当前位置:文档之家› 风力发电机输出功率曲线图

风力发电机输出功率曲线图

风力发电基础知识

风力发电基础知识 风力发电是将风能转换成电能,风能推动叶轮旋转,叶轮带动转动轴和增速机,增速机带动发电机,发电机通过输电电缆将电能输送地面控制系统和负荷。风力发电技术是一项多学科的,可持续发展的,绿色环保的综合技术。 风力发电的原理,是利用风力带动风车叶片旋转,再透过 增速机将旋转的速度提升,来促使发电机发电。依据目前的风 车技术,大约是每秒三公尺的微风速度(微风的程度),便可 以开始发电。风力发电正在世界上形成一股热潮,为风力发电 没有燃料问题,也不会产生辐射或空气污染。 转子空气动力学 为了解风在风电机的转子叶片上的移动方式,我们将红色带子 绑缚在模型电机的转子叶片末端。黄色带子距离轴的长度是叶 片长度的四分之一。我们任由带子在空气中自由浮动。本页的 两个图片,其中一个是风电机的侧视图,另一个使风电机的正视图。 大部分风电机具有恒定转速,转子叶片末的转速为64米/秒,在轴心部分转速为零。距轴心四分之一叶片长度处的转速为16米/秒。图中的黄色带子比红色带子,被吹得更加指向风电机的背部。这是显而易见的,因为叶片末端的转速是撞击风电机前部的风速的八倍。 为什么转子叶片呈螺旋状? 大型风电机的转子叶片通常呈螺旋状。从转子叶片看过去,并向叶片的根部移动,直至到转子中心,你会发现风从很陡的角度进入(比地面的通常风向陡得多)。如果叶片从特别陡的角度受到撞击,转子叶片将停止运转。因此,转子叶片需要被设计成螺旋状,以保证叶片后面的刀口,沿地面上的风向被推离。 风电机结构

机舱:机舱包容着风电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风电机塔进入机舱。机舱左端是风电机转子,即转子叶片及轴。 转子叶片:捉获风,并将风力传送到转子轴心。现代600千瓦风电机上,每个转子叶片的测量长度大约为20米,而且被设计得很象飞机的机翼。 轴心:转子轴心附着在风电机的低速轴上。 低速轴:风电机的低速轴将转子轴心与齿轮箱连接在一起。在现代600千瓦风电机上,转子转速相当慢,大约为19至30转每分钟。轴中有用于液压系统的导管,来激发空气动力闸的运行。 齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。 高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。它装备有紧急机械闸,用于空气动力闸失效时,或风电机被维修时。 发电机:通常被称为感应电机或异步发电机。在现代风电机上,最大电力输出通常为500至1500千瓦。 偏航装置:借助电动机转动机舱,以使转子正对着风。偏航装 置由电子控制器操作,电子控制器可以通过风向标来感觉风向。 图中显示了风电机偏航。通常,在风改变其方向时,风电机一 次只会偏转几度。 电子控制器:包含一台不断监控风电机状态的计算机,并控制 偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该 控制器可以自动停止风电机的转动,并通过电话调制解调器来 呼叫风电机操作员。 液压系统:用于重置风电机的空气动力闸。 冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风电机具有水冷发电机。 塔:风电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。 风速计及风向标:用于测量风速及风向。 风电机发电机 风电机发电机将机械能转化为电能。风电机上的发电机与你通常看到的,电网上

风电知识题库

考场 准考证号 姓名 单位部门 装 订 线 风电知识 题号 一 二 三 总分 制卷人 阅卷人 得分 1.答题前将密封线内的项目填写清楚. 2.填写答案必须用蓝色(黑色)钢笔或圆珠笔,禁止使用铅笔或红笔. 3.本份试卷共3道大题,满分200分. 评卷人 得分 一、判断题 (本大题共有50道试题,合计50分) 1、磁场对载流导体的电磁力方向,用右手定则确定。( ) 答:× 2、在回路中,感应电动势的大小与回路中磁通对时间的变化率成正比( ) 答:√ 3、工作人员从事离地面四米及以上的高处作业,以及在没有脚手架或者在没有栏杆的脚手架上工作且高度超过一点五米时,应使用安全带。( ) 答:× 4、安全生产责任制要在贯彻落实上下真功夫,这是关键的关键。( ) 答:√ 5、企业实行安全生产目标四级控制,其中车间控制重伤和事故。( ) 答:× 6、风电机组加热和冷却装置应半年检测一次。( ) 答:× 7、安全带的试验周期是六个月。( ) 答:√ 8、避雷系统应每年检测一次。( ) 答:√ 9、电气倒闸操作严禁无监护操作。( ) 答:√ 10、各发电企业及多种产业企业要建立健全企业重大危险源监督管理三级网络,对本单位的重大危险源做到可控在控。( ) 答:√ 11、发生事故应立即调查,调查、分析事故必须实事求是、尊重科学、严肃认真,做到四不放过。( ) 答:× 12、风电机组接地电阻每年测试一次,要考虑季节因素影响,保证不大于规定的接地电阻值。( ) 答:√ 13、危急事件管理工作遵循安全第一、防消结合的方针,坚持防御和救援相结合的原则。( ) 答:× 14、风电机组定期维护和特殊项目的检修应填写工作票和检修报告。( ) 答:√ 15、根据重大危险源评估标准,按危险程度将重大危险源分为四个等级。( ) 答:√ 16、重大危险源普查登记建档要求数据准确,内容完整,客观因素分辨准确。( ) 答:× 17、一份操作票应由一组人员操作,监护人手中只能持一份操作票。( ) 答:√ 18、各发电企业及多种产业企业重大危险源管理的职责之一落实重大危险源的普查、登记、建档、备案、评估和问题整改工作。( ) 答:√ 19、所有生产人员必须熟练掌握触电现场急救方法,所有职工必须掌握消防器材使用方法。( ) 答:√ 20、风场值班员是当班期间所负责设备的领导责任,在班长的领导下,对所辖设备、设施的安全、稳定运行负责。( ) 答:× 21、风厂新聘人员应有六个月实习期,实习期满后经考核合格方能上岗。( ) 答:× 22、运行人员对安全规程半年考试一次。( ) 答:× 23、使用灭火弹要与防火隔断有效配合,确保保护范围的有效性。( ) 答:√ 24、对已不构成重大危险源的,应及时报告注销。( ) 答:√ 25、事故调查处理应当按照实事求是、尊重科学的原则。( ) 答:√ 26、工作票、操作票的填写的设备双重名称系指具有英文名称和阿拉伯数字编号的设备。( ) 答:× 27、事故紧急处理可不填工作票,但应履行工作票手续,做好安全措施。( ) 答:× 28、发现有人酒后上班应立即令其退班。( ) 答:√ 29、高压室的钥匙至少应有三把,由运行人员负责保管,按值移交。( ) 答:√ 30、每一年对塔筒内安全钢丝、爬梯、工作平台、门防风挂钩检查一次,有问题及时处理。( ) 答:× 31、在有雷雨天气时不要停留在风电机内或靠近风电机。风电机遭雨击后2小时内不得接近风电机。( ) 答:× 32、隔离开关只能隔离电源及倒闸操作用,严禁带负荷拉、合隔离开关。( ) 答:√ 33、操作中严格执行“唱票—操作—回令”步骤。( ) 答:× 34、测量绝缘时,在测量绝缘前后,必须将被试设备对地放电。( ) 答:√ 35、凡进行运行、检修、试验工作必须进行危险点分析。( ) 答:× 36、电气倒闸操作严禁一人操作。( ) 答:× 37、实施安全质量标准化,推动安全生产工作制度化、规范化、标准化。( ) 答:√ 38、风电场工作人员应具备必要的机械、电气、安装知识,并掌握安全规程的要求。( ) 答:√ 39、安全生产管理,坚持安全第一、预防为主的方针。( ) 答:√

风力发电机介绍

风力发电机介绍 目录 1. 风力发电发展的推动力 2.风力发电的相关参数 2.1.风的参数 2.2.风力机的相关参数(以水平轴风力机为例) 3.风力机的种类 3.1.水平轴风力机 3.2.垂直轴风力机 4.水平轴风力机详细介绍 4.1.风轮机构 4.2.传动装置 4.3.迎风机构 4.4.发电机 4.5.塔架 4.6.避雷系统 4.7.控制部分 5.风力发电机的变电并网系统 5.1.(恒速)同步发电机变电并网技术

5.2.(恒速)异步发电机变电并网技术 5.3.交—直—交并网技术 5.4.风力发电机的变电站的布置 6.风力发电场 7.风力机发展方向 1. 风力发电发展的推动力: 1) 新技术、新材料的发展和运用; 2) 大型风力机制造技术及风力机运行经验的积累; 3) 火电发电成本(煤的价格)上涨及环保要求的提高(一套脱硫装置价格相当 一台锅炉价格)。 2. 风力发电的相关参数: 2.1. 风的参数: 2.1.1. 风速: 在近300m的高度内,风速随高度的增加而增加,公式为: V:欲求的离地高度H处的风速; V0:离地高度为H0处的风速(H0=10m为气象台预报风速的高度); n:与地面粗糙度等因素有关的指数,平坦地区平均值为0.19~0.20。 2.1.2. 风速频率曲线:

在一年或一个月的周期中,出现相同风速的小时数占这段时间总小时数的百分比称风速频率。 图1:风速频率曲线 2.1. 3. 风向玫瑰图(风向频率曲线): 在一年或一个月的周期中,出现相同风向的小时数占这段时间总小时数的百分比称风向频率。以极座标形式表示的风向频率图叫风向玫瑰图。 图2:风向玫瑰图

风力发电机组安全操作知识

风力发电安全操作知识培训教材 1 总则 为贯彻“电业生产,安全第一”的方针,保障电力系统的正常生产和检修、维护工作人员的安全,在风力发电机组的检修和维护前要认真学习风力发电机组安全操作知识。 2.1 个人防护 进入风机作业现场,必须使用个人防护设备,包括: 1)全护体安全带、安全帽、安全靴、手套,必要时还需要保暖衣。 2)个人防护设备必须是得到批准的型号,其上标有产品合格标志,表明适合于使用者准备从事的相关工作和保护,适合于工作地区的气候条件。 3)如果有多人同时攀登风力发电机塔筒,每人都必须配备个人所需的防护设备。 4)个人防护设备必须送请有资质的单位检查和检验,每年至少一次。 5)维护部员工必须正确妥善保存全护体安全带,并且必须随时检查。 2.2 安全带的穿戴 安全带的配戴程序如下: 1、通过扣眼(1)扣紧安全带,使大腿圈(2)下垂 2、将肩带(3)以背旅行包的方式放在肩上,使锁 扣(1)的塑料带靠在后背上。 3、把松开的大腿圈(2)从里到外套在大腿上。 4、大腿圈(2)的皮带穿入搭扣(4)内,并拉紧。 5、将大腿圈皮带的末端穿进皮带的带袢(5)内。 图4 – 1 6、拉紧胸部的窄皮带(6) 7、以中部的皮带调整器(7)调整皮带的正确位置。 2.3 安全防护设备的日常保养 1)绝对不能与酸类或与腐蚀性化学药品接触。 2)不得接触尖锐边缘以及带尖锐边缘的物体。

4)必须存放在通风良好的地方,并避免太阳直接照射。 5)每次在使用安全带避免了事故之后,应由专业人员对安全带加以检查。一年必须至少检修一次。任何有瑕疵设备都必须立刻停止使用。 3 风力发电机组现场安装安全规程 风力发电机组的塔筒、机舱和风轮的安装工作必须严格按照吊装说明或安装指导进行。 3.1 现场安全防护一般规定 3.1.1 进入施工现场的所有人员必须穿戴好安全帽、穿安全鞋和合适的工作服。 3.1.2 凡从事两米以上的高空作业人员必须系好安全带。 3.1.3 正确使用安全用具,未经安全培训人员和未携带安全用具人员禁止进入现场工作。 3.1.4 高空作业人员严禁带病作业,禁止酒后作业。 3.1.5 定期对安全用具进行检验,检验合格后方可继续使用。安全用具如有破损时,必须随时更换。 3.1.6 高空作业时严禁临空投掷物料。 3.1.7 施工现场禁止流动吸烟,吸烟人员必须在指定的吸烟点吸烟,施工人员禁止作业时吸烟。3.1.8施工人员必须牢记“三不伤害”原则:不伤害自己,不伤害他人,不被他人伤害。 3.1.9 现场应配备足够的干粉灭火器材,消防器材应保证灵敏有效,干粉灭火器必须按规定时间更换干粉。 3.1.10 夜间施工必须有足够照明,危险作业面周围应红灯示警。 3.1.11 重要操作或检修时工作负责人必须要到现场检查安全措施是否到位。 3.1.12 雷雨天气禁止近距离巡视风机。 3.2 设备安装安全防护 3.2.1 使用液压设备时,操作人员必须戴护目镜。 3.2.2 手持电动工具的使用应符合国家标准的有关规定。工具的电源线、插头和插座应完好,电源线不得任意接长和调换,工具的外绝缘应完好无损,维修和保管应由专人负责。 3.2.3 噪音为90分贝或超过90分贝时,操作人员必须戴耳套。

风力发电机控制原理

风力发电机控制原理 本文综述了风力发电机组的电气控制。在介绍风力涡轮机特性的基础上介绍了双馈异步发电系统和永磁同步全馈发电系统,具体介绍了双馈异步发电系统的运行过程,最后简单介绍了风力发电系统的一些辅助控制系统。 关键词:风力涡轮机;双馈异步;永磁同步发电系统 概述: 经过20年的发展风力发电系统已经从基本单一的定桨距失速控制发展到全桨叶变距和变速恒频控制,目前主要的两种控制方式是:双馈异步变桨变速恒频控制方式和低速永磁同步变桨变速恒频控制方式。 在讲述风力发电控制系统之前,我们需要了解风力涡轮机输出功率与风速和转速的关系。 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。

涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统 双馈异步风力发电系统的示意见图4,绕线异步电动机的定子直接连接电网,转子经四象限IGBT电压型交-直-交变频器接电网。 转子电压和频率比例于电机转差率,随着转速变化而变化,变频器把转差频率的转差功率变为恒压、恒频(50HZ)的转差功率,送至电网。由图4可知: P=PS-PR;PR=SPS;P=(1-S)PS P是送至电网总功率;PS和PR分别是定子和转子功率 转速高于同步速时,转差率S<0,转差功率流出转子,经变频器送至电网,电网收到的功率为定、转子功率之和,大于定子功率;转速低于同步转速食,S>0,转差功率从电网,

风力发电基础知识汇总

风力发电 把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。 风力发电的原理, 利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。(大型风力发电站基本上没有尾舵,一般只有小型(包括家用型)才会拥有尾舵) 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同) 由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。为保持风轮始终对准风向以获得最大的功率,还需在风轮的后面装一个类似风向标的尾舵。 铁塔是支承风轮、尾舵和发电机的构架。它一般修建得比较高,为的是获得较大的和较均匀的风力,又要有足够的强度。铁塔高度视地面障碍物对风速影响的情况,以及风轮的直径大小而定,一般在6-20米范围内。 发电机的作用,是把由风轮得到的恒定转速,通过升速传递给发电机构均匀运转,因而把机械能转变为电能。 小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 一般说来,三级风就有利用的价值。但从经济合理的角度出发,风速大于每秒4米才适宜于发电。据测定,一台55千瓦的风力发电机组,当风速为每秒9.5米时,机组的输出功率为55千瓦;当风速每秒8米时,功率为38千瓦;风速每秒6米时,只有16千瓦;而风速每秒5米时,仅为9.5千瓦。可见风力愈大,经济效益也愈大。 在我国,现在已有不少成功的中、小型风力发电装置在运转。 我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。中国风能储量很大、分布面广,仅陆地上的风能储量就有约 2.53亿千瓦。2009年,中国(不含台湾地区)新增风电机组10129台,容量13803.2MW,同比增长124%;累计安装风电机组21581台,容量25805.3MW。按照国家规划,未来15年,全国风力发电装机容量将达到2000万至3000万千瓦。以每千瓦装机容量设备投资7000元计算,根据《风能世界》杂志发布,未来风电设备市场将高达1400亿元至2100亿元。风电发展到目前阶段,其性价比正在形成与煤电、水电的竞争优势。风电的优势在于:能力每增加一倍,成本就下降15% 风力发电的输出

风力发电机的控制方式综述

风力发电机及风力发电控制技术综述 摘要:本文分析比较了各种风力发电机的优缺点,介绍了相关风力发电控制技术,风力发 电系统中的应用,最后对未来风力发电机和风力发电控制技术作了展望。 关键词:风力发电机电力系统控制技术 Overview of Wind Power Generators and the Control Technologies SU Chen-chen Abstract:This paper analyzes the advantages and disadvantages of the various wind turbine control technology of wind power, wind power generation system, and finally prospected the future control of wind turbines and wind power technology. 1 引言 在能源短缺和环境趋向恶化的今天,风能作为一种可再生清洁能源,日益为世界各国所重视和开发。由于风能开发有着巨大的经济、社会、环保价值和发展前景,近20年来风电技术有了巨大的进步,风电开发在各种能源开发中增速最快。德国、西班牙、丹麦、美国等欧美国家在风力发电理论与技术研发方面起步较早,因而目前处于世界领先地位。与风电发达国家相比,中国在风力发电机制造技术和风力发电控制技术方面存在较大差距,目前国内只掌握了定桨距风机的制造技术和刚刚投入应用的兆瓦级永磁直驱同步发电机技术,在风机的大型化、变桨距控制、主动失速控制、变速恒频等先进风电技术方面还有待进一步研究和应用[1]。发电机是风力发电机组中将风能转化为电能的重要装置,它不仅直接影响输出电能的质量和效率,也影响整个风电转换系统的性能和装置结构的复杂性。风能是低密度能源,具有不稳定和随机性特点,控制技术是风力机安全高效运行的关键,因此研制适合于风电转换、运行可靠、效率高、控制且供电性能良好的发电机系统和先进的控制技术是风力发电推广应用的关键。本文分析比较了各种风力发电机的优缺点,介绍了相关风力发电控制技术,风力发电系统中的应用,最后对未来风力发电机和风力发电控制技术作了展望。 2 风力发电机 2.1 风电机组控制系统概述 图1为风电机组控制系统示意图。系统本体由“空气动力学系统”、“发电机系统”、“变流系统”及其附属结构组成; 电控系统(总体控制)由“变桨控制”、“偏航控制”、“变流控制”等主模块组成(此外还有“通讯、监控、健康管理”等辅助模块)。各种控制及测量信号在机组本体系统与电控系统之间交互。“变桨控制系统”负责空气动力系统的“桨距”控制,其成本一般不超过整个机组价格5%,但对最大化风能转换、功率稳定输出及机组安全保护至关重要,因此是风机控制系统研究重点之一。“偏航控制系统”负责风轮自动对风及机舱自动解缆,一般分主动和被动两种偏航模式,而大型风电机组多采用主动偏航模式。“变 流控制系统”通常与变桨距系统配合运行,通过双向变流器对发电机进行矢量或直接转矩控制,独立调节有功功率和无功功率,实现变速恒频运行和最大(额定)功率控制。

风力发电机运行仿真

基于MATLAB的“风力发电机运行仿真” 软件设计 摘要 关键词 1前言 1.1建模仿真的发展现状 20世纪 50—60年代, 自动控制领域普遍采用计算机模拟方法研究控制系统动态过程和性能。“计算机模拟”实质上是数学模型在计算机上的解算运行, 当时的计算机是模拟计算机, 后来发展为数字计算机。1961年G.W.Morgenthler 首次对仿真一词作了技术性的解释,认为“仿真”是指在实际系统尚不存在的情况下,对于系统或活动本质的复现。目前,比较流行于工程技术界的技术定义是系统仿真是通过对系统模型的实验,研究一个存在的或设计中的系统。仿真的三要素之间的关系可用三个基本活动来描述。如图1 图1 系统仿真三要素之间的关系 20世纪50年代初连续系统仿真在模拟计算机上进行, 50年代中出现数字仿真技术, 从此计算机仿真技术沿着模拟仿真和数字仿真两个方面发展。60年代初出现了混和模拟计算机, 增加了模拟仿真的逻辑控制功能, 解决了偏微分方程、差分方程、随机过程的仿真问题。从60-70代发展了面向仿真问题的仿真语言。20世纪80年代末到90年代初, 以计算机技术、通讯技术、智能技术等为代表的信息技术的迅猛发展, 给计算机仿真技术在可视仿真基础上的进一步发展带来了契机, 出现了多媒体仿真技术。多媒体仿真技术充分利用了视觉和听觉媒体的处理和合成技术, 更强调头脑、视觉和听觉的体验, 仿真中人与计算机交互手段也更加丰富。80年代初正式提出了“虚拟现实”一词。虚拟现实是一种由计算机全部或部分生成的多维感觉环境, 给参与者产生视觉、听觉、触觉等各种感官信息, 使参与者有身临其境的感觉, 同时参与者从定性和定量综合集成的虚拟环境中可以获得对客观世界中客观事物的感性和理性的认识。图2体现

风电安全知识单选题习题册

单选题习题册 (龙源电力人资部2016年7月编制) 1、(单)生产经营单位的( B )对本单位的安全生产工作全面负责。 A、法人; B、主要负责人; C、总经理; D、总工程师。 2、(单)持有操作证的特种作业人员,还必须参加每( C )一次的 复审。 A、一年; B、二年; C、三年; D、四年。 3、(单)下列属于物体打击的是( C )。 A、电动扳手造成的绞伤; B、千斤顶造成的压伤; C、工器具跌落造 成的人身伤害;D、高速轴卷入造成的人身伤害。 4、(单)凡在坠落高度基础面( B )米及以上的高度处进行的作业, 均应视为高处作业。 A、1.5; B、2; C、2.5; D、3 。 5、(单)使用单梯工作时,梯与地面的斜角度约为( B )。 A、50°; B、60°; C、65°; D、70°。 6、(单)钢丝绳端头应不致松散,其强度至少不应低于该钢丝额定最 低破断拉力的( D )。 A、50%;A、60%; B、70%; C、80%。 7、(单)在室内,设备充装SF6气体时,周围环境相对湿度应不大于 ( B ),同时应开启通风系统。

A、70%; B、80%; C、90%。 8、(单)兆欧表正常测量时,摇速为( B )r/min。 A、90; B、120; C、150; D、160。 9、(单)成套接地线应用有透明护套的多股软铜线组成,其截面不得 小于( B )mm2,同时应满足装设地点短路电流的要求。 A、20; B、25; C、30; D、35。 10、(单)对于因平行或邻近带电设备导致检修设备可能产生感应电 压时,应加装工作接地线或工作人员使用个人保安线,但( A )。 A、加装的接地线应登录在工作票上,个人保安接地线由工作人员自 装自拆; B、加装的接地线和个人保安接地线均由工作人员自装自拆,但应记 录在工作票上; C、加装的接地线和个人保安接地线均应登录在工作票上。 11、(单)操作中因操作命令变更终止操作时,应采用( D )方法。 A、在备注栏说明原因,在操作票右上角盖“已执行”章; B、在已操作完项后打“×”,在操作票右上角盖“已执行”章; C、在已操作完项后打“×”,在已操作完项目的最后一项盖“已执行” 章; D、在备注栏说明原因,在已操作完项目的最后一项盖“已执行”章。 12、(单)操作票中“操作开始时间”是指( B )。 A、值长对值班负责人下达操作命令的时间; B、值班负责人给操作人、监护人下达操作命令的时间;

小型风力发电机控制器设计

电子设计竞赛教程 考试(设计报告) 题目:小型风力发电机控制器设计

摘要 现有的小型风力发电系统存在能量转换效率低、蓄电池使用寿命短、控制简单和缺乏完整的系统功率控制等问题。因此提高对蓄电池的充电速度,减少充电损耗,正确地监控蓄电池状态,确保蓄电池的正确使用、延长蓄电池的使用寿命对小型风力发电有着重要意义。本设计的目的是在分析现有的小型风力发电系统的基础上,设计简单、高效、高可靠性的风机控制器,实现风电系统可靠及优化运行。 本设计以单片机8051的加强版STC12C5A60S2为核心控制整个电路,具体由风力发电机、控制系统、整流电路、斩波电路、蓄电池充放电控制电路、蓄电池及其用电设备组成,功能上能保证系统安全运行,在电气特性和机械特性允许范围内运行。减少风速随机变化对输出电能的影响,使输出电压稳定,减少纹波。合理调度系统电能,保证向负载提供连续电能。保护蓄电池,防止过充和过放,提供足够充电能量进行快速充电。 综上所述,本设计将具有可靠性更高、价格更廉等优势,对于增强市场竞争能力,加速小型风力发电的普及和应用,节约能源和保护环境都具有重要意义。 关键词:发电机整流锂电池环保

目录 一绪论 0 二小型风力发电系统原理 (1) 2.1 风力发电系统组成 (1) 2.2 风电系统的运行特点 (1) 2.3 电能变换单元和控制单元 (3) 2.3.1 整流器 (3) 2.3.2 DC/DC 变换器 (4) 2.4 锂电池 (4) 2.4.1 锂电池的介绍 (4) 2.4.2 锂电池的种类 (5) 2.4.3 锂电池的充电方法 (5) 三小型风力发电机控制器的设计 (6) 3.1 电机的选择 (6) 3.1.1 手摇发电机 (6) 3.1.2 电机特性曲线 (8) 3.2 单片机(单片机STC12C5A60S2) (10) 3.2.1 产品介绍 (10) 3.2.2 单片机STC12C5A60S2的特点 (10) 四流程图和电路图 (13) 4.1流程图和控制原理图 (13) 4.2 显示屏 (17) 4.3 锂电池选择 (19) 4.4 检测电路 (20) 4.4.1 电压检测 (20) 4.4.2 电流检测 (21) 五调试 (21)

风力发电机的几种功率调节方式

风力发电机的几种功率调节方式 作者:佚名发布时间:2009-5-5 随着计算机技术与先进的控制技术应用到风电领域,并网运行的风力发电控制技术得到了较快发展,控制方式从基本单一的定桨距失速控制向变桨距和变速恒频控制方向发展,甚至向智能型控制发展。作为风力资源较为丰富的国家之一,我国加快了风电技术领域的自主开发与研究,兆瓦级变速恒频的风力发电机组国产化已列入国家“863”科技攻关顶目。本文针对当前并网型风力发电机组的几种功率凋节控制技术进行了介绍。 l 定桨距失速调节型风力发电机组 定桨距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机)。在低风速段运行的,采用小电机使桨叶具有较高的气动效率,提高发电机的运行效率。失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。 2 变桨距调节型风力发电机组 变桨距是指安装在轮载上的叶片通过控制改变其桨距角的大小。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“,直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大 风力发电机的几种功率调节方式 作者:佚名发布时间:2009-5-5 调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。缺点是结构比较复杂,故障率相对较高。 3 主动失速调节型风力发电机组 将定桨距失速调节型与变桨距调节型两种风力发电机组相结合,充分吸取了被动失速和桨距调节的优点,桨叶采用失速特性,调节系统采用变桨距调节。在低风速肘,将桨叶节距调节到可获取最大功率位置,桨距角调整优化机组功率的输出;当风力机发出的功率超过额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值以下,限制机组最大功率输出,随着风速的不断变化,桨叶仅需要微调维持失速状态。制动刹车时,调节桨叶相当于气动刹车,很大程度上减少了机械刹车对传动系统的冲击。主动失速调节型的优点是其言了定奖距失速型的特点,并在此基础上进行变桨距调节,提高了机同频率后并入电网。机组在叶片设计上采用了变桨距结构。其调节方法是:在起动阶段,通过调节变桨距系统控制发电机转速,将发电机转速保持在同步转速附近,寻找最佳并网时机然后平稳并网;在额定风速以下时,主要调节发电机反力转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上时,采用变速与桨叶节距双重调节,

风力发电机安全知识

FL1500系列 风力发电机安全手册 (初稿) 安全手册 主要目的:使得运行人员在安装、运行、维护过程中加强自我保护意识、预防发生对于人身和设备的伤害。

目录 1、范围 2、责任与义务 3、人员要求 4、安全和防护设备 4、1 安全必备设备 4、2 用于紧急撤离的设备 4、3用于紧急下降的设备 5、操作基本安全注意事项 5、1概述 5、2机械危险 5、3电气危险 5、4液压危险 5、5其它特殊操作 5、6暴风雨/雷电的危险 5、7当风力发电机发生飞车时 5、8操作不当 6 安全设备 7、安全链 7、1综述 7、2自动复位方法 8、紧急事故下的工作程序 9、发生火灾时的做法 10、叶片冻冰,不能平衡时的做法10、1平衡控制 10、2湿度和温度(备选) 11、因气候而造成时的做法 11、1风速过大时的做法 11、2雷雨时的做法 11、3发生沙暴时的做法 11、4发生地震时的做法 12、紧急出口 13、发生人身伤害事故时急救和做法13、1发生人身伤害事故时急救 13、2发生人身伤害事故时做法 14、发生电气设备事故时做法 15、风力发电机附近逗留和活动 16、在机舱工作时要注意 17.提升装置的操作

1.范围 本手册严格遵守中华人民共和国电力行业标准《风力发电场安全规程》DL 796─2001。 本手册适用于FL1500系列风力发电机安装、调试、运行、维修、维护和使用的安全生产全过程。 风力发电机用于把风能转化成电能,以及按照技术参数并网操作的要求向供电公司的电网供电。 风力发电机必须完全符合技术条件,并且必须严格按照本手册的要求,以及安装、运行、检查和维护规定,并依据商定的运行参数和用途来运行。 2.责任与义务 DHI·DCW始终坚持“安全第一、预防为主”原则,将安全生产与绿色能源产品的结合方向考虑放在首位,因此在我们生产的风力发电机的设计中充分体现了安全生产的需要和环保理念。 设计是在安全、可靠、高效的前提下进行的。因此,只要风力发电机的安装、维护和使用遵照DHI·DCW的设计,就不会出现这方向的问题。 在工作过程中必须正确地使用工作设备和所有防护性设备,在出现可能遇到危险情况时必须及时报告。 在风力发电机中进行有关工作的人员应在风力发电机周围设置警告标志。 所有在风力发电机中进行有关工作的人员都应必须遵守《风力发电场安全规程》,避免产生对人身和设备的伤害。 本文档介绍基本的预防措施,在安全方面接触风力发电机时必须遵守的义务和程序。不同的工作有具体安全措施,将在有关这些操作的具体文档中介绍。 3.人员要求 在风力发电机中进行有关工作的人员必须符合《风力发电场安全规程》中风电场工作人员基本要求,并得到切实可行的保护。 只有读过并理解说明书要求、并且由制造商指定、经过培训的专业人员人员,才可以进行风力发电机的工作。 *)专业人员是指基于其接受的技术培训、知识和经验以及对有关规定的了解,能够评估交给他的工作并能意识到可能发生的危险的人员。 高于地面的工作必须由经过攀爬塔筒训练的人员进行。 正在接受培训的人员对风力发电机进行任何工作,必须由一位有经验的人员持续监督。

【风电机组专业知识考试题】

风电机组专业知识考试题 姓名:__________分数_________ 一、判断题(每题1分,共计20分) 1、风的功率是一段时间内测的能量。() 2、风力发电机吊装时,现场必须设有专人指挥。() 3、风力发电机的接地电阻应每年测试一次。() 4、风力发电机叶轮在切入风速前开始旋转。() 5、风力发电机组要保持长周期稳定的运行,做好维护工作是致关重要。() 6、风力发电机的风轮不必有防雷措施。() 7、风电引入电网不会对用户的供电品质产生巨大影响。() 8、风力发电机组的爬梯、安全绳、照明等安全设施应定期检查。() 9、风力发电机组若在运行中发现有异常声音,可不做检查继续运行。() 10、当风力发电机组因振动报警停机后,为查明原因前不能投入运行。() 11、风电场生产人员不必掌握紧急救护法。() 12、防雷保护装置的接地属于保护接地。() 13、风力发电机组风轮的吊装必须在规定的安全风速下进行。() 14、在寒冷地区,风力发电机齿轮箱或机舱内应有加热加温装置。() 15、风力发电机遭雷击后可立即接近风电机。() 16、风力发电机的偏航电机一般均为三相电机。() 17、SL1500风力发电机组安全系统采用12级的安全链。() 18、风力发电机工作亚同步时,转子向电网馈电,定子从电网吸收能量,产生制动力矩,使发电机处于发电状态。() 19、接地的种类出防雷接地外,还有交流工作接地、保护接地、直流接地、过电压保护接地、防静电接地、屏蔽接地等。() 20、由紧急停止开关触发安全链时,只能手动复位。() 二、选择题(每题2分,共计30分) 1、风能是属于的转化形式。( ) A、太阳能; B、潮汐能; C、生物质能; D、其他能源。 2、在正常工作条件下,风力发电机组的设计要达到的最大连续输出功率叫。( ) A、平均功率; B、最大功率; C、最小功率; D、额定功率。 3、在风力发电机组中通常在低速轴端选用联轴器。( ) A、刚性; B、弹性; C、轮胎; D、十字节。 4、风力发电机达到额定功率输出时规定的风速叫。(B) A、平均风速; B、额定风速; C、最大风速; D、启动风速。 5、当风力发电机飞车或火灾无法控制时,应首先。()

东方电气风力发电机参数

一、介绍 东风电机于2006年从德国公司引进先进的风力发电机制造技术,高起点进军风力发电机领域,截止2010年10月,已经产出1.5MW风力发电机2300多台,成功为集团内外风电设备整机制造厂家配套供应风力发电机。 从2008年初起,公司风力发电机在吉林、新疆、内蒙古等地多个风场投入运行,运行时间最长的超过两年,质量保持稳定状态,无一台下架返修。公司1.5MW双馈异步风力发电机获2009年度四川省科技进步奖,兆瓦级双馈异步风力发电机产品被认定为四川省第九届名牌产品,还成功通过100次大电流冲击试验。 公司1.5MW和2.5MW风力发电机开发研制项目分别获得四川省专项资金资助,建立了兆瓦级风力发电机试验台,目前已经形成了完整的兆瓦级风力发电机系列产品,包括1MW、 1.5MW、2MW、 2.5MW的常温型、低温型、防盐雾型、高原型等各种规格型号的双馈异步风力发电机,能有效解决风速变化、上网频率不稳定的问题,可以保证风场在各种环境条件下稳定发电。 随着公司与东方电气集团有限公司共同投资组建的东方电气(乐山)新能源设备有限公司的投入使用,公司已形成年产2000台兆瓦级风力发电机的批量制造能力。 二、发电机基本参数 1. 1.5MW双馈异步风力发电机(包括常温型、防盐雾型、低温型) 型号:FG500M46-4RB+KK 额定功率:1560kW 额定电压:690V 额定效率:≥96.3%功率因数:从0.95(感性)到0.95(容性) 额定频率:50Hz 额定转速:1800r/min 转速范围:1000~2000r/min 相数: 3 工作制: S1 防护等级:IP54 结构型式: IM1001 冷却方式: IC616 绝缘等级:H/H 最高温升:105K 定子额定电压:690V 定子额定电流:1095A 转子开口电压:1955V 转子额定电流:420A 最大转子电流:550A 发电机重量: 6.35t 2. 2.0MW双馈异步风力发电机 型号:FG500M46-4RB+KS 额定功率:2150kW 额定电压:690V 额定效率:≥96.5%功率因数:从0.95(感性)到0.95(容性) 额定频率:50Hz 额定转速:1755r/min 转速范围:950~2050r/min 相数: 3

风力发电机功率过高或过低的处理

风力发电机功率过高或过低的处理 1.功率过低 如果发电机功率持续(一般设置30~60s)出现逆功率,其值小于预置值Ps,风力发电机组将退出电网,处于待机状态。脱网动作过程如下:断开发电机接触器,断开旁路接触器,不释放叶尖扰流器,不投入机械刹车。 重新切入可考虑将切人预置点自动提高0.5%,但转速下降到预置点以下后升起再并网时,预置值自动恢复到初始状态值。 重新并网动作过程如下:合发电机接触器,软启动后晶闸管完全导通。当输出功率超过Ps3s时,投入旁路接触器,转速切人点变为原定值。功率低于Ps,时由晶闸管通路向电网供电,这时输出电流不大,晶闸管可连续工作。 这一过程是在风速较低时进行的。发电机出力为负功率时,吸收电网有功,风力发电机组几乎不做功。如果不提高切人设置点,起动后仍然可能是电动机运行状态。 2.功率过高 一般说来,功率过高现象由两种情况引起:一是由于电网频率波动引起的。电网频率降低时,同步转速下降,而发电机转速短时间不会降低,转差较大;各项损耗及风力转换机械能瞬时不突变,因而功率瞬时会变得很大。二是由于气候变化,空气密度的增加引起的。功率过高如持续一定时间,控制系统应作出反应。可设置为:当发电机出力持续10min大于额定功率的15%后,正常停机;当功率持续2s大于额定功率的50%,安全停机。 风力发电机组退出电网

风力发电机组各部件受其物理性能的限制,当风速超过一定的限度时,必需脱网停机。例如风速过高将导致叶片大部分严重失速,受剪切力矩超出承受限度而导致过早损坏。因而在风速超出允许值时,风力发电机组应退出电网。 由于风速过高引起的风力发电机组退出电网有以下几种情况: 1)风速高于25m/s,持续10min。一般来说,由于受叶片失速性能限制,在风速超出额定值时发电机转速不会因此上升。但当电网频率上升时,发电机同步转速上升,要维持发电机出力基本不变,只有在原有转速的基础上进一步上升,可能超出预置值。这种情况通过转速检测和电网频率监测可以做出迅速反应。如果过转速,释放叶尖扰流器后还应使风力发电机组侧风90°,以便转速迅速降下来。当然,只要转速没有超出允许限额,只需执行正常停机。 2)风速高于33m/s,持续2s,正常停机。 3)风速高于50m/s,持续ls,安全停机,侧风90°。

风力发电机功率调整方法

风力发电机功率调整方法 风力发电的功率调整 1.功率过低 如果发电机功率持续(一般设置30~60s)出现逆功率,其值小于预置值Ps,风力发电机组将退出电网,处于待机状态。脱网动作过程如下:断开发电机接触器,断开旁路接触器,不释放叶尖扰流器,不投入机械刹车。重新切入可考虑将切人预置点自动提高0.5%,但转速下降到预置点以下后升起再并网时,预置值自动恢复到初始状态值。 重新并网动作过程如下:合发电机接触器,软启动后晶闸管完全导通。当输出功率超过Ps3s时,投入旁路接触器,转速切人点变为原定值。功率低于Ps,时由晶闸管通路向电网供电,这时输出电流不大,晶闸管可连续工作。 这一过程是在风速较低时进行的。发电机出力为负功率时,吸收电网有功,风力发电机组几乎不做功。如果不提高切人设置点,起动后仍然可能是电动机运行状态。 2.功率过高 一般说来,功率过高现象由两种情况引起:一是由于电网频率波动引起的。电网频率降低时,同步转速下降,而发电机转速短时间不会降低,转差较大;各项损耗及风力转换机械能瞬时不突变,因而功率瞬时会变得很大。二是由于气候变化,空气密度的增加引起的。功率过高如持续一定时间,控制系统应作出反应。可设置为:当发电机出力持续10min大于额定功率的15%后,正常停机;当功率持续2s大于额定功率的50%,安全停机。 风力发电机组退出电网 风力发电机组各部件受其物理性能的限制,当风速超过一定的限度时,必需脱网停机。例如风速过高将导致叶片大部分严重失速,受剪切力矩超出承受限度而导致过早损坏。因而在风速超出允许值时,风力发电机组应退出电网。 由于风速过高引起的风力发电机组退出电网有以下几种情况: 1)风速高于25m/s,持续10min。一般来说,由于受叶片失速性能限制,在风速超出额定值时发电机转速不会因此上升。但当电网频率上升时,发电机同步转速上升,要维持发电机出力基本不变,只有在原有转速的基础上进一步上升,可能超出预置值。这种情况通

相关主题
文本预览
相关文档 最新文档