当前位置:文档之家› 马氏体

马氏体

马氏体
马氏体

一.马氏体的定义

马氏体是经无(需)扩散的,原子集体协同位移的晶格改组过程,得到具有严格晶体学关系和惯习面的,相变常产物中伴生极高密度位错,或层错或精细孪晶等晶体缺陷的整体组合。

马氏体相变:原子经无需扩散的集体协同位移,进行晶格改组,得到的相变产物具有严格晶体学位向关系和惯习面,极高密度位错,或层错或精细孪晶等亚结构的整合组织,这种形核----长大的一级相变,称为马氏体相变。

二.马氏体相变的基本特征

1.马氏体相变的无扩散性

在较低的温度下,碳原子和合金元素的原子均已扩散困难。这时,系统自组织功能使其进行无需扩散的马氏体相变。马氏体相变与扩散性形变不同之处在于晶格改组过程中,所有原子集体协同位移,相对位移量小于一个原子间距。相变后成分不变,即无扩散,它3仅仅是成分改组。

2.位相关系和惯习面

马氏体相变的晶体学特点是新相和母相之间存在一定的位向关系。马氏体相变时,原子不需要扩散,只作有规则的很小距离的移动,新相和母相界面始终保持着共格和半共格连接,因此相变完成之后,两相之间的位相关系仍保持着。

惯习面:马氏体转变时,新相和母相保持一定位向关系,马氏体在母相的一定晶面上形成,此晶面称为惯习面。通常以母相的晶面指数

表示。钢中马氏体的惯习面随着碳含量和形成温度不同而异。有色金属中马氏体的惯习面为高指数面。

3.马氏体的精细亚结构

马氏体是单向组织,在组织内部出现的精细结构称为亚结构。低碳马氏体内出现极高密度的位错(可达1012/cm)。今年来发现板条状的马氏体中存在层错亚结构。在高碳钢马氏体中主要以大量精细孪晶(孪晶片间距可达30nm)作为亚结构,也存在高密度位错;有的马氏体中亚结构主要是层错。有色金属马氏体的亚结构是高密度的层错、位错和精细孪晶。

4.相变的可逆性,即新旧相界面可逆向移动

有色金属和合金中的马氏体相变多具有可逆性,包括部分铁基合金。这些合金在冷却时,母相开始形成马氏体的温度称为马氏体点(Ms),转变终了温度标为Mf;之后加热,在As温度逆转变形成高温相,逆相变完成的温度标以Af。

但是在钢中,淬火马氏体中的碳原子扩散较快,一般淬火到室温,碳原子立即扩散偏聚,形成碳原子偏聚团,如Corierl气团,100摄氏度以上即可析出碳化物。这样当马氏体加热到高温过程中,马氏体已经分解,则不能发生逆相变为奥氏体。一次钢中的马氏体一般不发生你转变。如果迅速冷却得到新鲜马氏体,之后立即迅速加热,是马氏体来不及回火析出,也会发生逆转变。

除了以上主要特征外,马氏体相变还有表面浮凸、非恒温性等现象。浮凸是过冷奥氏体表面转变时发生的普遍现象。马氏体转变也有

恒温形成的,即等温形成的马氏体。

三.马氏体的组织形态及物理本质

1.钢中马氏体的物理性质

虽然马氏体是一个单相组织,但其组织形貌和亚结构极为复杂。钢中的马氏体发现最早,应用最广,其组织形态和结构较为复杂。低碳钢、中碳钢、高碳钢淬火得到的马氏体组织结构不同;晶粒粗细不同,成分均匀性不同的奥氏体转变为马氏体的组织也不同;碳素钢、合金钢、有色金属及合金的马氏体,它们在晶体结构,亚结构,金相形态,与母相的晶体学关系等方面均不尽相同,呈现出形形色色的形态及非常复杂的物理本质。

钢中马氏体形态和晶体学特征

从表中分析出钢中马氏体的物理本质和形貌非常复杂,具体为:

1)晶体结构有bcc、bct、hcp三种;

2)马氏体形状各异,除了表中所列的以外,钢中也有蝶状马氏体,隐晶马氏体等形态;

3)惯习面多样且变形复杂;

4)马氏体中位错缠结,密度极高,孪晶是大量而精细的。碳含量低放入马氏体以高密度位错亚结构为主;高碳马氏体的亚结构以孪晶为主,但也有高密度的位错。

四.马氏体的回火转变

钢经淬火获得的马氏体组织一般不能直接使用,需要进行回火,以降低脆性,增加塑性和韧性。原因是:

1.一般情况下,马氏体是在较快冷却速度下获得的非平衡组织,在

马氏体状态下,处于较高的能量状态,使系统不稳定;

2.淬火组织中一般存在残余奥氏体,在使用过程中,残余奥氏体是

不够稳定的;

3.马氏体转变后钢件中残留了内应力。

一般所谓的“淬火马氏体”组织,实际上是脱溶初期阶段的某种

状态。淬火钢在回火过程中发生的转变主要是马氏体的分解,残余奥氏体的转变,还有碳化物的析出后,碳化物转化、聚集长大;ɑ相的回复、再结晶;内应力的消除等过程。此外,等温淬火会得到贝氏体组织。贝氏体钢在连续冷却过程中也会形成贝氏体组织。有些钢淬火往往得到马氏体+贝氏体组织。因此,在钢的回火转变中还有贝氏体组织的变化问题,如贝氏体中的碳化物、贝氏体铁素体的组织变化问题等。

马氏体级别”的探讨

对《汽车渗碳齿轮金相检验》标准中“马氏体级别”的探讨 董秦铮 (爱协林工业炉工程(北京)有限公司,北京 100086) 摘要:通过生产中的试验例证和检验结果,针对《汽车渗碳齿轮金相检验》标准中“马氏体级别”的概念和评级方法进行了分析和讨论。认为不宜将“马氏体级别”作为一项独立的质量指标。 关键词:马氏体级别;残留奥氏体;奥氏体晶粒度 QC/T262—1999《汽车渗碳齿轮金相检验》是我国汽车行业中长期使用的一项覆盖面较广、影响较大的标准。在该标准中,“马氏体级别”被作为一项重要的、不可缺少的质量指标。标准中规定:马氏体等级按其针体大小确定,共分8个级别,评定马氏体级别和评定残留奥氏体级别一样,共同使用一套残留奥氏体、马氏体级别的标准图片(400倍,8张),所评定的结果均在1~5级内为合格。 但是,汽车零部件生产者对“马氏体级别”这一概念一直是有争议的。争议的焦点集中在马氏体级别的实质概念,马氏体级别超差或合格的依据以及它对产品性能和质量的影响。在实际生产中,除渗碳淬火工艺外,影响马氏体级别的还有哪些主要因素,如何防止马氏体级别 超差,试样的马氏体级别超差后,如何处理等,也常常使人们感到困惑。本文通过一些试验例证和检验结果,对这些问题进行分析和讨论,并对该标准中将马氏体级别作为一项独立的质量指标的必要性提出质疑。 1渗碳试块和工件的金相检验实例 1.1试验工艺 表1列举了实际生产中经不同炉次渗碳的试块和工件的金相检验结果。工件和试块的材料均为20CrMnTi钢。试验过程如下:①工件与试块同炉,930℃×(6~8)h渗碳,降温至840℃淬油,180℃×2.5h回火。用金相显微镜按标准图片分别对试块的残留奥氏体和马氏体评级并检查表层奥氏体晶粒度。将样品浸入80℃的苦味酸+少量洗涤剂混合液,于80℃浸泡腐蚀。按

20MnTiB

我国中重型载货汽车齿轮用钢牌号较多,主要是为适应引进当时国外先进汽车技术的要求。50年代我国从原苏联里哈乔夫汽车厂引进当时苏联中型载货汽车(即“解放”牌原车型)生产技术的同时,也引进了原苏联生产汽车齿轮的20CrMnTi钢种。 改革开放以后,随着我国经济建设的高速发展,为了满足我国交通运输的快速发展需要,从80年代开始,我国有计划地引进工业发达国家的各类先进机型,各类国外先进中重型载货汽车也不断引进。同时,我国大汽车厂同国外著名汽车大公司进行合作,引进国外先进汽车生产技术,其中包括汽车齿轮的生产技术。与此同时,我国钢铁冶炼技术水平也在不断提高,采用钢包二次冶炼及成分微调和连铸连轧等先进治炼技术,使得钢厂能生产出高纯净度、淬透性能带缩窄的齿轮用钢材,从而实现了引进汽车齿轮用钢的国产化,使我国齿轮用钢的生产水平上了一个新台阶。近年来,适合于我国国情的国产重型汽车齿轮用含镍高淬透性能钢也得到了开发和应用,取得了较好效果。汽车齿轮的热处理技术也从原50-60年代采用井式气体渗碳护发展到当前普遍采用由计算机控制的连续式气体渗碳自动线和箱式多用炉及自动生产线(包括低压(真空)渗碳技术)、齿轮渗碳预氧化处理技术,齿轮淬火控制冷却技术(由于专用淬火油和淬火冷却技术的使用)、齿轮锻坯等温正火技术等。这些技术的采用不仅使齿轮渗碳淬火畸变得到了有效控制、齿轮加工精度得到提高、使用寿命得到延长,而且还满足了齿轮的现代化热处理的大批量生产需要。 有关文献指出,汽车齿轮的寿命主要由两大指标考核,一是齿轮的接触疲劳强度,二是齿轮的弯曲疲劳强度。前者主要由渗碳淬火质量决定,后者主要由齿轮材料决定。为此,有必要对汽车齿轮用渗碳钢的要求、性能及其热处理特点有一个较全面的了解。 铬锰钛钢和硼钢 长期以来,我国载货汽车齿轮使用最普遍的钢种是20CrMnTi。这是上世纪50年代我国从原苏联引进的中型的汽车齿轮18XTr钢种(即20CrMnTi钢)。该钢晶粒细,渗碳时晶粒长大倾向小,具有良好的渗碳淬火性能,渗碳后可直接淬火。文献指出,在1980年以前,我国的渗碳合金结构钢(包括20CrbinTi钢)在钢材出厂时只保证钢材的化学成分和用样品测定的力学性能,但是在汽车生产时常常出现化学成分和力学性能合格的钢材,由于淬透性能波动范围过大而影响产品质量的情况。例如若20CrMnTi渗碳钢的淬透性过低,则制成的齿轮渗碳淬火后,心部硬度低于技术条件规定的数值,疲劳试验时,齿轮的疲劳寿命降低一半;若淬透性能过高,则齿轮渗碳淬火后内孔收缩量过大而影响齿轮装配。 由于钢材淬透性能对轮齿心部的硬度和畸变都有极其重大的影响,1985年冶金部颁布了我国的保证淬透性结构钢技术条件(GB5216-85),在此技术条件中列入了包括20CxMnTiH、20MnVBH钢在内的10种渗碳钢的化学成分、淬透性能数据。标准中规定:用于制造齿轮的20CrMnTi钢的淬透性能指标为距水冷端9咖处的硬度为30-42HRC。在此之后,采用20CrMnTi钢生产齿轮的齿心部硬度过低和畸变过大的问题基本上得到了解决。但是不管齿轮模数大小和钢材截面粗细均采用同一钢号20CrMnTi钢显然是不合理的。近年来,由于我国钢材冶炼技术水平的提高以及合金结构钢供应情况的改善,已经有条件把齿轮钢的淬透性能带进一步缩窄,并根据不同产品(如变速器齿轮与后桥齿轮等)的要求开发新的钢种以满足其要求。 通过与钢厂协商,1997年长春一汽先后与生产齿轮钢厂的生产厂家签定了将20CrMnTi 钢淬透性能分挡供应的协议,例如“解放”牌5t载货汽车上用于制造截面尺寸较小的变速

马氏体钢的焊接技巧

马氏体钢的焊接技巧 马氏体钢(MS—MartensiticSteel)的显微组织几乎全部为马氏体组织。其具有较高的抗拉强度,其最高强度可达1600MPa,需进行回火处理以改善其塑性,使其在如此高的强度下,仍具有足够的成形性能,是目前商业化高强度钢板中强度级别最高的钢种。 马氏体钢有两类:一类是简单的Cr13系列钢,例如1Cr13、2Cr13、3Cr13、4Cr13等;另一类是为了提高热强性,以Cr12为基础,加入W、Mo、V、Ti、Nb等元素的多元合金强化的马氏体钢,例如1Cr11MoV、1Cr12WMoV钢等。马氏体钢具有较强的淬火倾向,一般由高温奥氏体空冷即可淬火,形成马氏体组织。但含碳量低的1Cr13经淬火处理后具有马氏体加铁素体组织,属于半马氏体钢。在上述两类马氏体钢中,前者主要用于一般耐蚀条件(如大气、海水及硝酸等)和要求一定强度的构件,后者主要用于作热强钢。 一、马氏体钢的焊接性 马氏体钢淬硬倾向很大。在空冷的条件下能产生高硬度的马氏体组织,在所有的不锈钢和高合金耐热钢中其焊接性最差,焊接时容易产生以下问题: 1、焊接冷裂纹 这是马氏体钢很突出的问题。这一方面与其淬硬性大有关,另一方面也与马氏体导热性差,能引起较大的焊接内应力有关,特别是含碳量比较高的钢和刚性比较大的焊接结构很容易产生焊接冷裂纹,因此,一般都需要采取预热和焊后热处理等措施。 2、焊接接头脆化 (1)近缝区过热脆化 多数马氏体钢由于其成分特点,其组织往往处于马氏体-铁素体的交界处。当冷却速度较大时,近缝区能产生粗大的马氏体组织,使接头塑性下降;当冷却速度较小时,则产生粗大的块状铁素体和碳化物组织,使接头的塑形更显著下降,因此焊接时应注意控制冷却速度。 (2)回火脆化 马氏体钢及其焊接接头在375~575℃的范围内加热并逐渐冷却时,能产生比较明显的断裂韧性降低现象。这是由回火脆化引起的,因此热处理时应避开回火脆化温度区。 二、马氏体钢的焊接工艺要点 1、焊接方法 马氏体钢可采用除气焊以外的所有熔焊方法进行焊接,例如焊条电弧焊、埋弧焊、钨极氩弧焊、熔化极氩弧焊等。由于这种钢具有很大的冷裂敏感性,焊前必须严格清理焊件、烘

热处理非马

1.问:为什么我厂的台车炉子中淬火炉没有风扇而回火炉有风扇呢这和传热是否有关系呢?我之前看到有人说淬火炉温度高,主要靠辐射传热,可以不装风扇,但装了 炉温更均匀.回火炉温度低,主要靠对流传热,一定要装风扇才能保证炉温均匀.不知道对不对所以才发出这个疑问到底和温度有无关系? 传热方式与炉型有关,和温度没关系?这个不应该是这样的吧,传热方式都希望是强对流的,那样传热速度快,炉温也均匀,但出于叶轮材质高温热强性考虑,对于空气电炉,淬火加热时候叶轮在此温度时负载很大,寿命很短,所以一般像台车炉这样的空气加热炉是不能装风机的,而采用保护气氛加热的就可以了,那是因为保护气氛一般都是氮气或是氢气或渗碳气氛,在高温时气流密度较低,风机运转负载相对较小,所以可以安装风机。 所以,对流方式的选择是根据工艺要求,保护气氛类型及相对的温度来确定的。。。。 2.经常看到热处理人员为保护气氛、渗碳质量(碳势不稳定、内氧化、黑色组织、非马组织、表面硬度低)而发忧! 工艺参数、原料气源、碳势控制系统(探头等)、设备好坏、材料化学成分等那些影响因素比较大? 一般出现非马,往往是空气流量给的太大。黑色组织的话建议去查查甲醇含水量是否超标。 PS:“非马”即非马组织。简而言之,非马组织是指马氏体以外的其它组织,如铁素体、珠光体、贝氏体、残余奥氏体、魏氏组织等。平常所说的非马组织是指渗碳淬火工艺过程的一种缺陷组织。这种组织是由于渗碳介质中氧向钢中扩散,在晶界上形成Cr、Mn等元素的氧化物,致使该处合金元素贫化,淬透性降低,淬火后出现黑色网状组织(托氏体)。 所谓黑色组织系指气体碳氮共渗工艺过程易出现的一种缺陷组织,根据其形状和分布状态,有黑点、黑网和黑带之分。黑点又成为黑色斑点状组织,因在抛光而未经腐蚀的试样上呈斑点状而得名,位于表层0.10mm以内。在氮势很高的气氛中进行碳氮共渗时易出现。黑色斑点状组织主要有大小不等的孔洞所组成,某些空洞中可能存在石墨与氧化物夹杂。在浸蚀后的金相试样上观察到的黑网和黑带,主要由屈氏体、贝氏体等非马氏体组织组成,有时,在共渗表层内呈带状,有时沿奥氏体晶界呈网状,有时出现在粒状化合物的周围。 综上所述,非马组织与黑色组织在本质上都是与内氧化有关,亦即二者是在不同条件下形成的不同形态的内氧化。所谓内氧化是在热处理过程中,介质中生成的氧沿工件表层的晶界扩散,发生晶界合金元素的氧化过程。但人们常在化学热处理中使用“非马组织”和“黑色组织”这两个概念,而在普通热处理中使用“内氧化”概念。 不管是非马组织还是黑色组织,其产生的原因都是因为淬透性差导致,所以如何弥补这个在过程中产生的先天不足,可以通过控制过程冷速或后期提高碳势来实现,一般碳势过低时,工件内氧化的程度会增加,因为炉内气氛存在氧势,也就是有一定的氧分压,碳势过低时,相应氧势就高,在工件表面就会发生由外而内的氧扩散,加速了内氧化的过程,也就是非马层过厚,同时所谓的内氧化就是将工件表层中的合金元素与氧结合析出,造成基体的淬透性过低,在淬火时形成托氏体(黑色),所以提高冷速在一定程度上会降低非马的产生。不知我解释的对不对,请指点 3.强渗后扩散阶段现在看到好多工艺是降温扩散,比如:930度强渗,900度扩散,扩散速度是与温度有较强关系,降温扩散的目的是什么?在什么时候应该采取?有什么优点?请讨论 渗碳后期的扩散是针对前期的强渗而言。主要目的是调整工件表面碳浓度和浓度梯

马氏体的形态及成因

马氏体的形态及成因 马氏体的形态及成因: 一、三维形貌及结构: 1.板条位错型。一般呈束(排)分布,内部存在高密度位错。 2.片状孪晶型。一般呈交叉针状分布,其中含碳量≥1.4%即惯态面为{259}r者有中脊,呈“之”字状,即有爆发性发展的特征。 3.钢中含碳量对马氏体三维形貌及亚结构的影响:马氏体含碳量≤0.6%为板条位错型,马氏体含碳量≥1.4%为片状孪晶型,两者之间为混合型。这是理论上的马氏体形态,与实际的情况有区别。 二、二维形貌及结构: 1.板条马氏体在光学显微镜下成一排,具有黑白差。所以在光学显微镜有时呈现黑白交替排列的现象。 ⑴成束分布的现象十分明显,长度几乎可惯穿母相晶粒,且排的宽度宽(包含的板条多)。 ⑵板条一小束平行相连,形成以束为单位的平行相连的黑白差(3%的硝酸酒精溶液正确浸蚀下)。 ⑶黑白差相对较大。深色的马氏体是先形成的马氏体,是受到严重的自回火的马氏体,所以呈深色。在金相上评定淬火马氏体的级别以最深的马氏体为准。由于含碳量低,切变造成惯态面破坏情况轻微,所以马氏体连在一起成为平行相连。 2.中碳马氏体的特征: ⑴成束分布的现象在正常淬火后不十分明显,高温淬火后才几乎可贯穿母相晶粒,且排的宽度窄(即包含的板条少)。 ⑵板条一小束平行相间,形成以束为单位的平行相间的黑白差。 ⑶黑白差相对较小。 3.高碳马氏体的特征(高碳钢中的马氏体不等于高碳马氏体): ⑴马氏体呈明显的针叶状。 ⑵次生马氏体从先生成马氏体针叶间开始生长,并与之呈60°的夹角。 ⑶后生成的马氏体小于先生成的马氏体,且不能穿越奥氏体晶界。 ⑷马氏体针叶上有微观裂纹,若金相磨面正好剖过马氏体针叶,精细观察可见裂纹。 四、马氏体黑白差的原因: 1.由于成份来不及扩散均匀所形成的区域性黑白差。原铁素体区域碳浓度低,得到较多的板条马氏体(黑色);原珠光体区域碳浓度高,得到片状马氏体(白色)。 2.由于在Ms以下等温分级淬火所致。 3.由于高碳合金钢中球、粒状碳化物分布不均匀所致。 4.由于钢中成份不均匀所致。如铬在钢中的分配系数为1:28,即1份溶入基体,28份形成碳化物。所以,铬钢加热时存在较多碳化物,其周围贫碳区域淬火时形成低碳马氏体,颜色较深。因此,像40Cr这类钢一般就不应该进行退火处理(退火时基体中的铬向碳化物聚集形成碳化物,其周围基体贫碳,退火缓冷有利于铬的聚集,所以一般不能退火)。

螺栓强度等级分类标准2010

钢结构连接用螺栓性能等级 钢结构连接用螺栓性能等级分3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9等10余个等级,其中8.8级及以上螺栓材质为低碳合金钢或中碳钢并经热处理(淬火、回火),通称为高强度螺栓,其余通称为普通螺栓。螺栓性能等级标号有两部分数字组成,分别表示螺栓材料的公称抗拉强度值和屈强比值。例如,性能等级4.6级的螺栓,其含义是: 1、螺栓材质公称抗拉强度达400MPa级; 2、螺栓材质的屈强比值为0.6; 3、螺栓材质的公称屈服强度达400×0.6=240MPa级性能等级10.9级高强度螺栓,其材料经过热处理后,能达到: 1、螺栓材质公称抗拉强度达1000MPa级; 2、螺栓材质的屈强比值为0.9; 3、螺栓材质的公称屈服强度达1000×0.9=900MPa级 螺栓性能等级的含义是国际通用的标准,相同性能等级的螺栓,不管其材料和产地的区别,其性能是相同的,设计上只选用性能等级即可。强度等级所谓8.8级和10.9级是指螺栓的抗剪切应力等级为8.8GPa和10.9Gpa 8.8公称抗拉强度800N/MM2 公称屈服强度640N/MM2 一般的螺栓是用"X.Y"表示强度的, X*100=此螺栓的抗拉强度,

X*100*(Y/10)=此螺栓的屈服强度 (因为按标识规定:屈服强度/抗拉强度=Y/10) =============== 如4.8级 则此螺栓的 抗拉强度为:400MPa 屈服强度为:400*8/10=320MPa ================= 另:不锈钢螺栓通常标为A4-70,A2-70的样子,意义另有解释度量 当今世界上长度计量单位主要有两种,一种为公制,计量单位为米(m)、厘米(cm)、毫米(mm)等,在欧州、我国及日本等东南亚地区使用较多,另一种为英制,计量单位主要为英寸(inch),相当于我国旧制的市寸,在美国、英国等欧美国家使用较多。 1、公制计量:(10进制) 1m =100 cm=1000 mm 2、英制计量:(8进制) 1英寸=8英分 1英寸=25.4 mm 3/8¢¢×25.4 =9.52 3、1/4¢¢以下的产品用番号来表示其称呼径,如: 4#, 5#, 6#, 7#, 8#, 10#, 12# 螺纹 一、螺纹是一种在固体外表面或内表面的截面上,有均匀螺旋线

奥氏体马氏体铁素体的区别

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 奥氏体/马氏体/铁素体 奥氏体(钢的组别:A1, A2, A3 A4, A5)(性能等级:50软,70冷加工,80高强度) 马氏体(钢的组别:C1,C2,C3) (性能等级:50软,70、110淬火并回火,80淬火并回火) 铁素体(钢的组别:F1) (性能等级:45软,60冷加工) 马氏体不锈钢属于铬不锈钢。由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。 铁素体不锈钢也属于铬不锈钢。含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。主要用于制作化工设备中的容器、管道。 奥氏体不锈钢属于铬镍不锈钢。具有很高的耐蚀性,优良的塑性,良好的焊接性及低温韧性,不具有磁性,易加工硬化。主要用于在腐蚀介质中工作的零件、容器、管道、医疗器械以及抗磁环境中。 奥氏体 奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。它仍保持γ-Fe的面心立方晶格。其溶碳能力较大,在727℃时溶碳为ωc= 0.77%,1148℃时可溶碳2.11%。奥氏体是在大于727℃高温下才能稳定存在的组织。奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。奥氏体是没有磁性的。 马氏体分级淬火 是将奥氏体化工件先浸入温度稍高或稍低于钢的马氏体点的液态介质(盐浴或碱浴)中,保持适当的时间,待钢件的内、外层都达到介质温度后取

出空冷,以获得马氏体组织的淬火工艺,也称分级淬火。分级淬火由于在分级温度停留到工件内外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。 马氏体不锈钢 通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。典型牌号为Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。粹火后硬度较高,不同回火温度具有不同强韧性组合,主要用于蒸汽轮机叶片、餐具、外科手术器械。根据化学成分的差异,马氏体不锈钢可分为马氏体铬钢和马氏体铬镍钢两类。根据组织和强化机理的不同,还可分为马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体时效不锈钢等。 马氏体就是以人命命名的: 对于学材料的人来说,“马氏体”的大名如雷贯耳,那么说到阿道夫·马滕斯又有几个人知道呢?其实马氏体的“马”指的就是他了。在铁碳组织中这样以人名命名的组织还有很多,今天我们就来说说这些名称和它们背后那些材料先贤的故事。 马氏体Martensite,如前所述命名自Adolf Martens (1850-1914)。这位被称作马登斯或马滕斯的先生是一位德国的冶金学家。他早年作为一名工程师从事铁路桥梁的建设工作,并接触到了正在兴起的材料检验方法。于是他用自制的显微镜(!)观察铁的金相组织,并在1878年发表了《铁的显微镜研究》,阐述金属断口形态以及其抛光和酸浸后的金相组织。(这个工作我们现在做的好像也蛮多的。)他观察到生铁在冷却和结晶过程中的组织排列很有规则(大概其中就有马氏体),并预言显微镜研究必将成为最有用的分析方法之一(有远见)。他还曾经担任了柏林皇家大学附属机械工艺研究所所长,也就是柏林皇家材料试验所("Staatliche Materialprüfungsamt")的前身,他在那里建立了第一流的金相试验室。1895年国际材料试验学会成立,他担任了副主席一职。直到现在,在德国依然有一个声望颇高的奖项以他的名字命名

马氏体不锈钢简介

马氏体不锈钢 1、什么是不锈钢 不锈钢(Stainless Steel)是不锈耐酸钢的简称,耐空气、蒸汽、水等弱腐蚀介质或具有不锈性的钢种称为不锈钢;而将耐化学介质腐蚀(酸、碱、盐等化学浸蚀)的钢种称为耐酸钢。由于两者在化学成分上的差异而使他们的耐蚀性不同,普通不锈钢一般不耐化学介质腐蚀,而耐酸钢则一般均具有不锈性。 2、分类 不锈钢常按组织状态分为:马氏体钢、铁素体钢、奥氏体钢、奥氏体-铁素体(双相)不锈钢及沉淀硬化不锈钢等。另外,可按成分分为:铬不锈钢、铬镍不锈钢和铬锰氮不锈钢等。 1、铁素体不锈钢:含铬12%~30%。其耐蚀性、韧性和可焊性随含铬量的增加而提高,耐氯化物应力腐蚀性能优于其他种类不锈钢。属于这一类的有Crl7、Cr17Mo2Ti、Cr25,Cr25Mo3Ti、Cr28等。铁素体不锈钢因为含铬量高,耐腐蚀性能与抗氧化性能均比较好,但机械性能与工艺性能较差,多用于受力不大的耐酸结构及作抗氧化钢使用。这类钢能抵抗大气、硝酸及盐水溶液的腐蚀,并具有高温抗氧化性能好、热膨胀系数小等特点,用于硝酸及食品工厂设备,也可制作在高温下工作的零件,如燃气轮机零件等。 2、奥氏体不锈钢:含铬大于18%,还含有8%左右的镍及少量钼、钛、氮等元素。综合性能好,可耐多种介质腐蚀。奥氏体不锈钢的常用牌号有1Cr18Ni9、0Cr19Ni9等。0Cr19Ni9钢的Wc<0.08%,

钢号中标记为“0”。这类钢中含有大量的Ni和Cr,使钢在室温下呈奥氏体状态。这类钢具有良好的塑性、韧性、焊接性和耐蚀性能,在氧化性和还原性介质中耐蚀性均较好,用来制作耐酸设备,如耐蚀容器及设备衬里、输送管道、耐硝酸的设备零件等。奥氏体不锈钢一般采用固溶处理,即将钢加热至1050~1150℃,然后水冷,以获得单相奥氏体组织。 3、奥氏体- 铁素体双相不锈钢:兼有奥氏体和铁素体不锈钢的优点,并具有超塑性。奥氏体和铁素体组织各约占一半的不锈钢。在含C较低的情况下,Cr含量在18%~28%,Ni含量在3%~10%。有些钢还含有Mo、Cu、Si、Nb、Ti,N等合金元素。该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。与奥氏体不锈钢相比,强度高且耐晶间腐蚀和耐氯化物应力腐蚀有明显提高。双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。 4、马氏体不锈钢:强度高,但塑性和可焊性较差。马氏体不锈钢的常用牌号有1Cr13、3Cr13等,因含碳较高,故具有较高的强度、硬度和耐磨性,但耐蚀性稍差,用于力学性能要求较高、耐蚀性能要求一般的一些零件上,如弹簧、汽轮机叶片、水压机阀等。这类钢是在淬火、回火处理后使用的。 5、沉淀硬化不锈钢:基体为奥氏体或马氏体组织,沉淀硬化不锈钢的常用牌号有04Cr13Ni8Mo2Al等。其能通过沉淀硬化(又称

1高强度钢中马氏体时效钢的综述

上海大学2010~2011学年冬季学期研究生课程考试 小论文 课程名称:汽车刚强度钢板研究课程编号:101101909 论文题目: 高强度钢中马氏体时效钢的综述 研究生姓名: 尹学号: 10721 论文评语: 成绩: 任课教师: 评阅日期:

高强度钢中马氏体时效钢的综述 摘要马氏体时效钢是以无碳( 或超低碳) 铁镍马氏体为基体的经时效生产金属间化合物沉淀硬化的。超高强度钢。该钢在高强度时效处理前具有良好的成形性,时效处理几乎不变形,时效处理后有高强韧性。文中论述了典型Ni2Co2Mo2Ti2Al 马氏体时效钢和Ni2Mo2Ti(2Cr2Al) 无钴马氏体时效钢的化学成分和力 学性能,阐述了马氏体时效钢在400~500 ℃时效时马氏体基体内产生大量强化效果极高、韧性损失极小的金属间化合物沉淀相的时效结构和强化机制,以及Ni、Co、Mo、Cr、Mn、Ti 等元素在马氏体时效钢中的合金化作用。概述了马氏体时效钢的生产工艺,应用和发展趋向。 关键词马氏体时效钢;沉淀析出;强化机制;力学性能 The description of ultrahigh strength steel -Maraging steel Abstract Maraging steel is a kind of ultrahigh strength steel strengthened by ageing precipitation hardening of intermetallics in carbon2free or extra2low carbon ferronickel martensite matrix. It has excellent formability before ageing treatment and almost non2deforming during ageing , after ageing the steel has high strength and toughness. The chemical compositions and mechanical properties of typical Ni2Co2Mo2Ti2Al maraging steel and Ni-Mo-Ti (-Cr-Al) cobalt-free maraging steel are reviewed,and the ageing structure and strengthening mechanism of mass intermetallics precipitation phases produced in martensite matrix of maraging steel ageing at 400-500℃ which has high strengthening effect and minimal toughness loss and the alloying effect of alloy elements such as Ni ,Co ,Mo ,Cr ,Mn and Ti in maraging steel are presented in this article.The production process, application and developing trend of maraging steel are also summarized. Keyword:Maraging Steel; Precipitation; Strengthening Mechanism;Mechanical Properties 一、引言 1.1超高强度钢的背景 超高强度钢一般是指屈服强度大于1380MPa的高强度结构钢。20世纪40年代中期,美国用AISI4340结构钢通过降低回火温度,使钢的抗拉强度达到1600-1900MPa。马氏体时效钢强化作用是通过马氏体相变和等温时效析出金属间化合物Ni3Mo来达到的。马氏体时效钢的基本化学成分是18%Ni-8%Co-5%Mo。随着钛含量从0.20%提高到1.4%,屈服强度可以在1375-2410MPa之间变化。为了获得高韧性,应尽量降低钢中的磷、硫、碳和氮含量。 除了广泛应用的AF1410等二次硬化超高强度钢之外,为了获得更高的强度和韧性配合,美国SRG在二次硬化钢的物理冶金学研究基础上,开发了高洁净度的AerMet钢。高洁净度保证Aer-Metl00钢(0.23%C-3%Cr-11.1%Ni-13.4%Co-1.2%Mo)具备目前最佳的强度和韧性配合。AerMet310(0.25%C-2.4%Cr-11%Ni-15%Co-1.4%Mo)是最近Carpenter公司在AerMetl00的基础上开发的高强高韧钢。与AerMetl00相同,AerMet310也是双真空冶炼的含镍钴钢,它具有良好的韧性和塑性。AerMet310的抗拉强度是2172MPa,比AerMetl00高出200MPa。与Marage300相比,AerMet310的屈强比较小,因而可在断裂前吸收较多的塑

钢的淬透性的测定

端淬试验机测定钢淬透性的方法 一、试验要求 1.了解测定淬透性的一般方法; 2.熟悉并利用端淬试验法测定钢的淬透性; 3.建立淬透性的概念及对热处理工艺的作用。 二、试验原理 钢的淬透性是表示钢获得马氏体的能力,是钢本身所固有的属性。 淬透性与淬硬性是两个概念,淬硬性是钢的表面由于马氏体转变所能得到最大硬度,它与钢的含碳量有关。 在生产实践中人们通常把工件表面到半马氏体组织区域的深度作为淬透层深度。钢的淬透性与淬火临界冷却速度有着密切的关系,而淬火临界冷却速度的大小又取决于钢的过冷奥氏体的稳定性,因此,凡是影响过冷奥氏体稳定性的诸因素,都会影响钢的淬透性。 淬透性的大小对钢材热处理的机械性能有很大的影响。如果工件被淬透了,则表里的组织和性能均匀一致,能充分发挥钢的机械性能的潜力,如工件未淬透,则表面的组织和性能存在差异,经回火后的屈服强度和冲击韧性较低。造成这种差别的重要原因在于:在淬火时,中心未淬透部分形成了非马氏体组织,回火后仍保持其片状组织特性;而在表面获得马氏体的部分,经回火后为粒状碳化物分布在铁素体基体上的混合组织,综合性能较好。 由上所述,淬透性的大小对钢材的合理选用及热处理工艺的正确制定都是十分重要的。 目前,测定钢的淬透性方法很多,常用的方法有两种: 三、淬透性的测定

1.断口法: 从淬透层和未淬透层的宏观断口观察,可以较明显的分成两部分,淬透层呈暗黑色。从硬度分布来看,因为碳钢的半马氏体区的硬度与碳含量有关(合金钢的半马氏体硬度一般比碳钢略高一些)见表1 不同含碳量半马氏体区硬度 表一 含碳量% 半马氏体区硬度HRC 含碳量% 半马氏体区硬度HRC 0.1 0.2 0.3 0.4 0.5 — 32 35 39 44 0.6 0.7 0.8 0.9 1.0 47 51 53 54 — 在同样尺寸同样冷却条件下,通过硬度测定,可以测出不同钢由表层至至中心的硬度分 布情况,比较它们截面上硬度分布曲线,就可以知道它们淬透层的深度及淬透性的好坏,图1为φ50毫米的40Cr 钢与40#钢水淬后的截面硬度分布曲线。

马氏体相变

马氏体相变 目录[隐藏] 马氏体相变 相变特征和机制 马氏体的惯习(析)面 马氏体相变的可逆性 马氏体转变的温度-时间关系 工业应用 马氏体相变的研究 参考书目: [编辑本段] 马氏体相变 马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能使钢变硬、增强的一种淬火组织。1895年法国人奥斯蒙(F.Osmond)为纪念德国冶金学家马滕斯(A.Martens),把这种组织命名为马氏体(Martensite)。人们最早只把钢中由奥氏体转变为马氏体的相变称为马氏体相变。20世纪以来,对钢中马氏体相变的特征累积了较多的知识,又相继发现在某些纯金属和合金中也具有马氏体相变,如:Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、Zr、和Ag-Cd、A g-Zn、Au-Cd、Au-Mn、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。目前广泛地把基本特征属马氏体相变型的相变产物统称为马氏体(见固态相变)。 [编辑本段] 相变特征和机制 马氏体相变[1]具有热效应和体积效应,相变过程是形核和长大的过程。但核心如何形成,又如何长大,目前尚无完整的模型。马氏体长大速率一般较大,有的甚至高达10cm·s。人们推想母相中的晶体缺陷(如位错)的组态对马氏体形核具有影响,但目前实验技术还无法观察到相界面上位错的组态,因此对马氏体相变的过程,尚不能窥其全貌。其特征可概括如下: 马氏体相变是无扩散相变之一,相变时没有穿越界面的原子无规行走或顺序跳跃,因而新相(马氏体)承袭了母相的化学成分、原子序态和晶体缺陷。马氏体相变时原子有规则地保持其相邻原子间的相对关系进行位移,这种位移是切变式的(图1)。原子位移的结果产生点阵应变(或形变)(图2)。这种切变位移不但使母相点阵结构改变,而且产生宏观的形状改变。将一个抛光试样的表面先划上一条直线,如图3a 中的PQRS,若试样中一部分(A1B1C1D1-A2B2C2D2)发生马氏体相变(形成马氏体),则PQRS直线就折成PQ、QR'及R'S'三段相连的直线,两相界面的平面A1B1C1D1及A2B2C2D2保持无应变、不转动,称惯习(析)面。这种形状改变称为不变平面应变(图3)。形状改变使先经抛光的试样表面形成浮突。由图4可见,高碳钢马氏体的表面浮突,它可由图5示意,可见马氏体形成时,与马氏体相交的表面上发生倾动,在干涉显微镜下可见到浮突的高度以及完整尖锐的边缘(图6)。

螺栓强度等级对照表

钢结构连接用螺栓性能等级分3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9等10余个等级,其中8.8级及以上螺栓材质为低碳合金钢或中碳钢并经热处理(淬火、回火),通称为高强度螺栓,其余通称为普通螺栓。螺栓性能等级标号有两部分数字组成,分别表示螺栓材料的公称抗拉强度值和屈强比值。例如,性能等级4.6级的螺栓,其含义是: 1、螺栓材质公称抗拉强度达400MPa级; 2、螺栓材质的屈强比值为0.6; 3、螺栓材质的公称屈服强度达400×0.6=240MPa级性能等级10.9级高强度螺栓,其材料经过热处理后,能达到: 1、螺栓材质公称抗拉强度达1000MPa级; 2、螺栓材质的屈强比值为0.9; 3、螺栓材质的公称屈服强度达1000×0.9=900MPa级 螺栓性能等级的含义是国际通用的标准,相同性能等级的螺栓,不管其材料和产地的区别,其性能是相同的,设计上只选用性能等级即可。强度等级所谓8.8级和10.9级是指螺栓的抗剪切应力等级为8.8GPa和10.9Gpa 8.8公称抗拉强度800N/MM2 公称屈服强度640N/MM2 一般的螺栓是用"X.Y"表示强度的, X*100=此螺栓的抗拉强度, X*100*(Y/10)=此螺栓的屈服强度 (因为按标识规定:屈服强度/抗拉强度=Y/10)

=============== 如4.8级 则此螺栓的 抗拉强度为:400MPa 屈服强度为:400*8/10=320MPa ================= 另:不锈钢螺栓通常标为A4-70,A2-70的样子,意义另有解释度量 当今世界上长度计量单位主要有两种,一种为公制,计量单位为米(m)、厘米(cm)、毫米(mm)等,在欧州、我国及日本等东南亚地区使用较多,另一种为英制,计量单位主要为英寸(inch),相当于我国旧制的市寸,在美国、英国等欧美国家使用较多。 1、公制计量:(10进制) 1m =100 cm=1000 mm 2、英制计量:(8进制) 1英寸=8英分 1英寸=25.4 mm 3/8¢¢×25.4 =9.52 3、1/4¢¢以下的产品用番号来表示其称呼径,如: 4#, 5#, 6#, 7#, 8#, 10#, 12# 螺纹 一、螺纹是一种在固体外表面或内表面的截面上,有均匀螺旋线凸起的形状。根据其结构特点和用途可分为三大类:

螺丝等级的划分标准

1).钢结构连接用螺栓性能等级分 3.6 、4.6、4.8 、5.6 、6.8、8.8 、 9.8 、10.9 、12.9 等 10 余个等级。 2).8.8 级及以上螺栓材质为低碳合金钢或中碳钢并经热处理(淬火 + 回火),通称为高强度螺栓,其余为普通螺栓。 3).螺栓性能等级标号有两部分数字组成,分别表示螺栓材料的公称 抗拉强度值和屈强比值。 螺栓性能等级的含义是国际通用的标准,相同性能等级的螺栓,不管其材料和产地 的区别,其性能是相同的。 螺栓是用 "X.Y" 的格式表示其强度, X*100= 此螺栓的抗拉强度, X*100* ( Y/10)=此螺栓的屈服强度 强度等级所谓8.8 级和 10.9 级是指螺栓的抗剪切应力等级为 8.8GPa 和 10.9Gpa ,8.8 的公称抗拉强度800N/MM^2 公称屈服强度640N/MM^2 例: 1).性能等级 4.6 级的螺栓,其含义是:该螺栓的材质公称抗拉强度 达400MPa 级别,螺栓材质的屈强比值为 0.6,该螺栓材质的公称屈服强度达 400×0.6=240MPa 2).性能等级 10.9 级高强度螺栓,其含义是:该螺栓材质公称抗拉 强度达 1000MPa 级别;螺栓材质的屈强比值为0.9 ,该螺栓材质的 公称屈服强度达1000×0.9=900MPa

不锈钢螺栓通常标为A4-70 ,A2-70 的样子,涵义另有解释,见 后文,螺钉的材料。 尺寸度量 当今世界上长度计量单位主要有两种,一种为公制,计量单位为米 (m)、厘米( cm)、毫米( mm)等,在欧州、中国,日本及东南亚地区使用较多,另一种为英制,计量单位主要为英寸( inch),在美国、英国及其原殖民地国家使用较多。 1).公制计量:( 10 进制) 1m =100 cm=1000 mm 2).英制计量:( 8 进制) 1 英寸=8 英分 1 英寸=25.4 mm 3/8 ¢¢×25.4 =9.52 3).1/4 ¢以下的产品用番号来表示其称呼径,如:4#, 5#, 6#, 7#, 8#, 10# , 12# 螺栓表面的螺纹及其分类 螺纹是一种在固体外表面或内表面的截面上,有均匀螺旋线凸起 的形状。根据其结构特点和用途可分为三大类: 1) .普通螺纹:牙形为三角形,用于连接或紧固零件。普通螺纹 按螺距分为粗牙和细牙螺纹两种,细牙螺纹的连接强度较高。 2) .传动螺纹:牙形有梯形、矩形、锯形及三角形等。 3) .密封螺纹:用于密封连接,主要是管用螺纹、锥螺纹与锥管 螺纹。 螺纹配合等级:

渗碳层有效层标准修订事项说明2013.3.23

关于《拖拉机渗碳齿轮金相检验》标准修订的说明 一、有关渗碳齿轮金相检验标准 1.意大利菲亚特公司标准: 经过表面渗碳硬化热处理的齿轮零件的机械性能和组织特征检验方法(Q.NL/0025) A.表面硬度HRC58~60 心部硬度HRC33.5~43.5 (检测部位齿根圆) B.层深有效硬化层深(硬度法),测至525HV5处。齿根有效硬化层深应 不小于节圆所示深度的70%。 C.表面非马氏体层深≤0.01mm。 D.金相组织检测6项:碳化物、残余奥氏体、心部铁素体、氧化层、贝氏 体、显微裂纹。 2 . 汽车行业渗碳齿轮检验标准: 1)汽车渗碳齿轮金相标准BR5-74 (参照50-60年代前苏联标准) A.硬度按产品图心部硬度检测部位2/3齿高处 B. 层深渗碳层深法(金相法) C. 表面非马氏体层深无规定。 D.金相组织检测4项:碳化物、残余奥氏体、马氏体、心部铁素体。 2)汽车渗碳齿轮金相检验ZB T04 001-88 A.硬度按产品图心部硬度检测部位齿根圆 B.层深有效硬化层深法测至515HV5或550HV1处。 C. 表面非马氏体层深≤0.02mm。 D. 金相组织检测3项:碳化物、残余奥氏体、马氏体。 3)汽车渗碳齿轮金相检验QC/T262-1999

A.硬度按产品图心部硬度检测部位齿根圆 B.层深有效硬化层深法测至515HV5或550HV1处。 C.表面非马氏体层深按“齿轮材料及热处理质量检验的一般规定”GB 8539 D. 金相组织检测3项:碳化物、残余奥氏体、马氏体。 3.重载渗碳齿轮标准: 重载齿轮渗碳质量检验JB/T6141.2-1992 重载齿轮渗碳金相检验JB/T6141.3-1992 A.表面硬度HRC58~62 心部硬度HRC30~46(检测部位齿根圆) B.层深有效硬化层深法测至550HV1(或HRC 52)处。允许齿根部位的 有效硬化层深度比节圆处小15%。 C.金相组织检测4项:碳化物、残余奥氏体、马氏体、心部铁素体。 4 .拖拉机渗碳齿轮检验标准: 1)拖拉机渗碳齿轮金相检验标准:YTQ310.5-90 A. 硬度按产品图心部硬度检测部位2/3齿高处 B. 层深渗碳层深法(金相法) C. 表面非马氏体层深无规定。 D.金相组织检测3项:碳化物、残余奥氏体、心部铁素体。 2)新修订的拖拉机渗碳齿轮检验标准:Q/YT 310.5-2008 A. 硬度按产品图心部硬度检测部位齿根圆 B. 层深有效硬化层深法,测至515HV5或550HV1处。 C. 表面非马氏体层深≤0.04mm。 D.金相组织检测3项:碳化物、残余奥氏体、心部铁素体。

s11306属于铁素体还是马氏体分析

老牌号0Cr13、新牌号06Cr13是基本的铬不锈钢。此牌号的不锈钢类型,国外不锈钢标准中有的称为铁素体不锈钢,有的称为马氏体不锈钢。 国内不锈钢标准中也有时称为铁素体不锈钢,有时称为马氏体不锈钢。国内现行不锈钢标准中也同时存在这两种不锈钢类型的名称,一般不锈钢标准中称为马氏体不锈钢,而承压不锈钢板和锻件标准中称为铁素体不锈钢。本文对此进行了分析。 1、不锈钢标准中规定0Cr13的不锈钢类型 对于0Cr13而言,影响铬当量的合金元素有铬、硅,影响镍当量的合金元素有碳、氮、锰、镍。硫和磷虽然也是铁素体形成元素,但它们对铬当量的影响很小,钢中含量也很少,因而对组织的影响可以忽略不计。材料标准中一般没有标注对氮的限制,可认为其含量≤0.04%。各国不锈钢标准中对主要合金元素含量、不锈钢类型及可进行的热处理类型列于表1。由表1可见: ①国际、欧洲各国与欧盟标准中均说明为铁素体型不锈钢,美、日为马氏体型不锈钢。中国20世纪50年代到70年代的不锈钢标准主要参照前苏联标准,定为铁素体不锈钢。80年代及以后的中国不锈钢标准主要参照美、日不锈钢标准(80年代主要参照日本标准),至今不锈钢标准均定为马氏体不锈钢。只有承压设备用的板材标准GB24511—2009及锻件标准NB/T47010—2010中定为铁素体不锈钢;

②各国牌号中都规定C≤0.08%,只有ISO683/13:1986中规定C≤ 0.06%,此标准已被替代,现在只有GB 24511—2009及NB/T 47010—2010中规定C≤0.06%; ③各标准中均规定了在退火状态交货,因为主要在退火状态应用。有许多标准,不论规定其为铁素体型不锈钢,还是马氏体型不锈钢,均又规定可进行淬火+回火的调质处理,说明此牌号有淬透性,即高温时组织为奥氏体或部分为奥氏体,快冷后才淬硬为马氏体或部分为马氏体。.

工程材料复习题

1、材料的使用性能是指材料在使用过程中所表现出来的性能,主要包括性能、 性能和性能等。 2、材料在外力去除后不能完全自动恢复而被保留下来的变形称为变形。 3、纯铁在室温时为晶格,而加热至912℃以上则转变为晶格。 4、Fe-Fe3C相图反映了钢铁材料的组织随和变化的规律,在工程上为正确选材、用材及制定热加工工艺提供了重要的理论依据。 5、铁碳合金中的珠光体组织是由和组成的机械混合物。 6、按用途,合金钢包括钢钢和碳素铸钢三大类。 7、主要用于制造要求综合力学性能良好的机械零件、一般需经调质处理后使用的合金钢称为钢。 8、Q235A是碳钢中的,其中“235”表示,“A”表示。 9、工程上常用的特殊性能钢主要包括钢和钢两大类。 10、钢中的有害杂质元素为和,他们分别使钢产生和。 11、Al、Cu、Ni、γ-Fe等金属具有晶体结构,Cr、Mo、W、α-Fe等金属具有 晶体结构,它们均具有较好的性能。 12、钢的过冷奥氏体等温转变有体转变、体转变和体转变三个类型。13铁碳合金的基本组织有铁素体、、、、五种。 14 通常合金称为黄铜。 15、钢的调质处理是指,中碳钢调质处理后得到的组织是,其性能特点是。 16、合金渗碳钢的含碳量属碳范围,可保证钢的心部具有良好的。 17、滚动轴承钢可采用作为预先热处理,以作为最后热处理。 18、常用金属中,γ-Fe、Al、Cu 等金属具有晶格,α-Fe具有晶格。 19、金属的结晶是在过冷的情况下结晶的,冷却速度越快,过冷度,金属结晶后的晶 粒越 ,力学性能越。 20、常用的塑性指标有和。 21、实际金属中存在、、三种缺陷。 22、铁素体是碳溶于的固溶体,奥氏体是碳溶于的固溶体。 23、金属的结晶过程包括、。 24、指出下面的碳钢牌号Q235AF中字母和数字的含义:Q 、235 、 A 、F 。 25、普通热处理包括、、、。 26、碳钢按用途分可以分为、。 27、强度的常用衡量指标有和分别用符号和表示。 28、常见的金属晶格类型有、和三种. 29、500HBW5/750表示用直径为 mm,材料为球形压头,在 N压力下,保持 s,测得的布氏硬度值为 . 30、铁素体的性能特点是具有良好的和,而和很低。 31、根据溶质原子在溶剂晶格中,所处的位置不同,固溶体可分为和两种。 32、铁碳合金的基本相是、和。 33、金属材料抵抗载荷作用而能力,称为冲击韧性. 34、纯铜呈色,故又称铜,纯铜的晶体结构是。 35、马氏体的转变温度范围为其显微组织同含碳量有关,含碳量高的马氏体呈 状,含碳量低的马氏体呈状.

相关主题
文本预览
相关文档 最新文档