当前位置:文档之家› 信号采样长度、时间间隔和频率的关系

信号采样长度、时间间隔和频率的关系

信号采样长度、时间间隔和频率的关系
信号采样长度、时间间隔和频率的关系

采样频率、采样点数、分辨率、谱线数(line)

(2011-02-23 20:38:35)

转载

标签:

分类:matlab

采样频率

谱线

分辨率

采样定理

数学计算

400line

杂谈

1.最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率。根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=2.56Fm;而最高分析频率的选取决定于设备转速和预期所要判定的故障性质。

2.采样点数N与谱线数M有如下的关系:

N=2.56M 其中谱线数M与频率分辨率ΔF及最高分析频率Fm有如下的关系:ΔF=Fm/M即:

M=Fm/ΔF所以:N=2.56Fm/ΔF

★采样点数的多少与要求多大的频率分辨率有关。例如:机器转速3000r/min=50Hz,如果要分析的故障频率估计在8倍频以下,要求谱图上频率分辨率ΔF=1 Hz ,则采样频率和采样点数设置为:

最高分析频率Fm=8·50Hz=400Hz;

采样频率Fs=2.56·Fm=2.56 ·400Hz=1024Hz;

采样点数N=2.56·(F m/ΔF)=2.56·(400Hz/1Hz)=1024

谱线数M=N/2.56=1024/2.56=400条

按照FFT变换,实际上得到的也是1024点的谱线,但是我们知道数学计算上存在负频率,是对称的,因此,实际上我们关注的是正频率部分对应的谱线,也就是说正频率有512线,为什么我们通常又说

这种情况下是400线呢,就是因为通常情况下由于频率混叠和时域截断的影响,通常认为401线到512线的频谱精度不高而不予考虑。

另外,采样点数也不是随便设置的,即不是越大越好,反之亦然

对于旋转机械必须满足整周期采样,以消除频率畸形,单纯提高分辨率也不能消除频率畸形

过去,有人以为数据越长越好,或随便定时域信号长度,其实,这样做是在某些概念上不清楚,例如,不清楚整周期采样.

不产生频率混迭的最低采样频率Fs要求在2倍最大分析频率Fm,之所以采用2.56倍主要跟计算机二进制的表示方式有关。其主要目的是避免信号混淆保证高频信号不被歪曲成低频信号。

采样长度T的选择首先要保证能反映信号的全貌,对瞬态信号应包括整个瞬态过程;对周期信号,理论上采集一个周期信号就可以了。其次需考虑频率分辩率,采样长度T在最大分析频率Fm确定的情况下与频率分辩率△f是反比关系,也就是T越长△f越小即频率分辩率越高。

一般的分析软件都是设置谱线数M,采样点数N=2.56M。信号分析中常用的采样点数是512、1024、2048、4096等。等效于我们常说的200、400、800、1600线等频谱线数,频谱分析一般采样点数选取2的整数次方。△f=Fm/M,可见谱线数M越大频率分辩率△f越小即频率分辩率越高。

在电机的故障诊断中,为了发现边带间隔为极通频率(一般在1Hz以下)的峰值,常常需要极高的分辩率(1Hz以下),一般选择210HzFm,6400谱线。

至于整周期采样是很难实现的,必然会因为信号截断而产生泄露,为了避免这些误差,所以要采取加窗的办法。

【转】信号采样长度、时间间隔和频率的关系

2010-05-12 09:38

转载自icc_fuzhou

最终编辑Bennett1056

1.问题

动态信号中蕴含着设备的状态变化和故障特征的丰富信息,采集信号的准确和真实与否直接关系到进一步诊断设备故障原因和采取的措施。工程领域的各种信号随时间的变化表现为多种形式,如简谐的、周期的、瞬态的、随机的等等,这些被检测的信号由于系统传递路径、环境噪声的影响和各种机械元件的联合作用,构成信号的成分很复杂。同一个故障状态可能由于采样的时间和长度的不同,得出大相径庭的结论,会对设备的检修造成不同的结果。

2.原因

在采样过程中合理确定间隔和长度,是保证采样得到的数字信号能够真实反映原信号的基本条件。如果采样间隔Δt取得大,则采样频率f s(f s=1/Δt)低,当f s低于所分析信号的最高频率f max的二倍时,就会引起“频率混淆”现象,使得原信号中的频率成分出现在数字信号中完全不同的频率处,造成信号的失真。图

1示出了原始信号中的最高频率f max与采样频率f s之间的关系。从图中看出,当采样频率大于二倍最高分析频率时,采样结果均能反映原始波形中的最高频率成分,

即采样频率应满足条件:f s≥2f max (1)

式中2f max称为奈奎斯特(Nyquist)采样频率。如果f s<2f max,

如图中的c, d, e,则原始的高频率波形被误认为低频现象(图中虚线所示),这样就会引起频率混淆。

为了不产生频混现象,解决的办法之一就是提高采样频率,使之满足(1)式的要求。

3.分析

采样长度T是指能够分析到信号中的最低频率所需要的时间纪录长度。如果信号中含有最低频率为f l,采样后要保持该频率成分,则采样长度应

为: T>f l/2 (2)

因此,采样长度不能取得太短,否则进行频率分析时,在频率轴上的频率间隔Δf(Δf=1/T)太大,频率分辨率太低,一些低频成分就分析不出来。

另外,采样长度T与采样点数N,采样时间间隔Δt成正比,

即:T=NΔt=N/f (3)

如果采样长度T取得较长,虽然频率分辨率得到了提高,但在△t不变的情况下,采样点数N增多,使计算机的工作量增大;当N不变时,则采样的时间间隔Δt增大,采样频率降低,所能分析的最高频率f max

也随之降低,因此需要综合考虑采样长度、采样点数和采样频率的关系问题。

在一般信号分析仪中,采样点数是固定的,取为 N=256,512,1024,2048 点几个档次,各档分析频率范围f取决于采样频率的高低,

即: f c=f s/2.56=1/(2.56Δt) (4)

则在频率轴上的频率间隔为:Δf=1/T=1/(NΔt)=2.56 f c/N =(1/100,1/200,1/400,1/800)f c (5)

频谱图上的线条数为: n=f c/Δf=N/2.56=100,200,400,800 (6)

对于一台具体的分析仪器,当采样点数N(或谱线条数n)固定后,它的频率分析范围取决于采样间隔Δt(或采样频率f s);最低分析频率取决于采样长度T(或频率分辨率)。例如,某台分析仪器的采样点数为N=1024,采样时间间隔Δt=0.4ms,采样长度为T=0.4s(实际为0.4096),

则可分析的频率范围为f c=1/(2.56Δt)=(2.56 ×0.4×l0-3)-1≈1 kHz;

最低的分析频率为f1=1/(2.56Δt)=(2.56 ×0.4)-1≈1 Hz;

在频率轴上的频率间隔为Δf=1/(NΔt)=(1024×0.4×l0-3)-1=2.44Hz。

某些场合,如分析齿轮箱的振动信号,既要求高的分析频率f max,又要求具有较高的频率分辨率(即Δf较小),这对一般动态分析仪是难以实现的,为此可采用频率细化(ZOOM)技术,对感兴趣的频段提高它的频率分辨率,用以确定在高频段内具体的某些间隔频率很小的频率成分。即所谓的“局部频率扩展”。经过细化处理后的频谱,在感兴趣的频段内具有很高的分辨率,仔细观察可以得出一些在标准谱上得不到的故障信号。

例如:美国Monsanto石油化工公司用以拖动一台关键设备的齿轮减速箱,其输人轴与输出轴呈直角布置,输人轴转速为1200r/min,输出轴转速为52.7r/min,中间经过二级减速。减速箱已运行18个月,在输入轴一端产生很高幅度的振动。对振动信号进行频谱分析,得到图2所示的时域和频域图。图2a为强烈震动前的原始频谱,谱图上主要是输人轴小齿轮的啮合频率及其倍频成分。图2b为故障状态的频谱,图中除了啮合频率及其倍频成分之外,还出现了大量的边频。取100-200Hz频段内的边频进行细化处理,得到图2c 所示的细化谱,它清晰地显示出20Hz (1200r/min )的频率间隔,此即输人的转速频率,也就是说啮合频率为转速频率所调制。根据边带形状特征,初步怀疑是高速轴上的小齿轮发生了断齿。然后又从时域信号上进行观察,得到图2d所示的波形图,图中显示了小齿轮每转动一周有一个脉冲信号,表明小齿轮有一断齿或发生局部故障的迹象,停机打开齿轮箱检查,证实了这一判断。

4.总结综上所述,采集信号的时间间隔和长度,对得出的结论正确与否有直接影响。对一故障信息采取何

种间隔和长度,目前没有定论,只能根据机器的状态、种类、故障表现结合经验做出决定。结合细化谱分析,可以提高判断的准确率。如果在缺乏先进仪器细化功能的情况下,常规仪器不能准确决断,只能先对频率进行分段,在不同的频率段采用不同的间隔和长度,加大采样量以提高采样的精确度,从而降低误判率。这当然会加大工作量,如果经验丰富,直接对相关频率段进行采样,根据实际情况调整采样时间间隔和长度,可以减少一部分不必要的工作量。

计算间隔时间

信息窗二:表演节目(计算间隔时间) 主备教师:袁香 2014 11、17 教学目标: 1. 在认识时分的基础上,会进行时间单位的简单换算。 2、联系生活实际,能进行有关间隔时间的简单计算,体会算法的多样性。 3、感受数学与生活的密切联系,增强时间观念。 教学重点:间隔时间的简单计算。 教学难点:间隔时间算法的多样性。 课前预测: 教学过程: 一、创设情境导入: 庆元旦联欢会还在继续,看,下一个节目是什么? 二、讲授新课 课件出示情境图:你从图中发现了哪些数学信息?生答:校园歌曲大联唱开始时刻:10时35分,校园歌曲大联唱结束时刻:10时55分。让学生写出这两个时刻。 你能提出什么问题?学生提问题:校园歌曲大联唱一共用了多长时间? 师:你能解决这个问题吗?学生独立思考后小组讨论、探究校园歌曲大联唱这个节目所用的时间。 小组汇报: 1、观察分针走了几大格。 2、看开始和结束时分针所指的时刻各是多少,用结束的时刻-开始的时刻=相差的时间要让学生明白开始时刻和结束时刻所间隔的时间就是两个时刻相差的时间。 三、课堂练习 1、魔术表演9:23开始,9:30结束,一共用了多长时间?

2、自主练习第1题,让学生运用钟面所提的信息,填写对应的时刻并进行关于经过时间的简单计算。做完后全班交流。 3、自主练习第2题,让学生独立完成,全班交流。一定要让学生明确开始时刻、结束时刻、经过时间之间的关系,并用这种关系解决问题。 4、自主练习第3题做鸟巢。 练习时先让学生看图理解题意,从而理清事情发展的前后顺序,再让学生根据画面中事情发展的顺序以及对应的钟面时刻将缺少的时间和时刻补充完整,并说说理由。 四、课堂小结: 同学们这节课有什么收获?请同桌相互说一说。学生交流收获 分层次布置作业: 特殊学生备课 教学反思:

利用MATLAB实现连续信号的采样与重构仿真课程设计

目录 1、摘要 (1) 2、正文 (2) 2.1、设计目的 (2) 2.2、设计原理 (2) (1)、MTLAB简介 (2) (2)、连续时间信号 (2) (3)、采样定理 (3) (4)、信号重构 (5) 2.3、信号采样和恢复的程序 (5) (1)设计连续信号 (6) (2)设计连续信号的频谱 (7) (3)设计采样信号 ........................................错误!未定义书签。 (4)设计采样信号的频谱图 (9) (5)设计低通滤波器 (10) (6)恢复原信号 (12) 3、总结和致谢........................... 错误!未定义书签。

4、参考文献 (15) 1.摘要 本次课程设计使用MATLAB实现连续信号的采样和重构仿真,了解MATLAB软件,学习使用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。初步掌握线性系统的设计方法,培养独立工作能力。 加深理解采样和重构的概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB实现连续信号采用和重构的方法。计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差,并由此总结采样频率对信号重构误差的影响。 要做到以下基本要求: 1. 掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。 2. 掌握利用MATLAB实现连续信号采用和重构的方法,加深理解采样和重构的概念。 3 . 初步掌握线性系统的设计方法,培养独立工作能力。 4. 学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示,加深对各种电信号的理解。 5. 加深理解采样对信号的时域和频域特性的影响;验证信号和系统的基本概念、基本理论,掌握信号和系统的分析方法。 6. 加深对采样定理的理解和掌握,以及对信号恢复的必要性;掌握对连续信号在时域的采样和重构的方法。

固定时间域可变采样间隔的统计控制图_张航

文章编号:1002—1566(2002)06—0045—04 固定时间域可变采样间隔的统计控制图Ξ 张 航, 阳宪惠 (清华大学自动化系,北京 100084) 摘 要:本文从提高统计控制图对过程波动检测能力和方便管理的角度出发,对可变采样间隔 (VSI)控制图进行改进,提出了针对连续过程质量控制应用需要的固定时间域可变采样间隔 (VSIFT)控制图。文章详细介绍了VSIFT均值极差控制图、VSIFT EWMA控制图的设计,并分别 评价了它们对过程异常状态的检测能力。 关键词:统计过程控制;统计控制图;异常状态检测;固定时间域可变采样间隔 中图分类号:O213.1文献标识码:A V ariable sampling interval control chart with sampling at f ixed times in continuous process ZHAN G Hang,YAN G Xian2hui (Tsinghua University,Beijing 100084,China) Abstract:This paper expands the Variable Sampling Interval(VSI)control charts and brings forward the Variable Sampling Interval at Fixed Times(VSIFT)control charts,from the perspective of improving the detecting ability on process drift and convenient for management.It describes in detail the design of VSIFT X control charts and the e2 valuation to the detecting ability of VSIFT X control charts to process drift.Then it introduces the designs of VSIFT EWMA control charts,and their abilities of detecting process abnormity. K ey w ords:Statistical process control(SPC);control chart,process drift detecting;variable sampling interval(VSI); variable sampling interval at fixed times(VSIFT) 1、引 言 自休哈特(Shewhart)博士在1931年绘制出世界上第一张控制图以来,统计过程控制SPC (Statistical Process Control)取得了许多重要的研究进展,如各种统计分析方法、多种形式的统计控制图、统计控制图中控制限的计算、多变量统计过程控制等,并得到了广泛应用。对采样频率的研究一直是该领域十分活跃的课题之一,如对固定采样间隔(Fixed Sampling Interval,简称FSI)下采样频率选择的研究,可变采样间隔(Variable Sampling Interval,简称VSI)的研究等。本文作者根据统计质量控制的应用需求,提出将固定时间域可变采样间隔VSIF T (Variable Sampling Interval with Fixed Time)的统计控制图方法应用于连续生产过程,进一步丰富了对控制图采样频率研究的内容,发展了VSIF T控制图的应用。 VSI统计控制图的基本思想是根据当前的样本确定下一次的采样时间,这个时间是可变的。因为采样的时间点不确定,采样所得的样本也无法和诸如班组交班、一个批次的加工时间这样的过程自然时间所对应。从管理的角度而言,这种在采样间隔上的可变性就显得不是那么方便。 本文提出的基于固定时间域可变采样间隔VSIF T对VSI进行了改进,使其更加吻合过Ξ收稿日期:2001-06-21, 修改稿日期:2001-09-10

信号实验:连续信号的采样和恢复

电子科技大学 实 验 报 告 学生姓名: 学号: 指导老师: 日期:2016年 12月 10日

一、实验室名称: 连续信号的采样和恢复 二、实验项目名称: 实验项目四:连续信号的采样和恢复 三、实验原理: 实际采样和恢复系统如图3.4-1所示。可以证明,奈奎斯特采样定理仍然成立。 ? ) x t ) (t P T ) 图3.4-1 实际采样和恢复系统 采样脉冲: 其中,T s πω2=, 2/)2/sin(τωτωτs s k k k T a =,T <<τ。 采样后的信号: ∑∞ -∞ =-=?→←k s S F S k j X T j X t x ) ((1)()(ωωω 当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的 ()()2() F T T k s k p t P j a k ωπδωω+∞ =-∞ ←?→= -∑

信号)(t x S 恢复原始信号)(t x 。 目的:1、使学生通过采样保持电路理解采样原理。 2、使学生理解采样信号的恢复。 任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢 复的波形与频谱,并与观察结果比较。 四、实验内容 实验内容(一)、采样定理验证 实验内容(二)、采样产生频谱交迭的验证 五、项目需用仪器设备名称:数字信号处理实验箱、信号与系统实验板的低通滤 波器模块U11和U22、采样保持器模块U43、PC 机端信号与系统实验软件、+5V 电源 六、实验步骤: 打开PC 机端软件SSP.EXE ,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。 实验内容(一)、采样定理验证 实验步骤: 1、连接接口区的“输入信号1”和“输出信号”,如图3.4-2所示。 图3.4-2 观察原始信号的连线示意图 2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz ”。 按“F4”键把采样脉冲设为10kHz 。 七、实验数据及结果分析:

到达时间间隔与到达时刻的分布(应用随机过程,陈萍)

定理2.2.1 到达时间间隔序列1,1,2,k k k T k ττ-=-= 相互独立同分布的,且服从参数为λ的指数分布. 这个命题应是在意料之中的. 事实上,泊松分布定义中的平稳独立增量的假定等于说在概率意义上过程是在任何时刻都重新开始,即从任何时刻起过程独立于先前已发生的一切(独立增量),且与原过程有完全同样的分布(平稳性),也就是通常讲的无后效性. 证明 1)求1T 的分布. 由于1T 表示第一次事件发生之前所需的时间,故 1{}T t >表示在[0,)t 时间段内事件还未出现,所以 111()()1()1(()0)1,0t T F t P T t P T t P N t e t λ-=≤=->=-==-?≥ 即1~()T E λ. 2)求2T 的分布. 由平稳增量性,在时间区间[,)s s t +内事件发生的次数与s 无关,而只与时间间隔的长度t 有关,即 21()(()()0)(()0),0t P T t T s P N s t N s P N t e t λ->==+-====?≥ 由全概率公式,()()()()1221210||t T P T t P T t T s f s ds e P T t T s λ∞ ->=>===>=? 即2~()T E λ且与1T 独立. 3)求,2n T n >的分布.对于11,,,0n t s s -?≥ ,有 11111111(,,) (()()0)(()0)n n n n n t P T t T s T s P N t s s N s s P N t e λ----->===+++-++==== 即~(),2n T E n λ?>,且相互独立.于是结论成立. □ 注意,定理2.2.1的逆命题也成立. 先研究到达时刻的分布,之后再来讨论这个问题. 定理2.2.2 到达时刻n τ服从参数为,n λ的Gamma 分布. 证明 由定理2.2.1,1,1,2,k k k T k ττ-=-= 相互独立且k T 的特征函数是 ()()()00012222cos sin 1itx x x x k t e e dx tx e dx i tx e dx t t i i t t λλλ?λλλλ λλλλλ∞∞∞ ----==+??=+=- ?++?????

采样与恢复

实验项目六:连续信号的采样和恢复 一、实验项目名称:连续信号的采样和恢复 二、实验目的与任务 目的:1、使学生通过采样保持电路理解采样原理。 2、使学生理解采样信号的恢复。 任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢 复的波形与频谱,并与观察结果比较。 三、实验原理: 实际采样和恢复系统如图3.6-1所示。可以证明,奈奎斯特采样定理仍然成立。 x ) (t P T ) 图3.6-1 实际采样和恢复系统 采样脉冲: 其中,T s π ω2= ,2 /)2/sin(τωτωτs s k k k T a =,T <<τ。 采样后的信号: ∑∞ -∞ =-=?→←k s S F S k j X T j X t x )((1)()(ωωω 当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的 ()()2() F T T k s k p t P j a k ωπδωω+∞ =-∞ ←?→= -∑

信号)(t x S 恢复原始信号)(t x 。 四、实验内容 打开PC 机端软件SSP.EXE ,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。 实验内容(一)、采样定理验证 实验步骤: 1、连接接口区的“输入信号1”和“输出信号”,如图3.6-2所示。 图3.6-2 观察原始信号的连线示意图 2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz ”。按“F4”键把采样脉冲设为10kHz 。 图3.6-3 2.6kHz 正弦波(原始波形) 3、点击SSP 软件界面上的按钮,观察原始正弦波,如图3.6-3 所示。 4、按图3.6-4的模块连线示意图连接各模块。

信号的采样与恢复

信号的采样与恢复实验 一、任务与目的 1. 熟悉信号的采样与恢复的过程。 2. 学习和掌握采样定理。 3. 了解采样频率对信号恢复的影响。 二、原理(条件) PC机一台,TD-SAS系列教学实验系统一套。 1. 采样定理 采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值表示。这些值包含了该连续信号全部信息,利用这些值可以恢复原信号。采样定理是连续时间信号与离散时间信号之间的桥梁。 采样定理:对于一个具有有限频谱,且最高频率为ωmax的连续信号进行采样,当采样频率ωs满足ωs>=ωmax时,采样信号能够无失真地恢复出原信号。三角波信号的采样如图4-1-1所示。 图4-1-1信号的采样 2. 采样信号的频谱 连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为

它包含了原信号频谱以及重复周期为的原信号频谱的搬移,且幅度按规律变化。所以抽样信号的频谱便是原信号频谱的周期性拓延。某频带有限信号被采样前后频谱如图4-1-2。 图4-1-2 限带信号采样前后频谱 从图中可以看出,当ωs ≥2Bf 时拓延的频谱不会与原信号的频谱发生重叠。这样只需要利用截止频率适当的滤波器便可以恢复出原信号。 3. 采样信号的恢复 将采样信号恢复成原信号,可以用低通滤波器。低通滤波器的截止频率f c 应当满足f max ≤f c ≤f x -f max 。实验中采用的低通滤波器原理图如图4-1-3所示,其截止频率固定为 1802f Hz RC π=≈ 图4-1-3 滤波器电路 4. 单元构成 本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。其中的采样保持部分电路由一片CD4052完成。此电路由两个输入端,其中IN1端输入被采样信号,Pu 端输入采样脉冲,经过采样后的信号如图4-1-1所示。 三、内容与步骤 本实验在脉冲采样与恢复单元完成。 1. 信号的采样

车站间隔时间标准及其查定办法

车站间隔时间标准及其查定办法

车站间隔时间标准及其查定办法 1、车站间隔时间 车站间隔时间是列车间隔时间的一种。列车间隔时间包括列车在车站的间隔时间(简称车站间隔时间)和追踪列车间隔时间(简称追踪间隔时间)。 车站间隔时间是车站办理两列车到达、出发或通过作业所需要的最小间隔时间。 “车站间隔时间标准”一般由实际写实、测查、综合分析后确定。 2、车站间隔时间查定的要求 ⑴查定列车间隔时间,应遵守有关规章的规定及车站技术作业标准,根据现行的机车类型、列车重量和长度标准,保证行车安全和最好地利用区间通过能力。 ⑵每—个车站的车站间隔时间,应分别对其每一个邻接区间进行查定。 ⑶列车间隔时间一般按货物列车查定。但在仅有旅客列车而无货物列车的区段,应按旅客列车查定;在旅客列车多于货物列车的区段,应分别按旅客列车及货物列车进查定。 ⑷车站间隔时间由各铁路局负责组织查定。各种类型的车站间隔时间的数值,应以图表表示。该图表应表示出车站配线图、信联闭设备情况及车站办理列车到达、出发和通过作业的程序和时间。并据此填制车站间隔时间汇总表。(表7-7) 3、车站间隔时间类型 车站间隔时间分为以下几种类型: ⑴相对方向不同时到达间隔时间 相对方向列车不同时到达间隔时间(τ ),是由某一方向的列车到达车站时 不 起,至相对方向列车到达或通过该站时止的最小间隔时间。分为两种形式:一列停车一列通过,如图8-1(a);两列均停车,如图8-1(b)。

图 8-1 相对方向不同时到达间 隔时间 ·不同时到达间隔时间由下列因素组成: ① 先到列车到达后.车站为对向列车准备接车进路,开放信号机等待时间(t 作业); ② 对向列车运行通过进站距离(L 进)(如图8-2所示),所需要的进站时间(t 进)。 图8-2 ·相对方向列车不同时到达间隔时间(τ不 )如图8-2,以下式计算: τ不=t 作业十t 进 L 进 =t 作业十0.06———— V 进 0.5l 列+l 制+l 进 =t 作业+0.06————————+l 确 (min ) V 进 式中 1列——列车长度(m); 1制——列车的制动距离或由予告信号机至进站信号机的距离(m);

连续时间信号的抽样及频谱分析-时域抽样信号的频谱--信号与系统课设

1 引言 随着科学技术的迅猛发展,电子设备和技术向集成化、数字化和高速化方向发展,而在学校特别是大学中,要想紧跟技术的发展,就要不断更新教学和实验设备。传统仪器下的高校实验教学,已严重滞后于信息时代和工程实际的需要。仪器设备很大部分陈 旧,而先进的数字仪器(如数字存储示波器)价格昂贵不可能大量采购,同时其功能较为单一,与此相对应的是大学学科分类越来越细,每一专业都需要专用的测量仪器,因此仪器设备不能实现资源共享,造成了浪费。虚拟仪器正是解决这一矛盾的最佳方案。基于PC 平台的虚拟仪器,可以充分利用学校的微机资源,完成多种仪器功能,可以组合成功能强大的专用测试系统,还可以通过软件进行升级。在通用计算机平台上,根据测试任务的需要来定义和设计仪器的测试功能,充分利用计算机来实现和扩展传统仪器功能,开发结构简单、操作方便、费用低的虚拟实验仪器,包括数字示波器、频谱分析仪、函数发生器等,既可以减少实验设备资金的投入,又为学生做创新性实验、掌握现代仪器技术提供了条件。 信号的时域分析主要是测量测试信号经滤波处理后的特征值,这些特征值以一个数值表示信号的某些时域特征,是对测试信号最简单直观的时域描述。将测试信号采集到计算机后,在测试VI 中进行信号特征值处理,并在测试VI 前面板上直观地表示出信号的特征值,可以给测试VI 的使用者提供一个了解测试信号变化的快速途径。信号的特征值分为幅值特征值、时间特征值和相位特征值。 尽管测量时采集到的信号是一个时域波形,但是由于时域分析工具较少,所以往往把问题转换到频域来处理。信号的频域分析就是根据信号的频域描述来估计和分析信号的组成和特征量。频域分析包括频谱分析、功率谱分析、相干函数分析以及频率响应函数分析。 信号在时域被抽样后,他的频谱X(j )是连续信号频谱X(j )的形状以抽样频率为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn加权。因为Pn只是n的函数,所以X(j )在重复的过程中不会使其形状发生变化。假定信号x(t)的频谱限制在- m~+ m的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(j )是以s为周期重复。显然,若在抽样的过程中s<2 m,则X^(j )将发生频谱混叠现象,只有在抽样的过程中满足s>=2 m条件,X^(j )才不会产生频谱的混叠,接收端完全可以由x^(t)恢复原连续信号xa(t),这就是低通信号抽样定理的核心内容。

MTBF,即平均故障间隔时间

mtbf MTBF,即平均故障间隔时间,英文全称是"Mean Time Between Failure"。是衡量一个产品(尤其是电器产品)的可靠性指标。单位为"小时"。它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力。具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。概括地说,产品故障少的就是可靠性高,产品的故障总数与寿命单位总数之比叫"故障率"(Failure rate)。它仅适用于可维修产品。同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF。磁盘阵列产品一般MTBF不能低于50000小时。 计算方法 失效时间是指上一次设备恢复正常状态(图中的up time)起,到设备此次失效那一刻(图中的down time)之间间隔的时间。 MTBF值是产品设计时要考虑的重要参数,可靠度工程师或设计师经常使用各种不同的方法与标准来估计产品的MTBF值。相关标准包括MIL-HDBK-217F、Telcordia SR332、Siemens Norm、Fides或UTE C 80-810(RDF2000)等。不过这些方法估计到的值和实际的平均故障间隔仍有相当的差距。计算平均故障间隔的目的是为了找出设计中的薄弱环节。 MTBF的数学式表达 另外,在工程学上,常用希腊字母θ来表示MTBF,既有: 在概率论中,可用?(t)形式的概率密度方程表示MTBF,既有: 此处?指的是直到下次失效经过时长的概率密度方程--满足标准概率密度方程--

故障时间 随着服务器的广泛应用,对服务器的可靠性提出了更高的要求。所谓"可靠性",就是产品在规定条件下和规定时间内完成规定功能的能力;反之,产品或其一部分不能或将不能完成规定的功能是出故障。概括地说,产品故障少的就是可靠性高,产品的故障总数与寿命单位总数之比叫"故障率"(Failure rate),常用λ表示。例如正在运行中的100只硬盘,一年之内出了2次故障,则每个硬盘的故障率为0.02次/年。当产品的寿命服从指数分布时,其故障率的倒数就叫做平均故障间隔时间(Mean Time Between Failures),简称MTBF。即: MTBF=1/λ 笔者看到一款可用于服务器的WD Caviar RE2 7200 RPM 硬盘,MTBF 高达120万小时,保修5年。120万小时约为137年,并不是说该种硬盘每只均能工作137年不出故障。由MTBF=1/λ可知λ=1/MTBF=1/137年,即该硬盘的平均年故障率约为0.7%,一年内,平均1000只硬盘有7只会出故障。 下图所示为著名的浴盆曲线,左边斜线部分为早期故障率,其故障率一般较高且随着时间推移很快下降。曲线中部为使用寿命期,其故障率一般很低且基本固定。最右部为耗损期,失效率急速升高。电子产品制造商一般通过测试、老炼、筛选等手段将早期故障尽量剔除,然后提供给客户使用。当使用寿命期将尽,产品也即将进入故障高发期,需要报废或更新换代了。 由来 右图为浴盆曲线,那么浴盆曲线与产品寿命有什么关系呢? 电子产品的寿命一般都符合浴盆曲线,可分为三个阶段:

信号的采样与恢复

信号的采样与恢复 (安徽建筑工业学院电子与信息学院课程设计) 2012年06月29日 此稿仅为借鉴 摘要 (2) 正文 一、设计目的与要求 (3) 二、设计原理 (4) 三、设计内容和步骤 (5) 1.用MATLAB产生连续信号y=sin(t)和其对应的频谱 (6) 2.对连续信号y=sin(t)进行抽样并产生其频谱 (7) 3. 通过低通滤波恢复原连续信号 (9) 四、总结 (12) 五、数据分析 (13) 六、参考文献 (1) 摘要

数字信号处理是一门理论与实践紧密结合的课程。做大量的习题和上机实验,有助于进一步理解和巩固理论知识,还有助于提高分析和解决实际问题的能力。过去用其他算法语言,实验程序复杂,在有限的实验课时内所做的实验内容少。MATLAB强大的运算和图形显示功能,可使数字信号处理上机实验效率大大提高。特别是它的频谱分析和滤波器分析与设计功能很强,使数字信号处理工作变得十分简单、直观。 本实验设计的题目是:信号的采样与恢复、采样定理的仿真。通过产生一个连续时间信号并生成其频谱,然后对该连续信号抽样,并对采样后的频谱进行分析,最后通过设计低通滤波器滤出抽样所得频谱中多个周期中的一个周期频谱,并显示恢复后的时域连续信号。实验中,原连续信号的频谱由于无法实现真正的连续,所以通过扩大采样点的数目来代替,理论上当采样点数无穷多的时候即可实现连续,基于此尽可能增加采样点数并以此来产生连续信号的频谱。信号采样过程中,通过采样点的不同控制采样频率实现大于或小于二倍最高连续信号的频率,从而可以很好的验证采样定理。信号恢复,滤波器的参数需要很好的设置,以实现将抽样后的信号进行滤波恢复原连续信号。 一、设计目的与要求 1.设计目的和要求 1.掌握利用MATLAB在数字信号处理中的基本应用,并会对结果用所学知识进 行分析。 2.对连续信号进行采样,在满足采样定理和不满足采用定理两种情况下对连 续信号和采样信号进行FFT频谱分析。 3.从采样信号中恢复原信号,对不同采样频率下的恢复信号进行比较分析。 4.基本要求:每组一台电脑,电脑安装MATLAB6.5版本以上软件。 二、设计原理

Flash CS4 计算间隔时间

Flash CS4 计算间隔时间 ActionScript输出的时间是以字符串形式存在,但是字符串并不能进行加减运算。因此,如果想要计算两个Date对象之间的时间间隔,需要通过间接的方法。 ●1.纪元时间 为了计算两个时间的间隔,ActionScript3.0为Date对象引入了纪元时间这一概念,将1 970年1月1日午夜0点0分0秒0毫秒作为一个时间标志点。 纪元时间是一个常量,ActionScript 3.0允许通过time属性或getTime()方法获取从纪元时间开始,到Date对象所包含的时间为止,所经过的时间长度,单位为毫秒。 通过获取两个Date对象的time属性,即可以计算两个Date对象之间的间隔时间,方法如下。 var DateObject1:Date=new Date(Arguments); var DateObject2:Date=new Date(Arguments); Interval=Math.abs(DateObject1.time-DateObject2.time); 其中,DateObject1、DateObject2参数均表示需要求间隔时间的两个Date对象;Arguments 参数表示定义Date对象时间的参数;Interval参数表示两个Date对象的间隔时间。 除了使用time属性以外,还可以通过getTime()方法的返回值计算间隔时间,如下所示。 Interval=Math.abs(DateObject1.getTime()-DateObject2.getTime()); ●2.纪元时间与格林尼治标准时间 纪元时间同样会根据时区进行区分。Date类提供了UTC()方法可以计算自格林尼治标准时间的纪元时间到指定时间的间隔,单位为毫秒。 UTC()方法是一个静态方法,因此使用该方法时,应以Date类直接引用,如下所示。 Date.UTC(Year,Month,Date,Hour,Minute,Second,Millisecond); 在上面的代码中,各个参数的含义如下所示。 ●Year 由4位整数组成的数字,表示年份。 ●Month 从0到11之间的整数。其中0表示1月,以此类推。 ●Date 从1到31之间的整数,默认值为1。 ●Hour 从0到23之间的整数,其中0表示午夜0点,以此类推,默认值为0。 ●Minute 从0到59之间的整数。默认值为0。 ●Second 从0到59之间的整数。默认值为0。 ●Millisecond 从0到999之间的整数,默认值为0。 在UTC()方法中,Year和Month参数为该方法的必须参数,而其它的参数则可以省略。当省略这些参数时,系统会以默认的值进行计算。

连续时间信号的采样实验

实验一 连续时间信号的采样 一、 实验目的 进一步加深对采样定理和连续信号傅立叶变换的理解。 二、实验步骤 1.复习采样定理和采样信号的频谱 采样定理 如果采样频率s F 大于有限带宽信号)(t x a 带宽0F 的两倍,即 02F F s > (1) 则该信号可以由它的采样值)()(s a nT x n x =重构。否则就会在)(n x 中产生混叠。该有限带宽模拟信号的02F 被称为乃魁斯特频率。 必须注意,在)(t x a 被采样以后,)(n x 表示的最高模拟频率为2/s F Hz (或πω=)。 2.熟悉如何用MATLAB 语言实现模拟信号表示 严格地说,除了用符号处理工具箱(Symbolics)外,不可能用MATLAB 来分析模拟信号。然而如果用时间增量足够小的很密的网格对)(t x a 采样,就可得到一根平滑的曲线和足够长的最大时间来显示所有的模态。这样就可以进行近似分析。令t ?是栅网的间隔且s T t <

连续信号的采样和恢复

电 子 科 技 大 学 实 验 报 告(二) 学生姓名: 学 号: 指导教师:实验室名称:信号与系统实验室 一、 实验项目名称:连续信号的采样和恢复 三、实验原理: 实际采样和恢复系统如图3.4-1所示。可以证明,奈奎斯特采样定理仍然成立。 ? ) x t ) (t P T ) 图3.4-1 实际采样和恢复系统 采样脉冲: 其中,T s πω2= ,2 /)2/sin(τωτωτs s k k k T a =,T <<τ。 采样后的信号: ∑∞ -∞ =-=?→←k s S F S k j X T j X t x )((1)()(ωωω 当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的信号)(t x S 恢复原始信号)(t x 。 四、实验目的与任务: ()()2() F T T k s k p t P j a k ωπδωω+∞ =-∞ ←?→= -∑

目的:1、使学生通过采样保持电路理解采样原理。 2、使学生理解采样信号的恢复。 任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢复的波形与频谱,并与观察结果比较。 五、实验内容: 1、采样定理验证 2、采样产生频谱交迭的验证 六、实验器材(设备、元器件): 数字信号处理实验箱、信号与系统实验板的低通滤波器模块U11和U22、采样保持器模块U43、PC机端信号与系统实验软件、+5V电源,连接线、计算机串口连接线等。 七、实验步骤: 打开PC机端软件SSP.EXE,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。 【1.采样定理验证】 1、连接接口区的“输入信号1”和“输出信号”,如图1所示。 图1 观察原始信号的连线示意图 2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz”。按“F4”键把采样脉冲设为10kHz。 3、点击SSP软件界面上的按钮,观察原始正弦波。 4、按图2的模块连线示意图连接各模块。

时间间隔与银行利息天数计算规定

计算见票后或出票后或提单日后固定时期付款的汇票的时间,一般采用“算尾不算头” 的方法,其含义是“不包括见票 算头不算尾”是指在采用积数计息法计算计息天数时,从存款当天(贷款发放日)算起, 至存款到期日或贷款还款日的前一天为止。 定期存款恰逢法定假日到期怎么办? 储户可以在储蓄机构节假日前一天办理存款支取,利息按存入日利率和实际存款天数计算。 小结 :计算时间 (日期 )要注意方法 :算头不算尾,算尾不算头。 . 1、算头不算尾,计算利息时,存款天数一律算头不算尾,即从存入日起算至取款前一天止; 2、不论闰年、平年,不分月大、月小,全年按360 天,每月均按30 天计算 ; 3、对年、对月、对日计算,各种定期存款的到期日均以对年、对月、对日为准。即自存入 日至次年同月同日为一对年,存入日至下月同一日为对月; 4、定期储蓄到期日,比如遇例假不办公,可以提前一日支取,视同到期计算利息,手续同 提前支取办理。 利息的计算公式:本金×年利率 (百分数 ) ×存期 【存款 360天计息贷款365天计息银行小账算的精】 贷款是按实际天数算的存款利息时一年只算 ,但是存款是按一年360 天算的 . 360天,而收取贷款利息时却要算365天(或366天)。 贷款利息计算中的定期计息方法 定期计息是指银行在每个月或者每个季度最后一个月20 日时,规定为结算利息日,计息期 为上个季度最后一个月21 日开始到本季度最后一个月20 日止,按照银行规定的贷款利率 进行计算。定期计息的计算利息天数全年按365 天或366天计算,算第一天不算最后一天,即贷款日算为第一天,还款日不算。在结算利息日那天计算时应包含结算利息日。 360天计息”是惯例 “一年 360 天”的规定,看起来确实有些匪夷所思。记者采访发现这其实是“国际惯例”。 早在 1965 年,中国人民银行就发布通知,明确规定:各类储蓄存款全年均按360 天计息,即无论大月、小月和闰月,每月均按30 天计算。 在 2005 年央行发布的《关于人民币存贷款计结息问题的通知》中,记者找到了误解的根源: 银行人民币业务计算利息有两种方法,其中一种就是“积数计息”,即以每天的账户余额和 日利率来算利息假如按360 天算出日利率,按365 天来收利息,确实会造成“贷款多收、存 款多付”。 “这种计息方式适合活期存款和短期贷款,银行为了防止多付多收,一般都调整为按365天计算了。”前述国有大行信贷负责人说,央行2005 年的文件允许商业银行根据实际情况 制定计息、结息规则。

离散系统与连续时间系统的根本差别是:离散系统(图)有采样开

离散系统与连续时间系统的根本差别是:离散系统(图3)有采样开关存在,而连续系统则无。连续信号经过采样开关变成离散信号(图4),采样开关起这理想脉冲发生器的作用,通过它将连续信号调制成脉冲序列。 图3 离散系统方块图 图4 离散型时间函数 调制之后的信号中,包含与脉冲频率相关的高频频谱(图5),相邻两频谱不相重叠的条件是: max 2f f s 其中: s f ---采样开关的采样频率 m ax f ---连续信号频谱中的最高频率 这就是采样定理,通常选择采样频率时取四倍连续信号的最大频率。实验中,信号源产生频率可调的周期性信号,计算机通过A/D 板将信号采集入内存,通过软件示波器显示出来,调整采样频率,可以得到不同的采样结果,以波形图直观显示出来。由此,可考察波形失真程度。 三、实验使用的仪器设备及实验装置 1. 装有LabVIEW 软件和PCI-1200数据采集卡的计算机一台 2. 频率计或信号发生器一台 3. 外接端子板、数据采集板、计算机、组态软件 基于LabVIEW 的信号测试系统主要包括信号发生器、DAQ 数据采集卡和计算机软件三部分组成。A/D 数据采集采用NI 公司PCMCIA 接口的PCI-1200型多功能数据采集卡;L abVIEW 7.1软件。 将PCI-1200数据采集卡插到计算机主板上的一个空闲的PCI 插槽中,接好各种附件,其驱动程序就是NI-DAQ 。附件包括一条50芯的数据线,一个型号为CB-50LP 的转接板,转接板直接与外部信号连接。 图5 信号频谱图

四、具体实验步骤 (一)通过LabVIEW进行模拟信号的数据采集 1. 安装数据采集卡,根据数据采集卡接线指示(图6)连接线路,并检查测试。 2. 熟悉LabVIEW软件中与数据采集相关的控件与设置项。 3. 编制DAQ程序,并调试数据采集组态。 4. 应用该组态软件进行波形数据采集并存储,信号种类设置为正弦波,分别设置 信号发生器频率为50,100Hz,观察并记录波形变化。 5. 设置信号种类为方波或锯齿波,重复上述实验。 (二)采样定理验证实验 1. 按图8连接线路,并检查测试。 2. 熟悉GeniDAQ软件中与数据采集相关的控件与设置项。 3. 编制、调试数据采集组态。 4. 应用该组态软件进行波形数据采集并存储,信号种类设置为正弦波,分别设置 信号发生器频率为50,100Hz,采集频率设置为50、100、150、200、300、500Hz,观察并记录波形变化,体验采样定理的正确性。 五、实验准备及预习要求 1.认真阅读实验指导书,在老师答疑和同学讨论的基础上,完成实验准备任务: 1).了解数据采集及其硬件(A/D变换器和数据采集卡)选择的基本知识; 2).熟悉G语言编程环境和虚拟仪器的含义; 1.理解采样定理的意义;

C#TimeSpan计算时间差(时间间隔)

可以加两个日期之间任何一个时间单位。 private string DateDiff(DateTime DateTime1,DateTime DateTime2) {string dateDiff = null; TimeSpants = DateTime1.Subtract(DateTime2).Duration(); dateDiff = ts.Days.ToString()+"天"+ ts.Hours.ToString()+"小时"+ ts.Minutes.ToString()+"分钟"+ ts.Seconds.ToString()+"秒"; return dateDiff; } 说明: 1.DateTime值类型代表了一个从公元0001年1月1日0点0分0秒到公元9999年12月31日23点59分59秒之间的具体日期时刻。因此,你可以用DateTime值类型来描述任何在想象范围之内的时间。一个DateTime值代表了一个具体的时刻 2.TimeSpan值包含了许多属性与方法,用于访问或处理一个TimeSpan值 下面的列表涵盖了其中的一部分: Add:与另一个TimeSpan值相加。 Days:返回用天数计算的TimeSpan值。 Duration:获取TimeSpan的绝对值。 Hours:返回用小时计算的TimeSpan值 Milliseconds:返回用毫秒计算的TimeSpan值。 Minutes:返回用分钟计算的TimeSpan值。 Negate:返回当前实例的相反数。 Seconds:返回用秒计算的TimeSpan值。 Subtract:从中减去另一个TimeSpan值。 Ticks:返回TimeSpan值的tick数。 TotalDays:返回TimeSpan值表示的天数。 TotalHours:返回TimeSpan值表示的小时数。 TotalMilliseconds:返回TimeSpan值表示的毫秒数。 TotalMinutes:返回TimeSpan值表示的分钟数。 TotalSeconds:返回TimeSpan值表示的秒数。

(推荐)时间测量中随机误差的分布规律

实验报告 实验名称 时间测量中随机误差的分布规律 实验目的 用常规仪器(如电子秒表、频率计等)测量时间间隔,通过对时间和频率测量 的随机误差分布,学习用统计方法研究物理现象的过程和研究随机误差分布的规律。 实验仪器 机械节拍器,电子秒表。 实验原理 1.常用时间测量仪表的简要原理 (1)机械节拍器 (2)电子节拍器 (3)电子秒表 (4)VAFN 多用数字测试仪 用电子秒表测量机械节拍器发声的时间间隔,机械节拍器按一定的频率发出有规律的声响,电子秒表用石英晶体振荡器作时标,一般用六位液晶数字显示,其连续积累时间为59min59.99s,分辨率为0.01s,平均日差0.5s 。 2.统计分布规律的研究 假设在近似消除了系统误差(或系统误差很小,可忽略不计,或系统误差为 一恒定值)的条件下,对某物理量x 进行N 次等精度测量,当测量次数N 趋向无穷时,各测量值出现的概率密度分布可用正态分布(有成高斯分布)的概率密度函数表示, ]2)x -(x ex p[-21 )(2 2 σπ σ=x f (1) 其中 n x x n 1 i i ∑== (2) 1 -n )x -(x n 1 i 2 i ∑== σ (3) ? =a a -f(x)dx P(a) (4) 式中a=σ,2σ,3σ分别对应不同的置信概率。 (1)统计直方图方法 用统计直方图表示被研究对象的规律简便易行,直观清晰。 在一组等精度测量所得的N 个结果x 1,x 2,…,x N 中,找出它的最大值x max 与最小值x min ,并求出级差R=x max - x min ,由级差分为K 个小区间,每个小区域的间隔(

应用_MATLAB实现连续信号的采样与重构

抽样定理及应用 2.1课程设计的原理 2.1.1连续信号的采样定理 模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。时域采样定理从采样信号 恢复原信号 必需满足两个条件: (1) 必须是带限信号,其频谱函数在 > 各处为零;(对信号的要求, 即只有带限信号才能适用采样定理。) (2) 取样频率不能过低,必须 >2 (或 >2)。(对取样频率的要 求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。)如果采样频率 大于或等于 ,即 ( 为连续信号 的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号 。一个频 谱在区间(- , )以外为零的频带有限信号,可唯一地由其在均匀 间隔 ( < )上的样点值 所确定。根据时域与频域的对称性, 可以由时域采样定理直接推出频域采样定理。一个时间受限信号()t f ,它集中在(m m ωω+-,)的时间范围内,则该信号的频谱()ωj F 在频域中以间隔为1ω的冲激序列进行采样,采样后的频谱)(1ωj F 可以惟一表示原信号的条件为重复周期 m t T 21≥,或频域间隔m t f 21 21≤ = πω(其中112T πω=)。采样信号 的频谱是原 信号频谱 的周期性重复,它每隔 重复出现一次。当s ω>2 时, 不会出现混叠现象,

原信号的频谱的形状不会发生变化,从而能从采样信号中恢复原信号。 >2的含义是:采样频率大于等于信号最高频率的2倍;这里的“不(注: s 混叠”意味着信号频谱没有被破坏,也就为后面恢复原信号提供了可能!) (a) (b) (c) 图* 抽样定理 a)等抽样频率时的抽样信号及频谱(不混叠) b)高抽样频率时的抽样信号及频谱(不混叠) c) 低抽样频率时的抽样信号及频谱(混叠) 2.1.2信号采样 如图1所示,给出了信号采样原理图

相关主题
文本预览
相关文档 最新文档