当前位置:文档之家› 热力学基本原理

热力学基本原理

热力学基本原理
热力学基本原理

12热力学基本原理

12.1热力学的重要概念

(1) 平衡过程(准静态过程)

系统所经过的中间状态都无限接近平衡状态的那种状态变化过程称准静态过程.准静态过程也是对实际过程的近似的抽象.

(2) 热力学第一定律

.

系统从外界吸收的热量等于系统内能的增量和系统对外作功之和.

热力学第一定律是包括热现象在内的能量转换和守恒定律,是宇宙中的一条普遍规律.

(3) 热力学第二定律

开尔文表述不可能从单一热源吸热使之完全变成有用的功而不引起其他变化.

克劳修斯表述热量不可能自动地从低温热源传向高温热源.

热力学第二定律说明的是自然界中过程的方向性问题,并非所有符号能量守恒的过程都能发生.它是独立于热力学第一定律的自然界的一条普遍规律.

热力学第二定律的实质:自然界中与热现象有关的实际宏观过程都不可逆的.

(4) 热力学第二定律的统计意义

为什么自然界中与热现象有关的实际过程有方向性?这是由大量分子所组成的物质热运动的统计规律决定的.这种统计规律指出,一个不受外界影响的孤立系统,其内部发生的过程,总是由几率小的宏观状态向几率大的宏观状态进行,由包含微观状态数目少的宏观状态向包含微观状态数目多的宏观状态进行的.这就是热力学第二定律的统计意义.

(5) 热力学第二定律的数学表达式

对孤立系统而言,其内部进行的任何自发过程有,所以孤立系统内

部进行的任何过程(都是不可逆过程)都是朝着熵增加的方向进行的——称熵增原理.

(6) 热力学第二定律的适用范围

热力学第二定律适用于有限时空中,由大量分子组成的系统,对单个或少量分子是没有意义的,同时也不能将它任意推广到整个宇宙.

12.2 解题指导

(1) 计算各过程的,除了利用公式外,还要结合热力学第一定律灵活运用.如求等温过程吸收的热量Q,虽然不能直接用公式,但根据热力学第一

定律,此时.又如求绝热过程对外做功,根据热力学第一定

律,此时也可.

(2) 正负的判别

很多情况不要求计算的具体数值,而只要求判别的正负(特别是在计算热机效率时,先对各过程要标明是吸热还是放热).

的正负决定于温度是升高还是降低,若温度升高

;温度降低.在图中对一个具体过程怎样决定它的温度是升高还是降低呢?只要过初态和末态分别作两条等温线,则离

原点O近的等温线温度较低,这样就可很快判别的正负. 图12.2-1中直线

1→2过程,.

作功A的正负看体积,过程的体积增大,A>0,过程的体积减小,A<0.

的正负判别后再根据热力学第一定律来判别Q的正负

.但也会碰到和A反号的问题,这时Q

的正负要看||,|A|绝对值的大小才能判别,具体问题请看

典型例题材12-2.

(3) 计算热机效率

①利用前一个公式还是后一个公式,看图中循环的图形,若循环所

包围的面积(即热机对外作的净功A)能很快用几何方法求得,这时用计

算比较方便,否则用后面公式计算.

②计算前先对循环中的每一过程是吸热还是放热作出判断,并在循环图中

标出,吸热箭头朝里指,放热箭头向外指,如图12.2-1所示.然后计算代入公式计算.

(4) 熵的计算

①对可逆过程,从状态1到状态2,熵的增量

②对不可逆过程,从状态1变化到状态2计算熵的增量,这时一定要设想

一个从状态1到状态2的可逆过程,然后对这一可逆过程用公式计算熵变.

③对一切实际发生的宏观过程,总是朝着系统熵增加的方向发展(这里要注意,对系统中某些物体在变化过程中它的熵可能增加,也可能增少,熵增原理是讲系统中各物体总的熵变一定增加).

12.3 典型例题

12-1 将的热量传递给标准状态下氢气.

(1) 若容积不变,则氢气的压强变为多少?

(2) 若压强不变,则氢气的内能改变多少?

(3) 若温度不变,则氢气的体积变为多少?

(4) 在上述过程中,哪一过程的内能增加最多?哪一过程对外作功最多?

解题思路利用热量公式,对定容过程,对定压

过程,可求出相应的量.对等温过程,利用热力学第一定律

求解.对第(4)问,利用热力学第一定律进行判别.

解(1) ,

(2) ,

(3) ,

(4) 根据热力学第一定律

等容过程A=0,△E增加最多;

等温过程△E=0,A对外作功最多.

12-2 图12.3-2中1→2为绝热过程,则过程1→a→2及1→b→2是吸热还是放热.

解题思路根据热力学第一定律,在该问题中,△E<0,A>0,

Q>0,还是Q<0,要判别△E,A的绝对值的大小才能决定.A的绝对值大小为过程曲线下面积的值,|△E|的值本题可通过绝热来定.

解过程1→a→2,△E<0,A>0.

过程1→2为绝热,所以即图中阴影部分的面积.

A为1→a→2曲线下的面积,从图中明显看出,所以

,为吸热.

过程1→b→2,△E<0,为1→b→2曲线下的面积,,所

以.

,为放热.

12-3 一定量理想气体,从同一状态开始把其体积由压缩到,分

别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3) 绝热过程,其中哪个过程外界对气体作功最小?哪个过程气体放热最多?

解题思路外界对气体所作功的大小

为图中过程曲线下的面积,在图

中作出等压、等温、绝热过程曲线就很容易加以判别.在等压、等温、绝热过程中不放热,比较等压、等温过程放

热的多少,要从两过程的吸热公式

进行具体计算比较.

解在图中作出等压压缩、等温压缩、绝热压缩,如图6.3-3所示.从图中看出等压压缩曲线(a→1)外界对气体作功最小.

等压压缩气体放热

等压过程方程

等温压缩气体放热

所以等压压缩过程气体放热最多.

12-4 1mol氦气视为理想气体,作图12.3-4所示的循环,求循环效率.

解题思路从图中很清楚地看出循环所包围的面积为长方形

面积,容易求得循环对外作的净功A,所以求循环效率用公式比

较方便.先在图中标出各分过程是吸热还是放热,再用公式进行计算.

解ab,bc为吸热过程,cd,da为放热过程,在图中标出.

12-5 狄塞耳柴油机进行近似于图12.3-5所示的循环.设工作物质为理想气体,2→3为等压过程,4→1为等容过程,3→4和1→2为绝热过程,压缩

比,膨胀比,热容比r =1.4,求循环效率.

解题思路此循环面积不易求得,用公式计算循环效率.首先

在循环图中对每一分过程标出是放热还是吸热,再代入公式计算.循环中存在绝热线,计算循环效率中一般要用到绝热方程.对绝热方程要认真对待,仔细计算,不可大意.

解2→3为等压膨胀,吸热

4→1为定容过程,放热

循环效率为

,①

状态3,4和1,2分别位于两条绝热线上,根据绝热过程方程为

,②

②式与③式相减

将④式代入①式得

,⑤

2→3为等压过程,有

将⑥式代入⑤式得

12-6 理想气体绝热地向真空自由膨胀,体积增大到原为的两倍,试求:

(1) 始末两的态的温度之比值;

(2) 始末两态熵的变化.

解题思路(1) 理想气体向真空作绝热自由膨胀Q=0,对外也不作功,

A=0,根据热力学第一定律可判断△E=0,从而得出始末温度的比值.

(2) 理想气体向真空作自由膨胀为一不可逆过程,对任一不可逆过程,根据熵增原理,末态的熵要大于初态的熵.

解(1) 理想气体作绝热膨胀Q=0,向真空自由膨胀,对外界不作功,A=0,根据热力学第一定律:

Q=△E+A,

所以

(2) 理想气体绝热向真空自由膨胀为不可逆过程,对自然界发生的一切不可

逆过程,根据熵增原理,熵永远要增加,即末态的熵大于初态的熵,. 注意:对第一个问题,有些学者会提出如下异议,认为理想气体绝热膨胀,根据

绝热方程:,

.

这里的问题是:绝热过程方程

恒量,恒量,恒量

是对准静态过程而言的,对非准静态的绝热过程,上面的绝热过程并不适用.对理想气体向真空作绝热自由膨胀,为非准静态过程,绝热方程不能运用,但热力学第一定律对任何过程都成立的.

12-7 把0℃的0.5kg的冰块加热到它全部融化成0℃的水,问:

(1) 水的熵变如何?

(2) 若热源是温度为20℃的庞大物体,则热源的熵变多大?

(3) 水和热源的总熵变多大?是增加还是减少?(冰的熔解热

)

解题思路我们设想过程是可逆的(准静态过程),水的温度保持0℃,热源相当庞大,温度也近似保持20℃不变.水和热源熵的增加分别用公式

进行计算.

解 (1) 冰在融化过程中吸热,d Q>0,融化过程中温度保持在0℃,熵的

增量

(2) 热源放出热量d Q<0,温度保持293K,熵的增量

(3) 水和热源的总熵变

总熵变增加.

12.4题解

1、一气缸内贮有10mol的的单原子理想气体,在压缩过程中,外力作功209J,气体温度升高1℃,试计算气体内能增量和所吸收的热量.在此过程中气体的摩尔热容量是多少?

解,

2、1mol氧气,温度为300K时,体积为0.002m3,试计

算下列两种过程中氧气所作的功:

(1) 绝热膨胀至体积为0.02m3;

(2) 等温膨胀至体积为0.02m3.

(3) 解释这两种过程中功的数值的差别.

解(1) 绝热膨胀Q=0,

根据绝热方程

得,

所以

(2)

(3) 由图12.4-2中看到,从同一初态膨胀至相同的体积,压力均要下降,但等温过程因温度不变,压力下降不如绝热过程快(从公式p=nkT,等温过程p的下降仅仅是n的减小所引起

的,而绝热膨胀p的下降是由T和n两者的减小而引起的).理想气体压力作功,

也即过程曲线下的面积,所以等温过程作功较多().

3、气缸内有单原子理想气体,若绝热压缩使容积减半,问气体分子的平均速率变为原来的几倍?若为双原子理想气体,又为几倍?

解气体分子的平均速率

由绝热过程方程

所以

对单原子理想气体,;

对双原子理想气体,.

4、试讨论一理想气体在图示的过程中,摩尔热容是正还

是负?

(1) 过程(沿绝热线);

(2) 过程;

(3) 过程.

解(1) 过程为绝热过程,

所以 C = 0.

(2) 过程,

此时Q=△E+A是大于0还是小于0,要比较|△E |和|A|的大小而定.

所包围之面积.

|△E |:和两过程△E相同,为绝热过程

,所包围的面积.显然,所以

.

(3) 过程

A A ''<''( 0为2 2 1 V V ''''包围的面积)

同样分析 所包围的面积,

所以 .

5、某理想气体按 =恒量的规律膨胀,问此理想气体的温度是升高了,还是

降低了?

解 因为是理想气体,所以有

.

根据题意有

①②式代入③式

气体膨胀,

所以有,温度降低了.

6、设有以理想气体为工作物质的热机循环,如图12.4-6所示,试证明其效率为

证明b→c为绝热过程,Q=0;

c→a为等压压缩,放出热量

a→b为等容过程,吸收热量

循环效率

7、图12.4-7为一定量理想气体的一个循环过程的T-V 图,其中3→1为

绝热过程,状态1的温度和体积为,状态2的温度和体积为,热容比为r,摩尔数为已知.

(1) 在1→2,2→3两过程中,系统是吸热还是放热?

(2) 求状态3的参量.

(3) 求此循环的效率.

解 (1) 过程1→2为等温膨胀,,所以

,吸热.

2→3为等容降温过程,,放热.

(2) 3→1为绝热过程,根据绝热过程方程得

.

根据状态方程

(3) ,

8、如图12.4-8所示,一条等温线与一条绝热线有可能相交两次吗?为什么?

证明 (1) 假设一条等温线与一条绝热线有两个可能的交点A和B,它们所

处的状态分别是.

因A,B点同在一条绝热线上,有

,①

A,B又在同一条等温线上,有

,②

由②式得,代入方程①得

所以

说明A,B实际上为同一点,因此一条等温线与一条绝热线不可能相交两次.

(2) 若一条等温线和一条绝热线可以相交两点A,B,则构成一循环.此循环只在等温膨胀过程中吸收热量Q,对外作功A,违背了热力学第二定律.

9、两条绝热线和一条等温线是否可以构成一个循环?为什么?

答从绝热过程方程恒量得知,绝热线上每一点的斜率只有一个,为

说明如果两条绝热线相交,在交点会有两个斜率出现,这是不可能的.上题又证明了一条等温线与一条绝热线也只有一个交点,所以两条绝热线和一条等温线无法构成一闭合循环曲线.

10、一理想气体作卡诺循环,高温热源温度为400K,低温热源温度为300K,在循环过程中对外作净功800J.现保持低温热源温度不变,提高高温热源温度,使之对外作的净功提高到1600J.求:

(1) 此时高温热源温度为多少?

(2) 这时热机效率又是多少?

设这两个循环都工作于相同的两条绝热线之间,如图12.4-10所示.

解,

从①式得

代入②式,可得

11、求在常温下质量为的水蒸气与的氢气的混合气体的定容比热.

解设分别为的定容摩尔热容量,混合气体的定容比热

为,对温度改变△T有

12、某理想气体在图上等温线与绝热线相交于A点,如图12.4-12.

已知A点的压强为,体积为,而且A点处等温线斜率与绝热线斜率之比为

,现使气体从A点绝热膨胀至B点,其体积为,求在此过程中气体对外作的功.

解等温过程,

斜率,

绝热过程,

斜率,

.

所以

.

热力学作业 答案

第八章 热力学基础 一、选择题 [ A ]1.(基础训练4)一定量理想气体从体 积 V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A → C 等温过程;A → D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ?+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =; AB 等压过程:AB AB E A Q ?+=,且0 >?AB E [ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板 抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+?得 0E ?=, ∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =. [ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ?,熵增量为S ?,则应有 (A) 0......0=???=?S E 【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过

材料热力学

2012 年春季学期研究生课程考核 (读书报告、研究报告) 考核科目:材料热力学 学生所在院(系):理学院应用化学系 学生所在学科: 学生姓名 学号: 学生类别: 考核结果阅卷人 第 1 页(共 5 页)

材料热力学在材料研究方面的应用 摘要:材料热力学对于材料的预测和使用具有理论指导作用,本文总结了近年来材料热力学在功能材料设计分析方面的应用,并对材料热力学这门学科在材料方面的应用进行了总结。 关键词:材料热力学;材料;应用 1.材料热力学概述 材料热力学就是把热力学原理和材料联系起来,用热力学的理论解决材料在设计、制造、应用时的相应问题。材料热力学课程以热力学定律为基础,着重介绍了统计热力学在材料中的应用,如溶液的统计热力学、相图热力学、相变热力学和化学平衡热力学等。 2.计算材料科学与热力学 随着科学技术的不断进步,已有的材料越来越不能满足当前甚至可预见的未来的科技发展对于生产、生活中各种器械材料的需要,已有的材料不断被淘汰,人们对材料提出越来越多的要求和希望。材料逐渐向功能的多样化和性能的优异化发展。大量的材料量和质的需求使人们不得不摈弃传统材料开发的逐一试探的方法。带预测性的材料设计理念就这样应运而生了。随着现当代材料分析与检测仪器精度和灵敏性的提高,人们可以积累大量的材料性能的数据,这为发展新的材料模型或新材料的预测和模拟研究提供了有利条件。由此产生了以材料热力学理论为基础,计算机技术辅助支撑的计算材料科学。 耿太在他的硕士论文[1]中提到,计算材料科学发展中最活跃的是包含相图热力学和相变动力学计算在内的CALPHAD领域。在此领域中,热力学模拟优化的过程和实验技术紧密结合,并与材料的成分、足迹和制备过程联系密切。而目前,材料设计领域的新课题就是连接不同层次材料的成分设计、微观结构、制备工艺来达到从微观结构到宏观性能的整体预测和设计。在这篇文章中,应用了热力学计算软件,计算了平衡态相图对耐腐蚀合金的耐腐蚀性能,计算了铁铝、铁硼合金的平衡态相图,并与标准的二元相图做了比较分析。他认为这种计算分析对于合金成分设计制备具有指导意义。 3.材料热力学用于金属材料 实际生产生活中应用最广泛的材料是金属材料。而金属材料中用到最多的又是金属基的复合材料。通过复合化设计后金属材料可以形成金属基的复合材料。金属基的复合材料具有更好的机械性能和功能性能,是当前高新技术、环境、能源、通信、汽车、国防及航空航天设备中不可替代的重要材料,并在国民经济和国防建设中有着不可替代的重要作用。 范同祥等人认为,金属熔体的热力学性质历来是材料科学、冶金化学和流体物理学等领域的工作者关注的冶金热力学的核心课题之一[2]。他们认为,热力学和动力学在研究复合材料界面反应控制、反应自生增强相种类选择、反应自生增强相尺寸控制、金属基复合材料体系设计及复合制备工艺优化等方面有很大的应用价值。并且,基于组元元素的悟性参数能为金属基复合材料的研究提供理论指导。但是,金属熔体的结构比较复杂,其热力学和动力学性质带有复杂性,且不同的体系有其特殊性,在这种情况下的热力学和动力学的模型应用就有其局限性和针对性,这样的模型需要发展和完善。另外,可以把热力学和动力学与第一性原理相结合,从原子尺度进行计算,这样就能在复合材料的研究中扩大热力学和动力学的应

热力学统计物理总复习知识点

热力学部分 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此 也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状 态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝 热过程中内能U 是一个态函数:A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造, 只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式: Q W U U A B +=-;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公 式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γ TV ;const 1 =-γγT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率 211T T -=η,逆循环为卡诺制冷机,效率为2 11T T T -=η(只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其 他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 V p W d d -=

热力学基础习题

热力学基础作业 班级:_____________ 姓名:_____________ 学号:_____________ 日期:__________年_______月_______日 成绩:_____________ 一、选择题 1. 一定量某理想气体按pV 2=恒量的规律膨胀,则膨胀后理想气体的温度 (A) 将升高. (B) 将降低. (C) 不变. (D)升高还是降低,不能确定. [ ] 2. 若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了 (A)0.500. (B) 400. (C) 900. (D) 2100. [ ] 3. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该理想气体的分子数为: (A) pV / m . (B) pV / (kT ). (C) pV / (RT ). (D) pV / (mT ). [ ] 4. 理想气体向真空作绝热膨胀. (A) 膨胀后,温度不变,压强减小. (B) 膨胀后,温度降低,压强减小. (C) 膨胀后,温度升高,压强减小. (D) 膨胀后,温度不变,压强不变. [ ] 5. 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作的功三者均为负值? (A) 等体降压过程. (B) 等温膨胀过程. (C) 绝热膨胀过程. (D) 等压压缩过程. [ ] 6. 如果卡诺热机的循环曲线所包围的面积从图 中的abcda 增大为da c b a '',那么循环abcda 与da c b a ''所作的净功和热机效率变化情况是: (A) 净功增大,效率提高. (B) 净功增大,效率降低. (C) 净功和效率都不变. (D) 净功增大,效率不变. [ ] 7. 两个卡诺热机的循环曲线如图所示,一个工作在温度为T 1 与T 3的两个热源之间,另一个工作在温度为T 2 与T 3的两个热源之间,已知这两个循环曲线所包围的面积相等.由此可知: (A ) 两个热机的效率一定相等. (B ) 两个热机从高温热源所吸收的热量一定相等. c ' d T 2 a b b ' c T 1V O p

热力学基础作业

大学物理课堂作业 热力学基础 一、填空题 1 在p?V图上 (1) 系统的某一平衡态用_____________来表示; (2) 系统的某一平衡过程用________________来表示; (3) 系统的某一平衡循环过程用__________________来表示; 2.处于平衡态A的一定量的理想气体,若经准静态等体过程变到平衡态B,将从外界吸收热量416 J,若经准静态等压过程变到与平衡态B有相同温度的平衡态C,将从外界吸收热量582 J,所以,从平衡态A变到平衡态C的准静态等压 过程中气体对外界所作的功为____________________. 3.一定量的某种理想气体在等压过程中对外作功为200 J.若此种气体为单 原子分子气体,则该过程中需吸热_____________ J;若为双原子分子气体,则 需吸热______________ J. 4.可逆卡诺热机可以逆向运转.逆向循环时, 从低温热源吸热,向高温热源放热,而且吸的热量和放出的热量等于它正循环时向低温热源放出的热量和从高温热源吸的热量.设高温热源的温度为T1 =450 K , 低温热源的温度为T2 =300 K, 卡诺热机逆向循环时从低温热源吸热Q2 =400 J,则该卡诺热机逆向循环一次外界必须 作功W=_________. 5. 一热机从温度为727℃的高温热源吸热,向温度为527℃的低温热源放热.若 热机在最大效率下工作,且每一循环吸热2000 J ,则此热机每一循环作功_____ ____________ J. 6. 从统计的意义来解释, 不可逆过程实质上是一个________________________ __________________________的转变过程, 一切实际过程都向着_____________ _____________________________的方向进行. γC p/C V为已知)的循环过程如T-V图所示,其中CA为绝热过程,7. 1 mol 理想气体(设= A点状态参量(T1,V1)和B点的状态参量(T2,V2)为已知.试求C点的状态参量:

1热力学基础练习题与答案

第一次 热力学基础练习与答案 班 级 ___________________ 姓 名 ___________________ 班内序号 ___________________ 一、选择题 1. 如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程 是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最 多的过程 [ ] (A) 是A →B. (B) 是A →C. (C) 是A →D. (D) 既是A →B 也是A →C , 两过程吸热一样多。 2. 有两个相同的容器,容积固定不变,一个盛有氨气,另一个盛有氢气(看 成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢 气,使氢气温度升高,如果使氨气也升高同样的温度,则应向氨气传递热量 是: [ ] (A) 6 J. (B) 5 J. (C) 3 J. (D) 2 J. 3.一定量的某种理想气体起始温度为T ,体积为V ,该气体在下面循环过程中经过三个平衡过程:(1) 绝热膨胀到体积为2V ,(2)等体变化使温度恢复为T ,(3) 等温压缩到原来体积V ,则此整个循环过程中 [ ] (A) 气体向外界放热 (B) 气体对外界作正功 (C) 气体内能增加 (D) 气体内能减少 4. 一定量理想气体经历的循环过程用V -T 曲线表示如图.在此循 环过程中,气体从外界吸热的过程是 [ ] (A) A →B . (B) B →C . (C) C → A . (D) B → C 和B →C . 5. 设高温热源的热力学温度是低温热源的热力学温度的n 倍,则理想气体在 一次卡诺循环中,传给低温热源的热量是从高温热源吸取热量的 [ ] (A) n 倍. (B) n -1倍. (C) n 1倍. (D) n n 1 倍. 6.如图,一定量的理想气体,由平衡状态A 变到平衡状态 B (p A = p B ),则无论经过的是什么过程,系统必然 [ ] (A) 对外作正功. (B) 内能增加. (C) 从外界吸热. (D) 向外界放热. V V

化工热力学理论

第2章流体的p-V-T(x)关系 1.1 本章学习要求 本章的核心容是流体的PVT关系。 要求学生掌握纯物质的P-V-T立体相图中,点、线、面所代表的物理意义及在 PT面和 PV面上投影所形成的P-T相图和P-V相图。认识物质的气、液、固三类常见状态和气 -液、 气-固、液-固相平衡等在相图中的表征方法;掌握临界点的物理意义及其数学特征。 要求掌握理想气体的基本概念及其基本的数学表达方法;明确在真实条件下,物质都是以非理想状态存在的,掌握采用立方型状态方程和Virial方程进行非理想气体PVT计算的方法。 1.2 重点 1.2.1 纯物质的PVT关系 图1-1 纯物质的p-V-T相图 图1-2 纯物质的p-T图图1-3 纯物质的p-V图 临界点C在图上表现为拐点,数学上的可表述为: C T T P V = ?? ? = ? ? ?? (1-1) C 2 2 T T P V = ?? ? = ? ? ?? (1-2)

1.2.2 状态方程(Equations of State ,EOS) 状态方程是物质P-V-T 关系的解析式,可表达为函数关系: f (P,V,T)0= (1-3) 状态方程的重要价值在于: (1) 用状态方程可精确地代表相当广泛围的P-V-T 数据,大大减小实验测定的工作量; (2) 用状态方程可计算不能直接从实验测定的其它热力学性质; (3) 用状态方程可进行相平衡计算,如计算饱和蒸气压、混合物气液相平衡、液-液平衡等,尤其是在计算高压气液平衡时的简捷、准确、方便,为其它方法不能与之相比的。 1.2.3 理想气体状态方程 理想气体状态方程是流体状态方程中最简单的一种,理想气体的概念是一种假想的状态,实际上并不存在,它是极低压力或极高温度下各种真实气体的极限情况。数学表达式为: P 0 (V ) lim (PV)RT →→∞=或PV RT = (1-4) 1.2.4 真实气体状态方程 大体上分为三类: 第一类是立方型状态方程,如Van der Waals 、RK 、SRK 、PR 、PT 等; 第二类是多项级数展开式的状态方程,如Virial 、BWR 、MH 等; 第三类是理论型状态方程。 1.2.4.1 立方型状态方程 (1) Van der Waals(VdW ,1873年)方程 (2) Redlich-Kwong(RK ,1949年)方程 (3) Soave-Redlich-Kwong(SRK ,1972年)方程 (4) Peng-Robinson(PR ,1976年)方程 (5) Patel-Teja(PT,1982年)方程 立方型状态方程的应用: (1) 用一个EOS 即可精确地代表相当广泛围的实验数据,藉此可精确计算所需的数据; (2) EOS 具有多功能性,除了PVT 性质之外,还可用最少量的数据计算流体的其它热力学函数、纯物质的饱和蒸气压、混合物的气-液相平衡、液-液相平衡,尤其是高压下的相平衡计算; (3) 在相平衡计算中用一个EOS 可进行二相、三相的平衡数据计算,状态方程中的混合规则与相互作用参数对各相使用同一形式或同一数值,计算过程简捷、方便。 1.2.4.2 多项级数展开式方程 (1) Virial 方程 PV B Z 1RT V = =+ (1-38) 通常适用于C T T <,P 1.5MPa <压力下的真实气体PVT 关系和其它热力学性质计算。 截至第III 项的Virial 方程为:

第六章 热力学基础作业新答案

第六章热力学基础作业新答案

课件一补充题: (2)先等压压缩,W 2=P(V 2-V 1)=-8.1J 对全过程,有 Q 2=W 2+?E =-8.1J ?E=0 (T 1=T 2) 对全过程 等容升压,W 3=0 (1)等温过程, ?E=0 122 11111 V V ln ln V R P V T V Q W ν===561001020 ln 1.0131016.3J 100-=-??=? [补充题] 把P =1a tm ,V =100cm 3的氮气压缩到20cm 3 ,求若分别经历 的是下列过程所需吸收的热量Q 、对外所做的功W 及内能增量,(1)等温压缩;(2)先等压压缩再等容升压回到初温。

(2)系统由状态b 沿曲线ba 返回状态a 时,系统的内能变化: 204()ba ab E E J =-=- 204(282)486()ba ba Q E W J ∴=?+=-+-=- 即系统放出热量486J 6-22 64g 氧气的温度由0℃升至50℃,〔1〕保 持体积不变;(2)保持压强不变。在这两个过程中氧气各吸收了多少热量?各增加了多少内能?对外各做了多少功? 解:(1)3.6458.31(500) 2.0810()322v m Q vC T J =?=???-=? 32.0810()E J ?=? W =0 (2)3.64528.31(500) 2.9110()322p m Q vC T J +=?=???-=? 32.0810()E J ?=? 32(2.91 2.08)108.310()Q E J W -?=-?==? 6-24 一定量氢气在保持压强为4.00×510Pa 不 变的情况下,温度由0.0 ℃ 升高到50.0℃时,吸收了6.0×104 J 的热量。 (1) 求氢气的量是多少摩尔?

工程热力学简答题

第1章 基本概念 ⒈ 闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。 ⒉ 有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。这种观点对不对,为什么? 答:不对。“绝热系”指的是过程中与外界无热量交换的系统。热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。物质并不“拥有”热量。一个系统能否绝热与其边界是否对物质流开放无关。 ⒊ 平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系? 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。 ⒋ 倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式 )( )( b v b b e b P P P P P P P P P P <-=>+=; 中,当地大气压是否必定是环境大气压? 答:可能会的。因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。 “当地大气压”并非就是环境大气压。准确地说,计算式中的P b 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。 ⒌ 温度计测温的基本原理是什么? 答:温度计对温度的测量建立在热力学第零定律原理之上。它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。 ⒍ 经验温标的缺点是什么?为什么? 答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。由于经验温标依赖于测温物质的性质,当选用不同测温物质制作温度计、采用不同的物理性质作为温度的标志来测量温度

化学热力学基础习题

第6章化学热力学初步习题目录 第一部分化学热力学基础、热化学 一判断题;二选择题;三填空题;四计算题 第二部分熵、吉氏函数与化学反应方向 一判断题;二选择题;三填空题;四计算题 第一部分化学热力学基础、热化学 一判断题 1气体的标准状况与物质的标准态是同一含义。() 2在恒温恒压下,某化学反应的热效应Q p=△H=H2-H1,因为H是状态函数,故Q p也是状态函数。() 3系统状态一定,状态函数就有确定的值。() 4在恒温恒压条件下,反应热只取决于反应的始态和终态,而与过程的途径无关。()5功和热是系统与环境间能量传递的两种形式。() 6气体膨胀或被压缩所做的体积功是状态函数。() 7由环境中吸收热量,系统的热力学能增加。() 8环境对系统做功,系统的热力学能增加。() 9系统的焓等于系统的热量。() 10系统的焓等于恒压反应热。() 11系统的焓变等于恒压反应热。() 12反应的热效应就是该反应的焓变。() 13由于CaCO3的分解是吸热的,故它的生成焓为负值。() 14298K时反应Na(s)+1 Cl2(g)→NaCl(s)的△r H=-411.1kJ·mol-1,即该温度下NaCl(s) 2 的标准摩尔生成焓为-411.1kJ·mol-1。() 15298.15K时由于Na+(g)+Cl-(g)→NaCl(s)的△r H=-770.8kJ·mol-1,则NaCl(s)的标准摩尔生成焓是-770.8kJ·mol-1。()

16298K时,反应CO(g)+Cl2(g)→COCl2(g)的△r H=-108kJ·mol-1,则△f H(COCl2,g)=-108kJ·mol-1。.() 17所有气体单质的标准摩尔生成焓都为零。() 18△f H(Br2,g)=0kJ·mol-1。() 19298K时石墨的标准摩尔生成焓为零。() 20在密闭容器中盛有等物质的量的N2(g)和O2(g),使其反应生成NO(g),保持反应在等温下进行,则该反应的焓变一定等于△f H(NO,g)。.() 21已知在某温度和标准态下,反应2KClO3(s)→2KCl(s)+3O2(g)进行时,有2.0molKClO3分解,放出89.5kJ的热量,则在此温度下该反应的△r H=-89.5kJ·mol-1。() 22反应H2(g)+Br2(g)→2HBr(g)的△r H与反应H2(g)+Br2(l)→2HBr(g)的△r H相同。() 23298K、标准态时,NH3(g)与O2(g)反应生成NO(g)和H2O(g),每氧化1molNH3(g)放出 226.2kJ热量,则其热化学方程式为NH3(g)+5 4O2(g)→NO(g)+3 2 H2O(g),△r H=-226.2kJ。 () 24反应N2(g)+3H2(g)→2NH3(g)的△r H与反应1 2N2(g)+3 2 H2(g)→NH3(g)的△r H相同。( ) 25相同质量的石墨和金刚石,在相同条件下燃烧时放出的热量相等。....() 二选择题 1下列各物理量中,为状态函数的是()。 (A)△H;(B)Q;(C)H;(D)△U。 2下列各物理量中,为状态函数的是()。 (A)△U;(B)U;(C)Q;(D)W。 3下列叙述中正确的是()。 (A)只有等压过程,才有化学反应热效应;

第11章热力学基本原理

(3) 第11章热力学基本原理 一、选择题 1(B) , 2(C), 3(A) , 4(B) , 5(A) , 6(C), 7(D) , 8(C), 9(D) , 10(A) 二、填空题 (1) .等于,大于,大于. (2) .不变,增加 (3) .在等压升温过程中,气体要膨胀而对外作功,所以要比气体等体升温过程多吸收一部 分热量. 500, 100 功变热,热传递 从几率较小的状态到几率较大的状态 ,状态的几率增大 (或熵值增加). 三、计算题 1. 温度为25 C 、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至 原来的3倍. (普适气体常量 R= 8.31 J^mol^.K 」,ln 3=1.0986) 计算这个过程中气体对外所 作的功. 假若气体经绝热过程体积膨胀为原来的 3倍,那么气体对外作的功又是多少? 绝热过程气体对外作功为 3V 0 3V 0 7 W = JpdV = p 0V 0' jV^dV V 0 3^-1 V 二 PT p 0V ' 3 =2.20X 103 J 2. 汽缸内有2 mol 氦气,初始温度为 27C ,体积为20 L(升),先将氦气等压膨胀,直至体 积加倍, (1) (2) (4). -|W 1 I , —IW 2 | (5). 500, 700 (6). 3 8.64X103 (7). 1 1 J 齐(或 ^n-1) (8). (9) . (10) .(1 ) ⑵ 解: (1) 等温过程气体对外作功为 V d p J 乂 =8.31 X 298 X 1.0986 J 3 =2.72 X 10 J 然后绝热膨涨,直至回复初温为止?把氦气视为理想气体?试求: 在P —V 图上大致画出气体的状态变化过程. 在这过程中氦气吸热多少? 氦气的内能变化多少? V 0

材料热力学知识点

第一章单组元材料热力学 名词解释: 1 可逆过程 2 Gibbs自由能最小判据 3 空位激活能 4 自发磁化: 5 熵: 6 热力学第一定律热力学第二定律 7 Richard定律 填空题 1 热力学第二定律指出:一个孤立系统总是由熵低的状态向熵高的状态变化,平衡状态则是具有最大熵的状态。 2 按Boltzmann方程,熵S与微观状态数W的关系式为S=klnW 3 热容的定义是系统升高1K时所吸收的热量,它的条件是物质被加热时不发生相变和化学反应 4 α-Fe的定压热容包括:振动热容、电子热容和磁性热容。 5 纯Fe的A3的加热相变会导致体积缩小 6 Gibbs-Helmholtz方程表达式是 7 铁磁性物质的原子磁矩因交换作用而排列成平行状态以降低能量的行为被称为自发磁化 论述题 1 根据材料热力学原理解释为什么大多数纯金属加热产生固态相变时会产生体积膨胀的效应? 2 试根据单元材料的两相平衡原理推导克拉伯龙(Clapeyron)方程。 3 试用G-T图的图解法说明纯铁中的A3点相变是异常相变。 4 试画出磁有序度、磁性转变热容及磁性转变(指铁磁-顺磁转变)自由能与温度的关系曲线。 计算题 1已知纯钛α/β的平衡相变温度为882O C,相变焓为4142J?mol-1,试求将β-Ti过冷到800O C 时,β→α的相变驱动力 2若某金属形成空位的激活能为58.2KJ?mol-1,试求在700O C下,该金属的空位浓度。 3纯Bi在0.1MPa压力下的熔点为544K。增加压力时,其熔点以3.55/10000K?MPa-1的速率下降。另外已知融化潜热为52.7J?g-1,试求熔点下液、固两相的摩尔体积差。(Bi的原子量为209g?mol-1.

第六章-热力学基础作业新答案

课件一补充题: (2)先等压压缩,W 2=P(V 2-V 1)=-8.1J 对全过程,有 Q 2=W 2+?E =-8.1J ?E=0 (T 1=T 2) 对全过程 等容升压,W 3=0 (1)等温过程, ?E=0 12211111 V V ln ln V R P V T V Q W ν===561001020 ln 1.0131016.3J 100 -=-??=? [补充题] 把P =1a tm ,V =100cm 3的氮气压缩到20cm 3,求若分别 经历的是下列过程所需吸收的热量Q 、对外所做的功W 及内能增量,(1)等温压缩;(2)先等压压缩再等容升压回到初温。

6-21 一热力学系统由如图6—28所示的状态a 沿acb 过程到达状态b 时,吸收了560J 的热量,对外做了356J 的功。 (1) 如果它沿adb 过 程到达状态b 时,对外做了220J 的功,它吸收了多少热量? (2)当它由状态b 沿曲线ba 返回状态a 时,外界对它做了282J 的功,它将吸收多少热量?是真吸了热,还是放了热? 解: 根据热力学第一定律 Q E W =+ (1)∵a 沿acb 过程达到状态b ,系统的内能变化是: 560356204()ab acb acb E Q W J J J =-=-= 由于内能是状态系数,与系统所经过的过程无关 ∴系统由a 沿adb 过程到达状态b 时204()ab E J = 系统吸收的热量是:204220424()ab adb Q E W J =+=+= (2)系统由状态b 沿曲线ba 返回状态a 时,系统的内能变化: 204()ba ab E E J =-=- 204(282)486()ba ba Q E W J ∴=?+=-+-=- 即系统放出热量486J

《热力学基本原理》答案

第11章 热力学基本原理 一、选择题 1(B),2(C),3(A),4(B),5(A),6(C),7(D),8(C),9(D),10(A) 二、填空题 (1). 等于,大于,大于. (2). 不变,增加 (3). 在等压升温过程中,气体要膨胀而对外作功,所以要比气体等体升温过程多吸收一部分热量. (4). ||1W -,||2W - (5). >0,>0 (6). AM , AM 、BM (7). 1 1+= w η (或11 -= η w ) (8). 500,100 (9). 功变热,热传递 (10). 从几率较小的状态到几率较大的状态 ,状态的几率增大 (或熵值增加). 三、计算题 1. 一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状 态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量?E 以及所吸收的热量Q . (2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和). 解:(1) A →B : ))((2 11A B A B V V p p W -+= =200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 J Q =W 1+ΔE 1=950 J . B → C : W 2 =0 ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J . Q 2 =W 2+ΔE 2=-600 J . C →A : W 3 = p A (V A -V C )=-100 J . 150)(2 3)(3-=-= -=?C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2. 汽缸内有2 mol 氦气,初始温度为27℃,体积为20 L(升),先将氦气等压膨胀,直至体 233 ) 5

第13章热力学基础习题及答案

第十三章习题 热力学第一定律及其应用 1、关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是。 p A B 2、如图所示,一定量理想气体从体积V1,膨胀到体积V2 分别经 历的过程是:A→B 等压过程,A→C 等温过程;A→D 绝热过程, C D V O 其中吸热量最多的过程。 3、一定量的理想气体,分别经历如图(1) 所示 p p 的abc过程,(图中虚线ac为等温线),和图(2) 所 a d 示的def过程(图中虚线df 为绝热线).判断这两 种过程是吸热还是放热. abc过程热,def 过程热. e b c f O V O V 图(1) 图(2) 4、如图所示,一绝热密闭的容器,用隔板分成相等的两部 分,左边盛有一定量的理想气体,压强为p0,右边为真空.今 将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压 p0 强是。( C p/C V) 5、一定量理想气体,从同一状态开始使其体积由V1 膨胀到2V1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.

1

p 1,V 1, 答案 T 1 p 0 1、(1)(4)是正确的。 2、是 A-B 吸热最多。 3、abc 过程吸热, def 过程放热。 4、P 0/2。 5、等压, 等压, 等压 理想气体的功、内能、热量 1、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成 刚性分子的理想气体) ,它们的压强和温度都相等,现将 5J 的热量传给氢气,使 氢气温度升高,如果使氦气也升高同样的温度,则应向 氨气传递热量是 。 p (× 10 5 Pa) 5 Pa) 2、 一定量的理想气体经历 acb 过程时吸热 500 J .则 经历 acbda 过程时,吸热为 。 4 a d c 1 e O 1 4 V (× 10 3 m 3) 3、一气缸内贮有 10 mol 的单原子分子理想气体,在压 缩过程中外界作功 209J , 气体升温 1 K ,此过程中气体内能增量为 _____ ,外界传给气体的热 量为___________________. (普适气体常量 R = 8.31 J/mol K)· 4、一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热 _____________ J ;若为双原子分子气体,则 需吸热______________ J.

热力学基础作业

第13章 热力学基础 作 业 一、教材:选择填空题 1~6;计算题: 14,15, 23,26,28,33,34 二、附加题 1、摩尔数相同的两种理想气体,一种是氦气,一种是氢气,都从相同的初态开始经等压膨胀为原来体积的2倍,则两种气体 (A) 对外做功相同,吸收的热量不同. (B) 对外做功不同,吸收的热量相同. (C) 对外做功和吸收的热量都不同. (D) 对外做功和吸收的热量都相同. 2、如图所示的是两个不同温度的等温过程,则 (A) Ⅰ过程的温度高,Ⅰ过程的吸热多. (B) Ⅰ过程的温度高,Ⅱ过程的吸热多. (C) Ⅱ过程的温度高,Ⅰ过程的吸热多. (D) Ⅱ过程的温度高,Ⅱ过程的吸热多. 3、1mol 理想气体从p -V 图上初态a 分别经历如图所示的(1)或(2)过程到达末态b ,已知T a Q 2 > 0 . (B) Q 2> Q 1 > 0 . (C) Q 2 < Q 1 <0 . (D) Q 1 < Q 2 < 0 . (E) Q 1 = Q 2 > 0 . 4、某理想气体,初态温度为T ,体积为V ,先绝热变化使体积变为2V ,再等容变化使温度恢复到T ,最后等温变化使气体回到初态,则整个循环过程中,气体: (A) 向外界放热. (B) 从外界吸热. (C) 对外界做正功. (D) 内能减少

(二)、计算题 1、一定量的理想气体,其体积和压强依照V =p a 的规律变化,其中a 为已知常数,求: (1) 气体从体积V 1膨胀到V 2所作的功; (2) (2) 体积为V 1时的温度T 1与体积为V 2时的温度T 2之比. 2、1 mol 单原子分子理想气体的循环过程如图的T —V 图所示, 其中c 点的温度为T c =600K ,试求: (1) ab 、bc 、ca 各个过程系统与外界交换的热量; (2) 循环的效率 3、如图为一循环过程的T-V ν (mol)的理想气体, C V 和γ点的温度为T 1,体积为V 1,b 点的体积为V 2 ,ca 为绝热过程 求:(1) C 点的温度; (2) 循环的效率 )

大学物理2-1第九章(热力学基础)习题答案

大学物理2-1第九章(热力学基础)习题答案

习 题 九 9-1 一系统由图示的状态a 经acd 到达状态b ,系统吸收了320J 热量,系统对外作功126J 。 (1)若adb 过程系统对外作功 42J ,问有多少热量传入系统? (2)当系统由b 沿曲线ba 返回状态a ,外界对系统作功84 J ,试问系统是吸热还是放热? 热量是多少? [解] 由热力学第一定律A E Q +?= 得 A Q E -=? 在a

9-3 一定质量的理想气体的内能E 随体积的变化关系为E - V 图上的一条过原点的直线,如图所示。试证此直线表示等压过程。 [证明] 设此直线斜率为k ,则此直线方程为 kv E = 又E 随温度的关系变化式为T k T C M M E v mol '=?= 所以T k kV '= 因此C k k T V ='=(C 为恒量) 又由理想气体的状态方程知,C T pV '= (C '为恒量) 所以 p 为恒量 即此过程为等压过程。 9-4 2mol 氧气由状态1变化到状态2所经历的过程如图所示:(1)沿l →m →2路径。(2)1→2直线。试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化。 [解] (1) 在1→m →2这一过程中,做功的大小为该曲线下所围的面积,氧气对外做负功。 ()()J V V P A 4 352 121101.81010013.1105020?-=???-?-=--= 由气体的内能公式T C E V ν=和理想气体的状态方程RT pV ν=得

热力学基础之习题及参考答案

第8章练习题 热力学第一定律及其应用 1、如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程。 2、一定量的理想气体,分别经历如图(1) 所示的abc过程,(图中虚线ac为等温线),和图(2) 所示的def过程(图中虚线df为绝热线).判断这两种过程是吸热还是放热.abc过程热,def过程热. 3、如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达 γC p/C V) 到平衡时,气体的压强是。(= 4、一定量理想气体,从同一状态开始使其体积由V1膨胀到2V1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多. 答案 1、是A-B吸热最多。 2、abc过程吸热,def过程放热。 3、P0/2。 4、等压,等压,等压 理想气体的功、内能、热量 1、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J的热量传给氢气,使

氢气温度升高,如果使氦气也升高同样的温度,则应向氨气传递热量是 。 2、 一定量的理想气体经历acb 过程时吸热500 J .则经历acbda 过程时,吸热为 。 3、一气缸内贮有10 mol 的单原子分子理想气体,在压缩过程中外界作功209J , 气体升温1 K ,此过程中气体内能增量为 _____ ,外界传给气体的热量为___________________. (普适气体常量 R = 8.31 J/mol· K) 4、一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J. 5、 1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求: (1) 气体的内能增量. (2) 气体对外界所作的功. (3) 气体吸收的热量. (4) 此过程的摩尔热容. (摩尔热容C =T Q ??/,其中Q ?表示1 mol 物质在过程中升高温度T ?时所吸收的热量.) 6、如果一定量的理想气体,其体积和压强依照p a V /=的规律变化,其中a 为已知常量.试求: (1) 气体从体积V 1膨胀到V 2所作的功; (2) 气体体积为V 1时的温度T 1与体积为V 2时的温度T 2之比. 7、 如图,器壁与活塞均绝热的容器中间被一隔板等分为两部分,其中左边贮有 1摩尔处于标准状态的氦气(可视为理想气体),另一边为真空.现先把隔板拉

相关主题
文本预览