分钢的不同炉次之间,甚至在同一钢坯的不同部位发生不同的改变,从而影响钢材的质量。由于钢材韧性主要取决于显微结构和缺陷的分散(严防集中缺陷)度,而不是化学成分。所以,经热处理后韧性会发生很大变化。要深入探究钢材性能及其断裂原因,还需掌握物理冶金学和显微组织与钢材韧性的关系。

1. 铁素体-珠光体钢断裂

铁素体-珠光体钢占钢总产量的绝大多数。它们通常是含碳量在0.05%~0.20%之间的铁-碳和为提高屈服强度及韧性而加入的其它少量合金元素的合金。

铁素体-珠光体的显微组织由BBC铁(铁素体)、0.01%C、可溶合金和Fe3C组成。在碳含量很低的碳钢中,渗碳体颗粒(碳化物)停留在铁素体晶粒边界和晶粒之中。但当碳含量高于0.02%时,绝大多数的Fe3C形成具有某些铁素体的片状结构,而称为珠光体,同时趋向于作为“晶粒”和球结(晶界析出物)分散在铁素体基体中。含碳量在0.10%~0.20%的低碳钢显微组织中,珠光体含量占10%~25%。

尽管珠光体颗粒很坚硬,但却能非常广泛地分散在铁素体基体上,并且围绕铁素体轻松地变形。通常,铁素体的晶粒尺寸会随着珠光体含量的增加而减小。因为珠光体球结的形成和转化会妨碍铁素体晶粒长大。因此,珠光体会通过升高d-1/2(d为晶粒平均直径)而间接升高拉伸屈服应力δy。

从断裂分析的观点看,在低碳钢中有两种含碳量范围的钢,其性能令人关注。一是,含碳量在0.03%以下,碳以珠光体球结的形式存在,对钢的韧性影响较小;二是,含碳量较高时,以球光体形式直接影响韧性和夏比曲线。

2. 处理工艺的影响

实践得知,水淬火钢的冲击性能优于退火或正火钢的冲击性能,原因在于快冷阻止了渗碳体在晶界形成,并促使铁素体晶粒变细。许多钢材是在热轧状态下销售,轧制条件对冲击性能有很大影响。较低的终轧温度会降低冲击转变温度,增大冷却速度和促使铁素体晶粒变细,从而提高钢材韧性。厚板因冷却速度比薄板慢,铁素体晶粒比薄板粗大。所以,在同样的热处理条件下厚板比薄板更脆性。因此,热轧后常用正火处理以改善钢板性能。

热轧也可生产各向异性钢和各种混合组织、珠光体带、夹杂晶界与轧制方向一致的定向韧性钢。珠光体带和拉长后的夹杂粗大分散成鳞片状,对夏比转变温度范围低温处的缺口韧性有很大影响。

3. 铁素体-可溶合金元素的影响

绝大多数合金元素加入低碳钢,是为了生产在某些环境温度下的固溶体硬化钢,提高晶格摩擦应力δi。但目前还不能仅用公式预测较低屈服应力,除非已知晶粒尺寸。虽然屈服应力的决定因素是正火温度和冷却速度,然而这种研究方法仍很重要,因为可以通过提高δi预测单个合金元素可降低韧性的范围。

铁素体钢的无塑性转变(NDT)温度和夏比转变温度的回归分析至今尚无报导,然而这些也仅限于加入单个合金元素对韧性影响的定性讨论。以下就几种合金元素对钢性能的影响作简要介绍。

1)锰。绝大多数的锰含量约为0.5%。作为脱氧剂或固硫剂加入可防止钢的热裂。在低碳钢中还有以下作用。

◆含碳量0.05%钢,空冷或炉冷后有降低晶粒边界渗碳体薄膜形成的趋势。

◆可稍减小铁素体晶粒尺寸。

◆可产生大量而细小的珠光体颗粒。

前两种作用说明NDT温度随着锰量的增加而降低,后两种作用会引起夏比曲线峰值更尖。

钢含碳量较高时,锰能显著降低约50%转变温度。其原因可能是因珠光体量多,而不是渗碳体在边界的分布。必须注意的是,如果钢的含碳量高于0.15%,高锰含量对正火钢的冲击性能影响起到了决定性作用。因为钢的高淬透性引起奥氏体转变成脆性的上贝氏体,而不是铁素体或珠光体。

2)镍。加入钢中的作用似锰,可改善铁-碳合金韧性。其作用大小取决于含碳量和热处理。在含碳量(约0.02%)很低的钢中,加入量达到2%就能防止热轧态和正火钢晶界渗碳体的形成,同时实质降低开始转变温度TS,升高夏比冲击曲线峰值。

进一步增加镍含量,改善冲击韧性效果则降低。如果这时含碳量低至正火后无碳化物出现时,镍对转变温度的影响将变得很有限。在含碳约0.10%的正火钢中加入镍,最大的好处是细化晶粒和降低游离氮含量,但其机理目前尚不清楚。可能是由于镍作为奥氏体的稳定剂从而降低了奥氏体分解的温度。

3)磷。在纯净的铁-磷合金中,由于铁素体晶界会发生磷偏析降低了抗拉强度Rm而使晶粒之间脆化。此外,由于磷还是铁素体的稳定剂。所以,加入钢中将大大增加δi值和铁素体晶粒尺寸。这些作用的综合将使磷成为极其有害的脆化剂,发生穿晶断裂。

4)硅。钢中加硅是为了脱氧,同时有益于提高冲击性能。如果钢中同时存在锰和铝,大部分硅在铁素体中溶解,同时通过固溶化硬化作用提高δi。这种作用与加入硅提高冲击性能综合的结果是,在稳定晶粒尺寸的铁-碳合金中按重量百分比加入硅,使50%转变温度升高约44℃。此外,硅与磷相似,是铁素铁的稳定剂,能促进铁素体晶粒长大。按重量百分数计,硅加入正火钢中将提高平均能量转换温度约60℃。

5)铝。以合金和脱氧剂的作用加入钢中有以下两方面的原因:第一,与溶体中的氮生成AlN,去除游离氮;第二,AlN的形成细化了铁素体晶粒。这两种作用的结果是,每增加0.1%的铝,将使转变温度降低约40℃。然而,当铝的加入量超过了需要,“固化”游离氮的作用将变弱。

6)氧。钢中的氧会在晶界产生偏析导致铁合金晶间断裂。钢中氧含量高至0.01%,断裂就会沿着脆化晶粒的晶界产生的连续通道发生。即使钢中含氧量很低,也会使裂纹在晶界集中成核,然后穿晶扩散。解决氧脆化问题的方法是,可加入脱氧剂碳、锰、硅、铝和锆,使其和氧结合生成氧化物颗粒,而将氧从晶界去除。氧化物颗粒也是延迟铁素体生长和提高d-/2的有利物质。

4. 含碳量在0.3%~0.8%的影响

亚共析钢的含碳量在0.3%~0.8%,先共析铁素体是连续相并首先在奥氏体晶界形成。珠光体在奥氏体晶粒内形成,同时占显微组织的35%~100%。此外,还有多种聚集组织在每一个奥氏体晶粒内形成,使珠光体成为多晶体。

由于珠光体强度比先共析铁素体高,所以限制了铁素体的流动,从而使钢的屈服强度和应变硬化率随着珠光体含碳量的增加而增加。限制作用随硬化块数量增加,珠光体对先共析晶粒尺寸的细化而增强。

钢中有大量珠光体时,形变过程中会在低温和/或高应变率时形成微型解理裂纹。虽然也有某些内部聚集组织断面,但断裂通道最初还是沿着解理面穿行。所以,在铁素体片之间、相邻聚集组织中的铁素体晶粒内有某些择优取向。

5. 贝氏体钢断裂

在含碳量为0.10%的低碳钢中加入0.05%钼和硼可优化通常发生在700~850℃奥氏体-铁素体转变,且不影响其后在450℃和675℃时奥氏体-贝氏体转变的动力学条件。

在大约525~675℃之间形成的贝氏体,通常称为“上贝氏体”;在450~525℃之间形成的称为“下贝氏体”。两种组织均由针状铁素体和分散的碳化物组成。当转变温度从675℃降至450℃时,未回火贝氏体的抗拉强度会从585MPa升高至1170MPa。

因为转变温度由合金元素含量决定,并间接影响屈服和抗拉强度。这些钢获得的高强度是以下两种作用的结果:

1)当转变温度降低时,贝氏体铁素体片尺寸不断细化。

2)在下贝氏体内精细的碳化物不断分散。这些钢的断口特征在很大程度上取决于抗拉强度和转变温度。

有两种作用要注意:第一,一定的抗拉强度级别,回火下贝氏体的夏比冲击性能远远优于未回火的上贝氏体。原因是在上贝氏体中,球光体内的解理小平面切割了若干贝氏体晶粒,决定断裂的主要尺寸是奥氏体晶粒尺寸。

在下贝氏体中,针状铁素体内的解理面未排成一直线,因此决定准解理断裂面是否断裂的主要特征是针状铁素体晶粒尺寸。因为这里的针状铁素体晶粒尺寸仅为上贝氏体中的奥氏体晶粒尺寸的1/2。所以,在同一强度级别,下贝氏体转变温度比上贝氏体低许多。

除了上面的原因之外是碳化物分布。在上贝氏体中碳化物位于晶界沿线,并通过降低抗拉强度Rm增加脆性。在回火的下贝氏体中,碳化物非常均匀地分布的铁素体中,同时通过限制解理裂纹以提高抗拉强度并促进球化珠光体细化。

第二,要注意的是未回火合金中转变温度与抗拉强度的变化。在上贝氏体中,转变温度的降低会使针状铁素体尺寸细化同时升高延伸强度Rp0.2。

在下贝氏体中,为获得830MPa或更高的抗拉强度,也可通过降低转变温度提高强度的方法实现。然而,因为上贝氏体的断口应力取决于奥氏体晶粒尺寸,而此时的碳化物颗粒尺寸已经很大,因此通过回火提高抗拉强度的作用很小。

6. 马氏体钢断裂

碳或其它元素加入钢中可延迟奥氏体转变成铁素体和珠光体或贝氏体,同时奥氏体化后如果冷却速度足够快,通过剪切工艺奥氏体会变成马氏体而不需进行原子扩散。

理想的马氏体断裂应具有以下特征。

◆因为转变温度很低(200℃或更低),四面体铁素体或针状马氏体非常细。

◆因为通过剪切发生转变,奥氏体中的碳原子来不及扩散出晶体,使铁素体中的碳原子饱和从而使马氏体晶粒拉长导致晶格膨胀。

◆发生马氏体转变要超过一定的温度范围,因为初始生成的马氏体片给以后的奥氏体转变成马氏体增加阻力。所以,转变后的结构是马氏体和残余奥氏体的混合结构。

为了保证钢的性能稳定,必须进行回火。高碳(0.3%以上)马氏体,在以下范围内回火约1h,经历以下三个阶段。

1)温度达到约100℃时,马氏体某些过饱和碳沉淀并形成非常细小的ε-碳化物颗粒,分散于马氏体中而降低碳含量。

2)温度在100~300℃之间,任何残余奥氏体都可能转变成贝氏体和ε-碳化物。

3)在第3阶段回火中,大约200℃起取决于碳含量和合金成分。当回火温度升至共析温度,碳化物沉淀变粗同时Rp0.2降低。

7. 中强度钢(620MPa<Rp0.2<1240MPa)断裂

除了消除应力提高冲击韧性之外,回火还有以下两种作用:

第一,转变残余奥氏体。残留奥氏体将在低温约30℃转变成韧性针状下贝氏体。在较

高的温度如600℃,残余奥氏体会转变成脆性的珠光体。因此,钢在550~600℃进行第一次回火,在300℃进行第二次回火,以避免形成脆性珠光体,称这种回火制度为“二次回火”。

第二,增加弥散性碳化物含量(抗拉强度Rm增加),降低屈服强度。如果升高回火温度,两者都将会引起冲击,转变回火范围降低。因为显微组织变精细,在同样强度级别,将提高抗拉塑性。

回火脆性是可逆的。如果回火温度高到超过了临界范围而降低了转变温度,可将材料再加热后在临界范围处理,回火温度才可以再升高。如果出现微量元素,表明脆性将得到改善。最重要的微量元素是锑、磷、锡、砷,加上锰和硅都有去脆作用。如果其它合金元素存在,钼也能降低回火脆性,同时镍和铬也有一定的作用。

8. 高强度钢(Rp0.2>1240MPa)断裂

高强钢可通过以下方法进行生产:淬火和回火;淬火和回火前奥氏体变形;退火和时效生产沉淀硬化钢。此外,还可通过应变和再回火或回火期应变,都可进一步提高钢的强度。

9. 不锈钢断裂

不锈钢主要由铁-铬、铁-铬-镍合金和其它改善力学性能与抗蚀能力的元素组成。不锈钢防蚀是因为在金属表面生成了可防止进一步氧化的铬氧化物—不可渗透层。

因此,不锈钢在氧化气氛中能防止腐蚀并使铬氧化物层得到强化。但在还原气氛中,铬氧化层受到损害。抗蚀性随着铬、镍含量增加而增加。镍可全面提升铁的钝化性。

增加碳是为了改善力学性能和保证奥氏体不锈钢性能的稳定。一般说来,不锈钢利用显微组织进行分类。

◆马氏体不锈钢。属于铁-铬合金,可进行奥氏体化和后序热处理生成马氏体。通常含铬12%,含碳0.15%。

◆铁素体不锈钢。含铬约14%~18%,碳0.12%。因为铬是铁素体的稳定剂,奥氏体相被超过13%的铬彻底抑制,因而是完全的铁素体相。

◆奥氏体不锈钢。镍是奥氏体的强稳定剂,因此,在室温、低于室温或高温状态下,镍含量为8%,铬含量为18%(300型)能使奥氏体相非常稳定。奥氏体不锈钢类似于铁素体型,不能通过马氏体转变而硬化。

铁素体和马氏体不锈钢特征,如晶粒尺寸等与同级别的其它铁素体钢和马氏体钢相似。

奥氏体不锈系FCC结构,在冷冻温度下都不可能解理断裂。大型件冷轧80%后,310型不锈钢有极高的屈服强度和缺口敏感性,甚至在温度低至-253℃还具有1.0的缺口敏感性比。因此,可用于导弹系统的液氢贮存箱。相似的301型不锈钢可用于温度低至183℃的液氧贮存箱。但在这些温度以下是不稳定的,如发生任何塑性变形,不稳定的奥氏体都会变成脆性的非回火马氏体。绝大多数奥氏体钢用于防腐环境,被加热至500~900℃温度范围,铬碳化物会沉淀在奥氏体晶界,结果使晶界附近范围内的铬层被完全耗尽。该部位非常容易

受到腐蚀和局部腐蚀,如果存在应力,还可导致晶脆性断裂。

为了减轻上述危害,可加入少量性能强于铬碳化物的元素,例如钛或铌,与碳形成合金碳化物,防止铬被耗尽和随之而致的应力腐蚀裂纹。常称这种处理为“稳定化处理”。

奥氏体不锈钢也常用于高温,如压力容器,防止和满足抗腐蚀和抗蠕变。某些钢种因为在焊后热处理和高温环境下对热影响区及其附近的裂纹十分敏感。所以,当焊接再加热时,受高温作用,铌或钛碳化物会在晶粒内和晶界沉淀,导致裂纹产生而影响使用寿命,这必须给予高度重视。

齿轮断裂原因分析

齿轮轴断齿原因分析 概况描述:生产上的齿轮轴在使用两个星期后,突然发生断齿,给生产造成了很大的损失。为了弄清楚产生断裂的原因, 1、化学成份分析 C Si Mn S P Cr Mo Al 大0.39 0.31 0.52 0.002 0.06 1.5 0.17 0.85 小0.15 0.25 0.55 0.016 0.013 0.75 0.15 从成份上看,大有材料为38CrMoAl,小的材料为20CrMnMo 2、宏观形貌 大:断口处晶粒粗大稍发亮,为脆性断裂。小:断口处晶粒细小,瓷性灰色断口,为韧性断裂。(如图示)

3、金相组织分析 (1)大的金相组织 100X 40X 0.30m m

200X 齿轮表面的渗氮层厚:0.30mm,渗层组织不均匀,渗层硬度801HV1,表面有数条垂直于表面的微裂纹,裂纹周围组织无脱碳,裂纹长度稍长于渗层。 200X 断裂处的显微组织形貌 200X 中心组织:回火索氏体加屈氏体加条状及半网状铁素体。

(2)小的金相组织 200X 40X 渗层深1.5mm 齿轮渗碳层厚1.5mm,有效硬化层厚0.8mm,表面有数条细小的裂纹沿晶向里延伸,渗层硬度637HV1。 200X 表面渗碳和过渡区组织,表面为高碳马氏体和细小的颗粒状碳化物,

往里为马氏体组织。500X 中心组织:低碳板条马氏体组织。 4、原因分析 (1)大的材料为氮化钢,小的材料为渗碳钢,符合材料的牌号。(2)从金相组织上分析 大的心部组织为回火索氏体加屈氏体加条状、半网状的铁素体,为非正常的调质组织,这是因为淬火时,由于加热温度太低或保温时间太短,使铁素体未能完全溶解,经过淬火、回火后,仍存在于基体中。调质后出现这种组织,属于不良的显微组织。齿轮表面有数条微小的细裂纹,这些裂纹的产生是氮化时,由于氮在铁素体中的扩散速度较大,氮化后铁素体中的氮浓度较高,易形成须状氮化物从而从使氮化层脆性较大。因此渗层组织不均匀(?),致使在使用过程中齿根部受到拉应力的作用而导致脆性断裂。 小的渗碳淬火后心部组织为粗大(?)的板条马氏体组织,综合性能比较好,(为热处理过程中温度失控?),渗碳后表面的碳含量很高,在淬火过程中由于应力过大(是有可能)产生裂纹或微裂纹。出现在粗针马氏体针叶上,与马氏体的惯析面成一定的角度,且相互平行。这种淬火后出现的小裂纹在没有及时回火的情况下,就没法弥补,使疲劳强度和使用寿命降低。表面的这些微小的细裂纹的缺陷的存在致使齿轮在使用的过程中受到拉应力的作用而导致断裂。 5、结论 大:预处理组织不合格导致后序的氮化处理过程中组织应力的作用而产生的裂纹是崩齿的主要原因。

植入患者体内的钢板断裂,医院的赔偿责任

植入患者体内的钢板断裂,医院的赔偿责任 案例: 陈某于2011年12月28日因摔伤致左上臂肿痛、畸形就诊于A 医院处,诊断其为左肱骨中下段粉碎性骨折,全身多发性外伤,行切复内固定术+人工骨折植入术。病例显示:A医院为陈某左侧肱骨干骨折使用的金属接骨板为无锡市某医疗器械有限公司生产,规格为8孔。陈某于2012年1月14日出院,复查X线片示左肱骨骨折术后,对位对线良好。病例记载“术后两月之间复查显示内固定位置良好,后一直未予复查”。2013年6月12日陈某因“左侧肱骨骨干骨折术后内固定断裂”就诊于安徽省立医院,2013年6月13日X线片提示左肱骨中段陈旧性骨折,内固定10孔钢板在位,钢板断裂,左肱骨骨干骨折术后骨不连。2013年6月28日,陈某出院,共计花费医疗费31083.05元。 2014年5月22日,安徽某司法鉴定所作出医学鉴定意见:患者陈某左肱骨骨折内固定钢板断裂,与A医院医疗行为有关,为患者陈某使用内固定钢板无合格证,使用医疗器械存在缺陷,A医院医疗行为违法相关规定,存在医疗过错;2015年1月28日,经某司法鉴定中心重新鉴定,作出医学鉴定意见:难以排除A医院在为陈某的诊疗过程中,采用内固定不确切,未进行有效的内固定,履行注意义务不充分,未尽到与其医疗水平相应的诊疗义务,其诊疗行为存在过错。该诊疗过程行为与陈某左侧肱骨干骨折术后骨不连,内固定断裂的损

害后果之间存在因果关系,参与度建议在56%—70%之间为宜;A医院的病例记载与实际情况不符,存在过错。2015年6月10日,经鉴定:被鉴定人陈某因摔伤致左肱骨中段骨折,现遗有左肩、左肘关节活动受限,造成左上肢功能丧失程度达百分之十以上,属X(十)级伤残。 律师分析: A医院在治疗过程中,不但要保证自身诊疗行为没有过错,还要证明其提供的医疗器械不存在质量缺陷。而是否属于缺陷产品,不仅取决于产品是否符号国家标准、行业标准等强制性规定,还要看是否存在潜在的不合格危险。本案中,A医院提供的钢板在植入陈某体内发生断裂,使用期限远未达到A医院医院在出院遗嘱上载明的时间,且A医院提供的钢板合格证标明的是八孔而植入陈某体内的钢板是十孔,两者不符,A医院显然存在过错。作为植入患者体内的钢板,其质量要求远要高于其他产品的质量安全要求。 A医院未提供因陈某自己过错而造成钢板断裂的相关证据,应视为其提供的钢板质量存在质量缺陷,依法应承担相应的赔偿责任。医学鉴定意见书认定:A医院诊疗过错行为与陈某左侧肱骨干骨折术后骨不连,内固定断裂的损害后果之间存在因果关系,参与度建议在56%—70%之间为宜。根据鉴定意见及本案查明的事实,法院可以酌定医疗过错行为与陈某损害后果之参与度。并计算陈某因医疗损害的各项损失,根据确定的医疗过错行为与陈某损害后果之参与度,判定

齿轮断裂原因分析

概况描述:生产上的齿轮轴在使用两个星期后,突然发生断齿,给生产造成了很大的损失。为了弄清楚产生断裂的原因, 1、化学成份分析 从成份上看,大有材料为38 Cr Mo Al ,小的材料为20 Cr MnMo 2、宏观形貌 大:断口处晶粒粗大稍发亮,为脆性断裂。小:断口处晶粒细小,瓷性灰色断口,为韧性断裂。(如图示) 3、金相组织分析 (1)大的金相组织 100X 40X 200X 齿轮表面的渗氮层厚:0.30mm ,渗层硬度801HV 1,表面有数条垂直于表面的微裂纹,裂纹周围组织无脱碳,裂纹长度稍长于渗层。 200X 断裂处的显微组织形貌

200X 中心组织:回火索氏体加屈氏体加条状及半网状铁素体。 (2)小的金相组织 200X 40X 齿轮渗碳层厚1.5 mm,有效硬化层厚0.8 mm,表面有数条细小的裂纹沿晶向里延伸,渗层硬度637HV1。 200X 表面渗碳和过渡区组织,表面为高碳马氏体和细小的颗粒状碳化物,往里为马氏体组织。500X 中心组织:低碳板条马氏体组织。 4、原因分析 (1)大的材料为氮化钢,小的材料为渗碳钢,符合材料的牌号。(2)从金相组织上分析 大的心部组织为回火索氏体加屈氏体加条状、半网状的铁素体,为非正常的调质组织,这是因为淬火时,由于加热温度太低或保温时间太短,使铁素体未能完全溶解,经过淬火、回火后,仍存在于基体中。调质后出现这种组织,属于不良的显微组织。齿轮表面有数条微小的细裂纹,这些裂纹的产生是氮化时,由于氮在铁素体中的扩散速度较大,氮化后铁素体中的氮浓度较高,易形成须状氮化物从而从使氮化层脆性较大。因此渗层组织不均匀(?),致使在使用过程中齿根部受到拉应力的作用而导致脆性断裂。

石油钻采设备用阀杆断裂失效分析_刘国永

櫡櫡櫡櫡櫡櫡櫡櫡 测试与分析櫡櫡櫡櫡櫡櫡櫡櫡 收稿日期:2014-07-17 基金项目:本项目研究得到上海市科学技术委员会的资助,资助课题编号为12DZ2291700。 作者简介:刘国永(1985-),男,河北人,助理工程师,主要从事失效分析及金属材料理化检测工作。联系电 话:021-********?744,E-mail :lgy040005@163.com 石油钻采设备用阀杆断裂失效分析 刘国永 1,2 (1.上海市机械制造工艺研究所有限公司,上海 200070;2.上海金属材料改性技术研究中心,上海200070) 摘 要:石油钻采设备中的1Cr13阀杆在使用过程中出现卡死、断裂现象。对阀杆的断口及螺纹卡死区域进行了宏观、微观及化学成分分析。结果表明,阀杆的化学成分基本符合要求,阀杆断裂与其强度 不高及局部严重腐蚀有关。 关键词:阀杆;断裂;腐蚀中图分类号:TG115.2文献标识码:A 文章编号:1008-1690(2014)05-0077-04 Analysis on Fracture of Valve Stem of Oil Drilling Equipment LIU Guoyong (1.Shanghai Institute of Machine Building Technology Co.,Ltd.,Shanghai 200070,China ;2.Shanghai Engineering Research Center of Metal Materials Modification ,Shanghai 200070,China ) Abstract :1Cr13steel valve stem of oil drilling equipment deadlocked and fractured in service.The fracture of valve stem and the deadlock zone of thread were subjected to macroscopic ,microscopic and chemical composition analysises.The results show that the chemical composition of valve stem come up to the standard on the whole ,and that the fracture of valve stem arises from its insufficient strength and being locally seriously corroed.Key words :valve stem ;fracture ;corrosion 某厂生产的石油钻采系统用阀杆的闸阀装配情况如图1所示。阀杆最大外径约31.8mm ,总长为325mm ,材质为1Cr13。阀杆螺纹区域经表面氮碳共渗处理,要求厚度0.01 0.025mm ,表面硬度≥900HV 。该阀杆在使用过程中卡死,并在外力扭转下出现断裂。本文通过系统的理化检测分析了阀杆的断裂原因。 1宏观分析 阀杆断裂位置如图1所示。可见断裂发生于阀 杆氮碳共渗部位截面突变区域的根部,阀杆近断口区域表面基本呈黑色,并可见局部有黄褐色的锈蚀状斑点。阀杆近端部配有一直径约12.4mm 的销轴,为阀杆的安全销,销轴一方面与杆套起到连接作用,另一方面在阀杆卡死、过载时其会优先断裂,而断裂阀杆的销轴并未出现断裂现象。 阀杆断口宏观形貌如图2所示,断口直径约24mm ,基本呈横向分布。断面近边缘环周内可见 多个小块状塑变平滑区,呈棘轮状分布,拟为切应力下多源启动的切断所致;断面心部区域较粗糙,可见有扭转流变的条纹分布,断口中心沿扭转方向呈向上凸起状,拟为扭转断裂后期瞬间正应力作用所致。断口整体呈过载性扭转断裂特征,近边缘拟为起始区,心部为终断区。断口附近阀杆表面可见多处黄褐色锈蚀斑区分布,表明阀杆曾受腐蚀性介质影响 。 图1闸阀装配情况及阀杆断裂位置 Fig.1 The gate valve assembly and break point of the valve stem

钢丝断裂原因分析

钢丝断裂原因分析

一、夹杂物引起断裂 线材中非金属夹杂物的存在,破坏了组织的连续性,起到了一个显微裂纹的作用。当受到外力作用时,在夹杂物的顶端首先产生附加的应力集中。尤其在原奥氏体晶粒交界处出现的大块状、条状或片状碳化物,这些异常碳化物在材料冷变形时,严重地阻塞了位错的移动,致使该处产生应力集中。当应力集中达到一定大小时便会使碳化物开裂,或在碳化物与基体交界处产生裂纹。当裂纹达到失稳状态尺寸,地瞬时产生断裂。 非金属夹杂物的多少是衡量帘线钢质量高低的一个重要因素。在用SEM对断口进行分析的过程中,经常发现非金属夹杂物。在典型的杯锥状断口上有时候就能发现夹杂物,SEM表明大多为三氧化二铝夹杂或其它高熔点脆性夹杂物。其避免主要是通过精炼,使夹杂物变为塑性低熔点夹杂物。 脆性夹杂物是引起钢丝断裂的重要原因之一,而夹杂物引起断裂分为以下几种形势: 1、夹杂物与钢基体之间界面脱开 拉伸过程中,在夹杂物周围的局部加剧了应力集中;裂纹优先在与拉应力垂直的夹杂物与基体的界面产生并沿着夹杂物与钢基体界面扩展,致使夹杂物与基体界面脱开。 2、夹杂物本身开裂

由于脆性较矮杂物本身具有缺陷,在拉伸过程中,在缺陷处产生严重的应力集中,由于局部应力升高而导致夹杂物本身开裂。; 3、混合开裂 钢中非金属夹杂物的形状、分布是没有规律的,因此夹杂物在钢中引起裂纹也是随机性的,取决于夹杂物的性质、尺寸、形状及分布,对于同类型的夹杂物,由于形状、分布和受力方向不同,往往产生断裂的情况也不尽相同,有时两种断裂方式同时存在,有时两种断裂方式交替进行。4、沿两种不同类型夹杂物的相界开裂 钢中经常出现几种夹杂物相共生在一起的复合夹杂物,由于各类夹杂物之间的力学性能和物理性质不同,相界结合力较弱,在拉应力作用下容易从相界开裂。 二、偏析引起的钢丝断裂 在一定程度上,中心偏析对钢丝拉断的危害必脆性夹杂物。因为偏析在更大程度上影响了钢丝的延伸性,从而使塑性变形不能在存在偏析的地方产生。在钢丝最初的拉拔过程中偏析导致小的裂纹的出现,等进入了最终拉拔时就导致了人字形断口(chevroncracks) 在连铸过程中减少中心偏析的途径有以下几个: 1、中心偏析随着中包过热度的降低而降低,因此中包的钢液温度应该尽可能的低;

阀门泄露原因分析及处理方法大全

阀门常见问题及处理方法大全 阀门泄露的处理方法 在日常生活中,受到环境和各种因素的影响,阀门在使用过程中会出现泄漏的现象。 一、阀体和阀盖的泄漏: 原因: 1.铸铁件铸造质量不高,阀体和阀盖体上有砂眼、松散组织、夹渣等缺陷 2.天冷冻裂; 3.焊接不良,存在着夹渣、未焊接,应力裂纹等缺陷; 4.铸铁阀门被重物撞击后损坏。 维护方法: 1.提高铸造质量,安装前严格按规定进行强度试验; 2.对气温在0°和0°以下的阀门,应进行保温或拌热,停止使用的阀门应排除积水 3.由焊接组成的阀体和阀盖的焊缝,应按有关焊接操作规程进行,焊后还应进行探伤和强度试验; 4.阀门上禁止推放重物,不允许用手锤撞击铸铁和非金属阀门,大口径阀门的安装应有支架。 二、填料处的泄露(阀门的外漏,填料处占的比例为最大) 原因: 1.填料选用不对,不耐介质的腐蚀,不耐阀门高压或真空、高温或低温的使用; 2.填料安装不对,存在着以小代大、螺旋盘绕接头不良、上紧下松等缺陷; 3.填料超过使用期,已老化,丧失弹性 4.阀杆精度不高,有弯曲、腐蚀、磨损等缺陷 5.填料圈数不足,压盖未压紧; 6.压盖、螺栓、和其他部件损坏,使压盖无法压紧; 7.操作不当,用力过猛等; 8.压盖歪斜,压盖与阀杆间空隙过小或过大,致使阀杆磨损,填料损坏。 维护方法: 1.应按工况条件选用填料的材料和型式;

2.按有关规定正确的安装填料,盘根应逐圈安放压紧,接头应成30℃或45℃; 3.使用期过长、老化、损坏的填料应及时更换; 4.阀杆弯曲、磨损后应进矫直、修复,对损坏严重的应及时更换; 5.填料应按规定的圈数安装,压盖应对称均匀地把紧,压套应有5mm以上的预紧间隙;6.损坏的压盖、螺栓及其他部件,应及时修复或更换; 7.应遵守操作规程,除撞击式手轮外,以匀速正常力量操作; 8.应均匀对称拧紧压盖螺栓,压盖与阀杆间隙过小,应适当增大其间隙;压盖与阀杆间隙 过大,应予更换。 三、密封面的泄漏 原因: 1、密封面研磨不平,不能形成密合线; 2、阀杆与关闭件的连接处顶心悬空、不正或磨损; 3、阀杆弯曲或装配不正,使关闭件歪斜或不逢中; 4、密封面材质量选用不当或没有按工况条件选用阀 维护方法: 1、按工况条件正确选用颠垫片的材料和型式; 2、精心调节,平稳操作; 3、应均匀对称地拧螺栓,必要时应使用扭力扳手,预紧力应符合要求,不可过大或小。法兰和螺纹连接处应有一定的预紧间隙; 4、垫片装配应逢中对正,受力均匀,垫片不允许搭接和使用双垫片; 5、静密封面腐蚀、损坏加工、加工质量不高,应进行修理、研磨,进行着色检查,使静密封面符合有关要求; 6、安装垫片时应注意清洁,密封面应用煤油清,垫片不应落地。 四、密封圈连结处的泄漏 原因: 1、密封圈辗压不严

重卡钢板弹簧断裂分析

重卡钢板弹簧断裂失效分析 白培谦 泮战侠 慕松 赵鹏英 杜飞 (陕西汽车集团有限责任公司质量管理部,陕西西安,710200) 摘 要:通过宏观检查、化学成分分析、硬度测试以及微观组织检查等结果分析,确定了重型卡车用钢板弹簧断裂原因。分析结果表明:因超载使钢板弹簧出现过度反弓,造成板簧卡中的螺栓与钢板弹簧动态接触,发生磨损腐蚀现象,在过大的交变应力下出现疲劳断裂。并提出了防止其发生断裂事故的预防措施。 关键词:钢板弹簧;磨损腐蚀;交变应力;疲劳断裂 Fracture Failure Analysis of Heavy Truck Leaf Spring Bai Pei-qian, PAN Zhan-xia, Mu Song, Zhao Peng-ying, Du Fei, (1.Shaanxi Automobile Group Co., Ltd. Quality Management Department, Xi ’an 710200, China ) Abstract:The fracture cause of heavy truck leafspring is researched by macrography, chemical composition analysis, hardness test and microstructure test. The research shows that leaf spring excessive inverse arch-shaped for overload causes Frictional Contact between plate spring bolt and leaf spring and erosion corrosion and the leaf spring is broken for fatigue fracture Under alternating stress. In the paper the measures of preventing leaf spring fracture accident is put forward. Key words: leaf spring; erosion corrosion; alternating stress; fatigue fracture. 钢板弹簧是汽车悬架中重要的弹性元件,主要影响汽车行驶的平顺性和操纵的稳定性,在车辆行驶过程中起到缓冲减振的作用。 同批次某矿山用短途重载卡车行驶约六千公里后发生四起钢板弹簧断裂事故。断裂钢板弹簧材料为50CrV A ,其生产工艺为:下料→钻孔→卷耳→淬火→回火→喷丸→装配→预压→喷漆。为了查明钢板弹簧断裂原因,对断裂失效件进行检查分析。 1 检查与结果 1.1 宏观检查 断裂发生在前钢板弹簧组第一片后侧板簧卡附近,见图1(a )箭头所示位置,距吊耳孔中心约26cm 处,断口侧表面可见明显磨损腐蚀痕迹,见图1(b )所示。在体视显微镜下观察钢板弹簧侧表面磨损腐蚀区域发现:断口侧表面磨损腐蚀区域呈现红褐色,仔细观察存在大量裂纹,且出现腐蚀坑,见图2。 (a ) (b) 图1 断裂位置及外观 Fig.1 the fracture position and appearance 收稿日期:

气门断裂的原因

一、船舶柴油机排气阀故障的原因分析 1、排气阀的工作条件 船舶柴油机中排气阀的工作条件十分恶劣,气阀底面与高温燃烧产物直接接触,在气阀开启期间还承受着高温(900~1000°C)和具有腐蚀性气体的高速(达600m/s)冲刷,气阀中心温度高达700~800°C,在阀盘与阀杆过渡圆弧中段,温度也有600~700°C,排气阀工作温度分布如图1-1所示。过高的温度会使金属材料的机械性能降低,材料发生热变形。当阀面密封不严时,就会引起高温燃气对阀面的烧损。气阀落座时,阀与阀座的惯性力和弹簧作用力的共同作用下,还承受着相当大的冲击性交变载荷,在气阀出现跳动或气阀间隙增大时,这种载荷会明显增加。阀与阀座的撞击,容易形成密封面的变形和严重的磨损。因船用柴油机绝大部分多为增压柴油机,由于进气道内的新鲜空气压力阻止了从气阀导管中获得滑油的可能,因此,金属之间易发生干摩擦。但在一般柴油机的气阀以及增压柴油机的排气阀座合金面间总会布有一层滑油或烟油等润滑物。此外,阀杆与导管间也会发生磨损,阀杆顶端受摇臂的撞击与磨损。 图1

2、附加因素的影响 由于燃油价格不断上涨,航运市场竞争激烈,船东为了降低成本来达到提高竞争能力、获得更多利润的目的,均使用低价、劣质的燃油。这些燃油的粘度高,滞燃期长,而且钒、钠和硫的含量比较高。这种燃油在柴油机中燃烧时,渣油中所含的排放物(燃料灰份)仅仅有一部分与排出的气体一起离开机器,而剩余部分仍然留在发动机内一些高温(497?797°C)的零件上。例如,排气阔和活塞顶,形成沉积,造成所谓的“高温腐蚀”。到目前为止,还没有经济上合理的工艺过程能从渣油中除去腐蚀元素,连高级合金钢和堆焊排气阀钢也受到燃油的腐蚀。 在柴油机运行中违反用车保养规定,低温启动柴油机,低温强迫加载,柴油机气缸燃烧温度急剧变化,在柴油机负载状态下,急剧变换手柄位,使柴油机气缸燃烧状态恶化,大量雾化不良的粗大重油粒子喷入气缸,造成严重的后燃及不完个燃烧,严重积炭使排气阀的阀线表面也被积炭污染,甚至造成主机的起动困难,这就成为下次主机开车不久后的油头及排气阀故障的隐患,因此这些操纵、保养柴油机的不良习惯也是引发柴油机气阀故障的因素。 二、排气阀常见故障分析 1、排气阀烧损 排气阀烧损是排气阀最常见故障。主要原因是排气阀密封不严,造成高温燃气泄漏,使该处严重过热,甚至熔穿金属材料。造成排气阀密封不良的原因主要有以下几点:⑴由于阀盘不同部位的形状、厚度不同,受热、散热条件不同,阀盘圆周上的温度分布不均匀,中心温度高于周边温度,造成气阀阀盘径向上的温度差,过大的温差将造成阀盘的变形从而导致漏气的产生。⑵船用燃油中含有的杂质在经过燃烧室内的各种复杂热过程后在排气阀阀盘及阀座密封锥面沉积成一层混有碳粒的玻璃状较硬较脆物质,其内混有硫酸钠、硫酸钙、氧化铁等物质。当此层玻璃状沉积物沉积厚度过大时,在闭阀时的撞击力下会发生裂纹,反复撞击后进而发展成剥落,从而形成高温燃气喷出通道使气阀烧损。⑶普通排气阀密封锥面在工作温度下硬度并不是很高,沉积的硬质燃烧产物颗粒在闭阀的撞击下,可使密封面出现凹坑,从而形成漏气。 2、排气阀高温腐蚀 目前在航运市场上普遍使用的劣质燃油中含有大量钒、钠和硫等元素。在燃烧过程中.硫、钒和钠等元素形成氧化硫、五氧化二钒和氧化钠等(这些氧化物的化学成份取决于过量氧气和燃烧温度)。氧化物之间要发生反应,而且还要与滑油中的钙反应,形成低熔点的盐类,有硫酸钠,硫酸钙和不同成份的钒酸钠等。这些盐类混合物熔点一般为535°C 左右,同时具有较强的腐蚀性。当零件温度在550°C 以上时,足以使钒、钠化台物处于熔化状态,附着于零件表面。当排气阀在工作中时,由于排气原因(气阀温度可达650?800°C 以上),使它以液态形成沉积在阀盘及阀座以及阀杆与阀面的过渡表面上。这时即使是非常耐腐蚀的硬质合金钢也会受到腐蚀,腐蚀结果在密封锥面上形成麻点、凹坑.凹坑相连就可能造成漏气。由于上述腐蚀是高温条件下产生的,所以称之为“高温腐蚀”。 在上述高温腐蚀的有害元素中以钒的危害性为最大。 3、气阀密封锥面磨损过快 在燃烧室内的爆发压力作用下阀座与阀盘都发生弹性变形,气阀落座撞击也会造成阀座及阀盘的弹性变形,这样会使阀盘锥面反复楔入时,密封锥面产生相对运动,造成密封锥面磨损。气阀间隙过大,阀盘与阀座刚度不足,气阀与阀座材料性能达不到要求或不匹配,重油中含有较多的钒、钠、硫等有害元素,高负荷运行或燃烧恶化,冷却不良,阀杆与导管间隙过大,气阀机构振动使气阀落座速度过大等,都能使磨损速率增大。 4、阀盘与阀杆断裂 在阀盘与阀杆的过渡圆角处和阀杆装设卡块的凹槽处,由于这些部位应力容易集中,当应力集中到一定程度,就会发生疲劳断裂破坏。造成断裂的原因有:阀杆与导管的间隙过大;阀盘与阀座的变形使局部受力过大;气阀间隙过大,敲击严重疲劳破坏;气阀机构的振动。阀杆装设卡块的凹槽处是气阀的最薄弱部位,若该处凹槽加工工艺不良或闭阀冲击力较重也会产生疲劳断裂。 5、气阀卡死 气阀卡死主要是因为气阀阀杆和导管之间间隙过小,当受热膨胀后二者间隙过盈发生卡死现象。另一方面,当阀杆发生弯曲变形时也会使阀杆卡死在导管中。 6、气阀弹簧断裂

骨折手术钢板为什么会断裂

骨折手术钢板为什么会断裂 骨折手术有时候需要用钢板来固定,对于骨折患者来说,考虑骨折手术钢板的安全性是必须的,有些朋友会发生钢板断裂的情况,那么骨折手术钢板为什么会断裂呢?接下来,本文就为大家介绍骨折手术钢板为什么会断裂的相关内容,想要了解这些知识的朋友可以接着往下看哦! 骨折以后出现骨折移位,如果不稳定骨折断端,就有骨折再移位的趋势、需要固定维持断端位置。钢板、髓内钉等内固定物起连接、稳定骨折断端作用。目的是早期活动,预防肢体不动引发的各种并发症,如关节僵硬、废用骨质疏松、肌肉萎缩等。 稳定骨折断端的方法很多,石膏、支具等外固定有固定不确实的缺点,也就是说骨折可能再移位。 钢板的作用是连接骨折断端、稳定骨折断端、允许肢体在非

负重条件下运动,也就是说早期肢体运动时力的传导是靠钢板传递的;内固定物是刚体,再硬的刚体也有疲劳断裂的时候,就像小时候,家里没有钳子,想把钢丝折断的方法就是反复的折弯钢丝。 既然钢板会断裂为什么还用钢板固定呢? 原因是骨折经过固定以后会逐渐愈合、产生骨痂,肢体力的传导逐渐由早期的经内固定物传导、逐渐过渡到内固定物和骨痂共同传导、最后只通过骨骼传导,这时钢板就没有力传导的作用了。所以留在体内已经没有任何作用。 骨折手术钢板需要取出来吗?这些内置物在置入体内以前 均经过生物相容性的检测,也就是说,可以留在体内终生不取;如果取出内固定物,就需要手术,其实取出的过程和置入的过程一样,也是一次创伤。这样看来就没有必要经历这次损伤。 为什么有些人一定要取出来呢?钢板有些固定的位置位于

皮下,刺激皮肤引起疼痛;接近神经干,刺激神经;有些人还有金属过敏。所以并不是所有人都有不舒适的感觉,而且有些不舒适与内植物无关,是和创伤有关,也就是说即使取出内植物,这种不舒适还是存在的。 以上就是关于骨折手术钢板为什么会断裂的相关介绍,相信大家看了上面的介绍之后,对骨折手术钢板为什么会断裂这个问题已经找到答案了。其实当钢板断裂时,骨折处已经早就愈合了。因此,钢板断裂也没什么关系的。希望通过本文的介绍,对想要了解骨折手术钢板为什么会断裂的朋友有所帮助。

断裂分析报告

M10-45H 内六角紧定螺钉 断裂分析 据客户反映,由本公司供应的M10-45H 紧定螺钉,安装过程中发生故障。 现状:M10-45H 内六角紧定螺钉,在密封锁紧螺母安装过程中发生断裂; 安装过程:在部件上指定部位使用43~48N.m 扭矩旋入紧定螺钉(作为限位螺钉使用),然后,在紧定螺钉露出端使用43~48N.m 的终拧扭矩旋入密封锁紧螺母并拧紧,防止螺钉与基体之间的间隙造成介质渗漏。 一,失效件检测分析: 1,断口形貌宏观观察: 断面基本与轴线垂直,颜色灰色,颗粒细小均匀;放大10倍进行观测,未见目测可见原始裂纹。 2,机械性能检测: 3,金相检测分析: 沿轴线使用线切割方式制样,检测了纵向剖面的金相组织。如下图图1和图2。 图1 芯部金相x500 芯部金相组织:回火马氏体+回火屈氏体 图2 螺纹金相x200 螺纹部位金相:无脱碳层或渗碳层 4,化学成分分析: 合金钢SCM435: 0.35%C, 0.21%Si, 0.70%Mn, 0.013%P, 0.007%S, 1.04%Cr, 0.185%Mo 符合GB3098.3对45H 级螺钉的材质要求。 失效件检测分析表明,该产品机械性能和使用材料完全符合GB3098.3标准要求 二,断裂原因分析: 对失效件的机械性能检测、金相组织检测、化学成分检测结果表明,产品完全符合标准规范。 对照标准GB/T 3098.3-2000,在标准条文内第一章,标准范围,对该产品的描述,第一段有明确:本标 准 规 定了由碳钢或合金钢制造的、在环境温度为10-35℃条件下进行试验时,螺纹公称直径为1.6- 24m m 的紧定螺钉及类似的不受拉应力的紧固件机械性能。如下截图:

螺栓断裂原因分析

螺栓断裂原因的分析 一般情况下,我们对于螺栓断裂从以下四个方面来分析: 第一、螺栓的质量 第二、螺栓的预紧力矩 第三、螺栓的强度 第四、螺栓的疲劳强度 实际上,螺栓断裂绝大多数情况都是因为松动而断裂的,是由于松动而被打坏的。因为螺栓松动打断的情况和疲劳断裂的情况大体相同,最后,我们总能从疲劳强度上找到原因,实际上,疲劳强度大得我们无法想象,螺栓在使用过程中根本用不到疲劳强度。 一、螺栓断裂不是由于螺栓的抗拉强度: 以一只M20×80的8.8级高强螺栓为例,它的重量只有0.2公斤,而它的最小拉力载荷是20吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固20公斤的部件,也只使用它最大能力的千分之一。即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺纹紧固件的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。 二、螺栓的断裂不是由于螺栓的疲劳强度: 螺纹紧固件在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次。换句话说,螺纹紧固件在使用其疲劳强度的万分之一时即松动了,我们只使用了它大能力的万分之一,所以说螺纹紧固件的松动也不是因为螺栓疲劳强度。 三、螺纹紧固件损坏的真正原因是松动: 螺纹紧固件松动后,产生巨大的动能mv2,这种巨大的动能直接作用于紧固件及设备,致使紧固件损坏,紧固件损坏后,设备无法在正常的状态下工作,进一步导致设备损坏。 受轴向力作用的紧固件,螺纹被破坏,螺栓被拉断。 受径向力作用的紧固件,螺栓被剪断,螺栓孔被打成橢圆。 四、选用防松效果优异的螺纹防松方式是解决问题的根本所在: 以液压锤为例。GT80液压锤的重量是1.663吨,其侧板螺栓为7套10.9级M42螺栓,每根螺栓的抗拉力为110吨,预紧力取抗拉力一半计算,预紧力高达三、四百吨。但是螺栓一样会断,现在准备改成M48的螺栓,根本原因是螺栓防松解决不了。 螺栓断裂,人们最容易得出的结论是强度不够,因而大都采用加大螺栓直径强度等级的办法。这种办法可以增加螺栓的预紧力,其摩擦力也得到了增加,当然防松效果也可以得到改善,但这种办法其实是一种非专业的办法,它的投入太大,收益太小。 总之,螺栓是:“不松不断,一松就断。”

钢板断裂分析

摘要:文章针对斯太尔991车发生的进口板簧断裂事故,在分析失效件的基础上,采取有关材料失效分析技术,得出该板簧的早期失效原因,为有效控制产品质量提供了依据。 1 概述 重汽公司技术中心质检所在总后试车场进行斯太尔991车3万km 道路试验中,汽车在行驶至17491km时,车上装用的进口板簧左前板簧第一片断裂,行驶至19696km时后板簧第一片、第二片断裂。为查明失效原因,特对断裂件进行了分析。 2 断口宏观观察 前簧断在离骑马螺栓中心孔350mm处,在板簧受拉面有两个裂纹源,裂纹源产生在直径约3mm的小坑内;断口具有典型早期疲劳失效特征:具有贝壳纹特征的疲劳裂纹扩展区占整个断面的10%左右,瞬断区占90%左右,如图1所示。 后簧第二片断在包耳开卷处,断口为早期疲劳失效特征,断口附近有多处疲劳裂纹源(如图2所示),且在断口附近有多条与断口同向深度在0.2mm左右的裂纹。

图1 前簧宏观断口(箭头指裂纹源) 图2 后簧第二片宏观断口(箭头指裂纹源) 3 化学成分 化学成分检测结果见表1,符合DIN17222中58CrV4的成分要求。 4 硬度检查 前后簧布氏硬度测量结果为:前簧HB417,后簧HB411。 5 金相检查

(1)前簧 在断裂处附近取样,基体为回火屈氏体组织,表面脱碳层深度为0.21mm。显微硬度检查脱碳层如表2。 在裂纹源小坑处取样,表层为白亮层,白亮层厚度约为0.2mm;对试样进一步腐蚀,经观察得知白亮层为马氏体组织,如图3所示;白亮层显微硬度HV0.2=743,心部基体显微硬度HV0.2=396。 图3 白亮层组织400× (2)后簧 在裂纹附近取样,心部为回火屈氏体组织,表面脱碳层为0.28mm。显微硬度检验脱碳层,结果见表3。

汽车钢板弹簧断裂分析方法

汽车钢板弹簧断裂分析方法 李 涛 (江西五十铃汽车有限公司) 摘要:汽车钢板弹簧在路试或使用中会偶发断裂现象,分析断裂原因的方法应从 断裂宏观、微观入手,对断裂件进行化学成分、低倍组织、夹杂物、硬度、金相、 脱碳层及喷丸检验,从而找出断裂的根本原因。 关键词:钢板弹簧;早期;断裂;分析;热处理;喷丸; Auto leaf spring fracture analysis method Li Tao (Jiang Xi ISUZU Motors Co., Ltd.) Abstract: Auto leaf spring in the road test or use will be accidental fracture phenomenon, this paper analyzes the reasons of fracture method from macro and micro fracture of the broken pieces of chemical composition, macrostructure, inclusions, hardness, metallographic, decarburization layer and shot peening inspection, so as to find out the root cause of the fracture. Key words:Leaf spring;Early;Fracture;Analysis;Heat treatment;Shot peening; 汽车钢板弹簧(下简称:板簧)是汽车关键的弹性元件,主要功能是当路面 对轮子传输冲击力时,钢板产生变形,起到缓冲、减振的作用,纵向布置时还具 有导向传力的作用[1]。 在路试和正常的使用中会偶发板簧断裂现象,在排除设计原因导致产品强度 不够导致断裂的前提下,为查找到断裂的根本原因对其分析过程进行详细诠释。 一、 断裂宏观微观分析 1.断裂位置 常规的板簧断裂位置为U型螺栓夹紧位置附近,此种断裂多为板簧寿命达 到极限,因板簧在设计过程中此区域为应力最大区(除等应力板簧)[2],见下图: 板簧中心孔发生断裂,此种断裂多为对板簧的夹紧出现松动,中心孔为U 型螺栓夹紧的范围内,此段通称为无效段,因U型螺栓夹紧后此段不受到任何 力的作用,但是当U型螺栓夹紧段发生松动后,此段将后受到外部传来的应力, 而中心孔位置本身就是“缺陷”位置,故会产生应力集中,从而导致板簧发生断 裂,此种断裂多数不为板簧本身质量问题。 板簧其他位置发生断裂,这种断裂通常为异常断裂,或因产品本身质量问题 导致断裂,或因外部原因导致板簧产生缺陷导致断裂。

齿轮失效分析实例

齿轮失效分析实例 齿轮是传递运动和动力的一种机械零件。齿轮的类型以及特点不仅可决定齿轮的运转特性,并且也决定了它是否会过早地失效。 齿轮失效的类型可划分为四种: (1)磨损失效,是指轮齿接触表面的材料损耗; (2)表面疲劳失效,是指接触表面或表面下应力超过材料疲劳极限所引起的材料失效。进一步又可分为初始点蚀、毁坏性点蚀和剥落。 (3)塑性变形失效,是指在重载荷作用下表面金属屈服所造成的表面变形。它又可进一步分为压塌和飞边变形、波纹变形和沟条变形。 (4)折断失效,是指整个轮齿或轮齿相当大的一部分发生断裂。可以进一步分为疲劳折断、磨损折断、过载折断、淬火或磨削裂纹引起的折断等。 本章主要介绍变速箱齿轮及被动齿轮的失效分析实例,供读者参考。 变速箱齿轮失效分析 1.45号钢齿坯裂纹分析 45号钢齿坯,由φ80mm圆钢落料后直接粗车成外径为φ78mm的柱体形状。其化学成分为:C:0.49%,Mn: 0.68%,Cr<0.2%。热处理工艺过程:在X—45箱式电炉中加热,到温度(820℃)装炉,装炉量109只,保温时间为一小时(工件达到温度后计算时间),工件用盐水冷却(冷却液不循环),水温20~30℃。回火温度为520~530℃(零件淬火后隔天回火)。经车削后,发现零件内孔平面和内孔上有较多裂纹,如图1和2所示。 图1 OPI 图象说明: 零件实物经SM-3R型渗透剂着色探伤后宏观形貌。经肉眼与放大镜观察,在齿坯内孔平面与内孔中有距离大致相等的5~6处较长的裂纹,裂纹均由内孔之平面与孔交界处为起始分别向内孔壁与平面扩展;内孔平面上和内孔交界处加工纹路明显且尖锐。

图象说明: 内孔平面试样作金相观察,有 数条裂纹交叉分布,其内充满氧化皮 夹杂。其微观裂纹长度不等,分别为 0.63mm,0.29mm,0.23mm及0.19等。 图2 OMI 200× 2.汽车变速箱齿轮失效 失效齿轮为载重汽车变速箱一挡齿轮,由渗碳钢制造,在进行台架试验时,未达到设计要求就发生断齿现象。 根据断口的形貌可断定该齿轮的断裂为高应力作用下引起的快速断裂。主动齿轮心部断口基本为韧窝,被动齿轮具有准解理断裂形貌,说明主动齿轮韧性较好,但强度较低。显微硬度证实了主动齿轮硬度较被动齿轮低。两只齿轮渗碳层中均有网状渗碳体析出,这将使表层韧性较低,致使在运转过程经受不了启动冲击应力的作用。本次断裂事故是由主动齿轮先断裂,进而引起被动齿轮崩齿,故在被动齿轮上还能看到碰伤的痕迹。因此,可以认为齿轮失效的原因为渗碳工艺控制不当(热处理不当)而引起断齿。 变速箱一挡齿轮发生断齿后的宏观实物如图3所示。主动齿轮及被动齿轮断齿后的宏观断口形貌见图4所示。 图象说明: 变速箱齿轮发生断齿后的宏观 实物形貌。 图3 OPI

疲劳断裂失效分析

1 5.1疲劳断裂失效的基本形式和特征 5.2疲劳断口形貌及其特征 5.3疲劳断裂失效类型与鉴别 5.4疲劳断裂失效的原因与预防 第5章疲劳断裂失效分析 2?按应力循环次数 当Nf>105时为低应力高周疲劳(通常所指) 当Nf<10 4时为高应力低周疲劳?按服役的温度及介质条件 机械疲劳、高温疲劳、低温疲劳 冷热疲劳、腐蚀疲劳?基本形式 切断疲劳:面心立方在单向压缩、拉伸及扭转条件下多以切断形式破坏 正断疲劳:大多数的金属构件的疲劳失效都是以此形式进行的,特别是体心立方金属 3 ?疲劳断裂的突发性?疲劳断裂应力很低 ?疲劳断裂是一个损伤积累的过程?疲劳断裂对材料缺陷的敏感性?疲劳断裂对腐蚀介质的敏感性 4 典型的疲劳断口一般有三个区,即疲劳源区、疲劳裂纹扩展区和瞬时破断区。疲劳断口的宏观特征与静载破坏的脆性断口相似,无明显的宏观塑性变形。 5 ?疲劳核心是疲劳破坏的起点,它总是位于零件强度最低或应力最高的地方。 ?零件承受弯曲、扭转疲劳负荷时,最大应力区是在零件的表面。 ?零件表面的加工刀痕、凹槽、尖角、台肩等处由于应力集中往往成为疲劳源。 ?如果零件内部存在缺陷,如脆性夹杂物、白点、空洞、化学成分的偏析等,则可能在零件内部产生疲劳源。 1、疲劳核心(或称疲劳源) 6 ù疲劳源的数目可以不止一个,在名义应力较高或是应力集中较为严重时,在高应力区域就可能产生几个疲劳源。 ù疲劳源的位置用肉眼或低倍放大镜就能判断,一般在疲劳区中磨得最光亮的地方。 ù在断口表面同时存在几个疲劳源的情况下,可按疲劳线的密度来确定疲劳源产生的次序,疲劳线的密度越大,表示起源的时间越早。

7 疲劳断口上最重要的特征区域 该区域上常有疲劳断裂独特的宏观标志,如贝纹状、蛤壳状、海滩波纹等。 贝纹线以疲劳源为中心,向四周推进呈弧形线条,垂直于 裂纹扩展方向。 对于光滑试样,疲劳弧线的圆心一般指向疲劳源区。扩展到一定程度时,也可能出现疲劳弧线的转向现象 当试样表面有尖锐缺口时,疲劳弧线的圆心指向疲劳源区的相反方向。 在低周疲劳断口上一般也不常能观察到贝壳状条纹线。 8 $疲劳裂纹达到临界尺寸后发生的快速破断,它的特征与 静拉伸断口中快速破坏的放射区及剪切唇相同,但有时仅出现剪切唇而无放射区。$对于非常脆的材料,此区为结晶状断口,即使是塑性良好的合金钢或铝合金,疲劳断件断口附近通常也观察不到宏观的塑性变形。 9 10 6与静载拉伸断裂时不同,拉压疲劳断裂的疲劳核心多源于表面而不是内部。缺口试样由于缺口根部有应力集中故靠近表面裂纹扩展快,结果形成波浪形的疲劳弧线。高应力导致疲劳稳定扩展区较小,而最终断裂区所占比例较大。 6旋转弯曲的疲劳源区一般出现在表面,但无固定地点,疲劳源可 以为多个。疲劳源区和最后断裂区相对位置一般总是相对于轴的旋转方向而逆转一个角度。而高应力集中时,最终撕裂面移向中心,呈现棘轮花样。交变扭转载荷也出现这种花样 6双向弯曲的疲劳源区可能在零件的两侧表面,最后断裂区在截面内部。在高名义应力下,光滑的和有缺口的零件瞬断区的面积都大于扩展区,且位于中心部位,形状似腰鼓形。随着载荷和应力程度的提高,瞬断区的形状逐渐变形成为椭圆形。在低名义应力下,两个疲劳核心并非同时产生,扩展速度也不一样,所以断口上的疲劳断裂区一般不完全对称,瞬断区偏离中心位置。 11 D第一阶段为切向扩展阶段。在交变应力作用下,使滑移形成的裂纹源扩展形成可观察的裂纹,裂纹尖端将沿着与拉伸轴呈45°角方向的滑移面扩展。该阶段中裂纹扩展范围较 小,一般在2~5个晶粒之内。 D第二阶段为正向扩展阶段。裂纹从原来与拉伸轴呈45 °的滑移面,发展到与拉伸轴呈90 °,该阶段的断口具有引人注目的独特形态-疲劳辉纹。 D第三阶段是由于裂纹扩展到一定长度后,使构件的有效截面减少而造成的一次性快速断裂,断口特征常为韧窝型撕裂。 12疲劳辉纹的一般特点 (1)疲劳裂纹是一系列基本上相平行的条纹,略带弯曲呈波浪形,并与裂纹局部扩展方向相垂直,其凸弧面指向裂纹扩展方向。 (2)在疲劳裂纹稳定扩展阶段,所形成的每一条辉纹相当于一次载荷循环。辉纹确定了裂纹前沿线在前进时的位置。(3)疲劳辉纹的间距随应力场强度因子而变化,应力越大,间距越宽;反之应力越小,则间距越窄。 (4)疲劳断口的微观范围内,通常由许多大小不同、高低不一的小断块组成,每一小断块上的疲劳辉纹连续且平行,而相邻小断块上的疲劳辉纹不一定连续和平行。(5)断口的两匹配面上的辉纹基本对应。

齿轮的失效分析

潞安职业技术学院毕业论文 齿轮的失效分析 作者:李再蕾 摘要:齿轮传动是目前最重要也是应用最广泛的一种传动形式。由于齿轮在传动过程 中受到各种因素导致齿轮失效,如轮齿折断、齿面疲劳点蚀、胶合、磨损、塑性变形等。 齿轮失效直接影响着机械效能的发挥,亟待解决,本文分析了机械传动齿轮的失效形式 及失效的原因,并列举了实例进行了实例分析。采用化学成分分析、金相检验、硬度测 试等方法,对断裂齿轮进行失效分析,结果表明,失效的齿轮硬度达不到要求、设计图 样和加工工艺不符、金相组织不符合要求、存在偏载和重载现象等,这些都是导致齿轮 失效的直接原因,本文对此提出了相应的解决措施,并指出了齿轮今后的发展方向。 关键词:齿轮失效分析原因措施 第 1 页

潞安职业技术学院毕业论文引言 机械产品的失效分析是一门新的跨学科的综合性技术,在一些国家中已将它作为一门新的独立学科加以研究和发展。这是因为尽管人们所掌握的机械设计、材料、工艺、管理等的知识不断地丰富与深化,所运用的技术手段不断地更新与完善,但机械产品的失效事故仍经常发生,一些重大的失效事件往往会导致生命和财产的巨大损失。所以必须系统地研究机件的失效类型、鉴别失效类型的技术、预测及监控失效的方法,改进与预防失效的措施等。这方面的知识不仅对专业失效分析工作者是不可缺少的,而且对于设计工程师、材料和工艺工程师以及生产管理人员,也是十分必要的。只有对产品一切可能的失效形式、其发生的条件、控制与预防等有深刻的理解,才可以在创造优质产品方面获得成功。这里主要研究的是齿轮的失效分析。 齿轮是机动车辆、农业、矿山、石油机械和机床等多种机械产品必不可少的基础零件,应用范围极广,需用量也大。齿轮在各种机械中要求可靠且精确地传递动力,应具有高的疲劳强度、耐磨性能和加工精度,因而要求较高的制造技术。 目前我国已具有相当大的齿轮生产能力,基本上已能够满足各类机械产品的要求,但在实际使用中普遍反映使用寿命较低。这主要是由于我国的齿轮制造技术与国际先进水平相比差距较大,在齿轮设计、用材、制造以及使用等方面都还存在不少问题。如果对这些问题不作系统的分析研究,找出问题所在,从而提出相应的改进措施,齿轮产品质量就难以得到提高。 通过齿轮的失效分析,可揭示齿轮的失效形式、失效原因、失效机理。通过失效分析可较准确地揭露齿轮在设计、材质、制造工艺、装配和使用等方面而存在的不足之处。将这些信息反馈到有关部门,有助于改进齿轮质量,延长齿轮的服役寿命。 1 齿轮的损伤和失效形式 在机械工程中,齿轮传动应用甚为广泛,并且往往处于极为重要的部位,因此齿轮的损伤和失效倍受人们的关注。齿轮的失效可分为轮体失效和轮齿失效两大类。由于轮体失效在一般情况下很少出现,因此齿轮的失效通常是指轮齿失效。所谓轮齿失效,就是齿轮在运转过程中,由于某种原因,使轮齿在尺寸、形状或材料性能上发生改变而不能正常完成规定的任务。齿轮在运转中,轮齿有多种损 第 2 页

相关主题
文本预览
相关文档 最新文档