当前位置:文档之家› 高三物理一轮复习教案

高三物理一轮复习教案

高三物理一轮复习教案
高三物理一轮复习教案

第一章 运动的描述 匀变速直线运动的研究

第1单元 直线运动的基本概念

1、 机械运动:一个物体相对于另一物体位置的改变(平动、转动、直线、曲线、圆周)

参考系:假定为不动的物体

(1) 参考系可以任意选取,一般以地面为参考系

(2) 同一个物体,选择不同的参考系,观察的结果可能不同 (3) 一切物体都在运动,运动是绝对的,而静止是相对的

2、 质点:在研究物体时,不考虑物体的大小和形状,而把物体看成是有质量的点,或者

说用一个有质量的点来代替整个物体,这个点叫做质点。

(1) 质点忽略了无关因素和次要因素,是简化出来的理想的、抽象的模型,客观

上不存在。

(2) 大的物体不一定不能看成质点,小的物体不一定就能看成质点。 (3) 转动的物体不一定不能看成质点,平动的物体不一定总能看成质点。

(4) 某个物体能否看成质点要看它的大小和形状是否能被忽略以及要求的精确程

度。

3、时刻:表示时间坐标轴上的点即为时刻。例如几秒初,几秒末。

时间:前后两时刻之差。时间坐标轴线段表示时间,第n 秒至第n+3秒的时间为3秒 (对应于坐标系中的线段)

4、位移:由起点指向终点的有向线段,位移是末位置与始位置之差,是矢量。 路程:物体运动轨迹之长,是标量。路程不等于位移大小 (坐标系中的点、线段和曲线的长度)

5、速度:描述物体运动快慢和运动方向的物理量, 是矢量。

平均速度:在变速直线运动中,运动物体的位移和所用时间的比值,υ=s/t (方向为位移的方向)

平均速率:为质点运动的路程与时间之比,它的大小与相应的平均速度之值可能不相同

线运动

直线运动的条件:a 、v 0共线

参考系、质点、时间和时刻、位移和路程

速度、速率、平均速度

加速度

运动的描述

典型的直线运动

匀速直线运动 s=v t ,s-t 图,(a =0)

匀变速直线运动

特例

自由落体(a =g ) 竖直上抛(a =g )

v - t 图 规律 at v v t +=0,2

02

1at t v s +

=as v v t 22

02=-,t v v s t

2

0+=

(粗略描述运动的快慢)

即时速度:对应于某一时刻(或位置)的速度,方向为物体的运动方向。(t

s

v t ??=→?0lim

即时速率:即时速度的大小即为速率;

【例1】物体M 从A 运动到B ,前半程平均速度为v 1,后半程平均速度为v 2,那么全程的平均速度是:( D )

A .(v 1+v 2)/2

B .21v v ?

C .212

221v v v v ++ D .2

12

12v v v v +

【例2】某人划船逆流而上,当船经过一桥时,船上一小木块掉在河水里,但一直航

行至上游某处时此人才发现,便立即返航追赶,当他返航经过1小时追上小木块时,发现小木块距离桥有5400米远,若此人向上和向下航行时船在静水中前进速率相等。试求河水的流速为多大?

解析:选水为参考系,小木块是静止的;相对水,船以恒定不变的速度运动,到船“追上”小木块,船往返运动的时间相等,各为1 小时;小桥相对水向上游运动,到船“追上”小木块,小桥向上游运动了位移5400m ,时间为2小时。易得水的速度为0.75m/s 。 6、平动:物体各部分运动情况都相同。 转动:物体各部分都绕圆心作圆周运动。 7、加速度:描述物体速度变化快慢的物理量,a =△v /△t (又叫速度的变化率),是矢量。

a 的方向只与△v 的方向相同(即与合外力方向相同)。

(1)加速度与速度没有直接关系:加速度很大,速度可以很小、可以很大、也可以为零(某瞬时);加速度很小,速度可以很小、可以很大、也可以为零(某瞬时);

(2)加速度与速度的变化量没有直接关系:加速度很大,速度变化量可以很小、也可以很大;加速度很小,速度变化量可以很大、也可以很小。加速度是“变化率”——表示变化的快慢,不表示变化的大小。

(3)当加速度方向与速度方向相同时,物体作加速运动,速度增大;若加速度增大,速度增大得越来越快;若加速度减小,速度增大得越来越慢(仍然增大)。当加速度方向与速度方向相反时,物体作减速运动,速度减小;若加速度增大,速度减小得越来越快;若加速度减小,速度减小得越来越慢(仍然减小)。 8 匀速直线运动和匀变速直线运动

【例3】一物体做匀变速直线运动,某时刻速度大小为4m/s ,经过1s 后的速度的大小为

10m/s ,那么在这1s 内,物体的加速度的大小可能为 (6m/s 或14m/s) 【例4】关于速度和加速度的关系,下列说法中正确的是(B )

A .速度变化越大,加速度就越大

B .速度变化越快,加速度越大

C .加速度大小不变,速度方向也保持不变

D .加速度大小不断变小,速度大小也不断变小 9、匀速直线运动:t

s

v =

,即在任意相等的时间内物体的位移相等.它是速度为恒矢量的运动,加速度为零的直线运动.

匀速s - t 图像为一直线:图线的斜率在数值上等于物体的速度。

第2单元 匀变速直线运动规律

匀变速直线运动公式 1.常用公式有以下四个

at v v t +=0 202

1at t v s +

= as v v t 22

2=- t v v s t 20+= 2.匀变速直线运动中几个常用的结论

①Δs=aT 2,即任意相邻相等时间内的位移之差相等。可以推广到s m -s n =(m-n)aT 2 ②t

s

v v v t t =+=202/,某段时间的中间时刻的即时速度等于该段时间内的平均速度。 2

2

202/t s v v v += ,某段位移的中间位置的即时速度公式(不等于该段位移内的平均速度)。

可以证明,无论匀加速还是匀减速,都有2/2

/s t v v <。

3.初速度为零(或末速度为零)的匀变速直线运动 做匀变速直线运动的物体,如果初速度为零,或者末速度为零,那么公式都可简化为: gt v = , 221at s =

, as v 22= , t v

s 2

= 4.初速为零的匀变速直线运动

①前1秒、前2秒、前3秒……内的位移之比为1∶4∶9∶…… ②第1秒、第2秒、第3秒……内的位移之比为1∶3∶5∶……

③前1米、前2米、前3米……所用的时间之比为1∶2∶3∶……

④第1米、第2米、第3米……所用的时间之比为1∶()

12-∶(23-)∶…… 对末速为零的匀变速直线运动,可以相应的运用这些规律。 5.一种典型的运动

经常会遇到这样的问题:物体由静止开始先做匀加速直线运动,紧接着又做匀减速直线运动到静止。用右图描述该过程,可以得出以下结论:

①t s a

t a s ∝∝∝

,1

,1 ②221B v v v v ===

6、解题方法指导:

解题步骤: (1)确定研究对象。(2)明确物体作什么运动,并且画出运动示意图。(3)分析研究对象的运动过程及特点,合理选择公式,注意多个运动过程的联系。(4)确定正方向,列方程求解。(5)对结果进行讨论、验算。

解题方法:

(1)公式解析法:假设未知数,建立方程组。本章公式多,且相互联系,一题常有多种解法。要熟记每个公式的特点及相关物理量。

(2)图象法:如用v —t 图可以求出某段时间的位移大小、可以比较v t/2与v S/2,以及追及问题。用s —t 图可求出任意时间内的平均速度。

(3)比例法:用已知的讨论,用比例的性质求解。

(4)极值法:用二次函数配方求极值,追赶问题用得多。

(5)逆向思维法:如匀减速直线运动可视为反方向的匀加速直线运动来求解。

A B C a 1、s 1、t 1 a 2、s 2、t 2

综合应用例析

【例1】在光滑的水平面上静止一物体,现以水平恒力甲推此物体,作用一段时间后换成相反方向的水平恒力乙推物体,当恒力乙作用时间与恒力甲的作用时间相同时,物体恰好回到原处,此时物体的速度为v 2,若撤去恒力甲的瞬间物体的速度为v 1,则v 2∶v 1=?

【解析】

s s '-=,而t v s 21=

,t v v s 2

)(21-+='- 得v 2∶v 1=2∶1 思考:在例1中,F 1、F 2大小之比为多少?(答案:1∶3)

【例2】一辆汽车沿平直公路从甲站开往乙站,起动加速度为2m/s 2,加速行驶5秒,后匀速行驶2分钟,然后刹车,滑行50m ,正好到达乙站,求汽车从甲站到乙站的平均速度?

解析:起动阶段行驶位移为: s 1=2

12

1at (1)

匀速行驶的速度为: v = at 1 ……(2) 匀速行驶的位移为: s 2 =vt 2 ……(3) 刹车段的时间为: s 3 =

32

t v

……(4) 汽车从甲站到乙站的平均速度为:

v =

s m s m s m t t t s s s /44.9/135

1275

/10120550120025321321==++++=++++

【例3】一物体由斜面顶端由静止开始匀加速下滑,最初的3秒内的位移为s 1,最后

3秒内的位移为s 2,若s 2-s 1=6米,s 1∶s 2=3∶7,求斜面的长度为多少?

解析:设斜面长为s ,加速度为a ,沿斜面下滑的总时间为t 。则:

斜面长: s =

2

1at 2 …… ( 1) 前3秒内的位移:s 1 = 21

at 12 (2)

后3秒内的位移: s 2 =s -2

1

a (t -3)2 (3)

s 2-s 1=6 …… (4) s 1∶s 2 = 3∶7 …… (5) 解(1)—(5)得:a =1m/s 2 t = 5s s =12 . 5m

【例4】物块以v 0=4米/秒的速度滑上光滑的斜面,途经A 、B 两点,已知在A 点时的速度是B 点时的速度的2倍,由B 点再经0.5秒物块滑到斜面顶点C 速度变为零,A 、B 相距0.75米,求斜面的长度及物体由D 运动到B 的时间?

解析:物块匀减速直线运动。设A 点速度为V A 、B 点速度V B ,加速度为a ,斜面长为S 。

A 到B : v B 2 - v A 2 =2as AB ......(1) v A = 2v B ... (2)

匀加速 匀速 匀减速

甲 t 1 t 2 t 3 乙

s 1 s 2 s

3

D

C

(t -3)s 3s

B 到C : 0=v B + at 0 (3)

解(1)(2)(3)得:v B =1m/s a = -2m/s 2

D 到C 0 - v 02

=2as (4) s= 4m

从D 运动到B 的时间: D 到B : v B =v 0+ at 1 t 1=1.5秒 D 到C 再回到B :t 2 = t 1+2t 0=1.5+2?0.5=2.5(s)

【例5】一质点沿AD 直线作匀加速直线运动,如图,测得它在AB 、BC 、CD 三段的时间均为t ,测得位移AC =L 1,BD =L 2,试求质点的加速度?

解:设AB =s 1、BC =s 2、CD =s 3 则:

s 2-s 1=at 2 s 3-s 2=at 2 两式相加:s 3-s 1=2at 2

由图可知:L 2-L 1=(s 3+s 2)-(s 2+s 1)=s 3-s 1 则:a =

2

1

22t

L L - 【例6】一质点由A 点出发沿直线AB 运动,行程的第一部分是加速度为a 1的匀加速运动,接着做加速度为a 2的匀减速直线运动,抵达B 点时恰好静止,如果AB 的总长度为s ,试求质点走完AB 全程所用的时间t ?

解:设质点的最大速度为v ,前、后两段运动过程及全过程的平均速度相等,均为2

v 。 全过程: s =

t v

2

……(1) 匀加速过程:v = a 1t 1 ……(2) 匀减速过程:v = a 2t 2 ……(3) 由(2)(3)得:t 1=1a v 2

2a v t = 代入(1)得: s =

)(221a v

a v v + s=2

1212a a a sa + 将v 代入(1)得: t =

2

1212

121)

(2222a a a a s a a a sa s v

s

+=

+=

【例7】一个做匀加速直线运动的物体,连续通过两段长为s 的位移所用的时间分别为t 1、t 2,求物体的加速度?

解:方法(1):设前段位移的初速度为v 0,加速度为a ,则:

前一段s : s =v 0t 1 +

2

12

1at ……(1) 全过程2s : 2s =v 0(t 1+t 2)+2

21)(2

1t t a + (2)

消去v 0得: a = )

()

(2212121t t t t t t s +-

方法(2):设前一段时间t 1的中间时刻的瞬时速度为v 1,后一段时间t 2的中间时刻的瞬时速度为v 2。所以:

A B C D

v 1=

1t s ……(1) v 2=2t s

……(2)v 2=v 1+a (2

221t t +) ……(3) 解(1)(2)(3)得相同结果。 方法(3):设前一段位移的初速度为v 0,末速度为v ,加速度为a 。 前一段s : s =v 0t 1 + 2

12

1at ……(1) 后一段s : s =vt 2 +

2

22

1at ……(2) v = v 0 + at ……(3) 解(1)(2)(3)得相同结果。

例8.某航空公司的一架客机,在正常航线上做水平飞行时,突然受到强大的垂直气流的作用,使飞机在10 s 内下降高度为1800 m ,造成众多乘客和机组人员的伤害事故,如果只研究在竖直方向上的运动,且假设这一运动是匀变速直线运动.

(1)求飞机在竖直方向上产生的加速度多大?

(2)试估算成年乘客所系安全带必须提供多大拉力才能使乘客不脱离座椅.

解:由s =

21at 2及:a =10001800222?=t

s m/s 2=36 m/s 2. 由牛顿第二定律:F +mg =ma 得F =m (a -g )=1560 N,成年乘客的质量可取45 kg~65 kg,因

此,F 相应的值为1170 N~1690 N

第3单元 自由落体与竖直上抛运动

1、 自由落体运动:物体仅在重力作用下由静止开始下落的运动

重快轻慢”――非也

亚里斯多德――Y 伽利略――――N

(1)特点:只受重力作用,即υ0=0、a=g (由赤道向两极,g 增加由地面向高空,g 减小

一般认为g 不变)

(2)运动规律: V = g t H = g t 2. / 2 V 2 = 2 g H

对于自由落体运动,物体下落的时间仅与高度有关,与物体受的重力无关。 (3)符合初速度为零的匀加速直线运动的比例规律

2、 竖直上抛运动:物体上获得竖直向上的初速度υ0后仅在重力作用下的运动。 特点:只受重力作用且与初速度方向反向,以初速方向为正方向则---a=-g

运动规律:

(1) V =V 0-g t t =V 0 / g (2) H =V 0 t -g t 2 / 2

(3) V 02-V 2=2gH H =V 02 / 2g

(4) -

v = ( V 0 +V) / 2

例:竖直上抛,V 0=100m / s 忽略空气阻力

(1)、多长时间到达最高点?

0=V0-g t t=V0 / g=10秒500米

理解加速度

(2)、最高能上升多高?(最大高度)

0-V02=-2g H 02/2g=500米

(3)、回到抛出点用多长时间?

H=g t2. / 2 t=10秒时间对称性

(4)、回到抛出点时速度=?

V=g t V=100m / s 方向向下速度大小对称性

(5)、接着下落10秒,速度=?

v=100+10×10=200m/s 方向向下

(6)、此时的位置?

s=100×10+0.5×10×102=1500米

(7)、理解前10秒、20秒v(m/s)

30秒内的位移

结论:时间对称性

速度大小对称性

注意:若物体在上升或下落中还受有恒空气阻力,则物体的运动不再是自由落体和竖直上抛运动,分别计算上升a上与下降a下的加速度,利用匀变速公式问题同样可以得到解决。例题分析:

例1、从距地面125米的高处,每隔相同的时间由静止释放一个小球队,不计空气阻力,g=10米/秒2,当第11个小球刚刚释放时,第1个小球恰好落地,试求:(1)相邻的两个小球开始下落的时间间隔为多大?(2)当第1个小球恰好落地时,第3个小球与第5个小球相距多远?

(拓展)将小球改为长为5米的棒的自由落体,棒在下落过程中不能当质点来处理,但可选棒上某点来研究。

例2、 在距地面25米处竖直上抛一球,第1秒末及第3秒末先后经过抛出点上方15米

处,试求:(1)上抛的初速度,距地面的最大高度和第3秒末的速度;(2)从抛出到落地所需的时间(g=10m/s 2)

例3、 一竖直发射的火箭在火药燃烧的2S 内具有3g 的竖直向上加速度,当它从地面点

燃发射后,它具有的最大速度为多少?它能上升的最大高度为多少?从发射开始到上升的最大高度所用的时间为多少?(不计空气阻力。G=10m/s 2)

第4单元 直线运动的图象

知识要点:

1、 匀速直线运动

对应于实际运动

1、 位移~时间图象,某一时刻的位移 S =v t

⑴截距的意义:出发点距离标准点的距离和方向 ⑵图象水平表示物体静止

斜率绝对值 = v 的大小 ⑶,交叉点表示两个物体相遇 2、 速度~时间图象,某一时刻的速度 t

S

V =

阴影面积 = 位移数值(大小)上正下负

2、 匀变速直线运动的速度——时间图象(υ—t 图)

at v v t

v v a t t +=?-=

00

V t V O α

0 t

(2) 比较速度变化的快慢,即加速度 (3) 交叉点表示速度相等 (4) 面积 = 位移 上正下负 【例1】 一个固定在水平面上的光

滑物块,其左侧面是斜面AB ,右侧面是

曲面AC 。已知AB 和AC 的长度相同。

两个小球p 、q 同时从A 点分别沿AB 和AC 由静止开始下滑,比较它们到达水平面所用的时间

△V V (某时刻的快慢)

t

p A

B

v t

o p

q v

t t

A.p 小球先到

B.q 小球先到

C.两小球同时到

D.无法确定

解:可以利用v -t 图象(这里的v 是速率,曲线下的面积表示路程s )定性地进行比较。在同一个v -t 图象中做出p 、q 的速率图线,显然开始时q 的加速度较大,斜率较大;由于机械能守恒,末速率相同,即曲线末端在同一水平图线上。为使路程相同(曲线和横轴所围的面积相同),显然q 用的时间较少。

【例2】 两支完全相同的光滑直角弯管(如图所示)现有两只相同小球a 和a /

同时从管口由静止滑下,问谁先从下端的出口掉出?(假设通过拐角处时无机械能损失) 解析:首先由机械能守恒可以确定拐角处v 1> v 2,而两小球

到达出口时的速率v 相等。又由题薏可知两球经历的总路程s

相等。由牛顿第二定律,小球的加速度大小a=g sin α,小球a

第一阶段的加速度跟小球a /第二阶段的加速度大小相同(设为

a 1);小球a 第二阶段的加速度跟小球a /第一阶段的加速度大小相同(设为a 2),根据图中管的倾斜程度,显然有a 1> a 2。根据这些物理量大小的分析,在同一个v -t 图象中两球速度曲线下所围的面积应该相同,且末状态速度大小也相同(纵坐标相同)。开始时a 球曲线的斜率大。由于两球两阶段加速度对应相等,如果同时到达(经历时间为t 1)则必然有s 1>s 2,显然不合理。考虑到两球末速度大小相等(图中v m ),球a /

的速度图象只能如蓝线所示。因此有t 1< t 2,即a 球先到。

【例3】一物体做加速直线运动,依次通过A 、B 、C 三点,AB =BC 。物体在AB 段加速度为a 1,在BC 段加速度为a 2,且物体在B 点的速度为2

C

A B v v v +=

,则 A .a 1> a 2 B .a 1= a 2 C .a 1< a 2 D .不能确定

解析:依题意作出物体的v -t 图象,如图所示。图线下方所围成的面积表示物体的位移,由几何知识知图线②、③不满足AB =BC 。只能是①这种情况。因为斜率表示加速度,所以a 1

【例4】蚂蚁离开巢沿直线爬行,它的速度与到蚁巢中心的距离成反比,当蚂蚁爬到距巢中心的距离L 1=1m

的A 点处时,速度是v 1=2cm/s 。试问蚂蚁从A 点爬到距巢中心的距离L 2=2m 的B 点所需的时间为多少?

解析:本题若采用将AB 无限分割,每一等分可看作匀速直线运动,然后求和,这一办法原则上可行,实际上很难计算。

题中有一关键条件:蚂蚁运动的速度v 与蚂蚁离巢的距离

x 成反比,即x v ∝1,作出x v

-1

图象如图示,为一条通过原点

的直线。从图上可以看出梯形ABCD 的面积,就是蚂蚁从A 到

B 的时间:752))(11(211

12

1

221221=-=-+=v L L L L L v v T s

v a

a’ v 1

v 2 l 1

l 1 l 2 l 2 v t 1 t 2

t o v

第二章 相互作用

第1单元 力 重力和弹力 摩擦力

一、力:是物体对物体的作用

(1) 施力物体与受力物体是同时存在、同时消失的;力是相互的 (2) 力是矢量(什么叫矢量——满足平行四边形定则) (3) 力的大小、方向、作用点称为力的三要素 (4) 力的图示和示意图

(5)

力的分类:根据产生力的原因即根据力的性质命名有重力、弹力、分子力、电场力、磁场力等;根据力的作用效果命名即效果力如拉力、压力、向心力、回复力等。(提问:效果相同,性质一定相同吗?性质相同效果一定相同吗?大小方向相同的两个力效果一定相同吗?)

(6) 力的效果:1、加速度或改变运动状态 2、形变

(7) 力的拓展:1、改变运动状态的原因 2、产生加速度 3、牛顿第二定律 4、牛顿第三定律

二、常见的三种力 1重力

(1) 产生:由于地球的吸引而使物体受到的力,是万有引力的一个分力 (2) 方向:竖直向下或垂直于水平面向下 (3) 大小:G=mg ,可用弹簧秤测量

两极 引力 = 重力 (向心力为零)

赤道 引力 = 重力 + 向心力 (方向相同) 由两极到赤道重力

加速度减小,由地面到高空重力加速度减小

(4) 作用点:重力作用点是重

心,是物体各部分所受重力的合力的作用点。 重心的测量方法:均匀规则几何体的重心在其几何中心,薄片物体重心用悬挂法;重心不一定在物体上。

2、弹力

(1)产生:发生弹性形变的物体恢复原状,对跟它接触并使之发生形变的另一物体产生的力的作用。

(2)产生条件:两物体接触;有弹性形变。

(3)方向:弹力的方向与物体形变的方向相反,具体情况有:轻绳的弹力方向是沿着绳收缩的方向;支持力或压力的方向垂直于接触面,指向被支撑或被压的物体;弹簧弹力方向与弹簧形变方向相反。 (4)大小:弹簧弹力大小F=kx (其它弹力由平衡条件或动力学规律求解)

1、 K 是劲度系数,由弹簧本身的性质决定

2、 X 是相对于原长的形变量

3、 力与形变量成正比

(5) 作用点:接触面或重心

【例1】如图所示,两物体重力分别为G 1、G 2,两弹簧劲度系数分别为k 1、k 2,弹簧两端与物体和地面相连。用竖直向上的力缓慢向上拉G 2,最后平衡时拉力F=G 1+2G 2

解析:关键是搞清两个物体高度的增量Δh 1和Δh 2跟初、末状态两根弹簧的形变量Δx 1、Δx 2、Δx 1/、Δx 2/间的关系。

无拉力F 时 Δx 1=(G 1+G 2)/k 1,Δx 2= G 2/k 2,(Δx 1、Δx 2为压缩量)

加拉力F 时 Δx 1/=G 2/k 1,Δx 2/= (G 1+G 2) /k 2,(Δx 1/、Δx 2/为伸长量)

而Δh 1=Δx 1+Δx 1/,Δh 2=(Δx 1/+Δx 2/)+(Δx 1+Δx 2)

系统重力势能的增量ΔE p = G 1?Δh 1+G 2?Δh 2

整理后可得:()????

?

?+++=?22121212k G k G G G G E P k 2 x 2/ k 1

G 1 Δx 2 G 2 Δx 1 Δx 1/

F G 1 G 2

k 2 k 1

练习

1.关于两物体之间的弹力和摩擦力,下列说法中正确的是( ) A.有摩擦力一定有弹力

B.摩擦力的大小与弹力成正比

C.有弹力一定有摩擦力

D.弹力是动力,摩擦力是阻力 2.如图,两本书A 、B 逐页交叉后叠放在一起并平放在光滑的水平桌面上,设每张书页的质量为5g ,每本书均是200张,纸与纸之间的动摩擦因数为0.3,问至少要用多大的水平力才能将它们拉开?(g 取10米/秒2)

3、弹簧秤的读数是它受到的合外力吗?

3、摩擦力

(1)产生:相互接触的粗糙的物体之间有相对运动(或相对运动趋势)时,在接触面产生的阻碍相对运动(相对运动趋势)的力;

(2)产生条件:接触面粗糙;有正压力;有相对运动(或相对运动趋势); (3)摩擦力种类:静摩擦力和滑动摩擦力。

静摩擦力

(1)产生:两个相互接触的物体,有相对滑动趋势时产生的摩擦力。 (2)作用效果:总是阻碍物体间的相对运动趋势。

(3)方向:与相对运动趋势的方向一定相反(**与物体的运动方向可能相反、可能相同、还可能成其它任意夹角)

(4)方向的判定:由静摩擦力方向跟接触面相切,跟相对运动趋势方向相反来判定;由物体的平衡条件来确定静摩擦力的方向;由动力学规律来确定静摩擦力的方向。

(5) 作用点

滑动摩擦力

(1)产生:两个物体发生相对运动时产生的摩擦力。 (2)作用效果:总是阻碍物体间的相对运动。

(3)方向:与物体的相对运动方向一定相反(**与物体的运动方向可能相同;可能相反;也可能成其它任意夹角)

(4)大小:f=μN (μ是动摩擦因数,只与接触面的材料有关,与接触面积无关)

(5) 作用点

【例2】 小车向右做初速为零的匀加速运动,物体恰好沿车后壁匀速下滑。试分析下滑过程中物体所受摩擦力的方向和物体速度方向的关系。

解析:物体受的滑动摩擦力始终和小车的后壁平行,方向竖直向上,而物体相对于地面的速度方向不断改变(竖直分速度大小保持不变,水平分速度逐渐增大),所以摩擦力方

向和运动方向间的夹角可能取90°和180°间的任意值。 点评:无明显形变的弹力和静摩擦力都是被动力。就是说:弹力、静摩擦力的大小和方向都无法由公式直接计算得出,而是由物体的受力情况和运动情况共同决定的。

F

V = 2

V = 3

f = μm

g f = μ(mg +ma) a f = μmg cos θ a v 相对

高中物理必修2全套教案

高中物理必修2教案 第一章抛体运动 第一节什么是抛体运动 【教学目标】 知识与技能 1.知道曲线运动的方向,理解曲线运动的性质 2.知道曲线运动的条件,会确定轨迹弯曲方向与受力方向的关系 过程与方法 1.体验曲线运动与直线运动的区别 2.体验曲线运动是变速运动及它的速度方向的变化 情感态度与价值观 能领会曲线运动的奇妙与和谐,培养对科学的好奇心和求知欲 【教学重点】 1.什么是曲线运动 2.物体做曲线运动方向的判定 3.物体做曲线运动的条件 【教学难点】 物体做曲线运动的条件 【教学课时】 1课时 【探究学习】 1、曲线运动:__________________________________________________________ 2、曲线运动速度的方向: 质点在某一点的速度,沿曲线在这一点的方向。 3、曲线运动的条件: (1)时,物体做曲线运动。(2)运动速度方向与加速度的方向共线时,运动轨迹是___________ (3)运动速度方向与加速度的方向不共线,且合力为定值,运动为_________运动。(4)运动速度方向与加速度的方向不共线,且合力不为定值,运动为___________运动。 4、曲线运动的性质: (1)曲线运动中运动的方向时刻_______ (变、不变),质点在某一时刻(某一点)的速度方向是沿__________________________________________ ,并指向运动轨迹凹下的一侧。 (2)曲线运动一定是________ 运动,一定具有_________ 。

【课堂实录】 【引入新课】 生活中有很多运动情况,我们学习过各种直线运动,包括匀速直线运动,匀变速直线运动等,我们知道这几种运动的共同特点是物体运动方向不变。下面我们就来欣赏几组图片中的物体有什么特点(展示图片) 再看两个演示 第一, 自由释放一只较小的粉笔头 第二, 平行抛出一只相同大小的粉笔头 两只粉笔头的运动情况有什么不同? 学生交流讨论。 结论:前者是直线运动,后者是曲线运动 在实际生活普遍发生的是曲线运动,那么什么是曲线运动?本节课我们就来学习这个问题。 新课讲解 一、曲线运动 1. 定义:运动的轨迹是曲线的运动叫做曲线运动。 2. 举出曲线运动在生活中的实例。 问题:曲线运动中速度的方向是时刻改变的,怎样确定做曲线运动的物体在任意时刻速度的方向呢? 引出下一问题。 二、曲线运动速度的方向 看图片:撑开带有水滴的雨伞绕柄旋转。 问题:水滴沿什么方向飞出? 学生思考 结论:雨滴沿飞出时在那点的切线方向飞出。 如果球直线上的某处A 点的瞬时速度,可在离A 点不远处取一B 点,求AB 点的平均速度来近似表示A 点的瞬时速度,时间取得越短,这种近似越精确,如时间趋近于零,那么AB 见的平均速度即为A 点的瞬时速度。 结论:质点在某一点的速度方向,沿曲线在这一点的切线方向。

人教版高中物理选修3-5教案

物理选修3-5教案 第十六章 动量和动量守恒定律 16.1 实验:探究碰撞中的不变量 目的要求 通过这节课的学习,让学生掌握科学探究的思维方法,从最简单的关系开始寻找,利用身边的资源及已学过的原理,来完成该实验的探究过程。 重难点分析 一、重点 本节课的重点在于如何让学生掌握科学探究的方法。如何真正实现探究的过程。 二、难点 本节课的难点在于,如何启发学生利用身边的一切可利用资源,来自行设计可行性较强的实验方案。 新课教学 一、新课引入 碰撞是自然界中常见的现象。比如,两节火车车厢之间的挂钩靠碰撞相连,台球由于两球的碰撞而改变运动状态。两个迎面而来的人相撞后会相仰而倒,或者各自后退。在微观粒子之间,更是由于相互碰撞而改变能量,甚至由于撞击而使得一种粒子转化为其他粒子。 二、新课教学 由很多例子可知,两个物体碰撞前后的速度都会发生变化,物体的质量不同时速度变化也不一样。那么,碰撞前后会不会有什么物理量保持不变?这节课主要介绍研究这个问题的实验。 (一)实验的基本思路 研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。这种碰撞叫做一维碰撞。 思考一下,在一维碰撞的情况下,与物体有关的物理量有哪些? (学生答:质量m ,速度v ) 为什么与质量m 有关? (学生答:相互作用力下,质量越大的物体速度改变越慢) 设两物体质量分别为m 1、m 2,碰撞前速度分别为v 1、v 2,碰撞后速度分别为1v '、2 v '。速度为矢量,因而需规定正方向。 问题是:物体的质量和速度在碰撞前后有什么不变的关系? 质量必定是不变的,但质量只是惯性的量度,无法描述物体的运动状态。而速度却是在碰撞前后改变的,那么,可否有一个物理量为质量与速度的某种关系,却又恰好能在碰撞前后保持不变呢? 可能关系: ①2222112 2 22112 1212121v m v m v m v m '+'=+ →这个关系不可能。碰撞前后能量必有损失,只是多少的问题。而我们要寻找的物 理量是在任何一种碰撞中都不变的量。 ②221 12211v m v m v m v m '+'=+

高中物理教学设计模板

高中物理教学设计模板 高中物理的教学方式对于学生们而言影响十分的大,那么高中物理的教学设计到底应该怎么开展呢?下面是小编推荐给大家的高中物理教学设计模板,希望大家有所收获。 篇一:高中物理教学设计模板 教学目标: (一):知识与技能: 1、知道力的分解的含义。并能够根据力的效果分解力 2、通过实验探究,理解力的分解,会用力的分解的方法分析日常生活中的问题。 3、培养观察、实验能力;以及利用身边材料自己制作实验器材的能力 (二)过程与方法: 1、通过经历力的分解概念和规律的学习过程,了解物理学的研究方法,认识物理实验、物理模型和数学工具在物理学研究过程中的作用。 2、通过经历力的分解科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。 (三)情感态度与价值观 1、培养学生实事求是的科学态度。

2、通过学习,了解物理规律与数学规律之间存在和谐美,领略自然界的奇妙与和谐。 3、发展对科学的好奇心与求知欲,培养主动与他人合作的精神,能将自己的见解与他人交流的愿望,培养团队精神。 设计意图 为什么要实施力的分解?关于如何依据力的作用效果实施分解?这既是本课节教学的内容,更是该课节教学的重心!很多交换四认为只要教会学生正交分解就可以了,而根据力的效果分解没有必要,所以觉得这一节根本不需要教。其实本节内容是一个很好的科学探究的材料。本人对这节课的设计思路如下:受伽利略对自由落体运动的研究的启发,按照伽利略探究的思路:“猜想――验证”,本节课主要通过学生的猜想――实验探究得出力的分解遵循平行四边形定则,让学生通过实验自己探究出把一个理分解应该根据力的效果来分解。同时物理是一门实验学科,本节课通过自己挖掘生活中的很多材料,设计了一些很有趣而且效果非常好实验让学生动手做,亲身去体验和发现力的分解应该根据什么来分解。同时也让学生了解到做实验并不是一定要有专门的实验室,实验的条件完全可以自己去创造,从而激发学生做实验的兴趣。 教学流程 一. 通过一个有趣的实验引入新课:激发学生的兴趣 【实验】“四两拨千斤” (两位大力气男同学分别用双手拉住绳子两端,一位女生在绳

高三物理一轮复习教案设计(精品)

第一章 运动的描述 匀变速直线运动的研究 第1单元 直线运动的基本概念 1、 机械运动:一个物体相对于另一物体位置的改变(平动、转动、直线、曲线、圆周) 参考系:假定为不动的物体 (1) 参考系可以任意选取,一般以地面为参考系 (2) 同一个物体,选择不同的参考系,观察的结果可能不同 (3) 一切物体都在运动,运动是绝对的,而静止是相对的 2、 质点:在研究物体时,不考虑物体的大小和形状,而把物体看成是有质量的点,或者 说用一个有质量的点来代替整个物体,这个点叫做质点。 (1) 质点忽略了无关因素和次要因素,是简化出来的理想的、抽象的模型,客观 上不存在。 (2) 大的物体不一定不能看成质点,小的物体不一定就能看成质点。 直 线 运 动 直线运动的条件:a 、v 0共线 参考系、质点、时间和时刻、位移和路程 速度、速率、平均速度 加速度 运动的描述 典型的直线运动 匀速直线运动 s=v t ,s-t 图,(a =0) 匀变速直线运动 特例 自由落体(a =g ) 竖直上抛(a =g ) v - t 图 规律 at v v t +=0,2021at t v s + =as v v t 2202=-,t v v s t 2 0+=

(3) 转动的物体不一定不能看成质点,平动的物体不一定总能看成质点。 (4) 某个物体能否看成质点要看它的大小和形状是否能被忽略以及要求的精确程 度。 3、时刻:表示时间坐标轴上的点即为时刻。例如几秒初,几秒末。 时间:前后两时刻之差。时间坐标轴线段表示时间,第n 秒至第n+3秒的时间为3秒 (对应于坐标系中的线段) 4、位移:由起点指向终点的有向线段,位移是末位置与始位置之差,是矢量。 路程:物体运动轨迹之长,是标量。路程不等于位移大小 (坐标系中的点、线段和曲线的长度) 5、速度:描述物体运动快慢和运动方向的物理量, 是矢量。 平均速度:在变速直线运动中,运动物体的位移和所用时间的比值,υ=s/t (方向为位移的方向) 平均速率:为质点运动的路程与时间之比,它的大小与相应的平均速度之值可能不相同(粗略描述运动的快慢) 即时速度:对应于某一时刻(或位置)的速度,方向为物体的运动方向。(t s v t ??=→?0lim ) 即时速率:即时速度的大小即为速率; 【例1】物体M 从A 运动到B ,前半程平均速度为v 1,后半程平均速度为v 2,那么全程的平均速度是:( D ) A .(v 1+v 2)/2 B .21v v ? C .212221v v v v ++ D .21212v v v v +

高三物理教案全集(共250页)

力学 一、力 教学目标 1.知识目标: (1)理解高中学习的各种力的概念; (2)掌握高中学习的各种力的公式、单位及矢量性; (3)掌握高中学习的各种力之间的联系. 2.能力目标; (1)要求学生做到恰当选择研究对象,增长灵活运用知识的能力; (2)要求学生做到准确对研究对象进行受力分析,会把运动物体抽象为正确的物理模型; (3)培养学生正确的解题思路和综合分析问题的能力. 3.德育目标: (1)在教学的整个过程中,渗透物理学以观察、实验为基础的科学研究方法,以及注重理性思维的科学态度; (2)用科学家的言行教育学生如何做人. 教学重点、难点分析 1.对高一、高二学习的各种力进一步加深理解,进行全面系统的总结. 2.引导学生正确选取研究对象,掌握对研究对象进行受力分析的一般方法. 3.力学是整个物理学的基础,而受力分析又是解决物理问题最关键的步骤,熟练进行受力分析既是本节复习课的教学重点也是教学的难点. 教学过程设计 一、对复习的几点建议 1.提倡“三多、三少”.“三多”即多做小题,多做小综合题,多做变式型的常见题;“三少”即少做大题,少做大综合题,少做难题. [例1] 如图1-1-1所示,斜劈B置于地面上静止,物块A置于斜劈B上静止,求地面对斜劈B的摩擦力. 方法一:分别选A、B为研究对象进行受力分析,可以求得地面对斜劈B的摩擦力为零.

方法二:选整体为研究对象进行受力分析,可迅速得出地面对斜劈B的摩擦力为零. 可见,一道简单的题目,可以做得较复杂,也可以做得相当简单.此题关键在于研究对象选取是否巧妙.此外,若采用方法一,必须很明白作用力和反作用力的关系.这两种方法,学生都应该熟练掌握. 此题变式型为: [例2]斜劈B置于地面上静止,物块A在斜劈B上沿斜面匀速下滑,求地面对斜劈B的摩擦力.利用上述方法一,受力情况完全相同,所以地面对斜劈B的摩擦力为零. [例3]倾角为θ的斜劈B置于地面上静止,物块A在沿斜面向上F力的作用下沿斜面匀速上滑,求地面对斜劈B的摩擦力. 分别选A、B为研究对象进行受力分析可以求得地面对斜劈B的摩擦力为Fcos . [例4]倾角为θ的斜劈B置于地面上静止,物块A在沿斜面向上F力的作用下沿斜面以加速度a匀加速上滑,求地面对斜劈B的摩擦力. 分别选A、 B为研究对象进行受力分析,可以求得地面对斜劈B的摩擦力为Fcos θ-macosθ. 由此可见,多做小题、变式型题可以帮助你掌握巩固基础知识,还可以帮助你灵活应用这些知识.只有基础知识巩固,才能在做难题时能力得到发挥. 2.自我诊断:错题改正,定期复习,做好标记. 在复习过程中,要不断地回顾,考察自己在哪个知识点容易出错.只有不断地对自己进行自我诊断,才能明确地知道自己的弱点,才能更有效地利用时间,提高成绩.值得注意的是:千万别盲从,不要看见别人干什么,自己就干什么.抓不住自己的重点.总做一些对自己提高成绩帮助并不太大的事,那样会得不偿失的. 要经常进行错题改正,建立错题档案本.错题不能只抄在本上,就完事了.必须要做定期复习,并且做上标记.一道错题,若第一次复习时做对了,可以做上标记,时间过得长一些再复习,若复习三次做对了,可以做上标记暂时不用管了,以后放寒假、暑假或一模、二模前再复习.这样,虽然你抄的错题越来越多,但通过每次的定期复习,不会做的,再做错的题目应该越来越少. 关于做错题本的建议: (1)分类别抄错题; (2)抄错题本身就是一次复习.用明显的颜色总结、归纳错误原因,以及得出的小结; (3)将题目抄在正页,在反面抄录答案,每一页在页边上开辟空白行,专供写错误原因、得出的小结以及复习的标记(日期、第几次)等用. 3.平时要经常准备“备忘录”.

2020届高三物理一轮教案匀变速直线运动

2020届高三物理一轮教案匀变速直线运动 一、匀变速直线运动公式 1.常用公式有以下四个 at v v t +=0 2 02 1at t v s + = as v v t 22 02=- t v v s t 2 0+= 点评: 〔1〕以上四个公式中共有五个物理量:s 、t 、a 、v 0、v t ,这五个物理量中只有三个是独 立的,能够任意选定。只要其中三个物理量确定之后,另外两个就唯独确定了。每个公式中只有其中的四个物理量,当某三个而要求另一个时,往往选定一个公式就能够了。假如两个匀变速直线运动有三个物理量对应相等,那么另外的两个物理量也一定对应相等。 〔2〕以上五个物理量中,除时刻t 外,s 、v 0、v t 、a 均为矢量。一样以v 0的方向为正方 向,以t =0时刻的位移为零,这时s 、v t 和a 的正负就都有了确定的物理意义。 2.匀变速直线运动中几个常用的结论 〔1〕Δs=aT 2,即任意相邻相等时刻内的位移之差相等。能够推广到 s m -s n =(m-n)aT 2 〔2〕t s v v v t t =+= 202/,某段时刻的中间时刻的即时速度等于该段时刻内的平均速度。 2 2 2 02/t s v v v += ,某段位移的中间位置的即时速度公式〔不等于该段位移内的平均速度〕。 能够证明,不管匀加速依旧匀减速,都有2/2 /s t v v <。

点评:运用匀变速直线运动的平均速度公式t s v v v t t =+= 202/解题,往往会使求解过程变得专门简捷,因此,要对该公式给与高度的关注。 3.初速度为零〔或末速度为零〕的匀变速直线运动 做匀变速直线运动的物体,假如初速度为零,或者末速度为零,那么公式都可简化为: gt v = , 221at s = , as v 22= , t v s 2 = 以上各式差不多上单项式,因此能够方便地找到各物理量间的比例关系。 4.初速为零的匀变速直线运动 〔1〕前1秒、前2秒、前3秒……内的位移之比为1∶4∶9∶…… 〔2〕第1秒、第2秒、第3秒……内的位移之比为1∶3∶5∶…… 〔3〕前1米、前2米、前3米……所用的时刻之比为1∶2∶3∶…… 〔4〕第1米、第2米、第3米……所用的时刻之比为1∶ ( ) 12-∶〔23-〕∶…… 对末速为零的匀变速直线运动,能够相应的运用这些规律。 5.一种典型的运动 经常会遇到如此的咨询题:物体由静止开始先做匀加速直线运动,紧接着又做匀减速直线运动到静止。用右图描述该过程,能够得出以下结论: 〔1〕t s a t a s ∝∝∝ ,1 ,1 〔2〕2 21B v v v v = == 6、解题方法指导: 解题步骤: 〔1〕依照题意,确定研究对象。 〔2〕明确物体作什么运动,同时画出运动示意图。 〔3〕分析研究对象的运动过程及特点,合理选择公式,注意多个运动过程的联系。 〔4〕确定正方向,列方程求解。 a 1、s 1、t 1 a 2、s 2、t 2

人教版高三年级物理教案

人教版高三年级物理教案 篇一:《力的合成》 一.教材简析 本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。 本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。 更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。 因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。 二、教学目标定位 为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标: 一、知识与技能 .理解合力、分力、力的合成的概念.理解力的合成本质上是从等效的角度进行力的替代. .探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力. 二、过程与方法 .通过学习合力和分力的概念,了解物理学常用的方法——等效替代法. .通过实验探究方案的设计与实施,体验科学探究的过程。 三、情感态度与价值观 .培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯. .培养认真细致、实事求是的实验态度.

根据以上分析确定本节课的重点与难点如下: 一、重点 .合力和分力的概念以及它们的关系. .实验探究力的合成所遵循的法则. 二、难点 平行四边形定则的理解和运用。 三、重、难点突破方法——教法简介 本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。 因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。体现学生主体性。 实验归纳法的步骤如下。这样设计让学生不仅能知其然,更能知其所以然,这也是本堂课突破重点和难点的重要手段。 本堂课在教法上采用启发式教学——通过设置问题,引导启发学生,激发学生思维。体现教师主导作用。 四、教学过程设计 采用六环节教学法,教学过程共有六个步骤。 教学过程第一环节、创设情景导入新课: 安排两个同学共提一桶水,再请全班力气的同学来提这一桶水,游戏虽简单,但能迅速调动学生参与课堂的积极性。然后用图片引导学生通过作用效果相同得出合力与分力的概念。由此引出—— 第二环节、新课教学: 展示合力与分力以及力的合成的概念,强调等效替代法。举例说明等效替代

高三物理第二轮平衡问题专题复习教案

第一讲 平衡问题 一、特别提示[解平衡问题几种常见方法] 1、力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到这两个分力必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。 2、力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必有共点力。 3、正交分解法:将各力分解到x 轴上和y 轴上,运用两坐标轴上的合力等于零的条件)00(∑∑==y x F F 多用于三个以上共点力作用下的物体的平衡。值得注意的是,对x 、y 方向选择时,尽可能使落在x 、y 轴上的力多;被分解的力尽可能是已知力。 4、矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法求得未知力。 5、对称法:利用物理学中存在的各种对称关系分析问题和处理问题的方法叫做对称法。在静力学中所研究对象有些具有对称性,模型的对称往往反映出物体或系统受力的对称性。解题中注意到这一点,会使解题过程简化。 6、正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。 7、相似三角形法:利用力的三角形和线段三角形相似。 二、典型例题 1、力学中的平衡:运动状态未发生改变,即0=a 。表现:静止或匀速直线运动 (1)在重力、弹力、摩擦力作用下的平衡 例1 质量为m 的物体置于动摩擦因数为μ的水平面上,现对它 施加一个拉力,使它做匀速直线运动,问拉力与水平方向成多大夹角 时这个力最小? 解析 取物体为研究对象,物体受到重力mg ,地面的支持力N , 摩擦力f 及拉力T 四个力作用,如图1-1所示。 由于物体在水平面上滑动,则N f μ=,将f 和N 合成,得到合力F ,由图知F 与f 的夹角: μ==αarcctg N f arcct g 不管拉力T 方向如何变化,F 与水平方向的夹角α不变,即F 为一个方向不发生改变的变力。这显然属于三力平衡中的动态平衡问题,由前面讨论知,当T 与F 互相垂直时,T 有最小值,即当拉力与水平方向的夹角μ=μ-=θarctg arcctg 90时,使物体做匀速运动的拉力T 最小。 (2)摩擦力在平衡问题中的表现 这类问题是指平衡的物体受到了包括摩擦力在内的力的作用。在共点力平衡中,当物体虽然静止但有运动趋势时,属于静摩擦力;当物体滑动时,属于动摩擦力。由于摩擦力的

高三物理复习教案

高三物理复习教案 静电场 教学目标 通过复习整理静电场的规律、概念,建立静电扬的知识结构。利用场的思想、场叠加的思想认识和解决电场问题,加深对静电场的理解。 教学重点、难点分析 静电场部分的内容概念性强,规律内容含义深刻,是有关知识应用的基础。但由于概念和规律较抽象,对掌握这些概念和规律造成了一定的难度。所以,恰当地建立有关的知识结构,处理好概念之间、规律之间的关系,是解决复习困难的有效方式。 教学过程设计 教师活动 一、对规律和概念的回顾 从本节课开始,我们复习静电场的有关知识,请同学们回顾一下,我们原来学过的规律和概念都有哪些?(将学生分组,进行回顾和整理) 学生活动 学生按组,回忆已学的有关知识,相互提醒,相互启发。 在教师的安排下,每组学生选择一名代表,将他们整理的知识内容写在黑板上。(安排3个,由于内容基本相同,其它组再做一些补充。) 学生代表上台。 建立知识结构: 从同学们整理出来的知识内容上看,基本上能够把静电场的有关内容列举出来,但一般来说,每个同学在整理知识时,方式方法又有所区别。为了使知识在我们头脑中更有利于理解和记忆,建立一个适合于自己的知识结构网络是必要的和有效的。下面,我们来共同构造这个静电场部分的知识结构网络。 (带领学生整理和建立静电场的知识结构,知识结构图表见附图) 二、静电场概念的几个问题讨论 1.场概念的巩固 [问题1]带电小球A、C相距30cm,均带正电。当一个带有负电的小球B放在A、C 间连线的直线上,且B、C相距20cm时,可使C恰受电场力平衡。A、B、C均可看成点电

荷。①A 、B 所带电量应满足什么关系?②如果要求A 、B 、C 三球所受电场力同时平衡, 它们的电量应满足什么关系? 学生读题、思考,找学生说出解决方法。 通过对此题的分析和求解,可以加深对场强概念和场强叠加的理解。学生一般从受力平 衡的角度进行分析,利用库仑定律求解。在学生解题的基础上做以下分析。 分析与解:①C 处于平衡状态,实际上是要求C 处在A 、B 形成的电场中的电场强度为 零的地方。 既然C 所在处的合场强为零,那么,C 所带电量的正或负、电量的多或少均对其平衡无 影响。 ②再以A 或B 带电小球为研究对象,利用上面的方法分析和解决。 答案:①q A ∶q B =9∶4,②q A ∶q B ∶q C =9∶4∶36。 [问题2]如图3-1-1所示,在方框区域内有匀强电场,已知U A =2V ,U B =-6V ,U C = -2V 。试用作图法画出电场中电场线的方向。 学生读题、思考。找学生在黑板上作图。 通过此题的分析和解决,使学生对匀强电场的理解更深刻。 分析和解:据题A 、B 两点间的电势差为8V ,A 、C 两点间的电势差为4V 。所以,先 将A 、B 两点用直线连接,则A 、B 两点间的中点的电势为4V ,与C 点的电势相同。将这 两点连起来,就是电势为-2V 的等势线,电场线应与该直线垂直,且由高电势点指向低电 势点。(如图3-1-1所示) [问题3]我们知道,公式2r Q k E =表示点电荷Q 的场中的某一点的电场强度,得到的单位为N/C ;公式d U E =表示匀强电场中的场强。大小,其单位为V/m 。那么,单位N/C 能否用在匀强电场中?如果能,其物理意义是什么?单位V/m 能否用在点电荷的电场中,如 果能,其物理意义又是什么?

高三物理总复习第一轮复习教案

第四章曲线运动万有引力与航天 [考纲展示] 1.运动的合成和分解Ⅱ 2.抛体运动Ⅱ 3.匀速圆周运动、角速度、线速度、向心加速度Ⅰ 4.匀速圆周运动的向心力Ⅱ 5.离心现象Ⅰ 6.万有引力定律及其应用Ⅱ 7.环绕速度Ⅰ 8.第二宇宙速度和第三宇宙速度Ⅰ 说明:(1)斜抛运动只作定性要求 (2)第二宇宙速度和第三宇宙速度只要求知道其物理意义 [命题热点] 1.运动的合成与分解的方法和思想是热点,尤其是处理类平抛运动、带电粒子在电磁复合场中的复杂运动,可以以选择题形式呈现,也可以以计算题的形式呈现. 2.运用圆周运动的知识和方法处理生活中常见的圆周运动、电场磁场中的圆周运动都是高考考查的热点,主要以计算题的形式考查,这几乎是高考必考内容. 3.运用万有引力定律及向心力公式分析人造卫星的绕行速度、运行周期以及计算天体的质量、密度等在近几年高考中每年必考. 第一节曲线运动运动的合成与分解 【三维目标】 知识与技能 1.知道曲线运动的条件及规律 2.知道并掌握运动合成与分解的方法 过程与方法 理解和掌握运动合成与分解的基本方法与过程 情感态度与价值观 培养学生对物理现象的分析及表达能力 【教学重点】 运动的合成与分解的方法 【教学难点】 小河渡河问题的分析 【教学过程】 复习引入(课前5分钟) 从曲线运动与直线运动的区别引入、复习 [基础知识梳理](课中35分钟) 一、曲线运动 1.曲线运动的特点 在曲线运动中,运动质点在某一点的瞬时速度的方向就是通过曲线的这一点的________向,因此,质点在曲线运动中速度的方向时刻在变化.所以曲线运动一定是_________运动,但是,变速运动不一定是曲线运动,直线运动中速度大小变化时也是变速运动. 2.做曲线运动的条件 (1)从运动学角度,物体的加速度方向跟速度方向____________时,物体就做曲线运动.

高三物理复习教案

高三物理复习教案 第三章运动和力第2课时 教学内容: 牛顿运动定律应用(一) 教学要求: 掌握牛顿第二定律的应用 教学过程: 一、应用牛顿第二定律解题的一般步骤 1、确定研究对象 2、分析受力 3、弄清受力 4、选好轴向 5、列式求解 6、检验讨论 带领学生看书P46 二、由运动情况判断受力情况 先由运动情况求出加速度a,然后利用F合=ma求得F合 再具体分析物体受力情况,此处a起到了桥梁的作用。 例1(P46巩固练习3)、如图,物体原来静止在水平地面上的A处,受水平向右的恒力F拉动L距离时速度达到v,然后立即将水平力F反向而大小不变,再经过时间t物体速度 变为0,求物体的质量M和受到的阻力f(要求画出运动过程 例2(P48巩固练习2 m o的小球,车匀变速运动时悬绳与竖直方向夹角稳定为α,运 动方向如图,质量为m的物体相对车厢静止.求:(1)m受到的 摩擦力的大小和方向.(2)若车的质量为M(M中中不包括m和

m o),地面对车阻力多大? 例3(P45巩固练习2)、如图,斜面体M与水平地面间动磨擦因数为μ,一弹簧的劲度系数为K,一端固定在斜面上,另一端系一质量为m的小球.当M受水平拉力F向右匀加速运动时,弹簧长度比m和M静止时长度增加了L,而球不漂离斜面.求F( 例4、P47例题1、如图,吊篮沿斜索道向上匀口加速运动,已知其中质量为m的物体对吊篮的水平底面压力为1.2mg,此时加速度a=0.33g,求斜索与悬绳之间夹角θ以及m受到的摩擦力的大小和方向.

三、由受力情况判断运动情况 先求出物体所受合外力,再利用F合=ma求得加速度 a,判断其运动情况,求出运动学量。 例1(P48例题2)、物体静止在光滑水平地面上的O点,某一时刻起受到一水平向右的恒力甲向右匀加速运动,一段时间后突然撤去力甲,同时施一水平左的恒力乙,再经相同时间物体正好回到O点,此时速度的大小为V.求:(1)撤去甲力时物体的速度大小V (2)F甲:F乙=? 例2、P49(巩固练习3)、如图,与地面间动摩擦因数相同的A、B用长为L=1米的绳拴着,在拉力F作用下正以6米/秒的速度匀速运动。A和B的质量分别为2m,m,某一时刻中间绳突然断裂,经2秒后A停下。求:(1)此时AB间距离;(2)此时B的速度。

最新高三物理一轮复习教案圆周运动

高三物理一轮复习教案 圆周运动 课时安排:2课时 教学目标:1.掌握描述圆周运动的物理量及相关计算公式 2.学会应用牛顿定律和动能定理解决竖直面内的圆周运动问题 本讲重点:1.描述圆周运动的物理量及相关计算公式 2.用牛顿定律和动能定理解决竖直面内的圆周运动问题 本讲难点:用牛顿定律和动能定理解决竖直面内的圆周运动问题 考点点拨:1.“皮带传动”类问题的分析方法 2.竖直面内的圆周运动问题 3.圆周运动与其他运动的结合 第一课时 一、考点扫描 (一)知识整合 匀速圆周运动:质点沿圆周运动,在相等的时间里通过的弧长相等。 描述圆周运动的物理量 1.线速度 (1)大小:v = t s (s 是t 时间内通过的弧长) (2)方向:矢量,沿圆周的切线方向,时刻变化,所以匀速圆周运动是变速运动。 (3)物理意义:描述质点沿圆周运动的快慢 2.角速度 (1)大小:ω= t φ (φ是t 时间内半径转过的圆心角) 单位:rad/s (2)对某一确定的匀速圆周运动来说,角速度是恒定不变的 (3)物理意义:描述质点绕圆心转动的快慢 3.描述匀速圆周运动的各物理量间的关系:r fr T r v ωππ===22 4.向心加速度a (1)大小:a =ππω44222 2===r T r r v 2 f 2r (2)方向:总指向圆心,时刻变化 (3)物理意义:描述线速度方向改变的快慢。 5.向心力:是按效果命名的力,向心力产生向心加速度,即只改变线速度方向,不会

改变线速度的大小。 (1)大小:R f m R T m R m R v m ma F 22222 244ππω=====向 (2)方向:总指向圆心,时刻变化 做匀速圆周运动的物体,向心力就是物体所受的合外力,总是指向圆心。做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力。 (二)重难点阐释 在竖直平面内的圆周运动问题 在竖直平面内做圆周运动的物体,按运动轨道的类型,可分为: (1)无支撑(如球与绳连结,沿内轨道的“过山车”) 在最高点物体受到弹力方向向下. 当弹力为零时,物体的向心力最小,仅由重力提供,由牛顿定律知mg=R v m 2 0,得临界 速度gR v =0.当物体运动速度v 产生离心运动, 要维持物体做圆周运动,弹力应向下.当gR v < 物体有向心运动倾向, 物体受弹力向上.所以对有约束的问题,临界速度的意义揭示了物体所受弹力的方向. (3)对于无约束的情景,如车过拱桥,当gR v > 时,有N=0,车将脱离轨道.此时 临界速度的意义是物体在竖直面上做圆周运动的最大速度. 以上几种情况要具体问题具体分析,但分析方法是相同的。 二、高考要点精析 (一)“皮带传动”类问题的分析方法 ☆考点点拨 在分析传动问题,如直接用皮带传动(包括链条传动、摩擦传动)的两个轮子,要抓住相等量和不等量的关系。两轮边缘上各点的线速度大小相等;同一个轮轴上(各个轮都绕同一根轴同步转动)的各点角速度相等(轴上的点除外)。然后利用公式ωr v =或r v =ω即可顺利求解。 【例1】如图所示装置中,三个轮的半径分别为r 、2r 、4r ,b 点到圆心的距离为r ,求图中a 、b 、c 、d 各点的线速度之比、角速度之比、加速度之比。 解析:v a = v c ,而v b ∶v c ∶v d =1∶2∶4,所以v a ∶

高中物理教案范文【三篇】

高中物理教案范文【三篇】 【导语】教育要使人愉快,要让一切的教育带有乐趣。无忧考网为大家准备了高中物理教案范文【三篇】,希望对大家有所帮助! 篇一:《涡流》 知识目标 1、知道涡流是如何产生的; 2、知道涡流对我们的不利和有利的两个方面,以及如何防止和利用; 情感目标 通过分析事例,培养学生全面认识和对待事物的科学态度. 教学建议 本节是选学的内容,它又是一种特殊的电磁感应现象,在实际中有很多应用,比如:发电机、电动机和变压器等等.所以可以根据实际情况选讲,或者知道学生阅读.什么是涡流是本节课的重点内容. 涡流和自感一样,也有利和弊两个方面.教学中应该充分应用这些实例,培养学生全面认识和对待事物的科学态度. 教学设计方案 一、引入:引导学生观察发电机、电动机和变压器(可用事物或图片) 提出问题:为什么它们的铁芯都不是整块金属,而是由许多相互绝缘的薄硅钢片叠合而成? 引导学生看书回答,从而引出涡流的概念:什么是涡流? 把块状金属放在变化的磁场中,或者让它在磁场中运动时,金属块内将产生感应电流,这种电流在金属块内自成闭合回路,很象水的旋涡,因此叫做涡流. 整块金属的电阻很小,所以涡流常常很大. (使学生明确:涡流是整块导体发生的电磁感应现象,同样遵守电磁感应定律.) 二、涡流在实际中的意义是什么?

⑴为什么电机和变压器通常用相互绝缘的薄硅钢片叠合而成,就可以减少涡流在造成的损失? ⑵利用涡流原理制成的冶炼金属的高频感应炉有什么优点? 电学测量仪表如何利用涡流原理,方便观察? 提出上述问题后,让学生看书、讨论回答 三、作业:让学生业余时间到物理实验室观察电度表如何利用涡流,写出小文章进行阐述. 篇二:《电势差电势》 一、教材分析 (一)、教材的地位和作用 本节是人教社物理选修3-1第一章第4、5节的内容,本节处在电场强度之后,位于静电现象前,起到承上启下的作用。教材从电场对电荷做功的角度出发,推知在匀强电场中电场力做功与移动电荷的路径无关。利用定义法给出电势的定义,并通过电势描述等势面,对学生能力的提高和对知识的迁移、灵活运用给予了思维上的指导作用。 (二)、学情分析 学生已学习了电荷及库仑定律、电场强度的知识,对本节的学习已具备基础知识,但不够深入,仍需要通过本节的学习进一步培养和提高。 (三)、教学内容 本节课为第一课时,主要内容为概念的引入和对其物理含义的理解。 二、教学目标分析 根据高中新课程总目标(进一步提高科学素养,满足全体学生的终身发展需求)的要求和理念(探究性、主体性、发展性、和谐性)、本节教材的特点(思想性、探究性、逻辑性、方法性和哲理性融会一体)和所教学生的学习基础(知识结构、思维结构和认知结构),本节课的教学目标为: 知识与技能目标:1、理解电势的概念,知道电势是描述电场的能的性质的物理量,理解电势差与零点电势面位置的选取无关,熟练应用其概念及定义式UAB?WAB进行相关计q 算。明确电势差、电势、静电力的功、电势能的关系。2、理解电势是描述电场的物

高中:高三物理一轮复习教学案

高中物理新课程标准教材 物理教案( 2019 — 2020学年度第二学期 ) 学校: 年级: 任课教师: 物理教案 / 高中物理 / 高三物理教案 编订:XX文讯教育机构

高三物理一轮复习教学案 教材简介:本教材主要用途为通过学习物理知识,可以让学生培养自己的逻辑思维能力,对事物的理解认识也会有一定的帮助,本教学设计资料适用于高中高三物理科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。 课题:运动学基本概念 班级_____姓名_____学号____ 一、知识梳理 1.机械运动是指物体相对于的位置的改变,选择不同的参照物来观察同一个运动物体,观察的结果往往; 2.质点是一种理想化的模型是指; 3.位移表示,位移是量,路程是指,路程是量,只有当物体做运动时位移的大小才等于路程; 4.时刻指某,在时间轴上表示为某一点,而时间指间隔,在时间轴上表示为两点间线段的长度; 5.速度表示质点运动的,速度是量,它的方向就是物体的方向,也是位移变化的方向,但不一定与位移方向相同;平均速度指,平均速度的方向与位移方向相同,平均速度总

是与那一段时间或那一段位移相对应;即时速度指; 6.匀速直线运动是指; 二、例题精讲 例1.下列关于质点的说法正确的是() a.体积很大的物体不能看成质点 b.质点是一种理想化模型实际不存在 c.研究车轮的转动时可把车轮看成质点d.研究列车从徐州到南京的时间时可把车轮看成质点 例2.如图所示,一质点沿半径为r的圆周从a点到b点运动了半周,它在运动过程中位移大小和路程分别是() a.πr、πr b.2r、2r c.2r、πr d.πr、r 例3.关于时刻和时间,下列说法正确的是 ( ) a.时刻表示时间较短,时间表示时间较长 b.时刻对应位置,时间对应位移 c.作息时间表上的数字均表示时刻 d.1min只能分成60个时刻 例4.速度大小是5m/s的甲、乙两列火车,在同一直路上相向而行。当它们相隔XXm时,一只鸟以10m/s的速度离开甲车头向乙车飞去,当到达乙车车头时立即返回,并这样连续在

高中物理必修二全套教案

物理必修二全册教案 第五章曲线运动 5.1 曲线运动 三维教学目标 1、知识与技能 (l)知道曲线运动中速度的方向,理解曲线运动是一种变速运动; (2)知道物体做曲线运动的条件是所受的合外力与它的速度方向不在一条直线上。 2、过程与方法 (1)体验曲线运动与直线运动的区别; (2)体验曲线运动是变速运动及它的速度方向的变化。 3、情感、态度与价值观 (1)能领略曲线运动的奇妙与和 谐,发展对科学的好奇心与求知欲; (2)有参与科技活动的热情,将物理知识应用于生活和生产实践中。 教学重点:什么是曲线运动;物体做曲线运动的方向的确定;物体做曲线运动的条件。 教学难点:物体微曲线运动的条件。 教学方法:探究、讲授、讨论、练习 教具准备:投影仪、投影片、斜面、小钢球、小木球、条形磁铁。 教学过程: 第一节曲线运动 (一)新课导入 前面我们学习过了各种直线运动,包括匀速直线运动、匀变速直线运动、自由落体运动等。下面来看这个小实验,判断该物体的运动状态。 实验:(1)演示自由落体运动,该运动的特征是什么?(轨迹是直线) (2)演示平抛运动,该运动的特征是什么?(轨迹是曲线) 这里我们看到一种我们前面没有学过的运动形式,它与我们前面学过的运动形式有本质的区别。前面我们学过的运动的轨迹都是直线,而我们现在看到的这种运动的轨迹是曲线,我们把这种运动称为曲线运动。 概念:轨迹是曲线的运动叫曲线运动。其实曲线运动是比直线运动普遍的运动情形,现在请大家举出一些生活中的曲线运动的例子?(微观世界里如电子绕原子核旋转;宏观世界里如天体运行;生活中如投标抢、掷铁饼、跳高、既远等均为曲线运动) (二)新课教学 1、曲线运动速度的方向 在前面学习直线运动的时候我们已经知道了任何确定的直线运动都有确定的速度方向,这个方向与物体的运动方向相同,现在我们又学习了曲线运动,大家想一想我们该如何确定曲线运动的速度方向?在解决这个问题之前我们先来看几张图片(如图6.1—l、6.1—2)。

高三物理最新教案-2018届高考物理第一轮复习教案3 精品

光的干涉、用双缝干涉测波长、衍射现象 一、知识点梳理 1、光的干涉现象: 频率相同,振动方向一致,相差恒定(步调差恒定)的两束光, 在相遇的区域出现了稳定相间的加强区域和减弱区域的现象。 (1)产生干涉的条件: ①若S 1、S 2光振动情况完全相同,则符合 λδn x d L r r == -=12,(n =0、1、2、3…)时,出现亮条纹; ②若符合2 )12(12λδ+== -=n x d L r r ,((n=0,1,2,3…)时, 出现暗条纹。相邻亮条纹(或相邻暗条纹)之间的中央间距为λd L x = ?。 (2)熟悉条纹特点 中央为明条纹,两边等间距对称分布明暗相间条纹。 2. 用双缝干涉测量光的波长 原理:两个相邻的亮纹或暗条纹的中心间距是Δx =l λ/d 测波长为:λ=d ·Δx /l (1)观察双缝干涉图样: 只改变缝宽,用不同的色光来做,改变屏与缝的间距看条纹间距的变化 单色光:形成明暗相间的条纹。 白光:中央亮条纹的边缘处出现了彩色条纹。这是因为白光是由不同颜色的单色光复 合而成的,而不同色光的波长不同,在狭缝间的距离和狭缝与屏的距离不变的条件下,光波的波长越长,各条纹之间的距离越大,条纹间距与光波的波长成正比。各色光在双缝的中垂线上均为亮条纹,故各色光重合为白色。 (2)测定单色光的波长: 双缝间距是已知的,测屏到双缝的距离l ,测相邻两条亮纹间的距离x ?,测出n 个亮纹间的距离a ,则两个相邻亮条纹间距: 1 -= ?n a x 3.光的色散: 不同的颜色的光,波长不同在双缝干涉实验中,各种颜色的光都会发生干涉现象,用不同色光做实验,条纹间距是不同的,说明:不同颜色的光,波长不同。 含有多种颜色的光被分解为单色光的现象叫光的色散。 图16-1-1

高三物理公开课教案

高三物理课教案 中江中学周光荣 课题:电场力做功和电势能电势电势差 【教学目标】 1.准确记住电势、电势差、电势能等概念。 2.熟练的运用电场力做功与电势能的变化、电势的变化关系。 3.熟练掌握匀强电场中电势差跟电场强度的关系。 4.注意有关电场与运动学的联系方面的思维培养。 【教学重点】 1.电场力做功判断电势能的变化、电势的变化关系。 2.匀强电场中电势差跟电场强度的关系的运用。 【教学难点】 电势和电势差的区别与联系。 【教学过程】 复习知识要点: ) 一.电势能(E P 1.定义:因电场对电荷有作用力而产生的由电荷相对位置决定的能量叫电势能。 2.电势能具有相对性,通常取无穷远处或大地为电势能的零点。 3.电势能大小:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功 4.电场力做功是电势能变化的量度:电场力对电荷做正功,电荷的电势能减少;电荷克服电场力做功,电荷的电势能增加;电场力做功的多少和电势能的变化数值相等,这是判断电荷电势能如何变化的最有效方法。 二.电势(φ) 1.电势:电场中某点的电荷的电势能跟它的电量的比值,称这一点的电势。 ①表达式:φ= E P /q 单位:伏特(V),且有1V=1J/C。 ②意义:电场中某一点的电势在数值等于单位电荷在那一点所具有的电势能。 ③相对性:电势是相对的,只有选择零电势的位置才能确定电势的值,通常取无限远或地 球的电势为零。 ④标量:只有大小,没有方向,但有正、负之分,这里正负只表示比零电势高还是低。

⑤高低判断:顺着电场线方向电势越来越低。 2.等势面:电场中电势相等的点构成的面。 ①意义:等势面来表示电势的高低。 ②典型电场的等势面:ⅰ匀强电场; ⅱ点电荷电场; ⅲ等量的异种点电荷电场; ⅳ等量的同种点电荷电场。 ③等势面的特点: 1、同一等势面上的任意两点间势面一定跟电场线垂直; 2、电场线总是从电势较高的等势面指向电势较低的等势面。 三.电势差 1.电势差:电场中两点电势之差 ① ②电势差由电场的性质决定,与零电势点选择无关。 2.电场力做功:在电场中AB 两点间移动电荷时,电场力做功等于电量与两点间电势差的乘积。 W AB = q ?U AB 注意: ①该式适用一切电场; ②电场力做功与路径无关 ③利用上述结论计算时,均用绝对值代入,而功的正负,借助于力与移动方向间关系确定。 四.电势差与电场强度关系 1.电场方向是指向电势降低最快的方向。在匀强电场中,电势降低是均匀的。 2.匀强电场中,沿场强方向上的两点间的电势差等于场强和这两点间距离的乘积。 U=E ·d 在匀强电场中,场强在数值上等于沿场强方向每单位距离上降低的电势。 E=U/d 注意:①两式只适用于匀强电场。②d 是沿场方向上的距离。 五.例题分析 多媒体课件展示 【课堂小结】 1、因电场对电荷有作用力而产生的由电荷相对位置决定的能量叫电势能。 2、电场中某点的电荷的电势能跟它的电量的比值,称这一点的电势。 3、电势差:电场中两点电势之差。 4、匀强电场中,沿场强方向上的两点间的电势差等于场强和这两点间距离的乘积。 U=E ·d 【布置作业】 《高考导航》P121-P123 BA AB A B BA B A AB U U U U U U U U -=???-=-=

相关主题
文本预览
相关文档 最新文档