当前位置:文档之家› 实验3 离散信号的离散频域分析

实验3 离散信号的离散频域分析

实验3 离散信号的离散频域分析
实验3 离散信号的离散频域分析

长沙理工大学计通学院通信工程系胡双红编数字信号处理A 实验报告

实验项目名称:3离散信号的离散频域分析

学院:______计算机与通信工程____ 专业:______ _通信工程 _________ 学号:______201xxxxxxxxxx_______ 班级:______ 通信1x-x_________ 报告人:_____ ___xx__________

指导老师:___ 胡双红 _ _______ 实验时间:_______201x-1x-2x________

实验目的:

1、掌握离散时间系统的DFT的MATLAB实现;

2、熟悉DTFT和DFT之间的关系。

3、了解信号不同变形的DFT与原信号DFT之间的关系

实验内容:

1.定义x

2.对该信号分别做8点,16点,32点DFT,DTFT

3.将DFT分别与DTFT合并作图

4.在信号中插零,扩充为16点序列,作DFT,画图与原信号DFT进行比较

5.将信号以8为周期拓展作DFT,画图与原信号DFT进行比较

实验平台:

MATLAB集成软件**版

实验流程:

1、对该信号分别做8点、16点、32点DFT,分别与DTFT合并作图并比较DFT与DTFT之间的关系。

2、在信号每两个相邻样本之间插入一个零值,扩充为16点序列,作DFT,画出幅度谱和相位谱,并与原序列的DFT进行比较。

3、将信号以8为周期扩展,得到长为16的两个周期,作DFT,画出幅度谱和相位谱,并与原序列的DFT进行比较。

实验代码:

>> n=0:7;

>> x=(0.9*exp(j*pi/3)).^n;

>> x1=[x zeros(1,8)];x2=[x1 zeros(1,16)];

>> Xk=dft(x,8);Xk1=dft(x1,16);Xk2=dft(x2,32);

>> w=0:pi/200:2*pi;X=dtft(x,n,w);

>> magX=abs(X);angX=angle(X);

>>

magXk=abs(Xk);angXk=angle(Xk);magXk1=abs(Xk1);angXk1=angle(Xk1);

>> magXk2=abs(Xk2);angXk2=angle(Xk2);

>> subplot(4,2,1);plot(w/pi,magX);xlabel('w/pi');ylabel('幅度|X|');grid on; >> subplot(4,2,2);plot(w/pi,angX);xlabel('w/pi');ylabel('相位(rad/π)');

>> subplot(4,2,3);stem(0:7,magXk);xlabel('k');ylabel('幅度|X(k)|');axis([0,8,0,6]);

>> subplot(4,2,4);stem(0:7,angXk);xlabel('k');ylabel('相位(rad/π)');axis([0,8,-2,2]);

>> subplot(4,2,5);stem(0:15,magXk1);xlabel('k');ylabel('幅度|X1(k)|');axis([0,16,0,6]);

>> subplot(4,2,6);stem(0:15,angXk1);xlabel('k');ylabel('相位(rad/π)');axis([0,16,-2,2]);

>> subplot(4,2,7);stem(0:31,magXk2);xlabel('k');ylabel('幅度|X2(k)|');axis([0,32,0,6]);

>> subplot(4,2,8);stem(0:31,angXk2);xlabel('k');ylabel('相位(rad/π)');axis([0,32,-2,2]);

>> n=0:7;

>> x=(0.9*exp(j*pi/3)).^n;

>> for i=1:8 %将原序列每两个相邻样本之间插入一个零值,扩展为长为16的序列

y1(2*i-1:2*i)=[x(i) 0];

end

>> Yk1=dft(y1,16);

Warning: Function call dft invokes inexact match D:\MA TLAB7\work\DFT.M.

>> magYk1=abs(Yk1);angYk1=angle(Yk1);

>> y2=[x x]; %将信号以8为周期扩展,得到长为16的两个周期

>> Yk2=dft(y2,16);

>> magYk2=abs(Yk2);angYk2=angle(Yk2);

>> Xk=dft(x,8);

>> magXk=abs(Xk);angXk=angle(Xk);

>> subplot(3,2,1);stem(0:7,magXk);xlabel('k');ylabel('幅度|X(k)|');

>> subplot(3,2,2);stem(0:7,angXk);xlabel('k');ylabel('相位(rad/π)');

>> subplot(3,2,3);stem(0:15,magYk1);xlabel('k');ylabel('幅度|Y1(k)|');

>> subplot(3,2,4);stem(0:15,angYk1);xlabel('k');ylabel('相位(rad/π)');

>> subplot(3,2,5);stem(0:15,magYk2);xlabel('k');ylabel('幅度|Y2(k)|');

>> subplot(3,2,6);stem(0:15,angYk2);xlabel('k');ylabel('相位(rad/π)');

实验结果:

实验心得:

实验心得:掌握了多点DFT并温习了DFT与DTFT之间的关系熟悉了在信号每两个相邻样本之间插入一个零值后作DF得到幅度谱和相位谱并与原序列的DFT进行比较。掌握周期扩展,得到两个周期作DFT再得到幅度谱和相位谱与原序列的DFT进行比较。在操作过程中,遇到了一些概念上模糊的知识点,经由老师的指导已经熟悉知识点,在操作过程中,与同学们一起合作交流解决问题,受益匪浅。

离散系统频域分析及matlab实现

《数字信号处理》 课程设计报告 离散系统的频域分析及matlab实现 专业:通信工程 班级:通信11级 组次: 姓名及学号: 姓名及学号:

离散系统的频域分析及matlab 实现 一、设计目的 1.熟悉并掌握matlab 软件的使用; 2.掌握离散系统的频域特性; 3.学会分析离散系统的频域特性的方法; 二、设计任务 1.设计一个系统函数系统的频率响应进行分析; 2.分析系统的频域响应; 3.分析系统的因果稳定性; 4.分析系统的单位脉冲响应; 三、设计原理 1. 系统函数 对于离散系统可以利用差分方程,单位脉冲响应,以及系统函数对系统进行描述。 在本文中利用系统函数H(z)进行描述。若已知一个差分方程为 ∑∑==---=M i N i i i i n y a i n x b n 0 1 )()()(y ,则可以利用双边取Z 变换,最终可以得到系统函数的一 般式H(z),∑∑=-=-== N i i i M i i i z a z b z X z z H 0 0) () (Y )(。若已知系统的单位脉冲响应,则直接将其进行Z 变换就可以得到系统函数H(z)。系统函数表征系统的复频域特性。 2.系统的频率响应: 利用Z 变化分析系统的频率响应:设系统的初始状态为零,系统对输入为单位脉冲序列 ) (n δ的响应输出称为系统的单位脉冲响应h (n )。对h(n)进行傅里叶变换,得到: ∑∞ ∞∞-==-)(jw n j |)(|)(e H w j n n j e e H e n h ?ω) (

其中|)(|jwn e H 称为系统的幅频特性函数,)(ω?称为系统的相位特性函数。)(jw e H 表示的是系统对特征序列jwn e 的响应特性。对于一个系统输入信号为n )(ωj e n x =,则系统的输出信号为jwn e )(jw e H 。由上可以知道单频复指数信号jwn e 通过频率响应函数为)(jw e H 后,输出仍为单频复指数信号,其幅度放大了|)(|jw e H ,相移为)(ω?。 对于系统函数H(z)与H(w)之间,若系统函数H(z)的收敛域包含单位圆|z|=1,则有 jw e z jw z H e H ==|)()(,在MATLAB 中可以利用freqz 函数计算系统的频率响应。 (1)[h,w]=freqz(b,a,n) 可得到n 点频率响应,这n 个点均匀地分布在上半单位圆(即 ),并将这n 点频率记录在w 中,相应的频率响应记录在h 中。n 最好能取2的幂次方,如果缺省,则n=512。 (2)[h,w]=freqz(b,a,n,'whole') 在 之间均匀选取n 个点计算频率响应。 (3)[h,w]=freqz(b,a,n,Fs) Fs 为采样频率(以Hz 为单位),在0~Fs/2频率范围内选取n 个频率点,计算相应的频率响应。 (4)[h,w]=freqz(b,a,n,'whole',Fs) 在0~Fs 之间均匀选取n 个点计算频率响应。 (5)freqz(b,a) 可以直接得到系统的幅频和相频特性曲线。其中幅频特性以分贝的形式给出,频率特性曲线的横轴采用的是归一化频率,即Fs/2=1。 3.系统的因果性和稳定性 3.1因果性 因果系统其单位脉冲响应序列h(n)一定是一个因果序列,其z 域的条件是其系统函数H(z)的收敛域一定包含∞,即∞点不是极点,极点 分布在某个圆内,收敛域在某个圆外。 3.2稳定性 系统稳定就要求∞<∑∞ ∞-|h(n)|,由序列的)(jw e H 存在条件和jw e z jw z H e H ==|)()(可以知道 系统稳定的z 域条件就是H(z)的收敛域包含单位圆,即极点全部分布在单位圆内部。 由上3.1和3.2可知,利用系统的零极点分布图可以判断系统的因果性和稳定性。 若在零极点分布图中,若系统的极点都分布在单位圆内,则此系统是因果系统,若有极点分布在单位圆 外,则此系统是非因果系统。在MATLAB 中可以利用zplane 函数画出系统的零极点分布图。系统函数的零极点图的绘制:zplane(b,a)。其中b 为系统函数的分子,a 为系统函数的分母。 4.系统的单位脉冲响应 设系统的初始状态为零,系统对输入为单位脉冲序列)(n δ的响应输出称为系统的单位脉冲响应h (n )。对于离散系统可以利用差分方程,单位脉冲响应,以及系统函数对系统进行描述。单位脉冲响应是系统的一种描述方法,若已知了系统的系统函数,可以利用系统得出系统的单位脉冲响应。在MATLAB 中利用impz 由函数函数求出单位脉冲响应h(n)。

实验一离散时间信号分析

实验一离散时间信号分析 一、实验目的 1. 初步掌握Matlab 的使用,掌握编写M 文件和函数文件 2. 掌握各种常用序列的表达,理解其数学表达式和波形表示之间的关系。 3. 掌握生成及绘制数字信号波形的方法。 4. 掌握序列的基本运算及实现方法。 5. 研究信号采样时采样定理的应用问题。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列{x(n)}来表示,其中x(n)代表序列的第n个数字,n 代表时间的序列,n 的取值范围为-∞< n<+∞的整数,n 取其它值x(n)没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号x a(t)进行等间隔采样,采样间隔为T,得到{x (nT )} a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)δ(n)、单位阶跃序列u(n)、矩形序列R N(n)、 实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算

序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 y(n)=∑ x (m )h (n ?m )+∞m=?∞ =x(n)*h(n) 上式的运算关系称为卷积运算,式中* 代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4 个步骤。 (1)反褶:先将x (n )和h (n )的变量n 换成m ,变成x (m )和h (m ),再将h (m )以纵 轴为对称轴反褶成h (-m )。 (2)移位:将h (-m )移位n ,得h (n- m )。当n 为正数时,右移n 位;当n 为负数时, 左移n 位。 (3)相乘:将h (n -m )和x (m )的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得y (n )。 三、主要实验仪器及材料 PC 机、Matlab7.0。 四、实验内容 1.知识准备 认真复习以上基础理论,理解本实验所用到的实验原理。 2.离散时间信号(序列)的产生 利用MATLAB 产生和绘制下列有限长序列:

周期矩形信号的频谱分析

1.周期信号的频谱 周期信号在满足一定条件时,可以分解为无数三角信号或指数之和。这就是周期信号的傅里叶级数展开。在三角形式傅里叶级数中,各谐波分量的形式为()1cos n n A n t ω?+;在指数形式傅里叶级数中,分量的形式必定为1j n t n F e ω 与1-j -n t n F e ω 成对出现。为了把周期信号所具有的各 次谐波分量以及各谐波分量的特征(如模、相角等)形象地表示出来,通常直接画出各次谐波的组成情况,因而它属于信号的频域描述。 以周期矩形脉冲信号为lifenxi 周期信号频谱的特点。周期矩形信号在一个周期(-T/2,T/2)内的时域表达式为 ,2 0,>2 ()A t T t f t ττ ≤?=?? (2-6) 其傅里叶复数系数为 12 n n A F Sa T ωττ?? = ??? (2-7) 由于傅里叶复系数为实数,因而各谐波分量的相位为零(n F 为正)或为π±(n F 为负),因此不需要分别画出幅度频谱n F 与相位频谱n φ。可以直接画出傅里叶系数n F 的分布图。 如图2.4.1所示。该图显示了周期性矩形脉冲信号()T f t 频谱的一些性质,实际上那个也是周期性信号频谱的普遍特性: ① 离散状频谱。即谱线只画出现在1ω的整数倍频率上,两条谱线的间隔为1ω(等于2π/t )。 ② 谱线宽度的包络线按采样函数()1/2a S n ωτ的规律变化。如图2.4.2所示。但1ω 为 2π τ 时,即( )2m π ωτ =(m=1,2,……)时,包络线经过零点。在两相邻 零点之间,包络线有极值点,极值的大小分别为-0.212()2A T τ,

周期信号的时域及其频域分析

周期信号的时域及其频域分析 姓名:张敏靓学号:1007433014 一、实验目的 1.掌握Multisim软件的应用及用虚拟仪器对周期信号的频谱测量 2.掌握选频电平表的使用,对信号发生器输出信号(方波、矩形波、 三角波等)频谱的测量 二、实验原理 周期信号的傅里叶级数分析法,可以把周期信号表示为三角傅里叶级数或指数傅里叶级数,其中周期信号满足。 1. 周期信号表示为三角傅里叶级数 2. 周期信号表示为指数傅里叶级数 其中, 周期矩形信号的频谱

三、实验内容 1.在Multisim上实现周期信号的时域、频域测量及分析 (1)绘制测量电路 (2)周期信号时域、频域(幅度频谱)的仿真测量 虚拟信号发生器分别设置如下参数: 周期方波信号:周期T=100μs,脉冲宽度τ=50μs,脉冲幅度 V P=5V; 周期矩形信号:周期T=100μs,脉冲宽度τ=20μs,脉冲幅度 V P=5V; 周期三角波信号:周期T=200μs,脉冲幅度V P=5V; 采用虚拟示波器及虚拟频谱仪分别测量上述信号的时域、频域波形并保存测试波形及数据。

2.周期信号时域、频域(幅度频谱)的测量 信号发生器、示波器、选频电平表的连线如上图所示。信号发生器的输出信号分别为周期分别信号、周期矩形信号、周期三角波信号,参数设置同仿真测量。采用示波器及选频电平表对信号发生器的输出信号分别测量,并将测量数据记录下表中。

四、实验总结 1.在周期矩形信号的实验中,信号频率减小,频谱减小;信号占空 比减小,频谱减小;幅度值减小,频谱减小。 2.未安装Origin绘图软件,Excel绘图未能达到理想效果。

实验二连续时间信号的频域分析

实验二 连续时间信号的频域分析 一、实验目的 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因; 3、掌握连续时间傅里叶变换的分析方法及其物理意义; 4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质; 5、学习掌握利用Matlab 语言编写计算CTFS 、CTFT 和DTFT 的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT 、DTFT 的若干重要性质。 基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用Matlab 编程完成相关的傅里叶变换的计算。 二、原理说明 1、连续时间周期信号的傅里叶级数CTFS 分析 任何一个周期为T 1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。 三角傅里叶级数为: ∑∞ =++=1 000)]sin()cos([)(k k k t k b t k a a t x ωω 2.1 或: ∑∞=++=1 00)cos()(k k k t k c a t x ?ω 2.2 其中1 02T πω=,称为信号的基本频率(Fundamental frequency ),k k b a a ,和,0分别是信号)(t x 的直流分量、 余弦分量幅度和正弦分量幅度,k k c ?、为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率0ωk 的函数,绘制出它们与0ωk 之间的图像,称为信号的频谱图(简称“频谱”),k c -0ωk 图像为幅度谱,k ?-0ωk 图像为相位谱。 三角形式傅里叶级数表明,如果一个周期信号x(t),满足狄里克利条件,就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的正弦信号所组成,其中每一个不同频率的正弦信号称为正弦谐波分量 (Sinusoid component),其幅度(amplitude )为k c 。也可以反过来理解三角傅里叶级数:用无限多个正弦谐波分量可以合成一个任意的非正弦周期信号。 指数形式的傅里叶级数为:

周期信号的频谱分析

信号与系统 实验报告 实验三周期信号的频谱分析 实验报告评分:_______ 实验三周期信号的频谱分析 实验目的: 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;

3、掌握各种典型的连续时间非周期信号的频谱特征。 实验内容: (1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图: 其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos( 0t)、cos(3 0t)、cos(5 0t)和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。 程序如下: clear,%Clear all variables close all,%Close all figure windows dt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t); N=input('Type in the number of the harmonic components N='); x=0; for q=1:N; x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q; end subplot(221) plot(t,x1)%Plot x1 axis([-2 4 -2 2]); grid on, title('signal cos(w0.*t)') subplot(222) plot(t,x2)%Plot x2 axis([-2 4 -2 2]); grid on, title('signal cos(3*w0.*t))') subplot(223) plot(t,x3)%Plot x3 axis([-2 4 -2 2])

实验一离散时间信号的分析

武汉工程大学 信号分析与处理实验一 专业:通信02班 学生姓名:李瑶华 学号:1304200113 完成时间:2016年6月1日

实验一: 离散时间信号的分析 一、实验目的 1.认识常用的各种信号,理解其数学表达式和波形表示。 2.掌握在计算机中生成及绘制数字信号波形的方法。 3.掌握序列的简单运算及计算机实现与作用。 4.理解离散时间傅立叶变换、Z 变换及它们的性质和信号的频域特性。 二、实验设备 计算机,MATLAB 语言环境。 三、实验基础理论 1.序列的相关概念 2.常见序列 ● 单位取样序列?? ?≠==0n 0,0 n 1n ,)(δ ● 单位阶跃序列? ??<≥=0,00 ,1)(n n n u ● 单位矩形序列???-≤≤=其他,01 0,1)(N n n R N ● 实指数序列)()(n u a n x n = ● 复指数序列n jw e n x )(0)(+=σ ● 正弦型序列)n sin()(0?+=w A n x 3.序列的基本运算 ● 移位 y(n)=x(n-m) ● 反褶 y(n)=x(-n) ● 和 )()()(21n x n x n y += ● 积 )()()(21n x n x n y ?= ● 标乘 y(n)=mx(n) ● 累加∑-∞ == n m m x n y )()( ● 差分运算 ???--=?-+=?) 1()()() ()1()(x n x n x n x n x n x n 后相差分前向差分

4.离散傅里叶变换的相关概念 ● 定义 ∑+∞ -∞ =-=n jwn jw e n x e X )()( ● 两个性质 1) [] )2()2()2()()(,2)(ππππ++∞ -∞ =+-+--== =∑w j n n w j jw n w j jwn jw e X e n x e X e e w e X 故有。由于的周期函数,周期为是 2) 当x (n )为实序列时,)(jw e X 的幅值)(jw e X 在π20≤≤w 区间内是偶对称函 数,相位)(arg jw e X 是奇对称函数。 5.Z 变换的相关概念 ● 定义 ∑+∞ -∞ =-= n n z n x z X )()((双边Z 变换) ∑+∞ =-=0 )()(n n z n x z X (单边Z 变换) 四、实验内容与步骤 1.离散时间信号(序列)的产生 利用MATLAB 语言编程产生和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形表示。 1. 单位取样序列的产生函数 function [x,n]=impseq(n0,n1,n2) %产生x(n)=delta(n-n0);n1<=n,n0<=n2; %[x,n]=impseq(n0,n1,n2) if ((n0n2)|(n1>n2)) error('参数必须满足n1<=n0<=n2') end n=[n1:n2]; %x=[zeros(1,(n0-n1)),1,zeros(1,(n2-n0))]; x=[(n-n0)==0]; 2. 单位阶跃序列的产生函数 function [x,n]=stepseq(n0,n1,n2) %产生x(n)=u(n-n0);n1<=n,n0<=n2; %[x,n]=stepseq(n0,n1,n2) if ((n0n2)|(n1>n2)) error('参数必须满足n1<=n0<=n2') end n=[n1:n2];

用Matlab进行信号与系统的时、频域分析

课程实验报告 题目:用Matlab进行 信号与系统的时、频域分析 学院 学生姓名 班级学号 指导教师 开课学院 日期 用Matlab进行信号与系统的时、频域分析 一、实验目的 进一步了解并掌握Matlab软件的程序编写及运行; 掌握一些信号与系统的时、频域分析实例; 了解不同的实例分析方法,如:数值计算法、符号计算法; 通过使用不同的分析方法编写相应的Matlab程序; 通过上机,加深对信号与系统中的基本概念、基本理论和基本分析方法的理解。 二、实验任务 了解数值计算法编写程序,解决实例; 在Matlab上输入三道例题的程序代码,观察波形图; 通过上机实验,完成思考题; 完成实验报告。 三、主要仪器设备

硬件:微型计算机 软件:Matlab 四、 实验内容 (1) 连续时间信号的卷积 已知两个信号)2()1()(1---=t t t x εε和)1()()(2--=t t t x εε,试分别画出)(),(21t x t x 和卷积)()()(21t x t x t y *=的波形。 程序代码: T=0.01; t1=1;t2=2; t3=0;t4=1; t=0:T:t2+t4; x1=ones(size(t)).*((t>t1)-(t>t2)); x2=ones(size(t)).*((t>t3)-(t>t4)); y=conv(x1,x2)*T; subplot(3,1,1),plot(t,x1); ylabel('x1(t)'); subplot(3,1,2),plot(t,x2); ylabel('x2(t)'); subplot(3,1,3),plot(t,y(1:(t2+t4)/T+1)); ylabel('y(t)=x1*x2'); xlabel('----t/s'); (2)已知两个信号)()(t e t x t ε-=和)()(2/t te t h t ε-=,试用数值计算法求卷积,并分别画出)(),(t h t x 和卷积)()()(t h t x t y *=的波形。 程序代码: t2=3;t4=11; T=0.01; t=0:T:t2+t4; x=exp(-t).*((t>0)-(t>t2)); h=t.*exp(-t/2).*((t>0)-(t>t4)); y=conv(x,h)*T; yt=4*exp(-t)+2*t.*exp(-1/2*t)-4*exp(-1/2*t); subplot(3,1,1),plot(t,x); ylabel('x(t)'); subplot(3,1,2),plot(t,h); ylabel('h(t)'); subplot(3,1,3),plot(t,y(1:(t2+t4)/T+1),t,yt,'--r'); legend('by numberical','Theoretical'); ylabel('y=x*h'); xlabel('----t/s'); (3)求周期矩形脉冲信号的频谱图,已知s T s A 5.0,1.0,1===τ

离散时间信号分析

离散时间信号分析 实验目的:利用MA TLAB进行离散时间序列的基本运算,掌握基本的MA TLAB函数的编写和调试方法。 实验内容: (1)信号相加 x(n)=x1(n)+x2(n) 当两个相加的序列长度不同时或位置不对应时,首先必须调整二者的位置对齐,然后通过zeros函数左右补零使其长度相等后再相加。下面的参考代码利用函数sigadd说明了这些运算,其验证将在后续实验中进行。 MATLAB参考代码 function[y,n]=sigadd(x1,n1,x2,n2) %implements y(n)=x1(n)+x2(n) %--------------------------------------------- %[y,n]=sigadd(x1,n1,x2,n2) %y=sum sequence over n,which includes n1 and n2 %x1=first sequence over n1 %x2=second sequence over n2(n2 can be different from n1) % n=min(min(n1),min(n2)):max(max(n1),max(n2));%duration of y(n) y1=zeros(1,length(n)); y2=y1; y1(find((n>=min(n1))&(n<=max(n1))==1))=x1;%x1 with duration of y y2(find((n>=min(n2))&(n<=max(n2))==1))=x2;%x2 with duration of y y=y1+y2;%sequence addition (2)信号相乘 信号相乘,即两个序列的乘积(或称“点乘”),表达式为: x(n)=x1(n)?x2(n) 在MA TLAB中,用运算符“.*”实现。

实验四-离散时间系统的频域分析(附思考题程序)

实验四 离散时间系统的频域分析 1.实验目的 (1)理解和加深傅里叶变换的概念及其性质。 (2)离散时间傅里叶变换(DTFT)的计算和基本性质。 (3)离散傅里叶变换(DFT)的计算和基本性质。 2.实验原理 对离散时间信号进行频域分析,首先要对其进行傅里叶变换,通过得到的频谱函数进行分析。 离散时间傅里叶变换(DTFT ,Discrete-time Fourier Transform)是傅立叶变换的一种。它将以离散时间nT (其中,T 为采样间隔)作为变量的函数(离散时间信号)f (nT )变换到连续的频域,即产生这个离散时间信号的连续频谱()iw F e ,其频谱是连续周期的。 设连续时间信号f (t )的采样信号为:()()()sp n f t t nT f nT d ¥ =-? = -?,并且其傅里叶变 换为:()()(){}sp n iwt f t f nT t nT dt e d ¥ ¥ -? =-? --= ? òF 。 这就是采样序列f(nT)的DTFT::()()iwT inwT DTFT n F e f nT e ¥ -=-? = ?,为了方便,通常将采 样间隔T 归一化,则有:()()iw inw DTFT n F e f n e ¥ -=-? = ?,该式即为信号f(n)的离散时间傅 里叶变换。其逆变换为:()1()2iw DTFT inw F e dw f n e p p p -=ò。 离散傅里叶变换(DFT ,Discrete-time Fourier Transform )是对离散周期信号的一种傅里叶变换,对于长度为有限长信号,则相当于对其周期延拓进行变换。在频域上,DFT 的离散谱是对DTFT 连续谱的等间隔采样。 21 1 20 ()()| ()()DFT k DTFT k w N knT N N i iwT iwnT N n n F w F e f nT e f nT e p p =----==== = 邋 长度为N 的有限长信号x(n),其N 点离散傅里叶变换为: 1 ()[()]()kn N N n X k DFT x n x n W -=== ?。 X(k)的离散傅里叶逆变换为:10 1()[()]()kn N N k x n IDFT X k X k W N --===?。 DTFT 是对任意序列的傅里叶分析,它的频谱是一个连续函数;而DFT 是把有限长序列作为周期序列的一个周期,对有限长序列的傅里叶分析,DFT 的特点是无论在时域还是频域

离散时间信号与系统的频域研究分析

离散时间信号与系统的频域分析

————————————————————————————————作者:————————————————————————————————日期:

计算机与信息工程学院 实验报告 专业:通信工程年级/班级:2012级通信工程2013—2014学年第二学期 课程名称指导教师 本组成员 学号姓名 实验地点实验时间 项目名称离散时间信号与系统的频 域分析 实验类型 一、实验目的 1、掌握离散时间信号与系统的频域分析方法,从频域的角度对信号与系统的特性进行分析。 2、掌握离散时间信号傅里叶变换与傅里叶逆变换的实现方法。 3、掌握离散时间傅里叶变换的特点及应用 4、掌握离散时间傅里叶变换的数值计算方法及绘制信号频谱的方法 二、实验仪器或设备 一台装有MATLAB的计算机 三、实验原理 1. 离散时间系统的频率特性 在离散LTI 系统时域分析中得到系统的单位冲激响应可以完全表征系统,进而通过h[n]特性来分析系统的特性。系统单位冲激响应h[n]的傅里叶变换H () 成为LTI 系统的频率响应。与连续时间LTI 系统类似,通过系统频率响应可以分析出系统频率特性。与系统单位冲激响应h[n]一样,系统的频率响应H () 反映了系统内在的固有特性,它取决于系统自身的结构及组成系统元件的参数,与外部激励无关,是描述系统特性的一个重要参数,H () 是频率的复函数可以表示为 其中,|1随频率变化的规律称为幅频特性;?(ω)随频率变化的规律称为相频特性。 2. 离散时间信号傅里叶变换的数值计算方法

算法原理, 由傅里叶变换原理可知: 序列f [n]的离散时间傅里叶变换F是ω的连续函数。由于数据在 matlab 中以向量的形式存在,F ()只能在一个给定的离散频率的集合中计算。然而, 只有类似 形式的e? jω的有理函数,才能计算其离散时间傅里叶变换。 四、实验内容 1 离散时间傅里叶变换 (1)下面参考程序是如下序列在范围?4π≤ω≤4π的离散时间傅里叶 变换 实验代码 %计算离散时间傅里叶变换的频率样本 clear all; w=-4*pi:8*pi/511:4*pi; num=[2 1]; den=[1 -0.6]; h=freqz(num,den,w); subplot(2,1,1) plot(w/pi,real(h)); grid; title(‘实部’) xlabel(‘omega/\pi’); ylabel(‘振幅’); subplot(2,1,2) plot(w/pi, imag(h)); grid; title(‘虚部’) xlabel(‘omega/\pi’); ylabel(‘振幅’); figure; subplot(2,1,1) plot(w/pi, abs(h)); grid; title(‘幅度谱’) xlabel(‘omega/\pi’); ylabel(‘振幅’);

连续离散系统频域分析

课程实验报告 学年学期2015-2016学年第二学期 课程名称信号与系统 实验名称连续和离散系统的频域分析实验室北校区5号楼计算机房 专业年级电气141 学生姓名宋天绍 学生学号2014011595 提交时间 成绩 任课教师吴凤娇 水利与建筑工程学院

实验二:连续和离散系统的频域分析 一:实验目的 1:学习傅里叶正变换和逆变换,理解频谱图形的物理含义 2:了解连续和离散时间系统的单位脉冲响应 3:掌握连续时间系统的频率特性 二:实验原理 1. 傅里叶正变换和逆变换公式 正变换:()()j t F f t e dt ωω∞ --∞ =? 逆变换:1()()2j t f t F e d ωωωπ ∞ -∞ = ? 2. 频域分析 t j t j e d d e t e ωωωπ ωωωπ??∞∞-∞∞-E =E =)(21)(21)(将激励信号分解为无穷多个正弦分量的和。 ?∞∞-H E =ωωωπωd e t r t j zs )()(21)(,R(ω)为)(t r zs 傅里叶变换;π ωωd )(E 各频率分量的复数振幅 激励单位冲激响应时的零状态响应→ )(t δ)(t h 单位阶跃响应时的零状态响应激励→)(t u )(t g 3 各函数说明: (1)impulse 冲激响应函数:[Y,X,T]=impulse(num,den); ) 1()2()1() 1()2()1()()()(1 1++++++++==--n a s a s a m b s b s b s A s B s H n n m m num 分子多项式系数; num=[b(1) b(2) … b(n+1)]; den 分母多项式系数; den=[a(1) a(2) … a(n+1)]; Y,X,T 分别表示输出响应,中间状态变量和时间变量; 如:3 52 )(2 +++= s s s s H ,等价于)(2)()(3)(5)(t e t e t r t r t r +=++ 定义den=[1 5 3];num=[1 2]; [Y,X,T]=impulse(num,den); (2)step 阶跃响应函数:[Y,X,T]=step(num,den);num 分子多项式;den 分母多项式 Y,X,T 分别表示输出响应,中间状态变量和时间变量; 如:3 52 )(2+++= s s s s H ,den=[1 5 3];num=[1 2]; [Y,X,T]= step (num,den); (3)impz 数字滤波器的冲激响应 [h,t]=impz(b,a,n) b 分子多项式系数;a 分母多项式系数;n 采样样本 h 离散系统冲激响应;t 冲激时间,其中t=[0:n-1]', n=length(t)时间样本数

实验一离散时间信号与系统分析

实验一 离散时间信号与系统分析 一、实验目的 1.掌握离散时间信号与系统的时域分析方法。 2.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。 3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。 二、实验原理 1.离散时间系统 一个离散时间系统是将输入序列变换成输出序列的一种运算。若以][?T 来表示这种运算,则一个离散时间系统可由下图来表示: 图 离散时间系统 输出与输入之间关系用下式表示 )]([)(n x T n y = 离散时间系统中最重要、最常用的是线性时不变系统。 2.离散时间系统的单位脉冲响应 设系统输入)()(n n x δ=,系统输出)(n y 的初始状态为零,这是系统输出用)(n h 表示,即)]([)(n T n h δ=,则称)(n h 为系统的单位脉冲响应。 可得到:)()()()()(n h n x m n h m x n y m *=-= ∑∞ -∞= 该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。 3.连续时间信号的采样 采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、Z 变换和序列傅氏变换之间关系的理解。 对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘 积,即:)()()(?t t x t x T a a δ=

其中,)(?t x a 是连续信号)(t x a 的理想采样,)(t T δ是周期冲激脉冲 ∑∞ -∞=-= m T mT t t )()(δδ 设模拟信号)(t x a ,冲激函数序列)(t T δ以及抽样信号)(?t x a 的傅立叶变换分别为)(Ωj X a 、)(Ωj M 和)(?Ωj X a ,即 )]([)(t x F j X a a =Ω )]([)(t F j M T δ=Ω )](?[)(?t x F j X a a =Ω 根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域为卷积运算,即 )]()([21)(?Ω*Ω=Ωj X j M j X a a π 其中 ?∞ ∞ -Ω-==Ωdt e t x t x F j X t j a a a )()]([)( 由此可以推导出∑∞-∞=Ω-Ω=Ωk s a a jk j X T j X )(1)(? 由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。根据香农定理,如果原信号是带限信号,且采样频率高于原信号最高频率的2倍,则采样后的离散序列不会发生频谱混叠现象。 4.有限长序列的分析 对于长度为N 的有限长序列,我们只观察、分析在某些频率点上的值。 ???-≤≤=n N n n x n x 其它010),()( 一般只需要在π2~0之间均匀的取M 个频率点,计算这些点上的序列傅立叶变换: ∑-=-=1 0)()(N n jn j k k e n x e X ωω 其中,M k k /2πω=,1,,1,0-=M k 。)(ωj e X 是一个复函数,它的模就是幅频特 性曲线。 三、主要实验仪器及材料

用MATLAB分析离散信号的频谱与信号的采样

实验六 用 MATLAB 分析离散信号的频谱与信号的采样 一、 实验目的 1、了解离散时间信号频谱的分析方法; 2、了解相关函数的调用格式及作用; 3、掌握用MATLAB 分析信号的采样过程与原理。 二、涉及的MATLAB 函数 1、fft 函数:可用来计算离散周期信号频谱 X[m] = fft(x) x :是离散周期信号0~N -1 一个周期的序列值 X[m] 是离散周期信号的频谱 函数fft 还可用来计算离散非周期信号频谱、连续周期信号和连续非周期信号的频谱。 2、rectpuls 函数:表示矩形脉冲信号 y=rectpuls(t,width) 产生宽度为0.4,幅度为1,以零点对称的矩形波1P (t) 三、实验内容 1、用MATLAB 实现下图所示周期矩形序列的频谱 x[k]的频谱函数为:X[m]= ) ( sin )] 12([ sin N m M N m ππ+ k

%Program 6_1计算离散周期矩形序列的频谱 N=32; M=4; %定义周期矩形序列的参数x=[ones(1,M+1),zeros(1,N-2*M-1),ones(1,M)]; %产生周期矩形序列X=fft(x); %计算DFS系数 m=0:N-1; stem(m,real(X)); %画出频谱X的实部title('X[m]的实部');xlabel('m') figure; stem(m,imag(X)); %画出频谱X的虚部title('X[m]的虚部');xlabel('m'); xr=ifft(X); figure; stem(m,real(xr)); xlabel('k'); title('重建的x[k]'); 仿真的结果如下:

实验一-离散时间信号分析

实验一 离散时间信号分析 一、实验目的 1. 初步掌握 Matlab 的使用,掌握编写M 文件和函数文件 2. 掌握各种常用序列的表达,理解其数学表达式和波形表示之间的关系。 3. 掌握生成及绘制数字信号波形的方法。 4. 掌握序列的基本运算及实现方法。 5. 研究信号采样时采样定理的应用问题。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列{x (n )}来表示,其中x (n )代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为-∞< n<+∞的整数,n 取其它值x (n )没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号x a (t ) 进行等间隔采样,采样间隔为T ,得到{x (nT )} a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)δ (n )、单位阶跃序列u (n )、矩形序列R N (n ) 、 实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 y(n)=∑x (m )h (n ?m )+∞m=?∞=x(n)*h(n) 上式的运算关系称为卷积运算,式中* 代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4 个步骤。 (1)反褶:先将x (n )和h (n )的变量n 换成m ,变成x (m )和h (m ),再将h (m )以纵 轴为对称轴反褶成h (-m )。 (2)移位:将h (-m )移位n ,得h (n- m )。当n 为正数时,右移n 位;当n 为负数时, 左移n 位。 (3)相乘:将h (n -m )和x (m )的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得y (n )。 三、主要实验仪器及材料 PC 机、Matlab7.0。

离散时间信号系统的频域分析实验报告

《信号、系统与信号处理实验I》 实验报告 实验名称:离散时间信号与系统的频域分析 姓名:韩文草 学号:15081614 专业:通信工程 实验时间:2016.11.28 杭州电子科技大学 通信工程学院

一、实验目的 二、实验内容

三、实验过程及实验结果 clear all; w = -4*pi:8*pi/511:4*pi; num = [2 1];den = [1 -0.6]; h = freqz(num, den, w); subplot(2, 1, 1) plot(w/pi, real(h) ); grid; title(' 实部 ') xlabel('omega^pi'); ylabel(' 振幅 '); subplot(2, 1, 2) plot(w/pi, imag(h));grid; title(' 虚部 ') xlabel('omega^pi'); ylabel(' 振幅 '); figure; subplot(2,1, 1) plot(w/pi, abs(h));grid; title(' 幅度谱 ') xlabel('omega^pi'); ylabel(' 振幅 '); subplot(2, 1, 2) plot(w/pi,angle(h));grid; title(' 相位谱 ') xlabel('omega^pi'); ylabel(' 以弧度为单位的相位'); h = [1 2 3 4 5 6 7 8 9]; w = 0:pi/511:pi; h = freqz(h, 1, w); subplot(2, 1, 1) plot(w/pi, real(h) ); grid; title(' 实部 ') xlabel('omega^pi'); ylabel(' 振幅 '); subplot(2, 1, 2) plot(w/pi, imag(h));grid; title(' 虚部 ')

离散LSI系统的频域分析

实验3 离散LSI 系统的频域分析 一、实验目的: 1、加深对离散系统变换域分析——z 变换的理解,掌握使用MA TLAB 进行z 变换和逆z 变换的常用函数的用法。 2、了解离散系统的零极点与系统因果性和稳定性的关系,熟悉使用MATLAB 进行离散系统的零极点分析的常用函数的用法。 3、加深对离散系统的频率响应特性基本概念的理解,掌握使用MATLAB 进行离散系统幅频响应和相频响应特性分析的常用方法。 二、实验原理 1、z 变换和逆z 变换 (1)用ztrans 函数求无限长序列的z 变换。该函数只给出z 变换的表达式,而没有给出收敛域。另外,由于这一函数还不尽完善,有的序列的z 变换还不能求出,逆z 变换也存在同样的问题。 例7-1 求以下各序列的z 变换 x 1(n)=a n x 2(n)=n x 3(n)=n(n-1)/2 x 4(n)=e j ωon x5(n)=1/[n(n-1)] 程序清单如下: syms w0 n z a; x1=0;X1=ztrans(x1) x2=sin(w0*n);X2=ztrans(x2) x3=exp(-a*n)*sin(w0*n);X3=ztrans(x3) 程序运行结果如下: X1 =z/a/(z/a-1) X2 =z/(z-1)^2 X3 =1/2*z*(z+1)/(z-1)^3-1/2*z/(z-1)^2 X4 =z/exp(i*w0)/(z/exp(i*w0)-1) X5 =z/(z-1)-ztrans(1/n,n,z) (2)用iztrans 函数求无限长序列的逆z 变换。 例3-2 求下列函数的逆z 变换。 课程名称 数字信号处理 实验成绩 指导教师 实 验 报 告 院系 信息工程学院 班级 13普本测控 学号 姓名 日期 2016.4.18

实验二-离散时间信号与系统的Z变换分析

实验二 离散时间信号与系统的Z 变换分析 一、 实验目的 1、 熟悉离散信号Z 变换的原理及性质 2、 熟悉常见信号的 Z 变换 3、 了解正/反Z 变换的MATLAB 实现方法 4、 了解离散信号的Z 变换与其对应的理想抽样信号的傅氏变换和拉氏变换之间的关系 5、 了解利用MATLAB 实现离散系统的频率特性分析的方法 二、 实验原理 1、正/反Z 变换 Z 变换分析法是分析离散时间信号与系统的重要手段。 如果以时间间隔T s 对连续时间信号f (t)进行理 想抽样,那么,所得的理想抽样信号 f (t)为: 则离散信号f (k )的Z 变换定义为: k F(z) f(k)z k 从上面关于Z 变换的推导过程中可知,离散信号 f (k )的Z 变换 拉氏变换F (s)之间存在以下关系: F (s) F(z) 同理,可以推出离散信号 f (k )的Z 变换F(z)和它对应的理想抽样信号 F(j ) F(z) z e j Ts f (t) f(t)* Ts (t) f (t) (t kT s ) 理想抽样信号 f (t)的双边拉普拉斯变换 F (s)为: F (s) f(t)* k (t kT s ) e st dt f (kT s )e ksT s k 若令f (kT s ) f(k) , z e sTi , 那么 f (t)的双边拉普拉斯变换 F (s)为: F (s) f(k)z k FO zesI F(z)与其对应的理想抽样信号 f (t)的 f (t)的傅里叶变换之间的关系为

如果已知信号的Z变换F(z),要求出所对应的原离散序列f(k),就需要进行反Z变换, 其中,C为包围F(z)z k1的所有极点的闭合积分路线。 在MATLAB语言中有专门对信号进行正反Z变换的函数ztrans()和itrans() 下: F=ztrans( f ) 对f(n)进行Z变换,其结果为 F(z) F=ztrans(f,v) 对f(n)进行Z变换,其结果为F(v) F=ztrans(f,u,v) 对f(u)进行Z变换,其结果为F(v) f=itrans ( F ) 对F(z)进行Z反变换,其结果为f(n) f=itrans(F,u) 对F(z)进行Z反变换,其结果为 f(u) f=itrans(F,v,u ) 对F(v)进 行Z反变换,其结果为 f(u) 注意:在调用函数ztran()及iztran()之前,要用syms命令对所有需要用到的变量 行说明,即要将这些变量说明成符号变量。 k 例①.用MATLAB求出离散序列f(k) (0.5) (k)的Z变换 MATLAB程序如下: syms k z f=0.5A k; %定义离散信号 Fz = 2*z/(2*z-1) clc;clear all syms n hn=sym( 'kroneckerDelta(n, 1) + kroneckerDelta(n, 2)+ kroneckerDelta(n, 3)' Hz=ztra ns(h n) Hz=simplify(Hz)反Z变换的定义为: f(k) 21 j?F(z)z k1dz 其调用格式分别如 t,u,v,w )等进 Fz=ztra ns(f) 运行结果如下: %对离散信号进行Z变换 例②.已知一离散信号的Z变换式为F(z) 2z 2z 1 ,求出它所对应的离散信号f(k) MATLAB程序如下: syms k z Fz=2* z/(2*z-1); fk=iztra ns(F z,k) 运行结果如下: fk = %定义Z变换表达式%求反Z变换 例③:求序列f (k)(k 1) (t 4)的Z 变换.

相关主题
文本预览
相关文档 最新文档