当前位置:文档之家› 自来水厂排泥水处理污泥量的确定方法_secret

自来水厂排泥水处理污泥量的确定方法_secret

自来水厂排泥水处理污泥量的确定方法_secret
自来水厂排泥水处理污泥量的确定方法_secret

自来水厂排泥水处理污泥量的确定方法

[ 摘要 ]

实施自来水厂排泥水处理,首先需要确定自来水厂的污泥量,就此将污泥量分为排泥水量和干污泥量。排泥水量可根据沉淀池排泥运行方式和滤池反冲洗运行方式来确定。对于干污泥量的确定介绍了计算法和物料平衡分析法,物料平衡分析法可作为计算法的补充,对计算法的结果进行校核。

[ 正文 ]

0 概述

自来水厂排泥水含有大量来自原水的污染物,排泥水直接排放,会对地表水体造成污染。随着经济的发展和人们环保意识的提高,我国自来水厂排泥水处理已经提上议事日程。

实施排泥水处理,首先必须确定合理的污泥量,因为污泥量的确定直接影响整个排泥水处理工程的设计规模,从而影响到设备配置和投资规模。自来水厂的污泥量受多种因素影响,包括原水水质、水处理药剂投加量、采用的净水工艺和排泥的方式等。污泥量确定包括两方面内容:一是排泥水总量,它决定浓缩池规模;二是总干泥量,确定污泥脱水设备的规模。

污泥量确定一般需要较长时间数据的统计结果,因此即使目前没有建设排泥水处理工程计划的自来水厂,着手进行有关水厂污泥产量资料的收集工作仍然是明智之举。

1 排泥水总量确定

排泥水总量可分为沉淀池(或澄清池,下同)排泥水量和滤池反冲洗废水量两部分。

通常可以认为自来水厂一泵房取水量和二泵房出水量之间的差值即为自来水厂排泥水的总量。但它不能分别确定出沉淀池排泥水量和滤池反冲洗废水量,且这一估算方法不够准确。

已投产的自来水厂,根据水厂的有关运行参数可以较准确地计算出沉淀池排泥水量和滤池反冲洗废水量。水厂沉淀池采用人工定时排泥,只需根据每天排泥次数、每次排泥历时和排泥流量以及沉淀池格数,就可以计算出沉淀池的排泥水量。同样道理,也可以根据滤池每天冲洗次数、每次冲洗历时、冲洗强度及单格滤池面积和格数,计算出滤池反冲洗废水量。如果沉淀池排泥和滤池反冲洗实现了自动化运行,则需要对水厂沉淀池排泥和滤池反冲洗进行现场观测,了解沉淀池排泥和滤池反冲洗流量、每次历时和统计每天排

泥或冲洗的次数,然后进行计算。

尚未建成或仍处在设计阶段的自来水厂,沉淀池排泥水量和滤池反冲洗废水量可根据沉淀池排泥和滤池反冲洗的设计参数进行估算,也可以参照已建成投产的、条件相近的自来水厂实际运行资料进行估算。

排泥水总量的确定,最好能绘制出排泥水量在一天内的变化曲线。由于水厂沉淀池排泥和滤池反冲洗都是在较短的时间内完成,瞬间流量很大,绘出变化曲线,对确定排泥水截留池和浓缩池设计规模有很大帮助。

2 干污泥产量确定

2.1 计算法

根据投加混凝剂在混凝过程中的化学反应、原水中悬浮固体对污泥量的贡献及其它污泥成份的来源,可以近似地计算出干污泥的产量。当硫酸铝用作混凝剂时,化学反应可简化为:

Al2(SO4)3·14H2O+6HCO3-=

2Al(OH)3+6CO2+14H2O+3SO42- (1)

由式(1)可知,氢氧化铝是形成污泥的主要产物。根据方程式的计量关系,投加1 mg/L的Al2(SO4)3·14H2O大约会产生0.26 mg/L的氢氧化铝沉淀物。原水中的悬浮物因为在混凝过程中不发生化学变化,它将产生相同重量的干污泥。其它水处理中的添加物,如高分子絮凝剂或粉末活性炭,也可认为以1∶1的比例产生污泥。

根据以上分析,可以建立干污泥量的计算公式。同样的分析也适用于铁盐作混凝剂的净水工艺。

日本水道协会[1]推荐采用(2)式计算干污泥量:

S=Q(TE1+CE2)×10-6 (2)

式中 S --干污泥量,t/d;

Q --自来水厂净水量,m3/d;

T --原水浊度,NTU;

E1 --原水浊度与SS的换算率;

C --铝盐混凝剂投加率(以Al2O3计),mg/L;

E2 --铝盐混凝剂(以Al2O3计)换算成干污泥量的系数,取1.53。

英国水研究中心[2]推荐用(3)式计算干污泥量:

S=2T+0.2C+1.53A+1.9F (3)

式中 S --干污泥量,mg/L;

T --去除的原水浊度,NTU;

C --去除的原水色度,H;

A --铝盐混凝剂投加率(以Al2O3计),mg/L;

F --铁盐混凝剂投加率(以Fe计),mg/L。

美国Cornwell[3]推荐用(4)式和(5)式分别计算用铝盐和铁盐作混凝剂时的污泥产量:

S= 8.34Q(0.26 Al+SS +A) (4)

S= 8.34Q(1.9 Fe + SS +A) (5)

式中 S --干污泥量,lb/d(1 lb/d=0.453 6 kg/d);

Q --自来水厂净水量,mgd(1 mgd=3.785×103 m3/d);

Al--铝盐混凝剂投加率(以Al2(SO4)3·14H2O计),mg/L;

Fe--铁盐混凝剂投加率(以Fe计),mg/L;

SS--原水总悬浮固体,mg/L;

A --水处理中其它添加剂,mg/L。

同时Cornwell推荐(6)式为原水浊度T与SS关系式:

SS=bT (6)

式中 b --SS与浊度 T 的相关系数;

T --原水浊度,NTU。

Cornwell认为,在原水色度不高的情况下,b在0.7~2.2之间变化。综合以上3种计算公式,可知它们均出于同一思路,具有相似的形式,都要求测定原水浊度与SS的相关关系,这主要是因为SS的测定比较烦琐,自来水厂一般不对原水的SS做常规分析,而对原水浊度则有每天的记录。

2.2 混凝剂物料平衡分析法

该方法是根据自来水处理系统中混凝剂成份的物料平衡进行分析的。无论在净水过程中加入什么样的混凝剂,它在水处理系统中的物料进入和排出应该是平衡的。该法第一步,分析所用混凝剂中的铝(或铁)的实际含量,然后计算出净水过程中向原水加入铝(或铁)的投加率;第二步,获取自来水厂原水、沉淀池排泥水、滤池反冲洗废水和出厂水样品,并对这些样品进行铝(或铁)含量的分析;第三步,对排泥水平行样品进行总悬浮固体的分析。经过以上的分析,干污泥产量就可以计算出来。

例如,假设一个10万m3/d的自来水厂,由混凝剂投入原水的铝为5 mg/L,沉淀池排泥水分析测得总悬浮固体浓度为1.0%,其中铝的含量测得为400 mg/L。这里忽略原水、滤池反冲洗废水和出厂水中微量铝的影响,则每天加入净水系统的铝为: 10×104×103×5=5.0×108mg/d。

因为排泥水中含有400 mg/L的铝,则总排泥水量为1.25×106

L/d(5.0×108/400)或1250 m3/d,则干污泥量为1.25×104 kg/d(12.5 t/d)。

由于任何一种方法都难以准确地确定自来水厂的干污泥量,因此建议以两种方法所得到的结果进行相互校核。

3 原水浊度与SS相关性分析

计算法是应用较多的干污泥量确定方法,该方法需要确定原水浊度T与SS之间的相关关系。不同地域、不同水源及不同季节这个相关关系可能存在较大差异,因此建议每个自来水厂都对原水进行浊度T与SS相关关系的测定,测定的时间应尽可能长些,有一年以上的时间跨度。测定结果可以进行分月、分季度原水浊度T与SS相关关系分析。

Cornwell[4]列举了一个浊度T与SS相关关系的例子(见图1)。由图1可知,该测定结果有较强的相关性。

图1 Cornwell的原水浊度T与SS相关关系

图2和图3分别是作者对上海市A水厂和B水厂原水浊度T与SS相关性分析的结果,从图中可以看出,自来水厂原水浊度T和SS有较好的相关性。

图2 上海市A水厂原水浊度T与SS相关关系

图3 上海市B水厂原水浊度T与SS相关关系

从以上图中可以看出,不同水源水的相关关系存在较大差别。实际上,即使在同一水源,不同季节测定的相关关系也可能会有变化。

在测定浊度T与SS相关关系时,原水SS的测定必须认真仔细。因为部分滤纸能滤过的颗粒在混凝时则能够从水中去除,因此有条件的地方应采用0.45 μm的滤膜代替滤纸进行过滤,以提高测定的准确性。有很多水厂的原水浊度T和SS都很低(如湖泊、水库水),为了提高测定的准确性,SS测定时需要采集1 L甚至几L水样进行过滤。各自来水厂可以通过摸索后确定实际测定的水样量。

如果原水的色度很高,对污泥产量会存在影响。因为大多数原水的色度在滤纸过滤时不会被截留,而在水处理工艺中色度会被混凝、沉淀、过滤工艺去除,形成色度的物质也会存在于污泥中。在这种情况下,计算干污泥量时应考虑色度的影响。

4 自来水厂排泥水处理干污泥量设计值的选取

自来水厂干污泥产量随原水浊度、处理水量、混凝剂投加率变化,因此水厂的干污泥产量是一个变量。那么,选择怎样的干污泥产量设计值才是经济合理的呢?

一般可以用两种方法来确定自来水厂干污泥量设计值。一种方法是目前设计单位常采用的,就是通过试验分析原水浊度T和SS的相关关系,通过资料分析确定原水浊度的设计值和混凝剂投加率设计值,再结合水厂规模,根据计算公式算出干污泥量设计值。

用原水浊度最大值和混凝剂最大投加率对设计值进行最不利情况校核。例如:试验得出B 水厂原水浊度T与SS 的相关关系为:y=0.6x,考虑一定的安全系数,取浊度T和SS的比值为1∶1。该水厂原水浊度和混凝剂投加率分析分别见图4和图5。

图4 B水厂原水浊度统计分析结果

图5 B水厂混凝剂投加率统计分析结果

从图4可以看出,B水厂原水浊度主要分布在20~75 NTU之间,其中在40~45 NTU 之间出现的概率最高。从累积概率曲线看,浊度65 NTU以下占近80%。因此取65 NTU作为浊度设计值。从图5可以看出,该厂混凝剂投加率主要在12~14 mg/L之间,投加率16 mg/L以下的累积概率在75%左右,因此取16 mg/L作为混凝剂投加量设计值。由于该厂是以Al2(SO4)3·18H2O计量混凝剂投加率,它与Al(OH)3的化学计量关系为0.234。另外,该厂去除色度约10 度,水处理规模为40万 m3/d,根据以上数据可以计算该厂干污泥量的设计值:

S =4.0×10 8×(0.234×16+65×1+10×0.2)÷1.0×109

=28.3 t/d

该厂原水浊度最大值为109 NTU,混凝剂最大投加率为29.8 mg/L,则最大干污

泥产量:

Smax =4.0×10 8×(0.234×29.8+109×1+10×0.2)÷1.0×109

=47.2 t/d

如果以28.3 t/d设计脱水设备,每天运行1班,则增加1班就可满足处理最大日污泥量的要求。

选取干污泥量设计值的另一种方法是根据水厂每天的处理水量、原水平均浊度及当天的混凝剂投加率,计算出每天的干污泥产量。然后对一定时间内日干污泥产量进行统计分析,就可以得到:平均每天的干污泥产量;最高日的干污泥产量;出现概率最高的干污泥产量范围。

如果脱水设备正常情况下每天运行1班,则干污泥产量设计值可以依据以下原则

选取:

(1)该设计值必须大于平均每天的干污泥产量;

(2)该设计值要大于最高日干污泥产量的1/3;

(3)该设计值应不小于概率最高的干污泥日产量范围。

依据这三条原则确定的干污泥量设计值,当干污泥产量在最大概率的污泥日产量以下时,可以使污泥脱水在正常运行模式下完成。当干污泥产量超过设计值时,可以通过以下途径解决:

(1)增加污泥脱水设备运行班次,直至每天24 h运行;

(2)通过排泥水处理工艺系统的平衡调节池贮存过量的污泥。

例如B水厂日干污泥产量分析见图6,其平均干污泥产量为12.66 t/d,最大干污泥产量为30.94 t/d。

图6 B水厂干污泥日产量分析结果

从图6可以看出,该厂干污泥日产量出现概率最高为8~10 t/d,有90%的概率是在18 t/d以下,如果选取18 t/d作为干污泥日产量的设计值完全符合上述选取原则,也可以满足处理要求。需要说明的是,以上所举两例,前一种方法计算干污泥量时每天的处理水量是以40万m 3/d进行计算的,后一种方法是以每天实际处理水量来进行计算的,由于实际处理水量不到40万m3/d,因此两者所选取的值差别较大。比较以上两种方法所得到的结果可知,前一种方法偏于安全。

上述方法确定的干污泥量设计值,既能保证排泥水处理的正常运转,又充分考虑了利用排泥水处理运行模式可挖掘的潜力,是经济可行的选取方法。

5 结论

(1)实施自来水厂排泥水处理工程,确定经济合理的污泥产量十分重要。

(2)污泥量确定包括排泥水量和干污泥产量,排泥水量决定排泥水处理工程中浓缩池规模,干污泥量则决定脱水设备规模。

(3)排泥水量需根据自来水厂沉淀池排泥方式和滤池反冲洗方式确定,相对较容易。

(4) 干污泥量可用计算法和物料平衡分析法进行确定,其中计算法使用较多。建议用两种方法所得到的结果进行相互校核。

(5)计算法要求分析自来水厂原水浊度T与SS的相关性。研究表明,同一水源浊度T与SS均有一定的相关性,但不同水源间这一相关关系差别较大,因此每一水厂都应进行原水浊度T与SS相关性的分析。

(6)干污泥量设计值的选取有两种方法,一种方法是先选取原水浊度的混凝剂投加率的值,然后进行计算获得;另一种方法是先计算出一定时间范围内水厂每天的干污泥产量,然后分析得出干污泥产量设计值。前一种方法偏安全。

参考文献

1 日本水道协会.水道设施设计指南·解说.1990

2 英国水研究中心.九十年代污泥处理手册.1992

3 Cornwell D A. Management of Water Treatment Plant Sludges.In:Sludge and Its Ultimate Disposal,Ann Arbor Science,1981

污泥处理方法

1前言 厌氧消化是污泥处理常用的减容稳定工艺,具有能耗低、污泥稳定性好、产生沼气等优点,但由于污泥固体的生物可降解性低,完全的厌氧消化需相当长的时间,即使20~30d的停留时间仅能去除30%~50%的挥发性固体(VSS),污泥固体细胞分解和胞内生物大分子水解为小分子,是厌氧消化的限速步骤,因此提高厌氧消化效率的一个主要途径是促进污泥细胞的分解,增强其生物可降解性 〔1、2〕目前有几种促进污泥分解的方法 〔3、4〕(1)热解法;(2)化学法:酸或碱处理。(3)机械法:超声波、球磨、高压均质和剪切均质等;(4)氧化法:过氧化氢和臭氧氧化;(5)生物法:酶处理。在污泥厌氧消化前采用这些技术进行强化处理,可增强生物降解效率,并减少污泥处理量。 2污泥厌氧消化的强化技术 2.1热解 污泥中的碳水化合物和脂类相对易下降解,而蛋白质却难以被水解酶水解,采用热解预处理可以破坏细胞壁促使蛋白质释放而得以降解。热解处理可应用于不同类型的污泥。对于初沉污泥,热处理并不能提高其降解性,但能增强其脱水性能Li等 〔5〕发现活性污泥的最佳热处理条件是170℃加热60min,小试实验结果表明在随后的厌氧消化中,经热解的污泥只需5d停留时间COD去除率即可达到60%。造纸工业污泥最佳的热解温度为150℃~160℃,这是由于造纸污泥含有较多的纯生物体。研究表明,在135℃热解处理后的污泥消化VSS破坏率比对照污泥在15d、12d的停留时间下,分别增加了135%、235%。热解强化处理的效果并不与温度成正比,温度过高会对厌氧消化产生负面影响。 〔6〕发现活性污泥的最佳热解温度在175℃左右,温度再高效果会出现下降。另有研究者发现,温度超过200℃热解处理会导致厌氧消化产气量的下降,这可通过一种分子内反应—Maillard反应解释。在此反应中,减少的糖类与氨基酸反应生成一种褐色的多聚氮,其溶解性和组成与腐殖酸相似,这种物质很难降解甚至起抑制作用。虽然在100℃以下的低温就开始产生这种反应,但其产生量随着温度升高以及停留时间增加而增多,并可能形成二恶英。 〔7〕报道,挪威的Hias污水处理厂运用热解对污泥进行厌氧消化的强化处理,生产

自来水厂污泥产生量计算

自来水厂排泥水处理污泥量的确定方法实施自来水厂排泥水处理,首先需要确定自来水厂的污泥量,就此将污泥量分为排泥水量和干污泥量。排泥水量可根据沉淀池排泥运行方式和滤池反冲洗运行方式来确定。对于干污泥量的确定介绍了计算法和物料平衡分析法,物料平衡分析法可作为计算法的补充,对 计算法的结果进行校核。 实施排泥水处理,首先必须确定合理的污泥量,因为污泥量的确定直接影响整个排泥水处理工程的设计规模,从而影响到设备配置和投资规模。自来水厂的污泥量受多种因素影响,包括原水水质、水处理药剂投加量、采用的净水工艺和排泥的方式等。污泥量确定包括两方面内容:一是排泥水总量,它决定浓缩池规模;二是总干泥量,确定污泥脱水设备的规 模。 污泥量确定一般需要较长时间数据的统计结果,因此即使目前没有建设排泥水处理工程计 划的自来水厂,着手进行有关水厂污泥产量资料的收集工作仍然是明智之举。 1 排泥水总量确定 排泥水总量可分为沉淀池(或澄清池,下同)排泥水量和滤池反冲洗废水量两部分。 通常可以认为自来水厂一泵房取水量和二泵房出水量之间的差值即为自来水厂排泥水的总量。但它不能分别确定出沉淀池排泥水量和滤池反冲洗废水量,且这一估算方法不够 准确。 已投产的自来水厂,根据水厂的有关运行参数可以较准确地计算出沉淀池排泥水量和滤池反冲洗废水量。水厂沉淀池采用人工定时排泥,只需根据每天排泥次数、每次排泥历时和排泥流量以及沉淀池格数,就可以计算出沉淀池的排泥水量。同样道理,也可以根据滤池每天冲洗次数、每次冲洗历时、冲洗强度及单格滤池面积和格数,计算出滤池反冲洗废水量。如果沉淀池排泥和滤池反冲洗实现了自动化运行,则需要对水厂沉淀池排泥和滤池反冲洗进行现场观测,了解沉淀池排泥和滤池反冲洗流量、每次历时和统计每天排泥或 冲洗的次数,然后进行计算。 尚未建成或仍处在设计阶段的自来水厂,沉淀池排泥水量和滤池反冲洗废水量可根据沉淀池排泥和滤池反冲洗的设计参数进行估算,也可以参照已建成投产的、条件相近的自 来水厂实际运行资料进行估算。 排泥水总量的确定,最好能绘制出排泥水量在一天内的变化曲线。由于水厂沉淀池排泥和滤池反冲洗都是在较短的时间内完成,瞬间流量很大,绘出变化曲线,对确定排泥水 截留池和浓缩池设计规模有很大帮助。 2 干污泥产量确定 2.1 计算法 根据投加混凝剂在混凝过程中的化学反应、原水中悬浮固体对污泥量的贡献及其它污泥成份的来源,可以近似地计算出干污泥的产量。当硫酸铝用作混凝剂时,化学反应可简、管路敷设技术通过置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

自来水厂污泥产生量计算

自来水厂排泥水处理污泥量的确定方法 实施自来水厂排泥水处理,首先需要确定自来水厂的污泥量,就此将污泥量分为排泥水量和干污泥量。排泥水量可根据沉淀池排泥运行方式和滤池反冲洗运行方式来确定。对于干污泥量的确定介绍了计算法和物料平衡分析法,物料平衡分析法可作为计算法的补充,对计算法 的结果进行校核。 实施排泥水处理,首先必须确定合理的污泥量,因为污泥量的确定直接影响整个排泥水处理工程的设计规模,从而影响到设备配置和投资规模。自来水厂的污泥量受多种因素影响,包括原水水质、水处理药剂投加量、采用的净水工艺和排泥的方式等。污泥量确定包括两方面内容:一是排泥水总量,它决定浓缩池规模;二是总干泥量,确定污泥脱水设备的规模。污泥量确定一般需要较长时间数据的统计结果,因此即使目前没有建设排泥水处理工程计划的自来水厂,着手进行有关水厂污泥产量资料的收集工作仍然是明智之举。 1排泥水总量确定 排泥水总量可分为沉淀池(或澄清池,下同)排泥水量和滤池反冲洗废水量两部分。 通常可以认为自来水厂一泵房取水量和二泵房出水量之间的差值即为自来水厂排泥水的总量。但它不能分别确定出沉淀池排泥水量和滤池反冲洗废水量,且这一估算方法不够准 确。 已投产的自来水厂,根据水厂的有关运行参数可以较准确地计算出沉淀池排泥水量和滤池反冲洗废水量。水厂沉淀池采用人工定时排泥,只需根据每天排泥次数、每次排泥历时和排泥流量以及沉淀池格数,就可以计算出沉淀池的排泥水量。同样道理,也可以根据滤池每天冲洗次数、每次冲洗历时、冲洗强度及单格滤池面积和格数,计算出滤池反冲洗废水量。如果沉淀池排泥和滤池反冲洗实现了自动化运行,则需要对水厂沉淀池排泥和滤池反冲洗进行现场观测,了解沉淀池排泥和滤池反冲洗流量、每次历时和统计每天排泥或冲洗的次数, 然后进行计算。 尚未建成或仍处在设计阶段的自来水厂,沉淀池排泥水量和滤池反冲洗废水量可根据沉淀池排泥和滤池反冲洗的设计参数进行估算,也可以参照已建成投产的、条件相近的自来水 厂实际运行资料进行估算。 排泥水总量的确定,最好能绘制出排泥水量在一天内的变化曲线。由于水厂沉淀池排泥和滤池反冲洗都是在较短的时间内完成,瞬间流量很大,绘出变化曲线,对确定排泥水截留 池和浓缩池设计规模有很大帮助。 2干污泥产量确定 2.1计算法 根据投加混凝剂在混凝过程中的化学反应、原水中悬浮固体对污泥量的贡献及其它污泥成份的来源,可以近似地计算出干污泥的产量。当硫酸铝用作混凝剂时,化学反应可简化为:

计算剩余污泥量的四种公式

计算剩余污泥量的四种公式 一、不考虑悬浮物的公式《水处理工程师手册》P329。 1、活性污泥泥龄和剩余污泥量准确地应按下式计算: (2)、活性污泥泥龄(SRT): 活性污泥系统内的总活性污泥量/每天从系统内排除的活性污泥量 SRT =(Ma+Mc+MR)/(Mw+Me) Ma——为曝气池内的活性污泥量; Mc——为二沉池内污泥量; MR——为回流系统的污泥量; Mw——为每天排放的剩余污泥量(kgss/d); Me——为二沉池出水每天带走的污泥量。 上式为最准确的计算公式,在实际运行管理中,常根据不同的情况,采用不同的近似计算公式。 当不考虑回流系统和二沉池时,上述公式可简化为: SRT =Ma/Mw 2、

(2)、剩余污泥量(Mw ) Mw= Ma/SRT=SRT Xa V ? V-曝气池有效容积(m 3); Xa-曝气池悬浮固体浓度(mg/L); 2、行业标准: 中国工程建设标准化协会标准(CECS149:2003《城市污水生物脱氮除磷处理设计规范》 W=Si Xi ft bh c ft Yh bh Yh f Se Si Q ψθ+?+??-?-19.01000)(> 其中:W ——剩余污泥量(kg/d ) Q ——进水流量(m 3/d ) Si\Se ——反应池进、出水BOD 5浓度(mg/l); f ——污泥产率修正系数,由试验确定;无试验条件时,取0.8~0.9. ft ——温度修正系数,取1.072(t-15) ; t ——温度(℃); k de ——反硝化速率,kgNO3-N/(kgMLSS ·d);通过试验确定,无试验条件,20℃时k de 值可采 用0.03~0.06 kgNO3-N/(kgMLSS ·d);并用4.0.4-3进行温度校正。即k de(t)=k de(20)1.8t-20; ψ——反应池进水悬浮固体中不可水解/降解的悬浮固体比例,无测定条件时,取0.6;

城镇污水处理厂污泥处理处置及污染防治技术政策

城镇污水处理厂污泥处理处置及污染防治技术政策

城镇污水处理厂污泥处理处置及污染防治技术政策 (试行) ( 建城[2009]23号2009-02-18实施) 1.总则 1.1 为提高城镇污水处理厂污泥处理处置水平,保护和改善生态环境,促进经济社会和环境可持续发展,根据《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》、《中华人民共和国固体废物污染环境防治法》、《中华人民共和国城乡规划法》等相关法律法规,制定本技术政策。 1.2 本技术政策所称城镇污水处理厂污泥(以下简称“污泥”),是指在污水处理过程中产生的半固态或固态物质,不包括栅渣、浮渣和沉砂。 1.3 本技术政策适用于污泥的产生、储存、处理、运输及最终处置全过程的管理和技术选择,指导污泥处理处置设施的规划、设计、环评、建设、验收、运营和管理。 1.4污泥处理处置是城镇污水处理系统的重要组成部分。污泥处理处置应遵循源头削减和全过程控制原则,加强对有毒有害物质的源头控制,根据污泥最终安全处置要求和污泥特性,选择适宜的污水和污泥处理工艺,实施污泥处理处置全过程管理。 1.5污泥处理处置的目标是实现污泥的减量化、稳定化和无害化;鼓励回收和利用污泥中的能源和资源。坚持在安全、环保和经济的前提下实现污泥的处理处置和综合利用,达到节能减排和发展循环经济的目的。 1.6 地方人民政府是污泥处理处置设施规划和建设的责任主体;污泥处理处置设施运营单位负责污泥的安全处理处置。地方人民政府应优先采购符合国家相关标准的污泥衍生产品。 1.7 国家鼓励采用节能减排的污泥处理处置技术;鼓励充分利用社会资源处理处置污泥;鼓励污泥处理处置技术创新和科技进步;鼓励研发适合我国国情和地区特点的污泥处理处置新技术、新工艺和新设备。

我国污泥处理现状及新工艺

我国污泥处理现状及新工艺在城市污水和工业废水处理过程中,产生的污泥量约占总处理量的0.3 %~ 0.5 %(以含水率 97 %计)。污泥成分复杂,含有病原微生物、寄生虫卵及重金属等,必须进行适当的处理,才能避免对周围环境造成二次污染。目前大量未稳定处理的污泥已成为污水处理厂的沉重负担,如何将产量巨大、成分复杂的污泥进行妥善安全地处理,使其无害化、减量化、资源化,已成为深受关注的重大课题。 1.1污泥处理现状 20世纪90年代以后,城市污水处理厂发展迅速,一大批大型城市污水处理厂开始建设并相继投产。但是,近十年来由于没有严格的污泥排放监管,致使许多大中型城市出现污泥嗣城的现象,给生态环境带来隐患。目前,城市污水处理厂污泥处理费用仅占工程投资和运行费用的24%~45%。而发达国家的污泥处理费用占污水处理厂总投资的50%~70%。常用的污泥处理方法有:浓缩,污泥调理,厌氧消化,脱水。堆肥等处理技术。至于好氧消化,湿式氧化,消毒,热干燥,焚烧,低温热解等尚处于研究试验阶段。 1.2污泥常规处理方法 (1)浓缩 污泥浓缩方法有重力浓缩、气浮浓缩和离心浓缩。污泥浓缩后其含水率可降为95%左右,仍为液体流动状态。重力浓缩法储存污泥能力高,操作简单,是最常用的污泥减容手段之一。

(2)污泥调节 污泥调节处理可降低污泥的亲水性和提高脱水效率,常用的调节方法有化学调节法、热力调节法。热力调节法和水冻一熔融法、投加惰性物质等方法处在试验研究阶段。 (3)污泥脱水 污泥脱水后的含水率一般可降至70%~80%.减少污泥的体积。常用的脱水方法有自然干燥和机械脱水两种目前常用的机械脱水机有真空过滤机、板框压滤机、带式压滤机和离心机。转鼓离心机和带式压滤机是近年 (4)厌氧消化 污泥厌氧消化是目前最常用的污泥稳定处理工艺,有中温消化(3 2~C~35~c)和高温消化。随着技术的进步.厌氧消化又发展为两相消化和两级消化,在实验研究的两级、两相消化]艺有:厌氧一好氧两相消化;高温酸化一中温甲烷化两相厌氧消化;中温一高温二级处理工艺等。 (5)堆肥化 堆肥化是一种无害化、减容化和稳定化的综合处理技术,系由混合微生物群落在潮湿的环境中对有机物进行分解。堆肥过程中产生的高温可以有效地杀死病原微生物及各种寄生虫卵,是一种无害化、减容化、稳定化的综合处理技术。 2.1污泥减量化技术 污泥减量化机理目前已成为研究热点,其原则是使污泥尽量消灭

污泥量计算

污泥量计算 (1)污泥量计算 1初次沉淀污泥量和二次沉淀污泥量的计算公式: V=100C0ηQ/1000(100-p)ρ 式中:V——初次沉淀污泥量,m3/d; Q——污水流量,m3/d; η——去除率,%;(二次沉淀池η以80%计) C0——进水悬浮物浓度,mg/L; P——污泥含水率,%; ρ——沉淀污泥密度,以1000kg/m3计。 2剩余活性污泥量的计算公式: Qs=ΔX/fXr式中:Qs——每日从系统中排除的剩余污泥量,m3/d; ΔX——挥发性剩余污泥量(干重),kg/d; f=MLVSS/MLSS,生活污水约为0.75,城市污水也可同此; Xr——回流污泥浓度,g/L。 3消化污泥量的计算公式:见公式(8-3)。 (2)污水处理厂干固体物质平衡: 污水处理厂内部存在着固体物质的平衡问题,通过固体物质的平衡计算,有助于污泥处理系统的设计与管理。污水处理厂固体物质平衡的典型计算,可根据图8-1进行。设原污水悬浮物X0为100,初次沉淀池悬浮物去除率以50%计,二次沉淀池去除率以80%计,悬浮物总去除率总去除率为90%。各处理构筑物固体回收率为:浓缩池为r1=90%;消化池为r2=80%;悬浮物减量为rg=30%;机械脱水为r3=95%(预处理所加混凝剂的固体量略去不计)。因此其平衡式为: 进入污泥浓缩池的悬浮物量:X1=ΔX+XR (8-10) XR=Xˊ2+ Xˊ3+ Xˊ4 (8-11) 式中:X1——进入浓缩池的固体物量; ΔX——初次沉淀池排泥的悬浮物量加二次沉淀池剩余污泥中的悬浮物量; XR——等于浓缩池上清液含有的悬浮物量Xˊ2,消化池上清液悬浮物量Xˊ3,机械脱水上清液悬浮物量Xˊ4的总和。 进入消化池的悬浮物量:X2= X1 r1 (8-12) 浓缩池上清液悬浮物量:Xˊ2= X1(1- r1)(8-13) 消化池悬浮物减量:G= X2rg= X1 r1rg (8-14) 进入机械脱水设备的悬浮物量:X3=(X2-G)r2 (8-15) 消化池上清液悬浮物量:Xˊ3=(X2-G)(1- r2)(8-16) 脱水泥饼固体物量:X4= X3 r3 机械脱水上清液含有的悬浮物量:Xˊ4= X3(1- r3)(8-17) 回流至沉砂池前的上清液中所含悬浮物总量: XR=Xˊ2+ Xˊ3+ Xˊ4 = X1(1- r1rg-r1r2r3+r1r2r3rg) (X1- XR)/ X1= r1rg+r1r2r3-r1r2r3rg=ΔX/ X1 X1=ΔX/ r1[rg+r2r3(1-rg)] (8-18)

净水厂处理工艺详解(业内人士的良心科普)

净水厂处理工艺详解(业人士的良心科普) 水是生命之源,水占人体组成的 70%,科学研究表明,成年人平均每天需水量 2500ml 以上,可以说水质是身体健康的基础保障。 拧开水龙头,自来水缓缓流出,我们在享受现代生活带来的便利的同时,有没有想过这些随开随用的自来水究竟经过了哪些工艺流程才由江河湖海中流入千家万户,有时候流出的水像牛奶一样白,而且里面有大量的气泡,散发出消毒水的味道,要静置几分钟才恢复清澈,这些现象究竟是如何形成的,作为普通消费者的我们又如何去辨别水质的好坏。农村来的朋友可能知道,以前没有自来水,家里都有一口大水缸,父亲斜着身子,扁担吱呀呀,从池塘挑着水回家,倒进水缸后打上明矾静止一段时间缸底开始出现沉淀,这是农村最原始的水处理工艺。 后来,大家发现将水缸集中在一起,由专人统一打明矾,效率更高,于是水缸越做越大就成了水厂,更为高效的药品也逐步取代了明矾。 目前多数水厂采用的方法是从水源地抽水进水厂统一消毒、沉淀、过滤,最后泵送至用户家中,其中主要用到以下 6 种药品: 1.HCLO 次氯酸,由氯库中的氯气加入到水中生成,具有很

强的杀菌消毒能力,根据投加位置的不同可分为前加氯、后加氯。 图 1.氯库 2.PAC 聚合氯化铝,溶液储存在加药间,泵送至混合池与水充分搅拌,作用是使水中细微悬浮粒子和胶体离子脱稳,聚集、絮凝、混凝、沉淀,达到净化处理效果。 3.O3 臭氧,由 O2 氧气放电生成,强氧化剂,作用是杀菌消毒,溶裂藻类细胞,降低其含量。按投加位置可分为预(前)臭氧、后臭氧投加点。 使用臭氧进行水处理的优点很多,比如杀菌效果佳,稳定性差易分解,不存在有毒残留物,但大量的使用带来了问题,比如腐蚀金属管道,更重要的是产生了一定量的溴酸盐,你也知道的,这是潜在致癌物,水厂目前应对方法是使用一定量的 H2O2 来处理,后面会提到。 图 2.氧气罐汽化器即使在夏天也是结满冰霜 图 3.臭氧发生器(氧气通电产生臭氧) 图 4.池臭氧投加点 4.H2O2 双氧水,强氧化剂,有杀菌消毒的能力,但主要用于应对溴酸盐,加入水中后与O3 形成竞争关系,避免形成溴酸盐,常在水质较差的月份添加使用。 溴酸盐是潜在致癌物,但受热易分解,不仅是自来水,市面上大多数瓶装水也存在,脱离剂量谈毒性毫无意义,为安心

各种污泥处理方法的比较

各种污泥处理方法的比较常用的污泥处置方法有焚烧、污泥农用、土地卫生填埋、制作建材、海洋处置等几种方法。其中海洋处置由于其造成海洋污染、破坏海洋生态已经被各个国家明令禁止。 污泥焚烧是最彻底的处理方法,基本上可以达到减容化、无害化和资源化的目的。一般污泥经焚烧处理后,其体积可以减少85%~95%,质量减少70%~80%。高温焚烧还可以消灭污泥中的有害病菌和有害物质。通过主要可分为两大类:一类是将脱水污泥直接用焚烧炉焚烧;另一类是将脱水污泥先干化再焚烧。污泥焚烧要求污泥有较高的热值,因此污泥一般不进行消化处理。一般当污泥不符合卫生要求,有毒物质含量高,不能作为农副业利用时,或污泥自身的燃烧热值高,可以自燃并可利用燃烧热量发电时,可考虑采用污泥焚烧。焚烧所需热量,主要靠污泥含有的有机物燃烧,如污泥所含有的有机物燃烧所产生的热能。焚烧最大优点是可以迅速和较大程度地使污泥减容,并且在恶劣的天气条件下不需存储设备,能够满足越来越严格的环境要求和充分地处理不适宜于资源化利用的部分污泥。污泥的焚烧处置不仅是一种有效降低污泥体积的方法,设计良好的焚烧炉不但能够自动运行,还能够提供多余的能量和电力,因此几乎所有的发达国家均期望通过焚烧处置污泥来解决日益增长的污泥量和以前通过填理处置的部分污泥。 污泥的农田利用很早就得到应用。这种利用和处置方式致使污泥最终剩余物问题得到真正解决,因为其中有机物重新进入自然环境。污泥中含有丰富的各种微量元素,施用于农田能够改良土壤结构、增加土壤肥力、促进作物的生长。同时污泥中也含有大量病原菌、寄生虫(卵)、以及铬、汞等重金属和多氯联苯、二恶英、放射性核素等难降解的有毒有害物。一般来说,污泥要作土地处置必须经无毒无害化处理,否则,污泥中的有毒有害物质会导致土壤或水体的二次污染。因此各国对土地利用的污泥标准要求越来越严格。污泥农用必须做到以下几点:首先,严格控制污水厂污泥的有毒有害物质及病原微生物,使其达

污水厂污泥计算

是使污泥减量、稳定、无害化及综合利用。 (1)确保水处理的效果,防止二次污染; (2)使容易腐化发臭的有机物稳定化; (3)使有毒有害物质得到妥善处理或利用; (4)使有用物质得到综合利用,变害为利。 (1)按成分不同分: 污泥:以有机物为主要成分。其主要性质是易于腐化发臭,颗粒较细,比重较小(约为~),含水率高且不易脱水,属于胶状结构的亲水性物质。初次沉淀池与二次沉淀池的沉淀物均属污泥。 沉渣:以无机物为主要成分。其主要是颗粒较粗,比重较大(约为2左右),含水率较低且易于脱水,流动性差。沉砂池与某些工业废水处理沉淀池的沉淀物属沉渣。 (2)按来源不同分: 初次沉淀污泥(也称生污泥或新鲜污泥):来自初次沉淀池。 剩余活性污泥(也称生污泥或新鲜污泥):来自活性污泥法后的二次沉淀池。 腐殖污泥(也称生污泥或新鲜污泥):来自生物膜法后的二次沉淀池。 消化污泥(也称熟污泥):生污泥经厌氧消化或好氧消化处理后的污泥。 化学污泥(也称化学沉渣):用化学沉淀法处理污水后产生的沉淀物。例如,用混凝沉淀法去除污水中的磷;投加硫化物去除污水中的重金属离子;投加石灰中和酸性污水产生的沉渣以及酸、碱污水中和处理产生的沉渣等均称为化学污泥。 (3)城市污水厂污泥的特性见表8-1 表8-1 城市废水厂污泥的性质和数量

(1)污泥含水率:污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。 1污泥中水的存在形式有: 空隙水,颗粒间隙中的游离水,约70%,可通过重力沉淀(浓缩压密)而分离; 毛细水,是在高度密集的细小污泥颗粒周围的水,由毛细管现象而形成的,约20%,可 通过施加离心力、负压力等外力,破坏毛细管表面张力和凝聚力的作用力而分离; 颗粒表面吸附水和内部结合水,约10%。表面吸附水是在污泥颗粒表面附着的水分,起 附着力较强,常在胶体状颗粒,生物污泥等固体表面上出现,采用混凝方法,通过胶体颗粒 相互絮凝,排除附着表面的水分;内部结合水,是污泥颗粒内部结合的水分,如生物污泥中 细胞内部水分,无机污泥中金属化合物所带的结晶水等,可通过生物分离或热力方法去除。 通常含水率在85%以上时,污泥呈流态;65%~85%时呈塑态;低于60%时则呈固态。 2污泥体积、重量及所含固体物浓度之间的关系: V1/V2=W1/W2=(100-p2)/(100-p1)=C2/C1(8-1) 式中: p1、V1、W1、C1——污泥含水率为p1时的污泥体积、重量与固体物浓度; p2、V2、W2、C2——污泥含水率为p1时的污泥体积、重量与固体物浓度; 说明:式(8-1)适用于含水率大于65%的污泥。因含水率低于65%以后,体积内出现很 多气泡,体积与重量不在符合式(8-1)的关系。 例题8-1:污泥含水率从%降低至95%时,求污泥体积。 解:由式(8-1) V2= V1(100-p1)/(100-p2)= V1()/(100-95)=(1/2)V1 可见污泥含水率从%降低至95%时,污泥体积减少一半。 (2)挥发性固体(或称灼烧减重)和灰分(或称灼烧残渣):挥发性固体近似地等于有机物 含量;灰分表示无机物含量。 (3)可消化程度:表示污泥中可被消化降解的有机物数量。 消化对象:污泥中的有机物。一部分是可被消化降解的(或称可被气化,无机化);另 一部分是不易或不能被消化降解的,如脂肪、合成有机物等。 消化程度的计算公式:R d=[1-(p V2p S1)/(p V1p S2)] ×100 (8-2) 式中:R d——可消化程度,%;

自来水厂生产工艺

自来水厂生产工艺 自来水厂的生产废水主要来自沉淀池或澄清池排泥水和滤池反冲洗废水,其中包含了原水中的杂质以及水厂投加的药剂残留物,其水量一般约占水厂总制水量的3%~7%,对环境的冲击作用是显而易见的.据估计,上海市全部水厂每年排入江河的悬浮物约达30万吨以上,有机物3万吨以上. 近年来,随着人们环境意识的增强,特别是强调走可持续发展道路以后,自来水厂排泥水处理以及污泥处置问题越来越受到重视,环保部门对自来水厂生产废弃物的排放和处置要求也逐渐提高.我国许多规模较大的新建水厂和水厂扩改建工程也开始考虑排泥水处理和污泥处置问题,所采用的工艺流程也各不相同.本文的主要目的是就自来水厂排泥处理采用的有关流程以及自控要求提出一些个人看法,供有关人士参考. 排泥处理常采用的工艺流程布置方式 在工程设计中选择排泥水处理工艺流程时需考虑排泥水的沉降性能,上清液是否能达标排放,集泥池中的泥水浓度是否能满足浓缩脱水的需要,以及排泥水调节池和滤池反冲洗废水调节池是否能满足排泥水与废水预浓缩的体积要求等.通常有下列

几种布置方式可供选用参考: 方式(1):沉淀池排泥水浓缩处理,滤池反冲洗废水直接回用或排放.适用于滤池反冲洗废水可满足回用要求的情况,考虑到长时间回用可能引起的金属离子富集等问题,亦考虑排放措施. 方式(2):沉淀池排泥水浓缩处理,滤池反冲洗废水经废水调节池预沉,上清液回用或排放,底部污泥水浓缩处理.适用于滤池反冲洗废水不能满足回用要求,但预沉后上清液可以满足回用要求的情况. 方式(3):沉淀池排泥水和滤池反冲洗水经调节池混合后,上清液回用或排放,底部污泥水浓缩处理.适用于滤池反冲洗废水不能满足回用要求,但单独浓缩无法脱水机械要求,只能与沉淀池排泥水混合浓缩的情况. 国内外有些资料上还介绍了一些工艺流程,基本上都是在以上三种基础上略做修改,此处不再介绍. 图1排泥处理常采用的工艺流程布置 排泥水处理工艺优化 自来水厂沉淀池排泥水和滤池反冲洗废水的浓度和沉降性能之间存在着较大的差别.沉淀池排泥水的浓度一般较高,如

污泥产生量计算

污泥是水处理过程的副产物,包括筛余物、沉泥、浮渣和剩余污泥等。污泥体积约占处理水量的%~%左右,如水进行深度处理,污泥量还可能增加~1倍。是使污泥减量、稳定、无害化及综合利用。 (1)确保水处理的效果,防止二次污染; (2)使容易腐化发臭的有机物稳定化; (3)使有毒有害物质得到妥善处理或利用; (4)使有用物质得到综合利用,变害为利。 (1)按成分不同分: 污泥:以有机物为主要成分。其主要性质是易于腐化发臭,颗粒较细,比重较小(约为~),含水率高且不易脱水,属于胶状结构的亲水性物质。初次沉淀池与二次沉淀池的沉淀物均属污泥。 沉渣:以无机物为主要成分。其主要是颗粒较粗,比重较大(约为2左右),含水率较低且易于脱水,流动性差。沉砂池与某些工业废水处理沉淀池的沉淀物属沉渣。 (2)按来源不同分: 初次沉淀污泥(也称生污泥或新鲜污泥):来自初次沉淀池。 剩余活性污泥(也称生污泥或新鲜污泥):来自活性污泥法后的二次沉淀池。 腐殖污泥(也称生污泥或新鲜污泥):来自生物膜法后的二次沉淀池。 消化污泥(也称熟污泥):生污泥经厌氧消化或好氧消化处理后的污泥。 化学污泥(也称化学沉渣):用化学沉淀法处理污水后产生的沉淀物。例如,用混凝沉淀法去除污水中的磷;投加硫化物去除污水中的重金属离子;投加石灰中和酸性污水产生的沉渣以及酸、碱污水中和处理产生的沉渣等均称为化学污泥。 (3)城市污水厂污泥的特性见表8-1 (1)污泥含水率:污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。 1污泥中水的存在形式有: 空隙水,颗粒间隙中的游离水,约70%,可通过重力沉淀(浓缩压密)而分离; 毛细水,是在高度密集的细小污泥颗粒周围的水,由毛细管现象而形成的,约20%,可通过施加离心力、负压力等外力,破坏毛细管表面张力和凝聚力的作用力而分离; 颗粒表面吸附水和内部结合水,约10%。表面吸附水是在污泥颗粒表面附着的水分,起附着力较强,常在胶体状颗粒,生物污泥等固体表面上出现,采用混凝方法,通过胶体颗粒相互絮凝,排除附着表面的水分;内部结合水,是污泥颗粒内部结合的水分,如生物污泥中细胞内部水分,无机污泥中金属化合物所带的结晶水等,可通过生物分离或热力方法去除。 通常含水率在85%以上时,污泥呈流态;65%~85%时呈塑态;低于60%时则呈固态。 2污泥体积、重量及所含固体物浓度之间的关系: V1/V2=W1/W2=(100-p2)/(100-p1)=C2/C1(8-1) 式中:p1、V1、W1、C1——污泥含水率为p1时的污泥体积、重量与固体物浓度; p2、V2、W2、C2——污泥含水率为p1时的污泥体积、重量与固体物浓度; 说明:式(8-1)适用于含水率大于65%的污泥。因含水率低于65%以后,体积内出现很多气泡,体积与重量不在符合式(8-1)的关系。 例题8-1:污泥含水率从%降低至95%时,求污泥体积。 解:由式(8-1) V2= V1(100-p1)/(100-p2)= V1()/(100-95)=(1/2)V1 可见污泥含水率从%降低至95%时,污泥体积减少一半。

污泥处理工艺

污泥无害化、资源化利用项目简介 一、概述: 随着经济的飞速发展,全国各地的生活垃圾和河流污染,成了我国经济发展的一大病痛;目前广州市每天产污泥量是1000吨,最高峰期达到了1400多吨;广州政府每吨污泥的处理费用为200元,按照以上数据可算出:每天政府要支出污泥处理费180000元。最近广州市政府准备400亿元整治河涌,新建9家污泥处理厂。 上海市的污泥产量是每天3000吨,上海的污泥处理费用为每吨400元,那么政府每天要支出污泥处理费用400*3000=1200000元; 这是一个相当吸引人的一个数据,是一个长期的处理事业;也是一个为人类造福的事业;目前我国真正成立的污泥处理厂家只有一家,可以想象这个事业的前景和发展空间是巨大的。 下面根据在某污泥处理厂家的实际生产处理经验,写出以下污泥处理工艺。 二、工艺技术要求: (1)有效除去污泥中的重金属,生成无害化物质; (2)实现了污泥杀菌、消毒、除臭目的; (3)无“三废”污染问题,可实现零排放; (4)发展发酵工艺、设备简易、方法简单、能耗低、易于实施; (5)制作建材用料; (6)所得有机酸类肥料在土壤中易于氨化,是农作物最容易吸收的高效有机肥料;经省农科院多次施用及专家组论证(有田间试验报告及专家组论证

报告)证明:对农作物增产增收、恢复自然风味、改良土壤三大功能, 均具有显著的效果。 三、工艺设计原理: (1)在污泥中加入催化剂等物质,在微加热不产生废气的一定工艺条件下,使污泥中的微生物及菌体细胞壁发生破解反应;微生物及菌体分解成含氮有机物(主组分为蛋白质)和非含氮有机物(主组分为葡萄糖),此时溶液中的有机物质主要由蛋白质、糖类、脂肪、木质素、纤维素、以及腐殖质组成。再在微加热不产生废气的催化工艺条件下, 发生如下的分解反应: Ⅰ,蛋白质水解生成有机酸: 蛋白质+H2O→RCHNH2COOH Ⅱ,纤维素水解生成葡萄糖: (C6H10O5)n+nH2O→nC6H12O6 Ⅲ,葡萄糖分解生成乳酸: C6H12O6→2C3H2O4+3H2O 此外,还有木质素分解生成酚、醛和酸类物质等。 (2)污泥中较小分子量、“碳氮比”较低的腐殖酸,与钾、钠、氨、钙、镁、铁(K+、Na+、NH3+、Ca2+、Mg2+、Fe3+)等离子结合,生成腐殖酸盐类而保留于污泥中。 (3)污泥中较大分子量、“碳氮比”较高的腐殖质,比较难于分解,污泥中原来就已存在的腐殖质与重金属[铬(Cr)、镉(Cd)、铅(Pb)、汞(Hg)、砷(As)等]形成的不溶于水的沉淀物,仍以固相形式保留在污泥中。 (4)溶液进行过滤,将滤渣加入硅酸盐(黄泥、粘土等)进行高温烧结,

活性污泥法污泥产量计算

活性污泥工艺的设计计算方法活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。 1污泥负荷法 这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。 污泥负荷法的计算式为[1] V=24LjQ/1000FwNw=24LjQ/1000Fr(1) 污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为Fw=0.2~0.4 kgBOD/(kgMLSS·d) Fr=0.4~0.9 kgBOD/(m3池容·d) 可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。

污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/ (kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)[2],其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢? 污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和B OD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。 综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)[3],1995年又推出了活性污泥二号模型(简称ASM2)[4、5]。 2数学模型法 数学模型法在理论上是比较完美的,但在具体应用上则存在不少问题,这主要是由于污水和污水处理的复杂性和多样性,即使是简化了的数学模式,应用起来也相当困难,从而阻碍了它的推广和应用。到目前为止,数学模型法在国外尚未成为普遍采用的设计方法,而在我国还没有实际应用于工程,仍停留在研究阶段。

工业污泥的处理方法

工业重金属污泥产量大,年产生约1000 万吨工业污泥。尤其是电镀污泥、不锈钢酸洗污泥等中含有多种金属成分,污染严重, 但有一定的回收价值,污泥中含有较高含量的铜、镍、铬、铁等金属,安全回收具有显著的生态和经济效益。即使如此工业污泥成分复杂,含有毒有机物、重金属和病原微生物等。必须进行处理,才能防止对环境造成二次污染。如何妥善进行工业污泥的处理呢,本文就对此进行了分析和总结。 一、污泥处理的方法 污泥处理就是对污泥进行浓缩、调治、脱水、稳定、干化或焚烧的加工过程。随着我国经济的发展,城市废水排放量日益增多,污泥产生量也随之大幅度提高。国内外现有的处理处置手段主要包括卫生填埋、水体消纳、焚烧、堆肥处理、土地利用等。针对我国现有的技术来看,我国主要的污泥处置方式是填埋。 二、工业污泥的治理方案 火法重金属污泥再生冶炼一般工艺流程为:烘干窑+烧结窑+熔炼炉。重金属污泥由立式烧结窑上部送入,与上升的热烟气换热后进入焙烧段烧结,烧结的温度约1000 ℃。由于重金属污泥成分复杂,特别是油类的有机物含量高,造成热烟气与重金属污泥换热过程中会有部分油类物质以气态形式或黏在粉尘上进入烟气中,造成烟气中含有类焦油物质以及VOCs 等。 污泥进行焚烧可以杀灭很多病菌,有机物在经过燃烧之后就会出现非常严重的分解现象,病原体和细菌也是这样,在经过高温燃烧之后,污泥的残渣当中基本上已经没有病菌,在这样的情况下也就减少了不利因素。此外焚烧之后还会减少污泥产生的异味。再次,经过脱水之后的污泥热值和褐煤的热值非常的接近,这样也就在很大程度上减少生产过程中所产生的污泥燃烧投资,为满足企业和政府的环保诉求,解决重金属污泥

自来水厂

自来水厂生产的工艺流程 现在人们谈到饮用自来水,一般会害怕自来水生产过程中未能除尽水中的杂质及微生物,又害怕净水过程中混入了一些有毒气体。基于此,我组成员先到自 来水厂参观采访,了解自来水的生产过程。自来水厂的净水过程是从水源地取水 至水厂,经处理达标后送至用户。根据水厂的具体情况,针对净水过程的特点和 对控制系统的功能要求,采用本文所描述的控制方案。本文为您详细介绍了自来 水厂生产的工艺流程。 现在人们谈到饮用自来水,一般会害怕自来水生产过程中未能除尽水中的杂质及微生物,又害怕净水过程中混入了一些有毒气体。基于此,我组成员先到自来水厂参观采访,了解自来水的生产过程。 自来水厂的净水过程是从水源地取水至水厂,经处理达标后送至用户。根据水厂的具体情况,针对净水过程的特点和对控制系统的功能要求,采用以下控制方案。 1、自来水是如何生产的? 众所周知,由于自然因素和人为因素,原水里含有各种各样的杂质。从给水处理角度考虑,这些杂质可分为悬浮物、胶体、溶解物三大类。城市水厂净水处理的目的就是去除原水中这些会给人类健康和工业生产带来危害的悬浮物质、胶体物质、细菌及其他有害成分,使净化后的水能满足生活饮用及工业生产的需要。市自来水总公司水厂采用常规水处理工艺,它包括混合、反应、沉淀、过滤及消毒几个过程。 (1)混凝反应处理: 原水经取水泵房提升后,首先经过混凝工艺处理,即:原水+ 水处理剂→ 混合→ 反应→ 矾花水; 自药剂与水均匀混合起直到大颗粒絮凝体形成为止,整个称混凝过程。常用的水处理剂有聚合氯化铝、硫酸铝、三氯化铁等。汕头市使用的是碱式氯化铝。根据铝元素的化学性质可知,投入药剂后水中存在电离出来的铝离子,它与水分子存在以下的可逆反应: Al3 + 3H2O ←→ Al(OH)3 + 3H+; 氢氧化铝具有吸附作用,可把水中不易沉淀的胶粒及微小悬浮物脱稳、相互聚结,再被吸附架桥,从而形成较大的絮粒,以利于从水中分离、沉降下来。混合过程要求在加药后迅速完成。混合的目的是通过水力、机械的剧烈搅拌,使药剂迅速均匀地散于水中。 经混凝反应处理过的水通过道管流入沉淀池,进入净水第二阶段。 (2)沉淀处理: 混凝阶段形成的絮状体依靠重力作用从水中分离出来的过程称为沉淀,这个过程在沉淀

污泥相关系数的核定及其计算公式

(1)污泥含水率:污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。 1污泥中水的存在形式有: 空隙水,颗粒间隙中的游离水,约70%,可通过重力沉淀(浓缩压密)而分离; 毛细水,是在高度密集的细小污泥颗粒周围的水,由毛细管现象而形成的,约20%,可通过施加离心力、负压力等外力,破坏毛细管表面张力和凝聚力的作用力而分离; 颗粒表面吸附水和内部结合水,约10%。表面吸附水是在污泥颗粒表面附着的水分,起附着力较强,常在胶体状颗粒,生物污泥等固体表面上出现,采用混凝方法,通过胶体颗粒相互絮凝,排除附着表面的水分;内部结合水,是污泥颗粒内部结合的水分,如生物污泥中细胞内部水分,无机污泥中金属化合物所带的结晶水等,可通过生物分离或热力方法去除。 通常含水率在85%以上时,污泥呈流态;65%~85%时呈塑态;低于60%时则呈固态。 2污泥体积、重量及所含固体物浓度之间的关系: V1/V2=W1/W2=(100-p2)/(100-p1)=C2/C1(8-1) 式中:p1、V1、W1、C1——污泥含水率为p1时的污泥体积、重量与固体物浓度; p2、V2、W2、C2——污泥含水率为p1时的污泥体积、重量与固体物浓度; 说明:式(8-1)适用于含水率大于65%的污泥。因含水率低于65%以后,体积内出现很多气泡,体积与重量不在符合式(8-1)的关系。 例题8-1:污泥含水率从97.5%降低至95%时,求污泥体积。 解:由式(8-1) V2= V1(100-p1)/(100-p2)= V1(100-97.5)/(100-95)=(1/2)V1可见污泥含水率从97.5%降低至95%时,污泥体积减少一半。 (2)挥发性固体(或称灼烧减重)和灰分(或称灼烧残渣):挥发性固体近似地等于有机物含量;灰分表示无机物含量。 (3)可消化程度:表示污泥中可被消化降解的有机物数量。 消化对象:污泥中的有机物。一部分是可被消化降解的(或称可被气化,无机化);另一部分是不易或不能被消化降解的,如脂肪、合成有机物等。 消化程度的计算公式:R d=[1-(p V2p S1)/(p V1p S2)]×100 (8-2) 式中:R d——可消化程度,%; p S1、p S2——分别表示生污泥及消化污泥的无机物含量,%; p V1、p V1——分别表示生污泥及消化污泥的有机物含量,%。 消化污泥量的计算公式:V d= V1(100-p1)/(100-p d)[(1- p V1/100)+ p V1/100(1- R d/100)] (8-3) 式中:V d——消化污泥量,m3/d; p d——消化污泥含水率,%,取周平均值; V1——生污泥量,m3/d; p1——生污泥含水率,%,取周平均值; p V1——生污泥有机物含量,%; R d——可消化程度,%,取周平均值; (4)湿污泥比重与干污泥比重: 湿污泥重量等于污泥所含水分重量与干固体重量之和。湿污泥比重等于湿污泥重量与同体积的水重量之比值。干固体物质包括有机物(即挥发性固体)和无机物(即灰分)。确定湿污泥比重和干污泥比重,对于浓缩池的设计、污泥运输及后续处理,都有实用价值。 经综合简化后,湿污泥比重(γ)和干污泥比重(γs)的计算公式分别为: γ=(100γs)/[γs p+(100-p)] (8-4)

相关主题
文本预览
相关文档 最新文档