当前位置:文档之家› 继电保护第四章

继电保护第四章

继电保护第四章
继电保护第四章

1过电流保护和电流速断保护在什么情况下需要装设方向元件?试举例说明之?

答:在两侧电源辐射形电网或单侧电源环形电网的情况下,为实现选择性,过流保护的电流速断保护应加装方向元件。

4画出功率方向继电器90°接线,分析在采用90°接线时,通常继电器的α角取何值为好?

答:功率方向继电器90°接线如图4-2所示,通常功率方向继电器内角取30°~45°,其功率方向继电器接线方式如图4-2所示。

5在方向过电流保护中为什么要采用按相启动?

答:当电网中发生不对称短路时,非故障相仍有电流流过,此电流称为非故障相电流,非故障相电流可能使非故障相功率元件发生误动作。采用直流回路按相启动接线,将同名各相电流元件和同名功率方向元件动合触点串联后,分别组成独立的跳闸回路(图4-3),这样可以消除非故障相电流影响,因为反向故障时,故障相方向元件不会动作(2KW,3KW不动作),非故障相电流元件不会动作(1KA不动作),所以保护不会误跳闸。

6为什么方向过电流保护在相邻保护间要实现灵敏度数配合?

答:在同方向的保护,它们的灵敏系数应相互配合,方向过流保护通常作为下一段线路的后备保护,为保证保护装置动作的选择性,应使第一段线路保护动作电流大于后一段线路保护的动作电流,即沿同一保护方向,保护装置的动作电流,从距离电源最远处逐渐增大,这称为与相邻线路保护灵敏系数配合。

7试画出二相式方向过电流保护装置的接线图(原理接线图。展开接线图),并说明方向过电流保护动作电流如何整定?

答:方向过流保护两相星形接线装置原理接线如图4-4所示。

方向过流保护动作电流按下述三个条件整定:

(1)按躲过被保护线路中最大负荷电流 I L max ,,即I K K I L re rel

op max ,= (4-5)

(2)按躲过非故障相电流整定:1)小接地电流电网中,非故障相电流为负荷电流,可按式(4-5)来整定

2)大接地电流电网中,非故障相电流负荷电流

I L 外还包括故障相电流零序分量

3K I 0 ,即.I unl =I L +3K I 0(4—6)

式中K-非故障相中零序电流与故障相电流的比例系数,当单相短路时K=3

1。动作电流 I K I unl rel op = (4-7)

浅谈继电保护常见问题

浅谈继电保护常见问题 摘要:继电保护是是电网安全稳定运行的重要保证,也是电力系统中的一个非常重要组成部分。继电保护出现故障会给电力系统带来不利影响,因此,如果了解了继电保护过程中的一次常见问题,就能对这些问题的预防和解决制定好的对策,平常维护时多加注意,出现问题时也能快速地得到解决。本文主要介绍了继电保护的作用和特点,叙述了继电保护常见问题及其解决方法。 关键词:继电保护常见问题解决 1、引言 继电保护是指研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故方法。随着电力系统的不断发展,电网结构更加复杂,分布范围更为广泛,可靠性要求也越来越高,所需的各种继电保护装置也越来越多,但是继电保护装置在运行过程中本身也可能出现各种各样的问题。如果了解了继电保护过程中的一次常见问题,就能对这些问题的预防和解决制定好的对策,平常维护时有针对性的加以重视,出现问题时也能快速地得到解决。既能节约成本,又能提高效率。从而来保证电力设施的安全、经济、可靠投入运行,确保电力系统正常运转,防止事故的发生。 2、继电保护的作用和特点 2.1 继电保护的作用 2.1.1 警告作用 当电力系统设备出现异常工况或者是发生轻微故障时,继电保护装置会出现一定的信号,也即向值班人员发出警告,以便他们能够尽快发现问题,从而及时找到故障或异常工况的问题根源,并采取相应措施进行解决。 2.1.2 保护作用 继电保护最基本的作用就是保护作用,这主要体现在继电保护装置对变压器、电动机、发电机、电力电缆、电力线路、断路器、母线、电力电容器、电抗器以及其他各种电气设备运行的保护。 2.1.3 切除作用 切除作用主要是指继电保护装置可以快速地切除故障,以减少短路电流对电气设备的损害。快速切除故障的时间是保护动作时间和断路器跳闸的时间的总和,因此,为了提高切除故障的速度,应采用和断路器相一致的快速保护装置。 总之,继电保护可以为电力系统的安全性提供保障,继电保护装置能在其提供保护的电力系统元件和设备在发生故障时使迅速准确地脱离电网;能够对处于不正常状态的设备进行提示,以便得到快速处理和恢复;能够监控电力系统的运行状况,从而实现自动化。 2.2 继电保护的特点 2.2.1 监控性好 继电保护操作性监控管理好,主要体现在它的一些核心部件几乎不受外部环境变化的影响,能够产生较好的使用功率,而且能够通过计算机信息系统进行有效的监控,从而提高了设备运行的效率,降低了运行成本。 2.2.2 正确率高 继电保护之所以重要,最主要的一个原因在于其具有正确率高的特点。特别是随着现代社会的发展,在自动化运行率逐渐提高的情况下,继电设备的记忆功

输电线路微机继电保护系统设计

- 继电保护课程设计输电线路微机继电保护系统设计 学院:物理与电子电气工程 专业:电气工程及其自动化 : 学号: 摘要

输电线路继电保护是整个电力系统的重要组成部分,它的任务是快速准确地切除线路故障,保证电网安全运行。本文采用微机控制方法,对高压输电线路故障进行诊断和切除,取代传统电磁型继电保护装置。 线路保护装置采用STC12C5A60S2芯片作为控制核心,硬件电路主要包括芯片外围电路,模拟信号处理和采样电路,开关量输入输出电路,电源电路等。本文首先对整个控制系统进行软件仿真,然后再将设计应用到实际当中,阐述三段式电流保护的控制流程和软件实现方法。 关键词单片机;继电保护;整流;电流互感器

目录 1 绪论 (1) 1.1 设计背景 (1) 1.2 微机继电保护的发展趋势及特点 (1) 1.3 本文主要工作 (2) 2 系统硬件设计 (3) 2.1 系统框架 (3) 2.2 系统仿真 (3) 2.2.1 仿真设计 (3) 2.2.2 部分电路分析 (4) 2.2.3 仿真结果 (7) 2.3 系统硬件 (7) 2.3.1 主要芯片和器件的选择 (7) 2.3.2 单片机最小系统设计 (10) 2.4 三段式电流保护理论 (12) 2.4.1 电流速断保护(第I段) (12) 2.4.2 限时电流速断保护(第II段) (12) 2.4.3 定时限过电流保护(第III段) (13) 2.4.4 三段式电流保护小结 (13) 3 系统软件设计 (13) 3.1 系统软件设计方案 (13) 总结 (14) 参考文献 (15)

1 绪论 1.1 设计背景 当今社会,电能已经成为人类最重要的能源之一,它几乎已经渗透到人类一切的活动当中。由于电能的生产是在相对集中的区域完成,所以电能的输送成为电力系统中重要组成部分。随着电网电压等级的不断升高和用电负荷的不断增加,输电安全也逐渐成为重要研究课题。 传统电力系统继电保护经历了机电型、整流型、晶体管型和集成电路型几个阶段。20世纪70年代以后,电力系统继电保护进入微机时代。微机继电保护降低了设备成本,提高了设备可靠性,同时具有控制灵活、准确,性能优良等特点,成为当今主流的继保控制核心。本文采用51单片机为核心,通过低压数字微机信号采集、数据分析、动作输出,实现对高压输电线路的诊断、分析、故障切除,保护电力系统安全运行。 1.2 微机继电保护的发展趋势及特点 继电保护技术发展趋势向计算机化、网络化、智能化、保护、控制、测量和数据通 信一体化发展。随着计算机技术的飞速发展及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法被不断应用于计算机继电保护中,以期取得更好的效果,从而使微机继电保护的研究向更高的层次发展,出现了一些引人注目的新趋势[1]。 微机继电保护主要有以下特点: 1.改善和提高继电保护的动作特征和性能,动作正确率高。主要表现在能得到常规保护不易获得的特性;其很强的记忆力能更好地实现故障分量保护;可引进自动控制、新的数学理论和技术如自适应、状态预测、模糊控制及人工神经网络等,其运行正确率很高也已在运行实践中得到证明。 2.可以方便地扩充其他辅助功能。如故障录波、波形分析等,可以方便地附加低频减载、自动重合闸、故障录波、故障测距等功能。 3.工艺结构条件优越。体现在硬件比较通用,制造容易统一标准;装置体积小,减少了盘位数量;功耗低。 4.可靠性容易提高。体现在数字元件的特性不易受温度变化、电源波动、使用年限的影响,不易受元件更换的影响;且自检和巡检能力强,可用软件方法检测主要元件、部件的工况以及功能软件本身。 5.使用灵活方便,人机界面越来越友好。其维护调试也更方便,从而缩短维修时间;同时依据运行经验,在现场可通过软件方法改变特性、结构。 6.可以进行远方监控。微机保护装置具有串行通信功能,与变电所微机监控系统的通信联络使微机保护具有远方监控特性等等。

继电保护的基本原理和继电保护装置的组成

我们把它统称为电力系统。一般将电能通过的设备成为电力系统成为电力电力系统的一次设备,如发电机、变压器、断路器、输电电路等,对一次设备的运行状态进行监视、测量、控制和保护的设备,被称为电力系统的二次设备。继电保护装置就属于电力系统的二次设备。 一、继电保护装置的基本原理 为了完成继电保护的任务,继电保护就必须能够区别是正常运行还是非正常运行或故障,要区别这些状态,关键的就是要寻找这些状态下的参量情况,找出其间的差别,从而构成各种不同原理的保护。 1.利用基本电气参数的区别 发生短路后,利用电流、电压、线路测量阻抗等的变化,可以构成如下保护: (1)过电流保护。单侧电源线路如图1-1所示,若在BC段上发生三相短路,则从电源到短路点k之间将流过很大的短路电流I k,可以使保护2反应这个电流增大而动作于跳闸。 (2)低电压保护。如图1所示,短路点k的电压U k降到零,各变电站母线上的电压都有所下降,可以使保护2反应于这个下降的电压而动作。 图1:单侧电源线路 (3)距离保护。距离保护反应于短路点到保护安装地之间的距离(或测量阻抗)的减小而动作。如图1所示,设以Z k表示短路点到保护2(即变电站B母线)之间的阻抗,则母线 上的残余电压为: U B=I k Z ko Z B 就是在线路始端的测量阻抗,它的大小正比于短路点到保护2之间的距离。 2.利用内部故障和外部故障时被保护元件两侧电流相位(或功率方向)的差 别

两侧电流相位(或功率方向)的分析如下。 图2:双侧电源网络 a——正常运行情况;b——线路AB外部短路情况;c——线路AB内部短路情况 正常运行时,A、B两侧电流的大小相等,相位相差180°;当线路AB外部故障时,A、B两侧电流仍大小相等,相位相差180°;当线路AB内部短路时,A、B两侧电流一般大小不相等,在理想情况下(两侧电动势同相位且全系统的阻抗角相等),两侧电流同相位。从而可以利用电气元件在内部故障与外部故障(包括正常运行情况)时,两侧电流相位或功率方向的差别构成各种差动原理的保护(内部故障时保护动作),如纵联差动保护、相差高频保护、方向高频保护等。 3.序分量是否出现 电气元件在正常运行(或发生对称短路)时,负序分量和零序分量为零;在发生不对称短路时,一般负序和零序都较大。因此,根据这些分量的是否存在可以构成零序保护和负序保护。此种保护装置具有良好的选择性和灵敏性。 4.反应于非电气量的保护 反应于变压器油箱内部故障时所发生的气体而构成气体(瓦斯)保护;反应于电动机绕组的温度升高而构成过负荷保护等。 二、继电保护装置的组成 继电保护的种类虽然很多,但是在一般情况下,都是有三个部分组成的,即测量部分、逻辑部分和执行部分。其原理结构如图3所示。

微机继电保护实验报告

本科实验报告 课程名称:微机继电保护 实验项目:电力系统继电保护仿真实验 实验地点:电力系统仿真实验室 专业班级:电气1200 学号:0000000000 学生:000000 指导教师:000000 2015年12 月 2 日

微机继电保护指的是以数字式计算机(包括微型机)为基础而构成的继电保护。众所周知,传统的继电器是由硬件实现的,直接将模拟信号引入保护装置,实现幅值、相位、比率的判断,从而实现保护功能。而微机保护则是由硬件和软件共同实现,将模拟信号转换为数字信号,经过某种运算求出电流、电压的幅值、相位、比值等,并与整定值进行比较,以决定是否发出跳闸命令。 继电保护的种类很多,按保护对象分有元件保护、线路保护等;按保护原理分有差动保护、距离保护和电压、电流保护等。然而,不管哪一类保护的算法,其核心问题归根结底不外乎是算出可表征被保护对象运行特点的物理量,如电压、电流等的有效值和相位以及视在阻抗等,或者算出它们的序分量、或基波分量、或某次谐波分量的大小和相位等。有了这些基本电气量的计算值,就可以很容易地构成各种不同原理的保护。基本上可以说,只要找出任何能够区分正常与短路的特征量,微机保护就可以予以实现。 由此,微机保护算法就成为了电力系统微机保护研究的重点,微机保护不同功能的实现,主要依靠其软件算法来完成。微机保护的其中一个基本问题便是寻找适当的算法,对采集的电气量进行运算,得到跳闸信号,实现微机保护的功能。微机保护算法众多,但各种算法间存在着差异,对微机保护算法的综合性能进行分析,确定特定场合下如何合理的进行选择,并在此基础上对其进行补偿与改进,对进一步提高微机保护的选择性、速动性、灵敏性和可靠性,满足电网安全稳定运行的要求具有现实指导意义。 目前已提出的算法有很多种,本次实验将着重讨论基本电气量的算法,主要介绍突变量电流算法、半周期积分算法、傅里叶级数算法。 二、实验目的 1. 了解目前电力系统微机保护的研究现状、发展前景以及一些电力系统微机保护装置。 2. 具体分析几种典型的微机保护算法的基本原理。 3. 针对线路保护的保护原理和保护配置,选择典型的电力系统模型,在MATLAB软件搭建仿真模型,对微机保护算法进行程序编写。 4. 对仿真结果进行总结分析。 三、实验容 1、采用MATLAB软件搭建电力系统仿真模型 2、采用MATLAB软件编写突变量电流算法 3、采用MATLAB软件编写半周积分算法 4、采用MATLAB软件编写傅里叶级数算法算法

继电保护心得体会

继电保护心得体会 【篇一:对继电保护故障分析和处理的心得体会】 对继电保护故障分析和处理的心得体会 摘要:随着科技的发展各种类型的电气设施出现在人们日常生活和工 作中,这些电气设施对供电提出了质量和稳定性的要求,这就使如何保 证电网安全稳定成为电力工作的重要环节。在现代化电力事业的规划、经营和管理等各项活动中,继电保护是一项重要的工作,继电保护 是维护供电稳定、维持电网的正常工作、确保用电安全的重要举措。本文从电力工作的经验出发,对继电保护故障的分析和处理进行讨论, 希望对继电保护工作提供参考和借鉴。 关键词:继电保护故障分析和处理 科技的进步和经济的发展,各种类型的电气设施出现在人们日常生活 和工作中,新型电气设施对供电提出了质量和稳定性的要求,这就使如 何保证电网安全稳定成为电力工作的重要环节。在现代化电力事业 的发展规划、经营活动和监督管理等各项工作中,继电保护成为电力 工作的重中之重。 1、继电保护的概述 (1)继电保护的定义。继电保护是研究电力系统故障和危及安全运行 时应对和处理的办法和措施,探讨对电力系统故障和危及安全运行的 对策,通过自动化处理的办法,利用有触点的继电器来保护电力系统及 其元件的安全,使其免遭损害。 (2)继电保护的功能。当电力系统发生故障或异常工况时,继电保护可 以实现的最短时间和最小区域内,将故障设备和元器件断离和整个电 力系统;或及时发出警报信号由电力工作者人工消除异常工况,达到减 轻或避免电力设备和元器件的损坏对相邻地区供电质量的影响。(3) 继电保护的分类。首先,从功能和作用的角度进行划分,继电保护分为:

异常动作保护、短路故障保护。其次,从保护对象的角度进行划分,继 电保护分为:主设备保护、输电线保护等。其三,从动作原理的角度进 行划分,继电保护分为:过电压、过电流、远距离保护等。最后,从装置 结构的角度进行划分,继电保护分为:数字保护、模拟式保护、计算保护、信号保护等。 2、常见的继电保护故障分析 由于新型电力控制设备和继电保护信息系统的使用,目前电力网络继 电保护工作的整体管理水平有了显著的提升,不过,毕竟电网和电力设 施是一个复杂的、庞大的系统,由于主客观各方面的因素影响,在继电 保护工作中仍然存在较多的问题,在日常的电力工作中常见的继电保 护故障主要有如下几种类型: (1)继电保护的运行故障。继电保护的运行故障是电力系统中危害性 最大且最常见的一种故障形式,表现为:主变差动保护、开关拒合的误 动等。例如:在电路网络的长期运行中,局部温度过高有可能导致继电 保护装置失灵。继电保护的运行故障最为常见的是电压互感器的二 次电压回路故障,是电力网络运行和围护中的薄弱环节之一。(2)继电 保护的产源故障。继电保护的产源故障是保护装置本身出现的故障, 在继电保护装置的实际运行中,其元器件的质量高低于继电保护产源 故障出现频率呈反相关。在电网和用电器中,继电保护装置对于零部 件的精度差、材质等都有严格的要求,如果采用质量不合格的零部件 和元器件将会增加继电保护产源故障发生的可能性。(3)继电保护的 隐形故障。继电保护的隐形故障既是又是大规模停电事故和电力保 护系统运行故障出现的根本原因,也是引发电力火灾的主要因素,电力 企业继电保护工作人员必须引起高度的重视。 3、处理继电保护故障的措施 为了实现电力事业又好又快地发展,进一步提高电力行业的经济和社 会效益, 【篇二:电力系统继电保护和自动化专业实习总结范文】

继电保护的概念

继电保护的概念:继电保护是由继电保护技术和继电保护装置组成的一个系统 继电保护装置:能够反应系统故障或不正常运行,并且作用于断路器跳闸或发出信号的自动装置 继电保护的任务和作用: 1当电力系统发生故障时,自动,迅速,有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障元件迅速恢复正常运行。2反应电气元件的不正常运行状态,并根据不正常运行的类型和电气元件的维护条件,发出信号,由运行人员进行处理或自动进行调整。3继电保护装置还可以和电力系统中其他自动装置配合,在条件允许时,采取预定措施,缩短事故停电时间,尽快恢复供电,从而提高电力系统运行的可靠性。 继电保护在技术满足的四个基本要求:可靠性(可靠性包括安全性和信赖性),选择性(选择性是指保护装置动作时,应在可能最小的区间内将故障从电力系统中断开,最大限度的保证系统中无故障部分仍能继续安全运行),速动性,灵敏性。主保护:反应被保护元件上的故障,并能在较短时间内将故障切除的保护。 后备保护:在主保护不能动作时,该保护动作将故障切除。根据保护范围和装置的不同有近后备和远后备两种方式。 近后备:一般和主保护一起装在所要保护的电气元件上,只有当本元件主保护拒绝动作时,它才动作,将所保护元件上的故障切除。 远后备:当相邻元件上发生故障,相邻电气元件主保护或近后备保护拒绝动作时,远后备动作将故障切除。 选择性的保证:一是上级元件后备保护的灵敏度要低于下级元件后备保护的灵敏度,二是上级元件后备保护的动作时间要大于下级元件后备保护的动作时间。 继电保护的基本原理:利用被保护线路或者设备故障前后某些突变的物理量为信息量,当突变量达到一定值时,启动逻辑控制环节,发出相应的跳闸脉冲或信号。 继电保护装置的组成:测量比较元件,逻辑判断元件,执行输出元件 动作电流:过电流继电器线圈中使继电器动作的最小电流I op。返回电流:继电器线圈中的使继电器由动作状态返回到起始位置的最大电流I re。 继电返回系数:K re=I re/I op 继电特性:无论启动和返回,继电器的动作都是明确干脆的,不可能停留在某一个中间位置 电磁型电压继电器:过电压K re<1 欠电压K re>1 中间继电器:通常用来增加接点数量和触电容量,以满足操作控制的需求,电流保护的中间继电器动作延时一般不小于0.06s或返回时限不小于0.4s (有小延时)。

继电保护测试仪说明书

微机继电保护测试仪 使 用 说 明 书

目录 目录 (1) 第一部分微机继电保护测试仪使用说明 (3) 第一章装置特点与技术参数 (4) 第二章装置硬件结构 (6) 第三章单机操作模块功能说明 (8) 第四章外接PC机操作说明 (21) 第二部分继保软件操作说明 (21) 第五章软件操作方法简介 (22) 第六章交流试验 (24) 第七章直流试验 (32) 第八章状态系列 (34) 第九章谐波叠加试验 (38) 第十章频率及高低周试验 (41) 第十一章功率方向及阻抗试验 (45) 第十二章同期试验 (49) 第十三章整组试验Ⅰ和Ⅱ (54) 第十四章距离和零序保护 (59) 第十五章线路保护 (64) 第十六章阻抗特性 (70) 第十七章差动保护 (73) 第十八章6-35KV微机线路保护综合测试 (80) 附录1:外接电脑串行通信口的设置 (85) 附录2:插接U盘等设备时设备驱动安装方法 (87) 附录3:各种继电器的试验方法 (87)

第一部分继保使用说明

第一章装置特点与技术参数 第一节主要特点 ◆标准的4相电压3相电流输出具有4相电压3相电流输出,可方便地进行各种组合输出进行各种 类型保护试验。每相电压可输出120V,电流三并可输出120A,第4相电压Ux为多功能电压项,可设为4种3U0或检同期电压,或任意某一电压值的情况输出。 ◆单机操作方便单机由方便灵活的旋转鼠标通过大屏幕液晶显示屏进行操作,全部中文显示。可 完成现场大多数试验检定工作,可对各种继电器及微机保护进行检定,并可模拟各种复杂的瞬时性、永久性、转换性故障进行整组试验。开机即可使用,操作方便快捷。 ◆双操作方式,联接电脑运行通过Windows平台上的全套中文操作软件,可进行各种大型复杂 及自动化程度更高的校验工作,可方便地测试及扫描各种保护定值,可实时存贮测试数据,显示矢量图,绘制故障波形,联机打印报表等。 ◆软件功能强大可完成各种自动化程度高的大型复杂校验工作,如三相差动试验、厂用电快切、 备自投试验、线路保护检同期重合闸等,能方便地测试及扫描各种保护定值,进行故障回放,实时存储测试数据,显示矢量图,联机打印报告等。 ◆开关量接点丰富7路接点输入和2对空接点输出。输入接点为空接点和0~250V电位接点兼容, 可智能自动识别。输入、输出接点可根据用户需要扩展。 ◆大屏幕LCD显示屏本机采用320×240点阵大屏幕高分辨率图形液晶显示屏,全部操作过程均在 显示屏上设定,操作界面和试验结果均汉化显示,显示直观清晰。 ◆自我保护采用合理设计的散热结构,并具有可靠完善的多种保护措施及电源软启动,和一定的 故障自诊断及闭锁功能。 ◆具有独立专用直流电源输出装置设有一路110V 及220V专用可调直流电源输出。 ◆性价比高属于跨专业联合设计产品,综合了多专业的先进科技成果。兼具大型测试仪的性能, 和小型测试仪的价位,具有很高的性能价格比。

继电保护专业常用标准

继电保护专业标准和有关技术文件 一、继电保护专业常用国家标准有: 1)GB 6592-1986《电子测量仪器误差的一般规定》 2)GB/T 7261-2000《继电器及继电保护装置基本试验方法》 3)GB/T 9361-1988《计算站场接地安全要求》 4)GB/T 2887-2000《电子计算机场地通用规范》 5)GB/T 2423-1989《电工电子产品基本环境试验规程》 6)GB/T 14537-1993《量度继电器和保护装置的冲击和碰撞试验》 7)GB/T 15145-1994《微机线路保护装置通用技术条件》 8)GB /T 14598-1996《静态继电器及继电保护装置的电气干扰试验》 9)GB/T 16836-1997《量度继电器和保护装置安全设计的一般要求》 10)GB/T 11287-2000《电气继电器》 11)GB 14285-1993《继电保护和安全自动装置技术规程》 12)GB50171—92《电气装置安装工程盘、柜及二次回路结线施工及验收规范》 二、继电保护专业常用行业标准有: 1)DL 408-1991《电业安全工作规程》(发电厂和变电所电气部分) 2)DL 5009.1-2002《电力建设安全工作规程》(火力发电厂部分) 3)DL 755-2001《电力系统安全稳定导则》 4)DL-5000-2000《火力发电厂设计技术规程》 5)DL/T 5147-2001《电力系统安全自动装置设计技术规定》 6)DL400-1991《继电保护和安全自动装置技术规程》 7)DL/T 5149-2001《220kV-550kV变电所计算机监控系统设计技术规程》

微机继电保护习题带答案

微机继电保护习题 1.微机保护装置从功能上可分为6个部分:(数据采集系统),数字数字处理系统,(输出通道),(人机接口),(通信系统),电源电路。 2.数据采集系统包括隔离与电压形成(或模拟量输入变换回路)、(低通滤波回路)、采样保持回路、(多路转换器)和模数转换(A/D)回路等部分组成。 3.数据采集系统中的电压形成回路除了完成电量变换作用外,还起着(隔离)和(屏蔽)的作用。 4.采样保持电路的作用是,在一个极短的时间内测量模拟输入量在该时刻的(瞬时值),并在模数转换期间内(保持输出不变)。 5.电压信号经VFC变换后是(数字脉冲波),因此采用光隔电路容易实现数据采集系统与微机系统的(隔离),有利于提高刚干扰能力。 6.在微机保护中广泛使用光隔离器,主要利用了(开关器件)的功能,应用于逻辑电平和(信号)控制,实现两侧信号的传递和(电气的绝缘)。 7.分析和评价各种不同算法优劣的标准是(精度)和(速度)。 8.采用半周期积分算法计算被测电流,如果被测电流是100A时半周期积分结果是2500,现如果半周期积分结果是2000则被测电流是()。 9.半周期积分算法可以抑制(高频)分量。对于50Hz的工频正弦量,数据窗延时为(3/4T)。 10.微机保护中,用离散傅里叶算法可用于求出各次谐波的(幅值)和(相位)。 11.R-L模型算法是以线路的简化模型为基础的,该算法仅能计算(测量阻抗),用于(线路距离)保护。 12.阶段式保护主要解决的问题主要是配合问题,即(保护范围)的配合和(动作时间)的配合。<整定值(边界)的配合> 13.阶段式电流保护的1段保护其保护范围现在在(线路全长)以内,一般要求去1段保护的保护范围应大于线路全长的(85%)。 14.第2段保护必须保护线路(全长并延伸至下一级线路),但不能超过下级线路的(15%)。 15.反时限电流保护的启动电流整定值按(定时限过电流)整定。 16.低频减载装置基本级的作用是根据(系统频率下降程度)依次切除不重要的

第二节 继电保护的基本原理及其组成

第二节继电保护的基本原理及其组成 参看图1-1至图1-6及其讲解,了解本章对继电保护装置对正常与故障或不正常状态的区分以及继电保护基本原理,并且通过对继电保护装置基本组成的学习深入了解各部分工作内容。 一、继电保护装置对正常与故障或不正常状态的区分 通过对继电保护装置正常运行状态与故障或不正常状态的学习,初步理解继电保护装置的原理。 1. 为完成继电保护所担负的任务,应该要求它能够正确区分系统正常运行与发生故障或不正常运行状态之间的差别,以实现保护。 图1-1 正常运行情况 在电力系统正常运行时,每条线路上都流过由它供电的负荷电流,越靠近电源端的线路上的负荷电流越大。同时,各变电站母线上的电压,一般都在额定电压±5%-10%的范围内变化,且靠近于电源端母线上的电压较高。线路始端电压与电流之间的相位角决定于由它供电的负荷的功率因数角和线路的参数。 由电压与电流之间所代表的“测量阻抗”是在线路始端所感受到的、由负荷所反应出来的一个等效阻抗,其值一般很大。 图1-2 d点三相短路情况 当系统发生故障时(如上图所示),假定在线路B-C上发生了三相短路,则短路点的电压降低到零,从电源到短路点之间均将流过很大的短路电流,各变电站母线上的电压也将在不同程度上有很大的降低,距短路点越近时降低得越多。 设以表示短路点到变电站B母线之间的阻抗,则母线上的残余电压应为 此时与之间的相位角就是的阻抗角,在线路始端的测量阻抗就是,此测量阻抗的大小正比于短路点到变电站B母线之间的距离。 2. 一般情况下,发生短路之后,总是伴随着电流的增大、电压降低、线路始端测量阻抗减小,以及电压与电流之间相位角的变化。故利用正常运行与故障时这些基本参数的区别,便可以构成各种不同原理的继电保护: (1)反应于电流增大而动作的过电流保护; (2)反应于电压降低而动作的低电压保护; (3)反应于短路点到保护安装地点之间的距离(或测量阻抗的减小)而动作的距离保护(或低阻抗保护)等。 电力系统中的任一电气元件,在正常运行时,在某一瞬间,负荷电流总是从一侧流入而从另一侧流出。 图 1-3 正常运行状态 说明:如果统一规定电流的正方向都是从母线流向线路,则A-B两侧电流的大小相等,相位相差180度(图中为实际方向)。

常见继电保护类型及原理

A、过电流保护---是按照躲过被保护设备或线路中可能出现的最大负荷电流来整定的。如大电机启动电流(短时)和穿越性短路电流之类的非故障性电流,以确保设备和线路的正常运行。为使上、下级过电流保护能获得选择性,在时限上设有一个相应的级差。 B、电流速断保护---是按照被保护设备或线路末端可能出现的最大短路电流或变压器二次侧发生三相短路电流而整定的。速断保护动作,理论上电流速断保护没有时限。即以零秒及以下时限动作来切断断路器的。 过电流保护和电流速断保护常配合使用,以作为设备或线路的主保护和相邻线路的备用保护。 C、定时限过电流保护---在正常运行中,被保护线路上流过最大负荷电流时,电流继电器不应动作,而本级线路上发生故障时,电流继电器应可靠动作;定时限过电流保护由电流继电器、时间继电器和信号继电器三元件组成(电流互感器二次侧的电流继电器测量电流大小→时间继电器设定动作时间→信号继电器发出动作信号);定时限过电流保护的动作时间与短路电流的大小无关,动作时间是恒定的。(人为设定) D、反时限过电流保护---继电保护的动作时间与短路电流的大小成反比,即短路电流越大,继电保护的动作时间越短,短路电流越小,继电保护的动作时间越长。在10KV系统中常用感应型过电流继电器。(GL-型) E、无时限电流速断---不能保护线路全长,它只能保护线路的一部分,系统运行方式的变化,将影响电流速断的保护范围,为了保证动作的选择性,其起动电流必须按最大运行方式(即通过本线路的电流为最大的运行方式)来整定,但这样对其它运行方式的保护范围就缩短了,规程要求最小保护范围不应小于线路全长的15%。另外,被保护线路的长短也影响速断保护的特性,当线路较长时,保护范围就较大,而且受系统运行方式的影响较小,反之,线路较短时,所受影响就较大,保护范围甚至会缩短为零。 ②、电压保护:(按照系统电压发生异常或故障时的变化而动作的继电保护) A、过电压保护---防止电压升高可能导致电气设备损坏而装设的。(雷击、高电位侵入、事故过电压、操作过电压等)10KV开闭所端头、变压器高压侧装设避雷器主要用来保护开关设备、变压器;变压器低压侧装设避雷器是用来防止雷电波由低压侧侵入而击穿变压器绝缘而设的。 B、欠电压保护---防止电压突然降低致使电气设备的正常运行受损而设的。 C、零序电压保护---为防止变压器一相绝缘破坏造成单相接地故障的继电保护。主要用于三相三线制中性点绝缘(不接地)的电力系统中。零序电流互感器的一

微机继电保护设计研究

https://www.doczj.com/doc/d91462029.html, 微机继电保护设计研究 运行过程中的电力系统,由于雷击、倒塌、内部过压或者错误的运行操作等都会造成故障及危害,一旦发现故障,我们就必须迅速采取并确保系统的可靠运行。当电气设备出现问题时,应根据系统运行的维护要求,确定出相应的保护动作。为了确保电力系统能够安全可靠的运行,继电保护装置就此运应而生。 随着计算机技术和电子技术的发展,使电力系统的继电保护突破了传统的电磁型、晶体管型及集成电路型继电保护形式,出现了微型机、微控制器为核心的继电保护形式,这种保护形势称为电力系统微机继电保护。 微机继电保护的原理和特点 传统的模拟式继电保护是根据电力系统中的模拟量(电压U、电流I)进行工作的,也就是将采集的模拟量与给定的机械量(弹簧力矩)、电气量(门槛电压)进行对比和逻辑运算,做出判断,从而完成相应的保护。 机电保护装置满足的四项基本要求依次是灵敏性、选择性、速动性、可靠性。 继电保护装置工作原理包括以下三部分:1.信号检测部分、2.逻辑判断部分、3.保护动作部分。其具体工作流程如下:信号检测部分从被保护侧采集相应的模拟量和开关量,传送到逻辑判断部分,通过算法进行处理,将所得结果与给定的整定值进行对比,判断系统是否出现故障并发出相应的动作命令,最终再由保护动作部分执行相应的动作。 现代微机保护则是将电力系统的模拟量(电压U、电流I)进行采样和编码之后,转换成数字量,通过微型计算机进行分析、运算和判断,从而实现电力系统的继电保护。 微机继电保护具有的特点:稳定性好、逻辑判断准确、设备维护方便、设备附加值高、适应性强。 微机继电保护的设计 微机继电保护的设计分为硬件设计和软件设计两部分。微机继电保护的硬件设计,从功能上讲,微机保护装置包括五个部分:数据采集单元,数据处理单元(CPU),开关量输入输出回路,人机接口部分和电源回路。 微机继电保护的软件设计中,系统软件是整个保护装置的灵魂,基于各个硬件设备的基础之上实现线路继电保护及监控的各种功能。这里以微机三段式电流保护为例主要介绍微机保护的主程序设计与自检模块。 随着电力自动化技术的日益发展,微机继电保护装置取代传统继电保护装置是个必然的趋势。通过引进微机控制技术,可使电力系统的运行更加安全、可靠、稳定、高效率。总之,随着微电子技术、计算机技术、网络技术和通信技术的发展,微机继电保护和变电站自动化系统在逐渐向智能化与网络化方向发展。

继电保护知识点总结

电力系统中常见的故障类型和不正常运行状态 故障:短路(最常见也最危险);断线;两者同时发生 不正常:过负荷;功率缺额而引起的频率降低;发电机突然甩负荷而产生的过电压;振荡 继电保护在电力系统发生故障或不正常运行时的基本任务和作用。 迅速切除故障,减小停电时间和停电范围 指示不正常状态,并予以控制 继电保护的基本原理 利用电力系统正常运行与发生故障或不正常运行状态时,各种物理量的差别来判断故障或异常,并通过断路器将故障切除或者发出告警信号 继电保护装置的三个组成部分。 测量部分:给出“是”、“非”、“大于”等逻辑信号判断保护是否启动 逻辑部分:常用逻辑回路有“或”、“与”、“否”、“延时起动”等,确定断路器跳闸或发出信号 执行部分 保护的四性 选择性:保护装置动作时仅将故障元件从电力系统中切除,使停电范围尽量减少速动性:继电保护装置应尽可能快的断开故障元件。 灵敏性:继电保护装置应尽可能快的断开故障元件。故障的切除时间等于保护装置和断路器动作时间之和 可靠性:在保护装置规定的保护范围内发生了它应该反映的故障时,保护装置应可靠地动作(即不拒动,称信赖性)而在不属于该保护装置动作的其他情况下,则不应该动作(即不误动,称安全性)。 主保护、后备保护 保护:被保护元件发生故障故障,快速动作的保护装置 后备保护:在主保护系统失效时,起备用作用的保护装置。 远后备:后备保护与主保护处于不同变电站 近后备:主保护与后备保护在同一个变电站,但不共用同一个一次电路。 继电器的相关概念: 继电器是测量和起动元件 动作电流:使继电器动作的最小电流值 返回电流:使继电器返回原位的最大电流值 返回系数:返回值/动作值 过量继电器:返回系数Kre<1 欠量继电器:返回系数Kre>1 绩电特性:启动和返回都是明确的,不可能停留在某个中间位置 阶梯时限特性: 最大(小)运行方式: 在被保护线路末端发生短路时,系统等值阻抗最小(大),而通过保护装置的电流最大(小)的运行方式 三段式电流保护:由电流速断保护、限时电流速断保护及定时限过电流保护相配合构成的一整套保护 工作原理: 电流速断保护:当所在线路保护范围内发生短路时,反应电流增大而瞬时动作切

微机线路继电保护实验报告

微机线路继电保护实验报告开课学院及实验室: 学院年级、专 业、班 姓名学号 实验课程名称电力工程基础成绩 实验项目名称微机线路继电保护实验指导老师 一、实验目的 1)熟悉微机保护装置及其定值设置。 2)掌握采用微机保护装置实现三段式保护的原理、参数设置方法。 二、实验原理 三段式电流保护是分三段相互配合构成的一套保护装置。第一段是电流速断保护、第二段是限时电流速断保护、第三段是定时限过电流保护。第一段电流速断是按照躲开某一点的最大短路电流来整定,第二段限时电流速断是按照躲开下一级相邻元件电流速断保护的动作电流整定,第三段定时限过电流保护则是按照躲开最大负荷电流来整定。但由于电流速断不能保护线路全长,限时电流速断又不能作为相邻元件的后备保护,因此,为保证迅速而有选择地切除故障,常将电流速断、限时电流速断和过电流保护组合在一起,构成三段式电流保护。 电流速断部分由继电器1、2、3组成、限时电流速断部分由继电器4、5、6组成和过电流保护由继电器7、8、9组成。由于三段的启动电流和动作时间整定得均不相同,因此,必须分别使用三个电流继电器和两个时间继电器,而信号继电器3、6、9分别用以发出I、II、III段动作的信号。 三段式电流保护优点:接线简单、动作可靠,切除故障快,在一般情况下能够满足快速切除故障的要求。所以在电网中35kV、10kv及以下的电压配电系统中获得了广泛的应用。 三段式电流保护范围说明图 三段式电流保护原理接线图 三段式电流保护展开图 三、实验设备 电源屏,NFL641微机线路保护装置,MDLA断路器模拟装置,DL-802微机继电保护测试仪,PC机,实验导线若干。 4.1 定值管理 本装置的整定值均以数字形式存放在CPU 插件的E2PROM 中,可同时存放32套不同的整定值,以适应不同的运行方式。正常选择0区定值。 4.2 定值及软压板清单 4.2.1 定值说明 序号定值名称范围单位备注 1 控制字一0000~FFFF 无参见控制字说明,装置自动生成 2 控制字二0000~FFFF 无参见控制字说明,装置自动生成

微机继电保护设计

基于89c51单片机的继电保护装置的硬件设计 张银龙200901100329电气09-3(订单) 1.1继电保护的发展趋势 继电保护技术未来趋势是向计算机化、网络化、智能化,保护、控制、测量和数据通信一体化发展。 1)计算机化 计算机硬件迅猛发展,系统集成度越来越高。单一处理器的处理速度和处理能力不断提高,处理速度的不断提高为单一芯片作为微机继电保护技术奠定了基础。89C51作为32位芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。CPU寄存器、数据总线、地址总线都是32位,具有存储器管理功能和任务转换功能,并将高速缓存和浮点数部件都集成在CPU内。 2)网络化 计算机网络作为信息和数据通信的工具已成为信息时代的技术支柱,使人类生产和社会生活面貌发生了根本变化。它深刻影响着个个工业领域,也为各个领域提供了强有力的通信手段。继电保护作用不只是限于切除故障元件和限制事故影响范围,还要保证全系统与重合闸装置分析这些信息和数据基础上协调动作,保证系统安全稳定运行。显然,实现这种系统保护基本条件是将全系统各主要设备保护装置用计算机网络联系起来,亦即实现微机保护装置网络化。 3)保护、控制、测量、数据通信一体化 实现继电保护计算机化和网络化条件下,保护装置实际上市一台高性能,多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可以将它所获被保护元件任何信息和数据传送给网络控制中心或任一终端。每个微机保护装置可完成继电保护功能,无故障正常运行下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化、 4)智能化 今年来,人工智能技术在电力系统等各个领域都得到了应用,继电保护领域应用研究也已开始。神经网络是一种非线性映射方法,很多难以列出方程或难解的复杂问题,应用神经网络方法则可迎刃而解。 1.2继电保护的基本任务 继电保护的基本任务包括: 1)自动、迅速、有选择的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分恢复正常运行。 2)反应电气元件的不正常运行状态,并根据运行维护条件,而动作于发出信号、减轻负荷或跳闸。 2.1继电保护的基本原理和保护装置的组成 2.1.1继电保护的基本原理 利用正常运行与区内外短路故障电气参数变化的特征构成保护的判据,根据不同的判据就构成不同原理的继电保护。例如: (1)电流增加(过电流保护):故障点与电源直接连接的电气设备的电流会增加电压降低(低电压保护):各变电站母线上的电压将在不同程度上有很大的降低,短路点得电压降到零。 (2)电流与电压的相位角会发生变化(方向保护):正常20°左右,短路时60°~85°

继电保护基本原理讲解

继电保护基本原理及电力知识问答

第一篇 继电保护基本原理 第一章 概述 一.什么是电力系统? 有两种说法: 1.由生产和输送电能的设备所组成的系统叫电力系统,例如发电机、变压器、母线、输电线路、配电线路等,或者简单说由发、变、输、配、用所组成的系统叫电力系统。 2.有的情况下把一次设备和二次设备统一叫做电力系统。 一次设备:直接生产电能和输送电能的设备,例如发电机、变压器、母线、输电线路、断路器、电抗器、电流互感器、电压互感器等。 二次设备:对一次设备的运行进行监视、测量、控制、信息处理及保护的设备,例如仪表、继电器、自动装置、控制设备、通信及控制电缆等。 二.电力系统最关注的问题是什么? 由于电力系统故障的后果是十分严重的,它可能直接造成设备损坏,人身伤亡和破坏电力系统安全稳定运行,从而直接或间接地给国民经济带来难以估计的巨大损失,因此电力系统最为关注的是:安全可靠、稳定运行。 三.电力系统的三种工况 正常运行状态;故障状态;不正常运行状态。而继电保护主要是在故障状态和不正常运行状态起作用。 四.继电保护装置 就是指能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。它的基本任务简单说是:故障时跳闸,不正常运行时发信号。 五.继电保护的基本原理和保护装置的组成 为完成继电保护所担负的任务,显然应该要求它正确地区分系统正常运行与发生故障或不正常运行状态之间的差别,以实现保护。如图1-1(a )、(b )所示的单侧电源网络接线图,(这是一种最简单的系统),图1-1(a)为正常运行情况,每条线路上都流过由它供电的负荷电流?f (一般比较小), 各变电所母线上的电压,一般都在额定电压(二次线电压100V )附近变化,由电压和电流之比所代表的“测量阻抗”Z f 称之为负荷阻抗,其值一般很大。图1-1(b )表示当系统发生故障时的情况,例如在线路B-C 上发生了三相短路,则短路点的 电压U d 降低到零,从电源到短路点之间 将流过很大的短路电流?d , 各变电所母线 上的电压也将在不同 程度上有很大的降低 (称之为残压)。设以Z d 表示短路点到变 电所B 母线之间的阻 抗,根据欧姆定律很 2)

35kV电网继电保护设计说明书(精)

1 设计说明书 一、 d 5点短路电流计算 由于短路电流计算是进行电网继电保护配置设计的基础,加上时间的关系,指导老师只要求每个小组计算一个短路点。本小组计算第五个短路点。 (一三相短路电流计算: 最大运行方式:两电站的六台机组全部投入运行,中心变电所在地110 KV母线上的系统等值标么电抗为0.225。城关变电所总负荷为240A (35KV侧 ,由金河电站供给110KA、青岭电站供给130KA。剩余的110A经中心变电所送入系统。 根据题意转换出电抗标么值: 排除城关变电所,合并整理其它电抗值得:

整理合并得: X25=3.918 X26=1.833 整理合并得: X27=0.275 X28=0.175 合并、星-三角等值转换: X29=0.5 X30=7.583 X31=3.547 等值电抗转换: X32=0.712 X33=10.791 X34=5.047 计算得出的最大短路电流分别为:I S =7.731 I q =0.541 I j =1.115 第1页 (二两相短路电流计算:

最小运行方式:两电站都只有一台机组投入运行, 中心变电所110KV母线上的系统等值标么电抗为0.35城关变电所总负荷为105A(35KV侧 ,由金河电站供给40A、青岭电站供给65A。剩余的15A经中心变电所送入系统。 1、两相短路电流正序电抗化简: 最小运行方式下转换的电抗标么值: X1=0.35 X2=0.55 X3=0 X4=0.35 X5=0.55 X6=0 X9=0.292 X10=1 X12=5.33 X16=0.876 X19=0.75 X20= 4 合并青中线、金中线、中变电抗: X21=0.275 X22=0.175 X23=5.918 X24=6.33 整理、合并得: X25=0.625 X26=8.178 X27=8.751 整理、合并得: X28=0.825 X29=10.805 X30=11.562 2、两相短路电流负序电抗化简: 最小运行方式下转换的负序电抗标么值:

相关主题
文本预览
相关文档 最新文档