当前位置:文档之家› 锰矿生产工艺技术

锰矿生产工艺技术

锰矿生产工艺技术
锰矿生产工艺技术

锰矿生产工艺及其节能技术

锰矿生产工艺及其节能技术

一.锰矿石的用途与技术经济指标说明简介

用途与技术经济指标:

锰矿产品包括冶金锰矿、碳酸锰矿粉、化工用二氧化锰矿粉和电池用二氧化锰矿粉等。使用锰矿产品的冶金部门、轻工部门和化工部门根据不同的用途对锰矿产品有不同的质量要求。

(一)冶金工业对锰矿石的质量要求

用于炼钢生铁、含锰生铁、镜铁的矿石,铁含量不受限制,矿石中锰和铁的总含量最好能达到40%~50%。

在冶炼各种牌号的锰系合金中,对矿石的含锰量和锰铁比值有一定的要求。冶炼中、低碳锰铁,矿石含锰量36%~40%,锰铁比6~8.5,磷锰比0.002~0.0036;冶炼碳素锰铁,矿石含锰量33%~40%,锰铁比3.8~7.8,磷锰比0.002~0.005;冶炼锰硅合金,矿石含锰量29%~35%,锰铁比3.3~7.5,磷锰比0.0016~0.0048;高炉锰铁,矿石含锰量30%,锰铁比2~7,磷锰比0.005。

(二)化工及轻工部门对锰矿石的质量要求

化学工业上主要用锰矿石制取二氧化锰、硫酸锰、高锰酸钾,其次用于制取碳酸锰、硝酸锰和氯化锰等。化工级二氧化锰矿粉要求MnO2含量大于50%(表3.3.3),制硫酸锰时,Fe≤3%、Al2O3≤3%、CaO≤0.5%、MgO≤0.1%;制高锰酸钾时,Fe≤5%、SIO2≤5%、Al2O3≤4%。

天然二氧化锰是制造干电池的原料,要求MnO2含量越高越好。对Ni、Cu、CO、Pb等有害元素一般厂定标准为:Cu<0.01%、Ni<0.03%、Co<0.02%、Pb<0.02%。矿粉的粒度

要小于0.12mm。

二。矿业简史

锰矿物的利用历史十分悠久,据文献记载,世界上利用锰矿物最早的国家有埃及、古罗马、印度和中国。我国利用锰矿物的历史可追溯到距今约4500~7000年前后新石器时代的仰韶文化(彩陶文化)时期。由于软锰矿呈土状,它的颜色呈黑色,极易染手,在古人看来,这是一种奇妙的陶器着色颜料。

可是锰元素的发现却比较晚,到1774年才由瑞典矿物学家甘恩(J.G.Gahn)从软锰矿中还原出了金属锰。

锰在钢铁工业上的应用是各国冶金学家几十年不懈努力的结果。1875年以后,欧洲各国开始用高炉生产含锰15%~30%的镜铁和含锰达80%的锰铁。1890年用电炉生产锰铁,1898年用铝热法生产金属锰,并发展了电炉脱硅精炼法生产低碳锰铁。1939年开始用电解法生产金属锰。

最早开采的锰矿山是美国田纳西州惠特福尔德(Whitifeld)锰矿,始采于1837年,到1884年锰矿石年产量已达4万t。印度也是开采锰矿较早的国家之一,始采于1892年。第一次世界大战前,印度出口锰矿石一直居世界首位。1928年以后其地位被原苏联所取代。从本世纪20年代末原苏联的锰矿石产量一直居世界领先地位。此外,开采锰矿石比较早的还有巴西、加纳、澳大利亚、南非和加蓬等国。

我国锰矿的地质找矿工作开始得也比较早,据所见资料,从1886年开始,并于1890年首先在湖北兴国州(今阳新)发现锰矿,随后于1897年和1907年又先后在湖南发现安仁、攸县和常宁、耒阳锰矿;1910年发现广西防城大直、钦州黄屋屯锰矿;1913年和1918年,前后发现了湖南湘潭上五都锰矿(1937年改称为湘潭锰矿)和广西木圭、江西乐华锰矿。。

锰矿石

三.锰矿石选矿

锰矿选矿浮选工艺与加工技术,锰矿选矿方法,锰矿的选矿技术我国锰矿绝大多数属于贫矿,必须进行选矿处理。但由于多数锰矿石属细粒或微细粒嵌布,并有相当数量的高磷矿、高铁矿和共(伴)生有益金属,因此给选矿加工带来很大难度。目前,常用的锰矿选矿方法为机械选(包括洗矿、筛分、重选、强磁选和浮选),以及火法富集、化学选矿法等。

1.洗矿和筛分

洗矿是利用水力冲洗或附加机械擦洗使矿石与泥质分离。常用设备有洗矿筛、圆筒洗矿机和槽式洗矿机。

洗矿作业常与筛分伴随,如在振动筛上直接冲水清洗或将洗矿机获得的矿砂(净矿)送振动筛筛分。筛分可作为独立作业,分出不同粒度和品位的产品供给不同用途使用。

2.重选

目前重选只用于选别结构简单、嵌布粒度较粗的锰矿石,特别适用于密度较大的氧化锰矿石。常用方法有重介质选矿、跳汰选矿和摇床选矿。

目前我国处理氧化锰矿的工艺流程,一般是将矿石破碎至6~0mm或10~0mm,然后进行分组,粗级别的进行跳汰,细级别的送摇床选。设备多为哈兹式往复型跳汰机和6-S型摇床。

3.强磁选

锰矿物属弱磁性矿物〔比磁化系数X=10×10-6~600×10-6cm3/g〕,在磁场强度Ho=800~1600kA/m(10000~20000oe)的强磁场磁选机中可以得到回收,一般能提高锰品位4%~10%。

由于磁选的操作简单,易于控制,适应性强,可用于各种锰矿石选别,近年来已在锰矿选矿中占主导地位。各种新型的粗、中、细粒强磁机陆续研制成功。目前,国内锰矿应用最普遍的是中粒强磁选机,粗粒和细粒强磁选机也逐渐得到应用,微细粒强磁选机尚处于试验

阶段。

4.重-磁选

目前国内已新建和改建成的重-磁选厂有福建连城,广西龙头、靖西和下雷等锰矿。如连城锰矿重-磁选厂,主要处理淋滤型氧化锰矿石,采用AM-30型跳汰机处理30~3mm的洗净矿,可获得含锰40%以上的优质锰精矿,再经手选除杂后,可作为电池锰粉原料。跳汰尾矿和小于3mm洗净矿茎至小于1m后,用强磁选机选别,锰精矿品位要提高24%~25%,达到36%~40%。

5.强磁-浮选

目前采用强磁-浮选工艺仅有遵义锰矿。该矿是以碳酸锰矿为主的低锰、低磷、高铁锰矿。

据工业试验,磨矿流程采用棒磨-球磨阶段磨矿,设备规模均为φ2100mm×3000mm湿式磨矿机。强磁选采用shp-2000型强磁机,浮选机主要用CHF型充气式浮选机。经过多年生产的考验,性能良好,很适合于遵义锰选矿应用。强磁-浮选工艺流程试验成功并在生产中得到应用,标志着我国锰矿的深选已经向前迈进了一大步。

6.火法富集

锰矿石的火法富集,是处理高磷、高铁难选贫锰矿石一种分选方法,一般称为富锰渣法。其实质是利用锰、磷、铁的还原温度不同,在高炉或电炉中控制其温度进行选择性分离锰、磷、铁的一种高温分选方法。

我国采用火法富集已有近40年的历史,1959年湖南邵阳资江铁厂在9.4m3小高炉上进行试验,并获得初步结果。随后,1962年上海铁合金厂和石景山钢铁厂分别在高炉冶炼出富锰渣。1975年湖南玛瑙山锰矿高炉不但炼出富锰渣,同时还在炉底回收了铅、银和生铁(俗称半钢),为综合利用提供依据。进入80年代以后,富锰渣生产得到迅速发展,先后在湖南、

湖北、广东、广西、江西、辽宁、吉林等地都发展了富锰渣生产。

火法富集工艺简单、生产稳定,能有效地将矿石中的铁、磷分离出去,而获得富锰、低铁、低磷富锰渣,这种富锰渣一般含Mn35%~45%,Mn/Fe?12~38,P/Mn<0.002,是一种优质锰系合金原料,同时也是一般天然富锰矿很难同时达到上述3个指标的人造富矿。因此,火法富集对于我国高磷高铁低锰难选矿而言,是很有前途的一种选矿方法。

7.化学选锰法

锰的化学选矿很多,我国进行了大量研究工作,其中试验较多,较有发展前途的是:连二硫酸盐法、黑锰矿法和细菌浸锰法。目前尚未付诸工业生产。

锰金属生产流程图

四.锰矿石还原处理技术

现行的的软锰矿可分为焙烧发还原和湿发还原两大类

1.焙烧还原:

软锰矿还原焙烧的基本过程是在700-1000℃下,二氧化锰与还原剂产生反应,生成氧化锰,氧化锰可溶于酸,浸出液在经过各种净化过程,得到纯净的含锰溶液用于支取各种最终锰产品。

还原焙烧发是目前处理高品位锰矿最通行的生产工艺,器缺点是设备投资较大,耗能高,焙烧过程产生的烟气对环境有污染。

2.反射炉

反射炉结构简单,投资少,生产成本较低。但是耗能高,单位面积产量小,劳动强度大,密闭性差,污染严重,国家现已命令禁止使用。

3.回转炉

主要设备有焙烧窑和冷却窑组成,加热源多用重由,煤气,电热或煤,还原回转炉可分为干燥段,预热和升温段,加热反应段3个部分组成,还原焙烧后的矿料温度有500-600℃以上,在进入冷却窑内,,想冷却窑外部淋水,使焙烧矿冷却至80℃一下后排出。

回转炉存在耗能高,投资大,窑内壁易结圈现象和生产成本较高,操作工艺控制要求较高等缺点。但回转炉操作工艺成熟,生产能力大,机械化程度高,设备定性,钴至今未焙烧还原的首选。

4.固定床堆积还原焙烧

固定床堆积还原焙烧发工艺是在地面上挖掘一地窖,上面安装炉排,在炉排上铺上一层粗炉渣再将颗粒状的软锰矿按10:1的比例混合均匀铺在炉渣曾上形成物料层,同入主要成分为CO2的非氧化性高温气体,并使水蒸气调节至850-950℃,使之穿过料床,与料床中的碳产生反应。

还原焙烧方式几乎不需要专门的设备,与反射窑和回转窑相比可节省大量的设备投资,能耗也大为降低,据了解美国KerrMcGee公司在其26万t/aEMD生产系统中即曾经采用此工艺。

5.沸腾炉和流态化炉还原焙烧

沸腾炉和流态化炉用煤气或还原性的燃烧气体作为流化介质加热还原软锰矿。广西八一锰矿曾于2O世纪7O年代实验日处理100t氧化矿的单层沸腾炉内使用发生炉煤气或煤粉作为还原剂和燃料,由于加热和还原矿石在同一炉膛内完成,使炉内气氛难以合理控制,致使热耗高,热效率低,烟尘率大,残碳高,因而生产成本亦高。

沸腾炉和流态化炉还原焙烧目前在我国尚处探索和研制阶段,工艺还未成熟,亦存在着系统能耗大、热量不能回收、配套设备较复杂等缺点。

6.微波还原

微波是一种特殊的电磁波,频率在O.3~300GHz之间,位于电磁波谱的红外辐射波和无线电波之间。微波的基本性质与太阳光相似,波速与光速(3×10m/s)相同。微波加热焙烧具有以下的技术特点:

1)微波电磁能通过物料内分子的激烈运动直接转变成热能,是一种洁净的加热方式,以非接触方式加热物料,避免外界污染,提高产物的纯净度。

2)微波穿透力强,可使物体内外部被整体加热,速度快而且均匀,可以即时、快速加热物料,缩短反应时间,避免了传统加热方式带来的粉状物料传热传质不均匀的现象。

3)矿物中各组分对微波吸收程度不同,因而微波加热可对其中微波吸收性良好的大多数金属氧化物有选择性地优先加热,而对脉石类矿物则加热缓慢(见图2),并由此对矿物颗粒具有热碎裂作用,可提供良好的冶金过程反应动力学条件。

4)此外,微波的非热效应使可使物料中的微观粒子得到活化,使反应的活化能降低,对化学反应有明显的催化作用。

5)微波加热不需要高温介质来传热,而且微波加热设备本身不吸收微波,所以其热效率高,研究和试验的结果表明,微波焙烧可使氧化锰还原反应的速率成倍提高:在MnO2一Mn2O3过程中,采用微波加热的分解速率比传统的加热方式提高了2.18—16.71倍,而在Mn2O3一Mn3O4过程中,则分解速率提高了1.85—78.86倍。这是因为一方面由于微波的穿透力强,加热速度快而且均匀;另一方面,由于软锰矿中的MnO是很好的微波吸收物质,而其他组分则不是,因而微波可以在矿物内部选择性地将Mno2优先加热到较高温度,更加有效地促进了分解过程。试验还表明,利用微波加热技术对软锰矿石进行的碳热还原反应有显著的催化作用,可以在较低的温度下进行还原反应,使其还原速度加快而且还原程度彻底。试验表明:采用微波焙烧氧化锰的还原温度只需380—450℃。同时,由于微波还原焙烧在较低的温度下进行,还可避免回转窑中经常出现的熔融结疤现象。由此可见,以上微波焙烧的各种特性因素的共同作用可大幅度地降低软锰矿焙烧还原反应过程的能耗。

微波还原焙烧可连续化生产,实现全过程的自动化控制,且无粉尘、噪声、余热污染,从根本上改善了生产条件。为了使微波焙烧还原软锰矿能够实现产业化的应用,近年来国内相关的研究机构和企业已经开展了许多卓有成效的工作,但是尚需要经过长期的生产实践考验。中信大锰矿业有限责任公司提出了将微波焙烧技术与热管技术有机地结合起来,应用于低品位软锰矿的“热能回收型软锰矿还原焙烧”新工艺和新设备,并即将进入工业化装置试验阶段。

热管是一种导热性能极高的元件,它通过在全封闭真空管内工质的蒸发与凝结来传递热量,具有极高的导热性。由热管组成的换热器具有传热效率高、流体阻力损失小、冷热两侧的传热面积可任意改变、烟气不泄漏、没有附加动力消耗、运行及维护费用低的优点,已经在许多行业中广泛应用,我国青藏铁路沿线就是通过热管技术来保持铁路路基的永久冻土层。

微波焙烧所得到的产品在冷却过程中释放出的热量,可利用热管技术加以回收,用于预热进入系统的原料矿。因此该项工艺和技术装备集成了微波加热及热管换热这两项先进技术的优点,既大幅度降低了焙烧还原反应的温度和时间,又充分回收利用还原焙烧产物冷却过程释放出的热量,实现了双重节能的目标。

7.硫酸化焙烧法

该方法将软锰矿的碳热焙烧还原和硫酸浸出合二为一,即将锰矿粉、煤粉和硫酸充分拌和,在600—700~C下焙烧1h,软锰矿被直接还原生成硫酸锰,同时重金属盐及可溶性硅酸盐可大部份转化为水不溶性氧化物,焙烧产物直接用水浸出、过滤后即得到硫酸锰溶液。亦有不需要碳作为还原剂直接将将锰矿粉和硫酸(或硫酸铵)拌和物在400~C焙烧3h,再升温到700~C继续焙烧1h焙烧产物用水浸取得到硫酸锰溶液。

硫酸化焙烧法的缺点是能耗高、操作条件差、对环境有污染,因此未得到普遍使用。

软锰矿的湿法还原

1.两矿一步法

将软锰矿、黄铁矿和硫酸按一定的配比,在一定的温度下反应,即可使软锰矿中的高价锰还原生成硫酸锰。

两矿一步法的优点是省去了高温焙烧工序,其还原、浸出和净化可在同一反应槽内完成,减少了设备投资,黄铁矿来源广,价格低廉,生产成本低,操作过程亦简单易行,与焙烧法相比大大改善了操作环境,还降低了酸耗,因此两矿一步浸出法在当前已是我国低品位软锰矿生产锰系产品过程中最通行的工艺路线。两矿一步法的缺点是还原率和浸出率较低,渣量大,影响了锰的回收率,尤其在生产电解金属锰过程的工艺控制上,净化过程较难掌握,特别要求软锰矿和黄铁矿的矿源成分稳定,因此,两矿一步法虽然在硫酸锰和普通级电解二氧化锰生产中得到了广泛的应用,但是在生产电解金属锰的过程中,至今尚未得到普遍推广使用。

原则上,其他金属硫化矿亦适用于两矿一步法的工艺过程。

2.二氧化硫浸出法

二氧化硫气体通人软锰矿浆内,即可直接起还原反应生成硫酸锰

国内外对使用软锰矿浆脱除烟气中的SO2工艺曾经进行了广泛深入地研究,从热力学原理可计算出其反应平衡常数分别为7.26X10和24X10,如此巨大的平衡常数,说明MnO2脱硫过程在瞬间即可反应完成,而且可进行得十分彻底。研究表明,SO2还原浸取软锰矿的反应不但速率很快,而且对矿物中的成分有选择性反应,可减少杂质进入浸出液。虽然SO气体直接浸取软锰矿是一种很早就已经存在的成熟工艺,但是因为在该浸取反应过程中有副反应产生连二硫酸锰(MnS2O6),影响了浸取产物硫酸锰的质量,因而至今在锰制品的生产中仍未得到广泛使用。

然而,在以去除气体中的SO2为主要目的环境保护治理工程中,如燃煤锅炉烟气等

含硫气体的脱硫过程,该方法还是具有相当的应用价值。

总的说,与传统的还原焙烧法相比,二氧化硫浸出工艺缩短了生产流程,节省能源消耗、设备投资和场地、避免了焙烧过程废气对环境的污染。生产成本亦有所降低,而特别适用于低品位软锰矿的有效利用,这方面,需要长期的生产实践来加以验证。

3.连二硫酸钙法浸出软锰矿

在浸出槽中将软锰矿粉与连二硫酸钙(CaS206)混合成矿浆通人SO2即生成硫酸锰和连二硫酸锰(见上节),生成的硫酸锰再与连二硫酸,作用置换转化为连二硫酸锰溶液和硫酸钙沉淀,滤浸出液,碳酸钙即与浸出渣一起被过滤分离出去。滤液中加入石灰乳,则生成Mn(OH)沉淀,将其过滤,即得到固体Mn(OH)2产品,可作为锰精矿或用酸溶解后制备锰系产品。而滤液中含CaS206可循环使用。

二硫酸钙法浸出软锰矿的还原机理实际上是SO2还原浸出法,该工艺是2O世纪4O年代由美国矿务局首先研究开发的,后来前苏联和我国一些锰矿也进行过这方面的半工业性试验,试验结果锰回收率约可达85%左右。其浸出流程和设备均较简单,所得产品的纯度也较高,质少,产成本亦较低,但是渣量大则是其主要的缺点。

笔者认为,在当前锰矿资源日显紧缺的情况下,连二硫酸钙法浸出低品位软锰矿的工艺路线仍具有一定的现实意义。

4.硫酸亚铁浸出法

钢厂酸洗废液和硫酸法钛白粉生产均有大量的副产绿矾(FeS04·7H2O),可在酸性溶液中浸出软锰矿中作为还原剂,使软锰矿中的四价锰还原成硫酸锰,用于生产硫酸锰或其他锰系产品。

热力学计算表明,该浸出反应在常温下可自发进行,热力学推动力较大,反应为放热反应。综合国内发表的用硫酸亚铁浸出软锰矿的试验报告可知其反应条件大体为:反应温度

70~95cI=,初始硫酸浓度180—210g/L,液固比3~8:1,在搅拌下反应时间为2~3.5h,二氧化锰浸出率可达95%以上。

显然,硫酸亚铁浸出软锰矿的浸出液中含铁量较高,如果使用通行的Fe(OH)中和沉淀法除铁将产生大量的胶体沉淀,造成过滤困难和锰的吸附损失,因此宜在浸出的同时加入硫酸钠,采用铁矾沉淀法除去大部分的铁[39],所生成的黄钠铁矾沉淀的沉降和过滤性能良好,而且铁矾沉淀反应为产酸反应,可有利于硫酸亚铁浸出软锰矿过程的继续进行。余下未除尽的铁再以调节pH值生成Fe(OH)3沉淀的方法深度去除以达到工艺要求。硫酸亚铁浸锰方法亦可应用于深海锰结核的浸出过程,可同时浸出其中的锰、钴、镍和铜。

5.铁直接浸出法

朱道荣在研究硫酸亚铁浸出软锰矿的报告中曾经指出:“在此过程中添加定量的废铁屑,对锰的浸出率、液固分离、减少亚铁用量都有好处,这方面的工作有待于进一步研究”。

张东方等报道了用铁屑作还原剂,在酸性条件下浸出锰银矿中的锰,浸出反应条件为:当铁矿比1:13,矿酸比0.6:1,液固比3:1,浸出时间60min,浸出温度室温,磨矿细度为小于0.074mm占80%时,锰浸出率达到97.60%,银则留在浸出渣中,实现了锰银分离。酸耗较大是该方法的主要缺点。在这方面,最近国外的研究_4J表明,在酸性软锰矿浆中,直接加入海绵铁,能够使软锰矿中的四价锰迅速地还原成二价锰,比用硫酸亚铁更加有效。其反应条件为:物料(锰矿和海绵铁)粒度:一250+150p.m,H2SO4/MnO2摩尔比:3,Fe/MnO2摩尔比:0.80,室温(20℃)下反应10min后锰浸出率即达到98%,反应15min后浸出率达到100%。若将反应温度从2OcI=提高到6OcI=,则反应时间可从10min减少到3min,即可使软锰矿完全被浸出。而在与前列同样条件下,若使用硫酸亚铁作为还原剂,并且把Fe/MnO摩尔比由0.8提高到反应10min后锰浸出率仅为80%,反应30min后也仅93%,可见直接加金属铁现场形成的硫酸亚铁对还原浸出的过程起了很有利的促进作用。

实际上,铁屑在酸性溶液中很快就与酸反应生成硫酸亚铁,起还原作用的还是硫酸亚铁

中的亚铁离子,因此金属铁直接浸出法的机理是与硫酸亚铁浸出法相同的,实际上是一种改良的硫酸亚铁浸出法,是由于初生态的亚铁离子可能具有更强的还原能力。

6.直接还原法

在酸性条件下,煤可与软锰矿反应,使其中的MnO2还原成MnO而进入溶液,此可知,该反应的热力学的反应推动力较大,Hancock等研究了使用烟煤和褐煤在酸性溶液中分别浸出Amapa锰矿粉(含锰33.1%)、软锰矿(估计含锰63%)、深海锰结核(含锰33.9%)和化学二氧化锰(估计含锰63%)的过程,指出浸出还原反应适率与温度和酸度成正比,煤/矿比为1-2:1,浸出液可用硫酸、盐酸或腐殖酸,酸浓度为1~5N,浸出液含固浓度100-300g/L,在95℃以上进行反应约2—4h,锰浸出率可达95%以上。试验表明,褐煤还原二氧化锰的能力大于烟煤,同等反应条件下以上4种类含锰的物料中软锰矿的浸出率相对较低,而盐酸溶液中的浸出反应速率和浸出率明显大于硫酸溶液。

7草酸直接浸出法

在酸性介质中草酸可与二氧化锰产生以下还原

反应:

Mn02+HOOC—COOH+2H一

Mn2+2C02+2H20

等报道了用草酸作为还原剂浸出印度

Joda软锰矿(含24.7%Mn和28.4%Fe,粒度为一150+105m)的试验,在85℃的含草酸30.6g/L和硫酸浓度为0.534M的溶液中可浸出锰矿粉中98.4%的锰,而只有8.7%的铁被浸出。

8甲醇直接浸出法

甲醇还原金属氧化物的能力在分析化学中已有许多应用实例,近年来在研究深海锰结核

的浸出过程中,有在酸陛介质中使用乙醇或甲醇作为浸出剂的报道。

9.农林副产物直接浸出法

农作物产品或其副产品的主要成分之一是纤维素,可作为软锰矿的还原剂,是一种来源广、不含毒性元素、价格低廉的可再生资源,在合适的条件下与低品位软锰矿直接反应,可使其中的MnO2还原为MnO,反应过程不需要高温焙烧,也不需外部供热,设备简单,投资费用低,环境污染小,是一种有效利用低品位软锰矿资源的可行工艺路线之一。

1O。解还原浸出法

二氧化锰是一种半导体,可用作为电极,在锰矿浆的电解过程中,四价锰从矿浆中被阴极还原成而价锰而被溶解。矿在硫酸溶液中的矿浆电解浸出过程,指出其反应机理可能为:

MnO2+4H+2e一Mn+2H20

MnO2+H+e一MnOOH

MnOOH+3H+e—一Mn2+2H20

当有足够的MnOOH聚集在MnO,表面时,就产生进一步的还原反应,在电解液中形成Mn2:MnOOH+H+e一一Mn(OH)2酸度、温度和所施加的电位对浸出率都有很大的影响,Fe2和Mn2的存在将大大增加反应的速度,最佳的电解浸出反应条件是在7O℃的5OL硫酸溶液中,液固比为1:100,施加电位0mV(相对Hg/HgSO4/K2SO4参比电极),反应45min后锰即可被完全浸出,而铁的浸出率仅56%。在此反应条件下锰的浸出率要比未施加电位时的化学溶解过程高出5倍。

11。生物浸取法

微生物在矿床形成和演变的地球化学过程中起着重要的作用,现在,利用微生物(细菌)的生物化学活性从矿石中提取金属,即所谓微生物湿法冶金技术在基础研究与产业化方面都

已取得了长足的进步,并且日益显示出在经济性和环境友好方面的优势。

如难处理金矿的细菌氧化预处理技术已经在全世界1O多家金冶炼厂成功地使用,其中处理矿量最大的达1万t/d。在铜冶金方面,细菌堆浸硫化铜矿已经实现了更大规模的工业化,有的细菌浸铜厂的日处理矿量达到了数万吨。我国锰矿资源中富矿少,贫矿、复合矿、细粒难选矿多,造成锰矿开采和利用上的困难,因此,将微生物湿法冶金技术应用于贫锰矿的浸出和利用,具有很重要的现实意义。实际上,我国科研单位在微生物浸锰方面已经开展了许多研究开发工作细菌作用于锰矿的机理取决于细菌的生理特性,可归纳成3种类型:

1)锰的还原机制;

2)锰的氧化机制;

3)微生物代谢产物的浸锰机制。

在二氧化锰矿的微生物还原浸出方面,某些异养菌(如真菌)和自养菌(如硫杆菌)可以产生代谢产物(如亚硫酸盐、硫酸高铁等)将二氧化锰矿中的Mn4还原成Mn2并且直接溶浸出来。2O世纪7O~8O年代我国在微生物浸取低品位锰矿方面曾经进行过不少的工作进行了用氧化亚铁硫杆菌加还原剂从大洋锰结核中浸出锰的研究,锰的浸出率接近100%。杜竹玮等还进行了用嗜酸混合异养菌还原浸出废电池粉末中的二氧化锰,浸出率达9O%以上。今天,生物工程的进步(如基因组解码技术)将有可能揭示微生物浸矿与其基因表达的内在规律,并在其指导下实施基因工程改良和菌种的筛选,培育出性能更好、更能够满足特定矿物冶金所需要的微生物菌种。

12。其他还原浸出法

除以上介绍的各种浸出软锰矿的方法以外,还有许多浸出法被研究开发,如还原焙烧一氨浸法、还原焙烧~氨基甲酸盐法、双氧水还原法、蔗糖或葡萄糖还原法、苯酚还原法、氯化法和硝酸盐法等等,这些浸出方法大多流程复杂,或生产成本高,或物料腐蚀性强,污染环境,而不适宜使用于低品位软锰矿的处理。

五.结束语

低品位软锰矿的还原工艺过程很多,对湿法冶金生产锰系产品的成本、能耗和操作环境具有很大的影响,应根据所用锰矿的种类和性质,各地原材料的供应情况,以及产品的品质要求,加以综合考虑,选择最适宜的工艺流程。

我国低品位软锰矿储藏量较多,从战略高度来看,深人研究和开发低品位软锰矿还原过程的各种新工艺技术,对提高日益贫化的锰矿产资源利用率、进一步发展我国锰系产品工业、降低环境污染、走可持续发展的新型工业化道路均具有很现实的意义。

氧化铝生产流程

氧化铝生产流程控制概述(1) 铝是世界上第二大常用金属,其产量和消费量仅次于钢铁,是国民经济中具有支撑作用和战略地位的金属原材料。氧化铝是铝冶炼的主要原料,每生产1吨原铝需要消耗近2吨氧化铝。此外,各种特殊性能的氧化铝也广泛应用于电子、石油、化工、耐火材料、陶瓷、造纸、制药等行业,因此,氧化铝生产在我国经济建设中占有十分重要的地位。 我国具有较丰富的铝土矿资源(保有储量约26亿吨),居世界第四位,具备发展铝工业的资源条件。我国的氧化铝是在建国后伴随着电解铝的生产和发展建立起来的,八十年代以来得到了较快发展。近年来,氧化铝价格的暴涨,激励投资者和氧化铝厂持续加速生产和扩张。国内目前已有中铝公司所属的山东、山西、河南、中州、贵州、平果、重庆与遵义(拟建)八大铝厂,广西华银(160万吨)、阳煤集团(120万吨)、鲁能晋北、山东信发(100万吨)、三门峡开曼、东方希望(80万吨)铝业等数十个大小氧化铝厂建成或在建。据专家估计,2006年我国的氧化铝产量将年增29-33%,达到1200-1300万吨。 氧化铝生产工艺类型 氧化铝是用不同的生产方法是从铝土矿中提取出来的白色粉末。氧化铝是典型的大型复杂流程性工业,全世界90%以上的氧化铝直接采用的是经济的拜耳法生产流程,而我国氧化铝企业因矿质的不同,而分别选用不同的生产工艺。 烧结法:适于矿石品位含硅高、难溶的、中等资源品位的一水硬铝石,流程长、工艺复杂。我国绝大部分老的氧化铝企业多采用这一方法进行氧化铝冶炼。山东铝厂、中州铝厂Ⅰ期、山西铝厂Ⅰ期

烧结法氧化铝生产过程主要包括熟料烧成、熟料溶出、精液制备、分解和蒸发等主要的生产工序。 来自原料磨的生料浆通过回转窑烧制成易于溶出的铝酸钠熟料,再经碳分母液和一次洗液浸泡后进行溶出;此后通过赤泥分离洗涤、粗液脱硅、硅渣分离等工序生成的精液分别送至碳分和种分工序进行分解反应,析出氢氧化铝;种分母液经蒸发形成的种蒸母液送拜尔法碱液调配后给原矿浆配料;碳蒸母液则返回至原料磨配料。析出的氢氧化铝送焙烧工序进行焙烧。与拜耳法相比,烧结法主要在熟料烧成和碳分分解的控制部分是完全不同的两个过程 拜尔法:拜尔法是Karl Joseph Bayer于1887年发明,他发现加入精种的铝酸钠溶液中可以分解出AL(OH)3,分解母液蒸发后可以在高温高压下溶出铝土矿中的AL(OH)3。该发现后来在实验中得到证实并应用于工业实践,是国外氧化铝最广泛采用的生产工艺。适于生产易溶的三水铝石和一水软铝石,处理中等品位铝土矿碱耗高、矿耗大是常规拜耳法生产氧化铝的缺点。贵州铝厂Ⅰ期、平果铝厂 拜尔法氧化铝生产过程主要包括预脱硅、溶出过程,赤泥洗涤、过滤过程,种分分解过程和氢氧化铝过滤、焙烧等主要的生产工序。 选矿拜尔法:可将A/S为4以上的铝土矿通过浮选成A/S为11.2的矿浆,可提高单管溶出系统的溶出率,工艺管道和罐内不易结巴。中州铝厂Ⅱ期 串联法:处理中低晶位铝土矿的适宜方法。先以较简单的拜尔法处理矿石,最大限度地提取矿石中的氧化铝,然后再用烧结法回收拜尔法赤泥中的 Al2O3和 Na2O,可降低氧化铝生产的综合能耗,Al2O3的总回收率高,

氧化铝生产工艺流程

氧化铝生产工艺流程及在线设备描述 我厂氧化铝生产工艺流程采用拜耳法工艺。其用的矿石、石灰用汽车运入卸矿站,通过板式输送机,胶带输送机及卸料车进入矿仓和石灰仓。磨头仓底部出料设有电子皮带计量装置。按规定的配料比与经过计量的循环母液加入磨机。磨矿过程采用一段球磨与水力旋流器分级闭路的一段磨矿流程,磨制合格的原矿浆送往原矿浆槽,再用泵送至溶出工序的矿浆槽。 矿浆槽内矿浆送入溶出系统,管道化溶出采用Φ159Φ×8/2 ∣Φ480×10×1150000管道化溶出器,三套管四层间接加热连续溶出设备(Φ159管走料,Φ480管供汽),通过四段预热和三段加热,使物料出口温度达145℃,送入保温罐保温一小时以上,经过三级闪蒸和稀释,完成溶出过程。 稀释矿浆在Φ16M高效沉降槽内进行液固分离,底流进入洗涤沉降槽,进行5~6次赤泥反向洗涤,末次洗涤沉降槽底流经泵送往赤泥堆场进行堆存。 将合成絮凝剂制备成合格的溶液,按添加量加入赤泥分离沉降槽,将制备好的合成絮凝剂按添加量加入赤泥洗涤沉降槽,以强化赤泥沉降、分离和洗涤效果。 分离沉降槽溢流用泵送入粗液槽,再送226m2立式叶滤机进行控制过滤,过滤时加入助滤剂(石灰乳或苛化渣),滤饼送二次洗涤槽,精液送板式热交换器。 精液经板式热交换器与分解母液和冷却水进行热交换,冷却至设定温度后,再与种子过滤滤饼(晶种)混合,然后用晶种泵送至种分分解槽首槽(1#或2#槽),经连续种分分解后,从11#槽(或12#槽)顶用立式泵抽取分解浆液进行旋流分级。分级溢流进13#(或12#)分解槽,底流再用部分分解母液稀释后自压或用泵至产品过滤机,分解11#槽的分解浆液,从槽上部出料自流或下部用泵至120m2种子过滤机,滤饼用精液冲入晶种槽,滤液入锥形母液槽。 AH浆液经泵送入80 m2平盘过滤机,进行成品过滤、洗涤、氢氧化铝滤饼经皮带送至氢氧化铝储仓或直接送至焙烧炉前小仓。母液送种子过滤机的锥形母槽。氢氧化铝洗液(白泥洗液)送溶出稀释槽。锥形母液槽的溢流进母液槽,底流送立盘过滤机过滤,滤液进母液槽,滤饼混合后作种分种子。母液槽内母液部分送氢氧化铝旋流分级底流作稀释液,其余经板式热交换器与精液进行热交换提温送至蒸发原液槽。 蒸发原液除少部分不经蒸发直接送母液调配槽外,大部分送六效管式降膜蒸发器内进行浓缩,经三次闪蒸后的蒸发母液送调配槽。在流程中Na2CO3高于规定指标时,需排盐,此时,蒸发二级闪蒸出部分母液送强制循环蒸发器内进行结晶蒸发,并加入部分盐晶种,作为蒸发结晶的诱导结晶,然后在析盐沉降槽进行分离,底流用排盐过滤机进行过滤分离,滤饼用热水溶解后,送入苛化槽内,添加石灰乳进行苛化,苛化渣送赤泥洗涤系统。排盐过滤机滤液和盐分离沉降槽溢流进强碱液槽,其一部分送入蒸发出料第三次闪蒸槽与蒸发母液混合,还有一部分送各化学清洗用点和种分槽化学清洗槽。新蒸汽含碱冷凝水和二次蒸汽冷凝水用作氢氧化铝洗水或送沉降热水站。生产补碱用NaOH浓度大于30%的液体苛性碱,循环母液储槽区域设有补碱设施。 焙烧炉前小仓料位与仓下皮带计量给料机连锁,控制焙烧炉进料量。含水6~8%的氢氧化铝经皮带、螺旋喂料机送入文丘里干燥器内,干燥后的氢氧化铝被汽流带入一级旋风预热器中,一级旋风出来的氢氧化铝进入第二级旋风预热器,并与从热分离器来的温度约1000℃的烟气混合后进行热交换,氢氧化铝的温度达320~360℃,结晶水基本脱除,预焙烧过的氧化铝在第二级旋风预热器与烟气分离卸入焙烧炉的锥体内,焙烧炉所用的燃烧空气经预热至600~800℃从焙烧炉底部进入,燃料、预焙烧的氧化铝及热空气在炉底充分混合并燃烧,氧化铝的焙烧在炉内约1.4秒钟时间完成。

生产工艺技术先进性说明

生产工艺技术先进性说 明 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

工艺、技术先进性说明 车间全部实现半自动生产线作业,工位设计精简合理,生产设备简便智能,便于员工操作;员工经过专业培训,严格按照标准作业;生产过程中,使用产品放置盒,实行五个流周转放置,能够有效避免出现产品堆积现象;所有产品实行100%全检,严格按照品质要求进行质量管控,保障产品质量。以下是对生产设备的具体说明 一、打顶杆设备:打顶杆设备上装有光电感应器,当无产品或产品未放到位,感应 器未感应到时,按动启动按钮设备不会动作;当顶杆未打到位时,设备会发出报警信号,另外设备有自检功能,可以检测出顶杆是否完全打入套管。 二、旋齿盘设备:设备装有光电感应器,未感应到产品时,按动启动按钮设备不会 动作;设备有限位功能,可以精确控制齿盘旋入量。 三、点油设备:设备为自动化点油装置,可以精准控制油量,并且可以通过调试程 序来精确控制点油路径,达到快速精准的注油目的。 四、压合设备:设备装有感应器,未感应到产品时,按动启动按钮设备不会动作; 设备具有限位功能,可以有效避免产品被压伤。 五、老化测试:老化时间可调,时间继电器控制调整。采用直流稳压电源控制测试 高低电压输出,依照产品的特性电压0-30V可调,电流0-5A可调,并且有电 源正负输出切换功能。独特双层,三排机构,减少了整体老化时间,每组可以单独控制电压和老化时间,有独立的启动和停止按钮。老化完成时,每层指示灯由常量变为闪烁状态,并报警。 六、电性能测试:机台对产品感应,当产品未安装到位时,按下启动按钮,设备不

氧化铝的生产方法

氧化铝的生产工艺流程 氧化铝的生产工艺流程从矿石提取氧化铝有多种方法,例如:拜耳法、碱石灰烧结法、拜耳-烧结联合法等。拜耳法一直是生产氧化铝的主要方法,其产量约占全世界氧化铝总产量的95%左右。70年代以来,对酸法的研究已有较大进展,但尚未在工业上应用。 拜耳法 系奥地利拜耳(K.J.Bayer)于1888年发明。其原理是用苛性钠(NaOH)溶液加温溶出铝土矿中的氧化铝,得到铝酸钠溶液。溶液与残渣(赤泥)分离后,降低温度,加入氢氧化铝作晶种,经长时间搅拌,铝酸钠分解析出氢氧化铝,洗净,并在950~1200℃温度下煅烧,便得氧化铝成品。析出氢氧化铝后的溶液称为母液,蒸发浓缩后循环使用。拜耳法的简要化学反应如下: 由于三水铝石、一水软铝石和一水硬铝石的结晶构造不同,它们在苛性钠溶液中的溶解性能有很大差异,所以要提供不同的溶出条件,主要是不同的溶出温度。三水铝石型铝土矿可在125~140℃下溶出,一水硬铝石型铝土矿则要在240~260℃并添加石灰(3~7%)的条件下溶出。现代拜耳法的主要进展在于:①设备的大型化和连续操作;②生产过程的自动化;③节省能量,例如高压强化溶出和流态化焙烧;④生产砂状氧化铝以满足铝电解和烟气干式净化的需要。 拜耳法的工艺流程见图1。

拜耳法的优点主要是流程简单、投资省和能耗较低,最低者每吨氧化铝的能耗仅3×106千卡左右,碱耗一般为100公斤左右(以Na2CO3计)。拜耳法生产的经济效果决定于铝土矿的质量,主要是矿石中的SiO2含量,通常以矿石的铝硅比,即矿石中的Al2O3与SiO2含量的重量比来表示。因为在拜耳法的溶出过程中,SiO2转变成方钠石型的水合铝硅酸钠(Na2O·Al2O3·1.7SiO2·nH2O),随同赤泥排出。矿石中每公斤SiO2大约要造成1公斤Al2O3和0.8公斤NaOH的损失。铝土矿的铝硅比越低,拜耳法的经济效果越差。直到70年代后期,拜耳法所处理的铝土矿的铝硅比均大于7~8。由于高品位三水铝石型铝土矿资源逐渐减少,如何利用其他类型的低品位铝矿资源和节能新工艺等问题,已是研究、开发的重要方向。 碱石灰烧结法 适用于处理高硅的铝土矿,将铝土矿、碳酸钠和石灰按一定比例混合配料,在回转窑内烧结成由铝酸钠(Na2O·Al2O3)、铁酸钠(Na2O·Fe2O3、原硅酸钙(2CaO·SiO2)和钛酸钠(CaO·TiO2组成的熟料。然后用稀碱溶液溶出熟料中的铝酸钠。此时铁酸钠水解得到的NaOH也进入溶液。如果溶出条件控制适当,原硅酸钙就不会大量地与铝酸钠溶液发生反应,而与钛酸钙、Fe2O3·H2O 等组成赤泥排出。溶出熟料得到的铝酸钠溶液经过专门的脱硅过程,SiO2O形成水合铝硅酸钠(称为钠硅渣)或水化石榴石3CaO·Al2O3·xSiO2·(6-2x)H2O 沉淀(其中x≈0.1),而使溶液提纯。把CO2气体通入精制铝酸钠溶液,和加入晶种搅拌,得到氢氧化铝沉淀物和主要成分是碳酸钠的母液。氢氧化铝经煅烧成为氧化铝成品。水化石榴

生产工艺流程、设备、技术介绍、特色

第一章前言 1.1商用空调行业发展综述 商用空调在世界上已有百年的发展历史,在中国也有20多年的应用时间,然而真正引起国内企业关注还是近几年。目前国内市场家用空调领域竞争已经进入白热化阶段,随着价格战连绵不断,在家用空调领域几乎已经无利可图的企业纷纷开始在中央空调领域寻找新的发展空间和利润增长点。 2003年商用空调(含户式中央空调)市场容量将达到85亿元,2005年达到200亿元以上。市场空间迅速巨大,而利润至少是40%以上。这对于众多在市场上艰难逐利的企业,尤其是仍在价格战中挣扎的家电企业来说,无疑是极其诱人的。 与家用空调行业相比,中央空调仍保持较高利润空调,这使得由原来约克、大金、开利等国外品牌所占领的国内中央空调市场开始发生变化,国内一些品牌也纷纷进入这个领域。 1.2中国商用空调市场发展状况 中国现在已经成为世界空调生产制造大国。20多年来,特别是近十年来,中国空调产业规模迅速扩大,在上世纪90年代中期,超过美国,在90年代末期,超过日本,已经成为全球空调器制造基地,产销量居世界首位。2002年我国空调器产业完成销售额接近700亿元,总产量超过3050万台,在全球比重占到60%。空调产业是典型的全球性产业,1993年以来,空调器出口量以平均66%的速度在增长,成为我国出口增长速度最快的产品之一。2002年,我国空调器出口量超过800万台,出口额接近13亿美元,经过十年努力,中国的调产业竞争力也有极大增长。 中国空调业的比较优势主要集中在劳动密集型产品的制造能力,优势有限,而且与跨国公司竞争力的差距也显而易见。虽然空调出口增长速度超常,但不能忽略的事实是,

氧化铝工艺流程简介

氧化铝工艺流程简介 一、生产工艺简介 公司采用国际先进的拜耳法生产工艺,主要设备从德国、法国、荷兰、澳大利亚等国进口;生产指挥系统采用美国Rockwell公司的DCS控制系统。公司还建有庞大的生产ERP系统及信息管理系统,集生产调度、控制、信息采集、管理于一体。 二、生产工艺流程图

三、工艺流程简述 1、原料工序原料矿石堆场在建厂初期,为方便装卸矿石及避免大量杂质在倒运过程进入生产流程,堆场使用原矿石将地基提升50cm压实后用于储存铝土矿。原矿石由汽车运进厂的铝土矿经地磅站称重后和原矿堆场的铝土矿经破碎后一起倒入卸矿站,经胶带输送机送往均化堆场堆存,为避免斗轮取料机将杂质当做矿石取走,取料机斗轮离地面30cm,其间用矿石进行填充,再由胶带输送机将铝土矿送往原料磨的磨头仓。外购石灰由汽车运进厂,卸入石灰卸矿站,经胶带输送机送往石灰仓,一部分石灰通过胶带输送机送往原料磨磨头仓,另一部分石灰送往石灰消化工段。在石灰消化工段,石灰与热水一同加入化灰机中,制备的石灰乳流进石灰乳槽,石灰乳用泵送往蒸发车间苛化工序和沉降车间控制过滤工序。在原料磨工段,铝土矿、石灰及循环母液按比例加入原料磨中磨制原矿浆,原矿浆用水力漩流器进行分级,分级机溢流为合格的原矿浆,送入原矿浆槽,分级机底流返回原料磨。为应对磨机突发故障及流程稳定,矿浆槽必须保持一定液位。 2、溶出工序来自原料磨已研磨好的原矿浆首先进入溶出预脱硅槽,矿浆通过预脱硅槽的压差进行自溢流至末槽,同时为消除矿浆中的SiO2对溶出过程的影响,根据车间操作规程,矿浆在预脱硅槽首槽加热至100℃,且原矿浆在脱硅槽中停留8h以上,以达到预脱硅的目

氧化铝生产工艺

氧化铝生产工艺 在氧化铝生产行业,氧化铝的生产方法大约分四类:碱法、酸法、酸碱联合法、和热法,但目前用于工业生产的基本全部属于碱法。 用碱法生产氧化铝,是用碱(NaOH或Na2CO3)来处理铝矿石,使矿石中的氧化铝转变为铝酸钠溶液。矿石中的铁、钛等杂质和绝大部分的硅则成为不溶解的化合物,将不溶解的残渣(由于含氧化铁而成红色,故称赤泥)与溶液分离,经洗涤后弃去或综合利用,已回收利用其中的有用组分。纯净的铝酸钠溶液分解析出氢氧化铝,经与母液分离、洗涤后焙烧,得到氧化铝产品。 用碱法生产氧化铝又可分为:①拜尔法②烧结法③联合法,因我国的铝土矿资源的特殊性,主要为一水硬铝石,因此在早期建厂的生产氧化铝的方法均采用烧结法、混联法,后期建厂和扩建工程多采用拜尔法较多,拜尔法具有工艺流程简单,投入成本少,产品质量好等特点。 具体情况如下: 中国铝业山东分公司:1954年建厂,采用烧结法,后经四次扩建,主要采用拜尔法,2006年的总产量已达128万吨 中国铝业河南分公司:1965年建厂投产,主要采用混联法,1999年完成4次扩建,年产达80万吨,2005年新建年产70万吨的拜尔法生产线,2006年的年生产量已达到232万吨。 中国铝业贵州分公司:1978年完成一期拜尔法生产线,年产15万吨,后经扩建,采用混联法,2006年已达到年产120万吨。 中国铝业山西分公司:1987年一期烧结法投产,后经扩建,1992年完成二期混联法,年产达70万吨,2005年投产的拜尔法80万吨项目,到2006年已经达到年产219万吨目标。 中国铝业中州分公司:1992年一期投产烧结法,后经两次扩建选矿拜尔法生产线,2006年年产量达172万吨。 中国铝业广西分公司:1995年拜尔法投产使用,2006年总产量达94万吨。 中国铝业集团还有重庆、遵义准备建造氧化铝厂。 除中国铝业公司外,现已建或拟建的氧化铝项目29个,山东荏平氧化铝、山东魏桥氧化铝氧化铝、山西鲁能晋北氧化铝、山东龙口东海氧化铝、山东信发(100万吨)、河南开曼铝、东方希望铝业(三门峡)有限公司、广西华银(160万吨)、阳煤集团(120万吨)等众多氧化铝企业。据专家估计,2006年我国的氧化铝产量将年增29-33%,达到1200-1300万吨。

PTA生产技术及工艺流程

PTA生产技术及工艺流程简述 【作者:千木】 目前世界PTA生产厂家采用的技术虽有差异,但归纳起来,大致可分为以下两类: (1)精PTA工艺 此工艺采用催化氧化法将对二甲苯(PX)氧化成粗TA,再以加氢还原法除去杂质,将CTA精制成PTA。这种工艺在PTA生产中居主导地位,代表性的生产厂商有:英国石油(BP)、杜邦(Dupont)、三井油化(MPC)、道化学-因卡(Dow-INCA)、三菱化学(MCC)和因特奎萨(Interquisa)等。 (2)优质聚合级对苯二甲酸(QTA、EPTA)工艺 此工艺采用催化氧化法将PX氧化成粗TA,再用进一步深度氧化方法将粗TA精制成聚合级TA。此工艺路线的代表生产厂商有三菱化学(MCC)、伊斯特曼(Eastman)、杜邦(Dupont)、东丽(Toray)等。生产能力约占PTA总产能的16%。 两种工艺路线差异在于精制方法不同,产品质量也有所差异。即两种产品所含杂质总量相当,但杂质种类不一样。PTA产品中所含PT酸较高(200ppm左右),4-CBA较低(25ppm左右),而QTA(或EPTA)产品中所含杂质与PTA相反,4-CBA 较高(250ppm左右),PT酸较低(25ppm以下)。两种工艺路线的产品用途基本相同,均用于聚酯生产,最终产品长短丝、瓶片的质量差异不大。目前,钴-锰-溴三元复合体系是PX氧化的最佳催化剂,其中钴是最贵的,所以目前该方面的一直进行降低氧化催化剂能耗的研究。PTA生产过程中所用TA加氢反应催化剂为Pd/C,目前研究的主要问题是如何延长催化剂的使用寿命。 工业化的精对苯二甲酸制备工艺很多,但随着生产工艺的不断发展,对二甲苯高温氧化法成为制备精对苯二甲酸的最主要的生产工艺,这种工艺在对苯二甲酸的制备工艺中占有绝对优势。对二甲苯高温氧化工艺是在高温、高压下进行的,副反应较多;而且由于温度高、压力大对设备本身的要求就高。因此工艺改进主要就集中在降低氧化反应温度和降低氧化反应的压力两个方面。目前,拥有这一专利技术的公司主要有美国Amoco公司、英国ICI公司和日本三井油化公司,我国曾在不同时期引进过这三家公司的专利技术。近年,我国对苯二甲酸的工艺也取得了很大的进展。 (1)对二甲苯(PX)高温氧化法。对二甲苯高温氧化法由氧化、精制和辅助系统组成。该工艺以对二甲苯为原料,经空气催化氧化、加氢精制、结晶分离等工序制成。催化氧化是对二甲苯在催化剂存在下,于190-230℃,压力 1.27- 2.45MPa的条件下,用空气氧化得到粗对苯二甲酸。加氢精制是将对二甲苯氧化过程中尚未反应完全的4-羟基苯甲醛(4-BCA)转化为可溶于水的甲基苯甲酸,然后除去。加氢精制反应要在较高压力(约6.8MPa)和较高温度(约280℃)的条件下进行。对苯二甲酸加氢产物再经结晶分离和干燥,就得到可用于纤维生产的精对苯二甲酸。 对二甲苯高温氧化法流程简单,反应迅速,收率可达90%以上。 (2)高温氧化工艺改进。Amoco公司对高温氧化法工艺进行了改进,使氧化反应温度降至193-200℃的范围,反应压力也相应降到1.45MPa。改进后每吨PTA的PX消耗量减少14kg。三井油化公司在Amoco高温氧化工艺的基础上,开发了三井Amoco工艺。该工艺提高了催化剂中钴/锰比和溶剂比,同时为保持溶剂浓度稳定,氧化反应器顶部增加分离塔,除去反应体系中的水。这种工艺可将氧化反应温度降至185-195℃,反应压力降至0.9-1.1MPa,相应副反应减少,同时母液循环比相应提高,催化剂可循环使用,减少了催化剂的用量。 (3)温和反应条件的对苯二甲酸工艺。高温氧化工艺需要高温、高压,很多公司尝试开发反应条件温和的对苯二甲酸工艺,这些工艺中比较成功的有三菱公司开发的QTA工艺, 日本丸善公司开发的MTA工艺以及鲜京公司开发的SPTA 工艺。 MTA工艺适当地加大催化剂的锰/钴比、溶剂比和氧化空气用量,氧化后的产品再实行补充氧化,并添加少量三聚乙醛,强化氧化反应设备,使中间产物转化为最终产物。通过充分氧化使得工艺不需要再进行加氢还原精制。这种工艺反应条件温和,但反应时间较长,原料PX、催化剂和乙酸的消耗较高,并且产品中杂质对羧基甲醛的含量较高,产品只能用于制备纤维级聚酯。 QTA工艺采用高活性催化剂进行对二甲苯氧化。催化剂以铈替代高温氧化工艺中的锰,同时附加镧催化荆,并采用了无机溴化物。对二甲苯氧化反应条件较温和,反应过程中还要对中间产品进行补充氧化。该工艺对二甲苯、催化剂

氧化铝冶炼工艺流程简介

氧化铝的主要冶炼工艺介绍 氧化铝的冶炼工艺大致可以分为烧结法、拜耳法和烧结-拜耳联合法等。 一、烧结法 1.1烧结法的基本原理 将铝土矿与一定数量的纯碱、石灰(或者石灰石)、配成炉料在高温下进行烧结,使氧化硅和石灰化合成不溶于水的原硅酸钙,氧化铝与纯碱化合成可溶于水的固体铝酸钠,而氧化铁与纯碱化合成可以水解的铁酸钠,将烧结产物(熟料)用稀碱溶液溶出时固体铝酸钠便进入溶液,铁酸钠水解放出碱,氧化铁以水合物与原硅酸钙一道进入赤泥。在用二氧化碳分解铝酸钠溶液便可以析出氢氧化铝,经过焙烧后产出氧化铝。分离氢氧化铝后的母液成为碳分母液经过蒸发后返回配料。 1.2烧结法工艺过程简述 烧结法生产氧化铝有生料浆制备、熟料烧结、熟料溶出、赤泥分离以及洗涤、粗液脱硅、精液碳酸化分解、氢氧化铝的分离以及洗涤、氢氧化铝焙烧、母液蒸发等主要生产工序。 生料浆制备:将铝土矿、石灰(或石灰石)、碱粉、无烟煤以及碳分母液按一定的比例,送入原料磨中磨制成生料浆,经过料浆槽的三次调配成各项指标合格的生料浆,送熟料窑烧结。 熟料烧结:配合格的生料浆送入熟料窑内,在1200℃-1300℃的高温下发生一系列的物理化学变化,主要生产使氧化硅和石灰化合成不溶于水的熟料。熟料窑烧结过程通常在熟料窑(回转窑)内进行,氧化硅和石灰化合成不溶于水的原硅酸钙,氧化铝和纯碱化合成可溶于水的固体铝酸钠,而氧化铁与纯碱化合成可以水解的铁酸钠,并且烧至部分熔融,冷却后成外观为黑灰色的颗粒状物料即熟料。 熟料溶出:熟料经过破碎达到要求的粒度后,用稀碱溶液(生产上称调整液),在湿磨内进行粉碎性溶出,有用成分氧化铝和氧化钠进入溶液,成为铝酸钠溶液,而杂质铁和硅则进入赤泥。 赤泥分离和洗涤:为了减少溶出过程中的化学损失,赤泥和铝酸钠溶液必须快速分离,为了回收赤泥附液中所带走的有用成分氧化铝和氧化钠,将赤泥进行多次反向洗涤再排入堆场。

甲基丙烯酸甲酯生产工艺及技术经济比较

甲基丙烯酸甲酯生产工艺及技术经济比较 摘要从技术性和经济性角度评述了甲基丙烯酸甲酯的生产工艺, 包括丙酮氰醇(ACH) 法、异丁烯/叔丁醇法、乙烯法和异丁烷氧化法, 认为异丁烯直接氧化工艺具有原料来源广泛、收率高、环境污染小的特点。 关键词甲基丙烯酸甲酯, 生产工艺, 技术经济比较 甲基丙烯酸甲酯(MMA)是一种重要的有机化工原料, 可在光热或催化剂存在下自聚或与其他单体共聚生成甲基丙烯酸甲酯树脂和塑料, 如聚甲基丙烯酸甲酯(PMMA)、MMA -苯乙烯(MS)树脂、MMA -丁二烯-苯乙烯(MBS)树脂等。聚合产品具有透明度高、耐候性好、光学性能优良等特点, 广泛用作广告牌、照明材料、建筑材料、汽车零件等。近来, 这些聚合产品在IT 行业相关领域如液晶显示屏光导板、DVD 光盘等的需求也快速增长。在物理性质上, MMA 具有低毒性, 且可以回收, 因而是有利于环保的材料。 据统计, 2002 年全球MMA 生产能力为2 477 kt/a , 其中北美765 kt/a ,占30 .9 %;南美29 kt/a , 占1 .1 %;东欧50 kt/a , 占2 .0 %;西欧705 kt/a ,占28 .5 %;日本535 kt/a , 占21 .6 %;不包括日本的亚洲其他地区393 kt/a , 占15 .9 %[1] 。同年全球MMA消费量共1970 kt ,其中北美占35 %,欧洲占27 %,日 本占19 %, 亚洲其他地区占15 %, 世界其他地区占4 %。预计至2006 年全球MMA 年均需求增长率为3 %~ 3.5 %,其中亚洲增长强劲, 为4 %, 北美为3 .1 %, 欧 洲为2 .4 %[2] 。2002年我国MMA生产能力约120 kt/a ,实际产量约90kt。同年中 国MMA 消费量约150 kt ,其中65 %用于有机玻璃的生产, 12 %用于塑料化工助剂, 11 %用于表面涂料, 12 %用于其他领域。预计未来5 年中国MMA 发展的主要市场 仍是有机玻璃、水性涂料和聚氯乙烯改性剂等[3] 。 1 传统MMA 生产工艺及其改进 丙酮氰醇(ACH)法是MMA 生产的传统工艺。1982 年日本开发了以异丁烯为原料的直接氧化法工艺以来, 已开发出多种生产工艺, 其中有的已实现工业化, 有的则尚在开发改进之中。MMA 主要合成路线如图1 所示[4] 。 目前在工业上,MMA 主要有5 种生产工艺。由于采取不同的原料,合成MMA 的催化反应收率也有高有低。各工艺装置的规模效益也不一样, 任何一项工艺没有绝对的优势。全球MMA 生产能力中80 %采用ACH 工艺。在MMA 三大生产地区, 北

氧化铝生产工艺流程图

氧化铝生产工艺流程图 流程仿真技术原理 根据工艺过程所涉及到的基础物性数据,引用或创建特定的物性包,建立生产过程中的单元设备的数学模型和单元设备之间的模型,从而完成完整描述实际生产过程系统的数学模型[6,7]。通过一定的数学方法对过程中所涉及到的模型进行联列求解。通过装置的稳态和动态模型,进行不同方案和工艺条件的分析,为新工艺的规划、研究开发和技术可靠性进行分析,为生产实际提供优化操作指导。在动态模拟中,还可以通过不同控制策 略的比较,对生产过程进行优化控制[5]。 生产过程的数学模型通常为一大型非线性代数方程组,过程模拟实质就是通过求解该非线性方程组来预测在一定工艺条件下生产过程的性能。常用 的求解方法主要有序贯模块法、联立方程法和联立模块法[3]。 氧化铝生产工艺 氧化铝的生产方法有酸法、碱法和热法。目前氧化铝工业生产实际应用的是碱法。碱法又包括拜耳法、烧结法及各种形式的联合法。因拜耳法生产成本低,经济效益好,流程相对简单,应用最广,所以主要介绍一下拜耳法的生产工艺。 所谓拜耳法是因为它是由K.J.bayer在1889-1892年提出而得名的。拜耳法主要包括两个主要过程,一是Na2O与Al2O3摩尔比为1.8的铝酸钠在常温下,只要添加氢氧化铝作为晶种,不断搅拌,溶液种的Al2O3就可以呈氢氧化铝析出,直到其中Na2O:Al2O3的摩尔比提高到6为止,此即为铝酸钠溶液的晶种分解过程。另一过程是已经析出了大部分氢氧化铝的溶液。在加热时,又可以溶出铝土矿中的氧化铝水合物。此即利用种分母液溶出铝土矿的过程。交替使用这两个过程处理铝土矿,得到氢氧化铝产品,构成所谓拜耳法循环[8]。拜耳法的生产工艺流程图如图1 所示。

己内酰胺生产工艺比较

己内酰胺生产工艺比较 1 己内酰胺发展历程 1899年,德国学者S.Gabriel和T.A.Mass首次加热ε-氨基己酸获得了己内酰胺。未工业应用。 1900年,O.Wallach利用贝克曼(Beckmann)重排转位反应,在硫酸中加热环己酮肟获得己内酰胺。 1937年,德国I.G.Farben公司P.Schlack开创了己内酰胺生产和应用的新纪元,以氨基己酸盐为催化剂,使己内酰胺开环聚合,聚合体纺得纤维的商品名为Perlon. 二次大战期间,德国建设了一些工业装置,生产聚酰胺6纤维,主要用在军事工业上。(采用苯酚为原料加氢制的环己醇,再脱氢得环己酮,再和羟胺硫酸盐反应生成环己酮肟,转位生成己内酰胺) 二次大战后,I.G.Farben公司公开技术,各国的公司纷纷建设己内酰胺装置,到1960年,世界己内酰胺产量达到180kt。 50年代后期,陆续开发了多种己内酰胺生产工艺。随着石油苯的快速发展以苯为原料,加氢制得环己烷,氧化得环己醇、环己酮的工艺成为生产己内酰胺的主要方法。 2 己内酰胺生产工艺 己内酰胺生产方法可以归纳为以下4类: (1)苯加氢制环己烷,环己烷氧化制环己酮,再与羟胺肟化生成环己酮肟,经Beckmann重排得己内酰胺。 (2)苯酚加氢制环己酮,经肟化、重排得己内酰胺。 (3)甲苯氧化制苯甲酸,加氢的环己烷羧酸,与亚硝酰硫酸反应生成己内酰胺。

(4)环己烷与亚硝酰氯发生光亚硝化反应生成环己酮肟,经Beckmann重排得己内酰胺。其具体生产工艺如下表所示:

以上一系列工艺以降低原料消耗和能量消耗,降低或免除副产硫铵为目的。环己酮羟胺法是目前主要的生产工艺,占总生产规模的90%以上。其中,NO还原工艺、HPO法工艺是目前世界上己内酰胺成熟生产技术的代表,HPO法输出技术比重较大(约为88.6%),在全世界建有18套装置。 新兴的生产工艺有环己酮氨肟化法、丁二烯工艺、己二腈工艺等,其中丁二烯工艺、己二腈工艺等技术不成熟,仅建有一些实验装置,未工业化应用。而环己酮氨肟化法是新工艺中比较先进的成熟的生产技术代表,在日本住友和巴陵建有装置。

氧化铝厂简介

氧化铝厂简介 中国铝业广西分公司氧化铝厂(以下简称氧化铝厂)是中国铝业广西分公司下属的一个重要生产分厂,一期工程设计产能30万吨,1 991年9月动工兴建,1995年9月建成投产;二期工程设计产能40万吨,2001年5月动工兴建,2003年6月建成投产;三期工程设计产能88万吨,2005年12月动工兴建,2008年7月建成投产。 氧化铝厂下设4个职能科室(生产控制中心、设备管理科、安全环保科、综合科)和5个车间(生产一区、生产二区、综合车间、电气车间、坝场站),现有员工1003人,其中大中专毕业生615人,中级职称50人、高级职称13人、技师27人、高级技师3人。 氧化铝厂采用纯拜耳法氧化铝生产工艺,主要包括原料、溶出、沉降、分解、蒸发及焙烧六个主体生产工序,主要工艺技术有:两段磨—水力旋流器磨矿分级新工艺;单套管及压煮器预热、机械搅拌间接加热强化溶出工艺;开发了三次沉降和一次过滤的赤泥洗涤工艺;在国内首次开发应用了赤泥的干法输送与堆存技术;开发应用高浓度、高固含、高产出率一段法分解生产砂状氧化铝新工艺和新装备;在国内首次开发应用了多效管式降膜蒸发和强制循环排盐新工艺新 装备;研究开发了工业废水重复利用技术,实现了氧化铝工业废水“零”排放。 自一期工程建成投产以来,氧化铝厂的生产工艺经过不断研究开发与技术改进,技术经济指标持续优化,产能持续提升,目前四条生产线的年生产能力已经达到200万吨。主要技术经济指标不仅居国内领先水平,而且达到或超过世界先进水平。“右江牌”氧化铝为广西名牌产品,全部为冶金级砂状氧化铝,曾经填补国内砂状氧化铝的空白,产品质量符合行业一级品S-AO986的要求。

工业参考资料炼铝的生产方法

工业炼铝的生产方法 主要原理是霍尔-埃鲁铝电解法:以纯净的氧化铝为原料采用电解制铝,因纯净的氧化铝熔点高(约2045℃),很难熔化,所以工业上都用熔化的冰晶石(Na3AlF6)作熔剂,使氧化铝在1000℃左右溶解在液态的冰晶石中,成为冰晶石和氧化铝的熔融体,然后在电解槽中,用碳块作阴阳两极,进行电解。 全面介绍如下: 《铝的生产加工》 铝在生产过程中有四个环节构成一个完整的产业链:铝矿石开采-氧化铝制取-电解铝冶炼-铝加工生产。 一般而言,两吨铝矿石生产一吨氧化铝;两吨氧化铝生产一吨电解铝。 (一)氧化铝的生产方法 迄今为止,已经提出了很多从铝矿石或其它含铝原料中提取氧化铝的方法。由于技术和经济方面的原因,有些方法已被淘汰,有些还处于试验研究阶段。已提出的氧化铝生产方法可归纳为四类,即碱法、酸法、酸碱联合法与热法。目前用于大规模工业生产的只有碱法。 铝土矿是世界上最重要的铝矿资源,其次是明矾石、霞石、粘土等。目前世界氧化铝工业,除俄罗斯利用霞石生产部分氧化铝外,几乎世界上所有的氧化铝都是用铝土矿为原料生产的。 铝土矿是一种主要由三水铝石、一水软铝石或一水硬铝石组成的矿石。到目前为止,我国可用于氧化铝生产的铝土矿资源全部为一水硬铝石型铝土矿。 铝土矿中氧化铝的含量变化很大,低的仅约30%,高的可达70%以上。铝土矿中所含的化学成分除氧化铝外,主要杂质是氧化硅、氧化铁和氧化钛。此外,还含有少量或微量的钙和镁的碳酸盐、钾、钠、钒、铬、锌、磷、镓、钪、硫等元素的化合物及有机物等。其中镓在铝土矿中含量虽少,但在氧化铝生产过程中会逐渐在循环母液中积累,从而可以有效地回收,成为生产镓的主要来源。 衡量铝土矿优劣的主要指标之一是铝土矿中氧化铝含量和氧化硅含量的比值,俗称铝硅比。 用碱法生产氧化铝时,是用碱(NaOH或Na2CO3)处理铝矿石,使矿石中的氧化铝转变成铝酸钠溶液。矿石中的铁、钛等杂质和绝大部分的硅则成为不溶解的化合物。将不溶解的残渣(赤泥)与溶液分离,经洗涤后弃去或进行综合处理,以回收其中的有用组分。纯净的铝酸钠溶液即可分解析出氢氧化铝,经分离、洗涤后进行煅烧,便获得氧化铝产品。分解母液则循环使用来处理另一批矿石。碱法生产氧化铝有拜耳法、烧结法以及拜耳--烧结联合法等多种流程。拜耳法是由奥地利化学家拜耳(K·J·Bayer)于1889~1892年发明的一种从铝土矿中提取氧化铝的方法。一百多年来在工艺技术方面已经有了许多改进,但基本原理并未发生变化。为纪念拜耳这一伟大贡献,该方法一直沿用拜耳法这一名称。

BDO生产工艺技术及市场前景

1,4-丁二醇(BDO)生产工艺技术及市场前景 一.1,4-丁二醇简介 (一)主要用途及下游产品 1,4-丁二醇( 简称BDO) 是一种重要的有机和精细化工原料, 它被广泛应用于医药、化工、纺织、造纸、汽车和日用化工等领域。由BDO可以生产四氢呋喃(THF)、聚对苯二甲酸丁二醇酯(PBT)、γ-丁内脂(GBL)、聚四亚甲基乙二醇醚(PTMEG)、N-甲基吡咯烷酮(NMP)和聚氨酯树脂(PU Resin)、涂料和增塑剂等,以及作为溶剂和电镀行业的增亮剂等。 四氢呋喃(THF)是一种重要的有机化工及精细化工原料,主要用于医药、农药、特种橡胶、溶剂等领域。 聚对苯二甲酸丁二醇酯(PBT)是最坚韧的工程热塑材料之一,它是半结晶材料,有非常好的化学稳定性、机械强度、电绝缘特性和热稳定性。这些材料在很广的环境条件下都有很好的稳定性。 γ-丁内酯(GBL)是一种用途很广泛的精细化工产品,可作为聚氯乙烯、聚苯乙烯、聚丙烯腈和乙炔萃取的溶剂,也可用于产环丙沙星、氟哌啶醇、脑复康、维生素B1、2-吡咯烷酮、N-甲基吡咯烷酮、PVP系列精细化工产品。 聚四亚甲基乙二醇醚(PTMEG)主要用于生产聚氨酯弹性体、氨纶、聚酰胺的重要原料。其中氨纶主要用于生产高级运动服、游泳衣等高弹性针织品。 此外,BDO还是生物降解塑料聚丁二酸丁二醇酯(PBS)重要的原料,生物降解塑料是一种可以被自然界的多种微生物或动植物体内的酶分解、代谢,最终分解为二氧化碳和水而回归环境的新型环保材料,是从根本上解决塑料污染问题的有效途径之一。 (二)物化性质 英文名: 1,4-Butanediol;1,4-Dihydroxybutane;Tetramethylene glycol;1,4-Butrlene glycol 结构式:HOCH2CH2CH2CH20H; 分子式:C4H1002; 分子量:90.12; 粘度(20℃):91.6 mPa.S; 产品性质:无色粘稠油状液体,可燃,凝固点:20.1℃,熔点:20.2℃,沸点:228~230℃,闪点:(开杯)121℃,相对密度:1.0171(20/4℃),折射率:1.446。能与水混溶,溶于甲醇、乙醇、丙酮,微溶干乙醚,有吸湿性,味苦。 毒性:有毒。附着在患病或负伤的皮肤上或饮用时,起初会呈现麻醉作用,引起肝和肾特殊的病理改变,然后由于中枢神经麻痹而突然死亡(无长时间的潜伏)。LD50:2200mg/kg(小鼠经口),1800mg/kg

水合肼生产工艺比较

水合肼生产工艺比较 水合肼:化学名水合联氨 分子式:N2H4.H2O 分子量:50.08 性状:无色发烟强碱性液体,有特臭。沸点119.4℃,溶点-51.7℃。溶于水和乙醇,不溶于氯仿和乙醚。可燃、强腐蚀性,能侵蚀玻璃、橡胶和皮革等,毒性大,其毒性有积蓄作用,对血液和神经有毒害。 目前国内外水合肼的生产工艺主要有拉西法(Rashig法)、尿素法、酮连氮法以及过氧化氢法(PCUK法)等四种方法。酮连氮法是德国拜尔公司在上世纪六十年代工业化的生产技术,它是采用丙酮加氧化剂次氯酸钠以及氨生产酮连氮,酮连氮再经高压水解生产水合肼。尿素法(又称拉希改良法)它是利用霍夫曼酰胺降级反应,氨的来源是尿素而不是氨。其反应过程为尿素分子中氮原子上的一个氢原子被氯取代,在碱的影响下氮原子失去一个分子HCl,后经霍夫曼分子重排而变为异氰(酸酯),在碱溶液中水解生成肼和碳酸盐。其反应过程为: NH2CONH2 + NaClO+ 2Na0H— N2H4H2O+ NaCl+NaCO3 此法用尿素代替氨,设备大大简化,投资节省。但由于反应物NaClO是强氧化剂,生成物是强还原剂,在反应过程中存在水合肼被NaClO氧化的副反应,因而尿素氧化法收率偏低,一般为70%~80%。此方法在次钠的温度控制方面要求温度一般超过35度,在35度以上次氯酸氯很容易分解,而次氯酸钠中的有效氯和游离碱的比例就会失调,进而对下一步尿素和次钠的反应造成影响。另一方面,尿素和次钠反应温度一般控制在105~108度,这是一个相对较容易控制的温

度。温度太低反应不完全,温度太高生成的水合肼就会分解成氮气。在尿素法制取水合肼时将会产生大量的盐,无论是氯化钠还是碳酸钠生成的数量是生成水合肼的3倍左右,也就是说生成一吨水合肼,能生成3吨左右的盐。这样就会造成设备的堵塞和腐蚀。因此这一点必须要解决才能满足环保方面的要求。 水合肼生产工艺比较:目前,水合肼的生产方法主要有拉西法、尿素法、酮连氮法、双氧水法以及空气氧化法等。 1、拉西法(Raschig) 拉西法是以氨为氮源,用次氯酸钠氧化氨气生成水合肼。此反应过程中有氯胺生成,故也称为氯胺法。用过量的浓度为8%的氢氧化钠与氯气反应生成次氯酸钠,用纯水吸收氨气成水溶液。氨与次氯酸钠溶液的混合比为20:1,控制反应温度为170℃,反应可在加压下进行并在数秒内完成。向反应系统内加入明胶,有助于提高产率。从反应塔内馏出的馏出物中除含有水合肼外,还含有氯化钠、氢氧化钠、未反应的氨以及少量的副产物。可在常压下闪蒸,经氨分离塔分出氨与塔底液。底液进入蒸发塔,分出氯化钠和氢氧化钠后,再经浓缩由塔顶排出水分,塔底获得水合肼。该法得到的肼是1%-2%的稀水溶液,最高浓度不超过4%。总收率约为67%,需要用相当多的热量来浓缩稀溶液的肼,每获1kg水合肼,需要蒸出40-110kg的水。由于使用过量的氨,需要增设回收装置,副产大量的氯化钠和氯化铵等盐。该法由于环境污染严重,设备投资大,产品收率低,目前在国外已经基本上被淘汰。 2、尿素法 此法以次氯酸钠为氧化剂,以尿素为氮源,合成水合肼。此法先

氧化铝生产工艺

第一章氧化铝的生产原理和方法 第一节氧化铝和铝矿 烧结法和拜耳法是目前工业生产氧化铝的主要方法。 国外生产氧化铝绝大多数采用拜耳法生产氧化铝,中国结合自己的资源情况,首创了拜耳-烧结混联法,极大地提高了氧化铝的总回收率。随着生产技术的不断提高,石灰拜耳法、选矿拜耳法等一些新的生产方法不断被应用到生产中来。 一、、氧化铝的特性 存在于自然界中的氧化铝称为刚玉(α-Al2O3),是在火山爆发过程中形成的。它在岩石中呈无色的结晶,也可与其他氧化物杂质(氧化铬和氧化铁等)染(形)成带色的结晶,红色的叫红宝石,蓝色的叫蓝宝石。 工业氧化铝是各种氧化铝水合物经加热分解的脱水产物,按照它们的生成温度可以分为低温氧化铝和高温氧化铝两类。 通常电解炼铝用的氧化铝是α-Al2O3和γ-Al2O3的混合物。α-Al2O3它属六角晶系,由于有完整坚固的晶格,所以它是所有氧化铝同质异晶体中化学性最稳定的一种,在酸或碱液中不溶解。γ-Al2O3属于立方晶系,具有很大的分散性,化学性质较为活泼,易与酸或碱溶液作用。 氧化铝的化学纯度 成品氧化铝除主要成分是Al2O3外,往往含有少量的SiO2、Fe2O3、Na2O和H2O等杂质。 氧化铝中残存的结晶水以灼减表示,它也是有害杂质。因为水与电解质中的AlF3作用而生成HF,造成了氟盐的损

失,并且污染了环境。此外,当灼减高或吸湿后的氧化铝与高温熔融的电解质接触时,则会引起电解质暴溅,危及操作人员的安全。 氧化铝质量的分级根据标准YS/7274-1998分为4个等级,如表1-2所示。 表1-2氧化铝质量等级标准 氧化铝的物理性质用于表征氧化铝物理性质的指标有:安息角、α-Al2O3含量、容量、粒度和比表面积以及磨损指数等。 二、铝土矿 地壳中铝的平均含量为8.7%左右,折合成氧化铝为16.4%,仅次于氧和硅,居于第三位,在金属元素中位于第一位。由于铝的化学性质活泼,它在自然界中以化合物状态存在。地壳中的含铝矿物约有250种左右,其中约40%是各种铝硅酸盐,最重要的含铝矿物只有14-15种,而铝土矿就是目前氧化铝生产的主要矿石资源,世界上生产的氧化铝95%左右是从铝土矿中提炼出来的。 评价铝土矿的质量不仅看它的化学成分、铝硅比的高低,而且还要看铝矿的类型。铝土矿中氧化铝的含量通常在45%-75%之间。铝土矿中的二氧化硅是碱法(尤其是拜耳法)生产氧化铝过程中最有害的杂质。我们通常把铝土矿中的氧化铝与二氧化硅的重量之比值称为铝土矿的铝硅比,以符号

pta生产工艺比较

PTA与EPTA生产工艺的发展现状及评价 PTA是精对苯二甲酸(Pure Terephthalic Acid)的英文缩写,是重要的大宗有机原料之一,其主要用途是生产聚酯纤维(涤纶)、聚酯瓶片和聚酯薄膜,广泛用于与化学纤维、轻工、电子、建筑等国民经济的各个方面,与人民生活水平的高低密切相关。 PTA(精对苯二甲酸)2005年中国需求量1210万吨,占全球PTA需求总量2880万吨的42%;产量560万吨,进口650万吨,进口依存程度为54%,未来PTA 需求仍在不断扩大,在未来几年,PTA的中国供需仍难以达到完全平衡。EG(乙二醇)需求量达510.2万吨,占全球EG需求总量1133万吨的45%,产量110万吨,进口400万吨。2005年我国涤纶产量占世界涤纶产量的38%,已成为我国纺织工业的最主要原料。中国的动向,引起了世界其它国家和地区的关注,而且会对世界化纤业造成相当大的影响。PTA的应用比较集中,世界上90%以上的PTA用于生产聚对苯二甲酸乙二醇酯(PET,简称聚酯),其它部分是作为聚对苯二甲酸丙二醇酯(PTT)和聚对苯二甲酸丁二醇酯(PBT)及其它产品的原料。 我国聚酯产量世界第一,是名副其实的聚酯大国。聚酯产能虽然仍以2位数的速率增加,但前2年经济效益大幅下滑。主要原因是PTA和EG价格居高不下,而聚酯产品价位低迷,企业盈利空间越来越小。国内这2种原料自给率都低于40%。近4年来,国内PTA项目成为热点,几个大项目相继投产,但并没有缓解供不应求态势。到2010年, PTA项目在需求和利益驱动下,还将有一个快速发展期。PTA 生产工艺技术,也会在建设中有所发展。对我国近年来引进的各种PTA生产工艺,特别是低温氧化的EPTA工艺,进行比较和评价,就能够更全面地认识现有各种PTA工艺的技术特点。 1)PTA生产工艺的发展历史及现状 PET纤维优良性能引起人们注意后,对其原料的工业化生产技术研究及开发有了较快地发展。Mid2Century公司1954年发明了PX液相空气氧化工艺(以钴、锰为催化剂、溴为促进剂) , 大大缩短了反应时间,提高了反应的转化率。 1958年, Amoco 化学公司购买了Mid-Centrury公司专利,并实现了工业化生产TA (也称TPA) , TA经甲醇酯化,用DMT法生产PET,使聚酯工业有了较快的发展。1965年Amoco公司成功开发了TA加氢精制生产精对苯二甲酸( PTA) ,实现了PTA生产工业化,去除了高温氧化过程中形成的有害杂质,特别是非常有效地除去了4-CBA 杂质。PTA 生产技术不断成熟完善,到20世纪70年代初大规模的工业化生产工厂相继出现,生产工艺技术随着建厂年代不同,技术水平也得到了提高。

相关主题
文本预览
相关文档 最新文档