当前位置:文档之家› 水剂说明书

水剂说明书

水剂说明书
水剂说明书

聚羧酸高性能减水剂标准型说明书

聚羧酸高性能减水剂标 准型说明书 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

森普牌S P Y J-1型聚羧酸系高性能减水剂(标准型) 产品说明书 森普牌SPYJ-1型聚羧酸系高性能减水剂(标准型)是目前国内外最新的引领产品。它与常用的聚羧酸系高性能减水剂相比,具有减水率高、掺量低、与水泥适应好、坍落度损失小和无污染等特点。同时具有改善新拌混凝土各种性能指标和提高工作性等多种作用。本产品为无色透明液体,无毒、无腐蚀性、不易燃、对钢筋无锈蚀作用、对人体健康无害。 本产品目前参照执行GB/T8076-2008《混凝土外加剂》、GB/T8077-2012《混凝土外加剂匀质性试验方法》、TB/T3275-2011《铁路混凝土》、GB18582-2008《室内装饰装修材料内墙涂料中有害物质限量》标准。 一、技术性能 1.增强效果:与基准混凝土同坍落度和等水泥用量的前提下,减水率≥25%,混凝土各龄期强度均有显着提高,1天抗压强度比≥170%,3天抗压强度比≥160%,7天抗压强度比≥150%,28天抗压强度比≥140%。 2.泵送性能:具有显着的可泵性。与基准混凝土相比,在同水灰比的前提下,净增坍落度≥100mm,1小时坍落度经时变化量(用于配制泵送混凝土时)≤80mm。 3.工作性能:具有改善新拌混凝土的和易性、保水性和泌水性等操作性能。 4.表面光洁:掺用本产品的混凝土,具有粘聚性强、含气量少和泌水率小等特点,能有效改善高架、高速公路、桥梁等各类清水混凝土表面光洁美观。 5.特效功能:在配制高强混凝土时,其弹性模量、抗渗性、抗收缩、抗徐变和耐久性等高性能指标均可满足指标要求 二、匀质指标 根据产品的性能指标和用户的要求,符合国家、行业及企业标准。 三、应用范围 本产品适用于各类泵送混凝土、大体积混凝土、高层建筑、高架、高速公路、桥梁、水工混凝土及地下、水下灌注混凝土等。特别适应于重点工程和有特殊要求的混凝土。 四、使用方法 1.本产品掺量范围1.0~1.2%(以胶凝材料量计),可根据与水泥的适应性、气温的变化和混凝土坍落度等要求,在推荐范围内调整确定最佳掺量。 2.按计量,直接掺入混凝土搅拌机中使用。 3.在计算混凝土用水量时,应扣除液剂中的水量。 4.在使用本产品时,应按混凝土试配事先检验与水泥的适应性。 五、注意事项 1.在水泥变更品种或新进水泥时,应做与水泥兼容性检验。 2.对于要求缓凝的混凝土,应按混凝土试配事先检验凝结时间。 3.必须按试验配合比正确掺量,浇筑混凝土时,应严格按施工规范操作。 4.在与其他外加剂合用时,宜先检验其兼容性。 5.在冬季施工期间,为了提高混凝土早期强度,应适当调整混凝土的水泥用量。 6.与常规混凝土工程一样,必须按施工规范加强养护。 7.使用本产品,应提前1~3天通知厂方。 六、包装贮存

日产5000t水泥熟料NSP窑的设计(说明书)

洛阳理工学院 课程设计说明书 课程名称:新型干法水泥生产技术与设备设计课题:5000t/d水泥熟料NSP窑的设计专业:无机非金属材料工程 班级: 学号: 姓名: 成绩: 指导教师(签名): 年月日

课程设计任务书 设计课题:5000t/d水泥熟料NSP窑的设计 一、课题内容及要求: 1.物料平衡计算 2.热平衡计算 3.窑的规格计算确定 4.主要热工技术参数计算 5.NSP窑初步设计:工艺布置与工艺布置图(窑中) 二、课题任务及工作量 1.设计说明书(不少于1万字,打印) 2.NSP窑初步设计工艺布置图(1号图纸1张,手画) 三、课题阶段进度安排 1.第15周:确定窑规格、物料平衡与热平衡计算、主要热工参数计算 2.第16周:NSP窑工艺布置绘图 四、课题参考资料 李海涛. 新型干法水泥生产技术与设备[M].化学工业出版社 严生.新型干法水泥厂工艺设计手册[M].中国建材工业出版社 金容容.水泥厂工艺设计概论[M].武汉理工大学出版社 2011.5.3

设计原始资料 一、物料化学成分(%) 项目Loss SiO2Al2O3Fe2O3CaO MgO SO3其他合计干生料35.88 13.27 3.03 2.09 44.68 0.29 0.16 0.60 100 熟料0 22.48 5.54 3.79 66.83 0.59 0.05 0.72 100 煤灰0 51.60 31.79 4.16 3.62 0.68 2.20 5.95 100 二、煤的工业分析及元素分析 工业分析(%) Q net.ar kJ/kg M ar F.C ar A ar V ar 1.00 44.93 25.71 28.36 23614 元素分析(收到基)(%) C H O N S A W 60.10 3.96 7.91 0.97 0.35 25.71 1.00 三、热工参数 1. 温度 a. 入预热器生料温度:50℃; b. 入窑回灰温度:50℃; c. 入窑一次风温度:20℃; d. 入窑二次风温度:1100℃; e. 环境温度:20℃; f. 入窑、分解炉燃料温度:60℃; g. 入分解炉三次风温度:900℃; h. 出窑熟料温度:1360℃; i. 废气出预热器温度:330℃; j. 出预热器飞灰温度:300℃; 2. 入窑风量比(%)。一次风(K 1):二次风(K 2 ):窑头漏风(K 3 )= 10:85:5; 3. 燃料比(%)。回转窑(K y ):分解护(K F )=40:60; 4. 出预热器飞灰量:0.1kg/kg熟料; 5. 出预热器飞灰烧失量:35.20%; 6. 各处过剩空气系数:

聚羧酸减水剂

聚羧酸高效减水剂及其工程应用 摘要:作为高性能混凝土第五组分的高效减水剂主要经历了三种形式:第一代高效减水剂是20世纪60年代初开发出来的萘基高效减水剂和密胺树脂基高效减水剂又被称为超塑化剂;第二代高效减水剂是氨基磺酸盐;第三代减水剂是聚羧酸高效减水剂。本文以前人对聚羧酸高效减水剂的研究为基础,借鉴他们的研究成果从其分子特点、合成方法、作用机理、对混凝土性能的改善、工程应用与实践应用中存在的问题六个方面对聚羧酸减水剂做了介绍。关键字:聚羧酸减水剂、高效减水剂、高性能混凝土 1.聚羧酸减水剂的分子结构 聚羧酸系高性能减水剂采用不饱和单体共聚合而成,而不是传统减水剂使用的缩聚合成,合成原料非常多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应。 2.合成方法 2.1可聚合单体直接共聚法 单体直接共聚是先制备具有活性的大单体(一般是甲氧基聚乙二醇甲基丙烯酸酯) ,再聚合一定配比的单体(如丙烯酸、甲基丙烯酸、甲基丙烯磺酸钠等),采用溶液共聚的手段得到成品,即先酯化再聚合。该方法合成减水剂分子结构的可设计性好,可根据实际需要进行结构调整,产品质量稳定,目前很多聚羧酸的生产都采用此方法。但缺点是生产甲氧基聚乙二醇甲基丙烯酸酯大单体存在酯化控制难度,大单体酯化率和质量就直接影响了后续的共聚反应程度。同时中间分离纯化过程比较繁琐,生产成本较大。 2.2聚合后功能化法 聚合后功能化法是利用现有的聚合物进行改性,采用已知分子量的聚羧酸在催化剂和较高温度下聚醚通过酯化反应进行接枝。但现成的聚羧酸产品种类和规格有限,调整组成和分子量困难;同时聚羧酸和聚醚适应性不好,酯化实际操作困难,另外,随着酯化的不断进行,水分不断逸出,会出现相分离,如果能找到

聚羧酸减水剂生产环保说明

聚羧酸外加剂生产说明 1、项目由来 随着我国城镇化进程进程和基础设施建设的步伐逐渐加快,混凝土的需求量不断增多,同时也大大推动混凝土外加剂的需求量。 从全国范围来看,掺有外加剂的混凝土约占混凝土总量的40%,与国外先进国家60%~80%的比例相比,我国在使用量上还存在较大差距,即外加剂的生产还有较大的发展空间。根据相关市场调查,我国每年对减水剂、助磨剂及多功能粉体材料的需求量高达几百万吨,由此可见,该类材料仍具有较大前景和市场需求。目前,聚羧酸减水剂在发达国家的使用率已占绝对优势,相比而言,我国的使用量并不客观,但该材料的使用在我国的高速铁路建设、公路桥梁建设、水利工程及高层建筑中已得到广泛的认可,其用量正以每年20%~30%的速度递增。 传统的萘系、三聚氰胺系以及木质素减水剂虽然能使新拌砂浆或混凝土具有较好的工作性,但塌落度经时变化大,运至施工现场时,必须重新加入减水剂来增加其流动性,这样会产生噪音并排放大量工业废气,而且这类减水剂大多采用有毒的甲醛,通过缩聚反应(有时还采用强腐蚀性的发烟硫酸或浓硫酸进行磺化反应)制备而成,这不可避免会对环境造成污染,不利于可持续发展。合成萘系磺酸盐减水剂的主要原料是精萘或工业萘,价格较贵,很难满足工程实际需要,萘被认为是致癌物质,限制了其发展。于是人们把目光转向了羧酸类聚合物——称之为第三代新型聚合物减水剂,聚羧酸减水剂不仅减水效果好,其成品本身也无毒性,生产加工过程中也无工艺性废水产生,无工艺性废气产生,属于绿色环保型材料。 聚羧酸减水剂是一种高性能减水剂,是水泥混凝土运用中的一种水泥分散剂,广泛应用于公路、桥梁、大坝、隧道、高层建筑等工程。该产品绿色环保,不易燃,不易爆,可安全使用火车和汽车运输。 2、工艺流程 从原料库房领取原材料,按照配方准确称量后加入去离子水、甲基烯丙基聚氧乙烯醚,配置成原材料溶液,;搅拌并升至18~24℃。按照配方把维生素C、巯基丙酸、去离子水投入预混罐中配制溶液成A,搅拌均匀后打入滴加罐A里;按

聚羧酸减水剂实验室合成工艺

聚羧酸减水剂实验室合成工艺 聚羧酸类减水剂是继以木钙为代表的普通减水剂和以萘系为代表的高 效减水剂之后发展起来的第三代高性能化学减水剂,其综合性能优异,不仅具有高减水率,而且还可以有效的抑制坍落度损失,目前有较好的应用前景。日本首先于80年代初开发出聚羧酸系高效减水剂,1985年开始逐渐应用于混凝土工程。1995年以后,聚羧酸盐系减水剂在日本的使用量超过了萘系减水剂。目前国内对萘系、三聚氰胺系等高效减水剂的研究和应用已日趋完善,不少科研机构已开始转向对聚羧酸系高性能减水剂的开发与研究。聚羧酸型减水剂分子链上具有较多的活性基团,主链上连接的侧链较多,分子结构自由度大, 高性能化潜力大,因此聚羧酸型减水剂是近年来国内外研究较为活跃的高性能减水剂之一,同时也是未来减水剂发展的主导方向。本文在合成聚醚甲基丙烯酸酯大单体的基础上,采用水溶液共聚的方法合成出了聚羧酸系高效减水剂,通过因素试验确定最佳的合成工艺,并研究了其应用性能。 2 实验 2.1 实验原料及试验设备 聚醚(分子量为1200,上海台界化工有限公司) ; 对甲苯磺酸(国药集团化学试剂厂) ; 对苯二酚(天津市大茂化学试剂厂) ; 甲基丙烯磺酸钠(余姚市东泰精细化工有限公司) ; 甲苯(天津市大茂化学试剂厂) ; 甲基丙烯酸(成都科龙化工试剂厂) ; 过硫酸铵(天津市大茂化学试剂厂)等。 聚羧酸系减水剂:进口聚羧酸(p s1, 60% ) ; 国内聚羧酸(p s2, 40% ) ; 自制聚羧酸(p s3, 20% ) 。 水泥:炼石P·O 42.5 级普通硅酸盐水泥;建福P ·O42.5级普通硅酸盐水泥。 500ml三颈烧瓶;集热式恒温磁力搅拌器;温度计; 250ml滴液漏斗;旋转蒸发器等。

聚羧酸减水剂使用说明

聚羧酸减水剂使用说明 聚羧酸减水剂用途: 本品适用于高强度混凝土、高性能混凝土、水下灌注混凝土、自密实混凝土、流态混凝土、大掺合料混凝土和各种灌浆料自流平砂浆材料。本品用于混凝土中,可改善工作性能、降低水化放热速度、避免温度应力裂缝产生、提高断裂韧性和耐久性等。 本品与8H相比,采用了不同分子量的原材料,提高了减水率,保坍性能增强。 聚羧酸减水剂特性: 1、早强高强:本品能提高混凝土的早期强度及其它各龄期强度; 2、适应性优良:水泥、掺合料相容性好,温度适应性好,与不同品种水泥和掺合料具有较好的相容性; 3、低坍落度损失:符合泵送剂标准,坍落度损失明显减少; 4、高耐久性:本品能有效降低混凝土水胶比,提高耐久性能,降低收缩和徐变; 5、高减水率:当坍落度为80mm左右时,减水率可为25%以上;当坍落度为200mm 左右时减水率可为30%以上; 6、绿色环保产品:本品生产过程中不产生对自然环境的污染,符合ISO14000环境保护管理国际标准。 聚羧酸减水剂产品标准: 本品的出厂标准如下:

聚羧酸减水剂推荐掺量: 在混凝土中的推荐掺量如下(胶凝材料用量的质量%): FOX-5H: 0.4~0.6 聚羧酸减水剂使用方法: 1、根据混凝土设计要求,经试验调整用水量和砂率,确定使坍落度、强度、凝结情况都满足要求的减水剂的掺量。 2、本品适用于高性能混凝土、高强度混凝土、大流动混凝土。用于C50以上混凝土时还应按照有关技术规范选好原材料,确定适当的搅拌工艺,并取得一定数量的试验数据。使生产的混凝土流动性能满足施工要求,混凝土强度应具有一定的富裕系数。 3、本品可与拌和用水同时掺入混凝土中,滞后于水掺入混凝土效果更佳。 聚羧酸减水剂安全事项: 1、本品为酸性液体,无毒,使用中对环境无污染,但不可食用,当接触到人的身体和眼睛时,应尽快用清水冲洗,对部分人体造成过敏现象时应及时就医治疗。 2、本品应存储于有盖塑料容器中,避免雨淋漏水及杂物混入或水分蒸发干枯。 3、本品具有相应的材料安全数据资料表和安全运输许可资料,需要时可以向公司索取。

原料系统中控操作规程资料

原料系统中控操作规程 一、目的 本规程旨在统一操作思想,使操作规范、有序,充分发挥系统设备的效能,力求做到均衡、稳定、优质、高产、低耗,生产出合格的生料,确保窑系统的生料供应。 二、系统范围 本规程适用于原料系统中控操作。系统范围:从石灰石预均化堆场、砂岩、粘土、铁粉储库取料、原料配料、原料粉磨至生料入库止。 三、系统流程及主机设备: 1.系统流程:详见中央控制室原料系统操作流程图。 2.系统主机设备: ①取料机:取料能力:650t/h;刮板宽度:1700mm;刮板链速: 0.47m/s;料耙可调倾角:34~45 。 ②胶带定量给料机:(校正料用)带宽:B1000mm;流量:12.5~ 125t/h;调速方式:变频调速;精度:±0.5%。 ③胶带定量给料机:(铁粉用) 带宽:B800mm;流量:2.5~25t/h。 调速方式:变频调速;精度:±0.5%。 ④胶带定量给料机:(粘土用)带宽:B1000mm;流量:17.4~ 174t/h;调速方式:变频调速;精度:±0.5%。 ⑤胶带定量给料机:(石灰石用)带宽:1600mm;流量:83~ 830t/h;调速方式:变频调速;精度:±0.5%。 ⑥辊式磨ATOX50:额定生产能力: 410t/h(干基);入磨粒度:≤

75mm ,2% >100mm最大175mm;入磨水份:<6 %;成品细度:80 m筛筛余<10%;成品水分:<0.5%;磨盘转速: 25.0r/min;磨辊数量:3个;磨辊规格:φ3000x1000;磨盘 直径:φ5000 mm;名义轨径: φ4000 mm;主减速机KMP710:输入功率3800KW,输出转速:25.24r/min;传动效率:96.5%; 主电机YRKK900-6:额定功率3700kW;电压:10000V。 ⑦磨机选粉机RAR-LVT50;转子直径: 5.68m;转速调速范围: 45~ 90r/min分离效率:85~90%;调速方式:变频调速。 ⑧组合式旋风收尘器:4xL5600;直径:Φ5600mm;处理风量: 850000m3/h入口含尘浓度:<850g/Nm3;出口含尘浓度:<85g/Nm3;气体温度:90℃MAX:150℃;收尘效率: ~90%。 ⑨原料磨风机Y6-2x40-14No.31F;风量:985000m3/h;全压: 11014Pa转速:960r/min;工作温度:100℃,max:150℃; 气体含尘浓度:100g/Nm3 介质密度:0.886kg/m3 电动机YRKK900-6:功率4500kW;电压10kV;转速:985r/min。⑩增湿塔Φ9.5x42m:处理烟气量:~830000m3/h;进口气体温度:330~350℃;出口气体温度:120~230℃;喷水量:正常30t/h,最大34t/h;喷头个数:32;喷嘴工作压力:4.0Mpa。⑾窑尾高温风机W6-2x40-14No31.5F进风口:逆1350出风口:逆450 双吸单出双支承;处理风量:860000m3/h;全压:≥7500Pa,进口静压:≥7000Pa工作温度: 原料磨开230~250℃,原料磨停130~150℃,最高温度:450℃;进口含尘浓度:≤

聚酸酸减水剂合成工艺

1 实验 1.1 原材料 丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、过硫酸铵(APS)均为市售化学试剂;聚氧乙烯基烯丙酯大单体,自制,其聚合度分别约为9、23、35;水泥,P.O42.5R,重庆腾辉江津水泥厂产。 1.2 聚羧酸减水剂的合成方法 将丙烯酸、甲基丙烯磺酸钠、过硫酸铵、聚氧乙烯基烯丙酯大单体分别用去离子水配成浓度为20%的水溶液。在装有搅拌器、回流冷凝管及温度计的三颈烧瓶中分批滴加单体及引发剂,滴加完毕后在75℃下保温反应一定时间。反应结束后,用浓度为20%的NaOH水溶液调节PH值至7~8,得到浓度约为20%的黄色或红棕色聚羧酸减水剂。 1.3 正交试验设计 采用正交试验方法,通过改变丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、聚氧乙烯基烯丙酯大单体(PA)、过硫酸铵(APS)4个因素的用量,考察四因素在三水平下合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,从而确定聚羧酸减水剂的最佳合成配方。正交试验因素及水平见表1,表中引发剂APS用量为MAS、AA、PA等3种单体总质量的百分比。表2为不同实验组数对应的各因素水平。 1.4 掺减水剂水泥净浆流动度测试方法 水泥净浆初始流动度按GB8077-2000《混凝土外加剂匀质性试验方法》中测定水泥净浆初始流动度的方法进行测试,W/C为0.29。 水泥净浆流动度经时损失的测试方法为:保持一定水灰比,加入一定量的聚羧酸减水剂,按GB8077-2000《混凝土外加剂匀质性试验方法》每隔一定时间测试水泥净浆的流动度。 2 结果与分析 2.1 减水剂掺量对水泥净浆初始流动度的影响 表3为对在表2中1~9组的3种聚羧酸减水剂(JH9、JH23、JH35)在不同掺量时对水泥净浆初始流动度的影响。 由表3可知,当减水剂掺量大于0.5%以后,增加减水剂掺量,水泥净浆初始流动度增大变缓。表明该聚羧酸减水剂的饱和掺量为水泥质量的0.5~0.8%。 2.2 聚羧酸减水剂合成配方的确定 通过对表3的实验结果计算分析,可看出减水剂掺量为0.5%时四因素对水泥净浆初始流动度影响的显著程度。聚羧酸减水剂合成时各因素对水泥净浆初始流动度影响的极差分析见表)(减水剂掺量为0.5%)。 2.2.1 聚羧酸减水剂JH9合成配方的确定 由表4可知:(1)在设计的原料用量范围内,掺JH9的水泥净浆初始流动度随MAS、AA用量的增加而增加,随PA和APS用量的增加而下降;(2)由极差R可知,四因素对水泥净浆初始流动度影响均较显著,影响程度从大到小依次为:PA、APS、AA、MAS;(3)JH9的较佳合成配方为:MAS:AA:PA(摩尔)=1.5:(5.0~7.0):(1.0~1.25),APS的用量为15%。 图1为四因素在三水平下所合成的JH9聚羧酸减水剂对水泥净浆流动度经时损失的影响。图1中的水泥净浆流动度为各因素分别在三水平下的算术平均值,减水剂掺量为水泥质量的0.8%(图2和图3与此相同)。 由图1可知,MAS用量对水泥净浆的初始流动度影响不大,但增大MAS用量有利于水泥净浆流动度的保持,MAS用量为1.0~1.5mol时,水泥净浆流动度经时损失曲线基本接近,因此,MAS用量取1.0~1.5mol为宜;增大AA用量对水泥净浆初始流动度有利,但PA用量过大对水泥净浆的流动度保持不利,AA用量取5.0mol为宜;PA用量对水泥净浆流动度的保

减水剂的作用及用途

减水剂的作用及用途 一、减水剂的作用 减水剂是指在混凝土和易性及水泥用量不变条件下,能减少拌合用水量、提高混凝土强度;或在和易性及强度不变条件下,节约水泥用量的外加剂。与普通减水剂相比,减水及增强作用都较强。 1)静电斥力理论 水泥水化后,由于离子间的范德华力作用以及水泥水化矿物、水泥主要矿物在水化过程中带不同电荷而产生凝聚,导致了混凝土产生絮凝结构。减水剂大多属阴离子型表面活性剂,掺入到混凝土中后,减水剂中的负离子-SO—、-COO—就会在水泥粒子的正电荷Ca2+矿的作用下而吸附于水泥粒子上,形成扩散双电层(Zel。a电位)的离子分布,在表面形成 2)立体位阻效应 掺有减水剂的水泥浆中,减水剂的有机分子长链实际上在水泥微粒表面是呈现各种吸附状态的。不同的吸附态是因为高效减水剂分子链结构的不同所致,它直接影响到掺有该类减水剂混凝土的坍落度的经时变化。有研究表明萘系和三聚氰胺系减水剂的吸附状态是棒状链,因而是平直的吸附,静电排斥作用较弱。其结果是Zeta电位降低很快,静电衡容易随着水泥水化进程的发展受到破坏,使范德华引力占主导,坍落度经时变化大。 3)润滑作用 减水剂的极性亲水基团定向吸附于水泥颗粒表面,多以氢键形式与水分子缔合,再加上水分子之问的氢键缔合,构成了水泥微粒表面的一层稳定的水膜,阻止水泥颗粒问的直接接触,增加了水泥颗  粒间的滑动能力,起到润滑作用,从而进一步提高浆体的流动性。水泥浆巾的微小气泡,同样对减水剂分的定向吸附极性基团所包裹,使气泡与气泡及气泡。

在混凝土掺加减水剂后,伴随水化反应进行,减水剂分子分散于分散系,均匀吸附在水泥颗粒表面,破坏水泥颗粒的团聚,使得水泥颗粒由于减水剂分子存在的特殊作用处于高度分散安定状态。在低含水量时就具有较高流动性。对于高性能减水剂在水泥颗粒表面的吸附状态及分散作用机理的研究有许多,其中较为着名的有立体效应理论、空位稳定型理论、D-L-V-O理论等。 二、减水剂的用途 1.在不改变各种原材料配比(除水泥)及混凝土强度的情况下,可以减少水泥的用量,掺加水泥质量%~%的混凝土减水剂,可以节省水泥量的15~30%以上。 2.在不改变各种原材料配比(除水)及混凝土的坍落度的情况下,减少水的用量,可以大大提高混凝土的强度,早强和后期强度分别比不加减水剂的混凝土提高60%及20%以上,通过减水,可以实现浇筑C100标号的高强混凝土。 3.在不改变各种原材料配比的情况下,可以大幅度提高混凝土的流变性及可塑性,使得混凝土施工可以采用自流、泵送、无需振动等方式进行施工,提高施工速度、降低施工能耗。 4.掺加混凝土高效减水剂,可以提高混凝土的寿命一倍以上,即使建筑物的正常使用寿命延长一倍以上。 5、减少混凝土凝固的收缩率,防止混凝土构件产生裂纹;提高抗冻性,有利于冬季施工。 引气剂 使混凝土拌合物在搅拌时引入空气而形成微小气泡的外加剂。绝大部分引气剂的成分为松香衍生物以及各种磺酸盐,如烷基磺酸钠、烷基苯磺酸钠,常用掺量是水泥重量的50~500ppm。引气剂主要用于抗冻性要求高的结构,如混凝土大坝、路面、桥面、飞机场道面等大面积易受冻的部位。 1、气泡结构好,气泡半径小,抗冻指标高,用于高耐久性的混凝土结构,如水坝、高等级公路、热电站冷却塔、水池水工、港口等。 2、撒除冰盐的混凝土公路及桥梁。

生料辊压机终粉磨说明书

原料粉磨及废气处理系统调试操作说明书

一、工艺流程介绍 来自石灰石预均化库的石灰石经胶带输送机送至原料调配站的石灰石库。 辅助原料包括砂岩、铁矿石和粉煤灰。砂岩、铁矿石由胶带输送机输送至原料调配站。在原有粉煤灰输送皮带下增加一台三通阀,对原有输送皮带进行改造,新增一座φ5m粉煤灰仓,仓底设置棒阀和定量给料机。 因原料粉磨/废气处理改造为辊压机终粉磨后系统能力加大,经核算石灰石库底定量给料机能力足够,不需调整;更换原石英砂岩库定量给料机;原石英砂岩库底定量给料机移至铁矿石库底计量铁矿石用。在定量给料机计量下实现各种物料的定量喂料,配好的混合料经除铁装置和金属探测器除铁探测后,由胶带输送机送入生料磨车间。 原料粉磨采用辊压机终粉磨系统,入磨物料粒度≤55mm。各种原料经胶带机送入V型选粉机(12.10)分级打散,其中粗粉部分经提升机(12.11)、除铁器(12.12)、称重稳流仓(12.13)回辊压机 (12.16)循环再挤压;另一部分进入动态选粉机(12.18)分选,合格成品随一部分气流送入旋风收尘器(12.22)收集,不合格品经过重锤阀(12.18-1)、除铁器(12.19)、空气输送斜槽 (12.20) 、称重稳流仓(12.13)回辊压机 (12.16)循环再挤压。挤压后的物料经提升机(12.17)送入V选。旋风收尘器(12.22)收集下来的成品经空气输送斜槽(12.25、12.39)、斗式提升机(12.41)、空气输送斜槽(12.42)入生料库储存、均化。出旋风收尘器(12.22)的气体经循环风机(12.27),一部分气体作为循环风重新进入V型选粉机(12.10),其余气体则通过窑尾袋收尘器净化后,经尾排风机和烟囱排入大气。窑尾袋收尘器和增湿塔收下的粉尘经链式输送机、提升机(16.01)汇同生料成品一起经空气输送

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺 一、引言 一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代高性能减水剂阶段。 与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的空间位阻效应。由于其广泛的原料来源,独特的分子结构,故而具有前两代减水剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已成为混凝土外加剂研究领域的重点和热点之一。 但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系高性能减水剂的合成工艺。因此,本文在此予以简介之。 二、聚羧酸系高性能减水剂合成工艺简介。 聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。聚酯类:包括酯化和聚合两个过程。聚醚类:只有聚合一个过程。 (一)、聚酯类聚羧酸系高性能减水剂合成工艺。 1、合成工艺简图 冷凝器去离子水 ↓↓

聚乙二醇过硫酸铵↓ →→→→→→酯化→→→→→计量槽→→聚合中和成 甲基丙烯酸→→→→ →→→→→→反应→→→→→计量槽→→反应反应品 ↑↑ ↑↑ 去离子水氢氧化钠 2、反应过程如下: (1)、酯化反应(制备大单体):计量聚乙二醇1200料3960kg,将其在水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg,以及小料1份(对苯二酚:5.28kg、吩噻嗪:1.06kg),升温至90℃,加入浓硫酸69.3kg,继续升温至120℃,保持4.5小时,后充氮气2小时,(6㎡/时,每30分钟充1瓶,共4瓶),反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水。(经减压蒸馏脱水,酸化反应更为完全)。 (2)、聚合反应:采用过硫酸铵引发、水溶液聚合法。计量酯化产物即聚乙二醇单甲基丙烯酸酯1545kg,丙烯酸77.3kg,分子量调节剂十二烷基硫醇21.3kg,配以130 kg去离子水,泵入滴定罐A备用,是为A料。计量过硫酸铵34.5kg,配以950kg去离子水,泵入滴定罐B备用,是为B料。加去离子水1425kg 入釜,升温至85℃,同时滴定A、B料。A料3小时滴定完,B料3.5小时滴定完,保温1.5小时。(温度控制:90±2℃)。 (3)、中和反应,将反应好的聚合物降温至50℃以下,边搅拌边加入片碱100kg,调节PH值6—7,反应完成,得到含固量为30%的聚酯类聚羧酸系高性能减水剂成品。 (二)、聚醚类聚羧酸系高性能减水剂合成工艺

混凝土外加剂的正确使用方法及注意事项

混凝土外加剂的正确使用方法及注意事项 2006-01-11 虽然外加剂在我国的应用至今已有四十年的历史了,但是,如果使用不当,便会导致工程质量问题。如:某大桥预应力梁在冬季12月份至1月份,使用秋季使用过的高效减水剂施工,致使混凝土浇注24h还未凝固,并且在浇注17d后还不能张拉钢筋。由于在使用过程中出现一些问题,致使有些单位不愿使用这一新技术,所以对外加剂应有一个较全面的认识。本文根据笔者这几年使用外加剂的经验,谈谈正确的使用方法及注意事项,以期为加快外加剂使用和发展起到推动作用。 1 混凝土外加剂应用前景 在混凝土或砂浆中掺入少量外加剂,可改善混凝土的多种性能,节约水泥用量,降低工程造价,缩短施工周期,是一项使用方便效果显著的技术。在日本、北欧等国家几乎在所有的混凝土中都采用外加剂,外加剂研究和使用早已成为混凝土材料及工艺中的一个重要课题。由于外加剂在混凝土中所起的重要作用,以致在某些混凝土工程中已经将外加剂作为配制混凝土必不可少的第五种组成材料,甚至有些国家已经把发展外加剂作为发展水泥新品种的重要手段。为了改善混凝土的性能,外加剂将成为混凝土不可缺少的一个组成部分。目前许多大的工程都采用高强混凝土,设计强度达到C50、C60、C80,这些混凝土必须掺用高性能外加剂方能满足设计要求。 2 外加剂的功效 使用混凝土外加剂,不仅是为了降低成本,提高经济效益,它有广泛的用途。不同的外加剂有各自的功效:如减水剂有减水作用、加气剂有加气作用、调凝剂有调凝作用等。综合起来,外加剂可发挥如下作用: (1)能改善施工条件,减轻体力劳动,并有利于机械化施工,对保证及提高工程质量有积极作用,能使以前难以完成的高质量的工程在现有条件下完成。例如:可掺加高效能减水剂在工地条件下配制C80~C90的超高强混凝土,配制泵送混凝土等。 (2)能减少养护时间,可缩短蒸养时间,可以提早拆模加速模板周转,还可以提早对预应力钢筋混凝土放张、剪筋,总之,可以加快施工进度。 (3)能提高或改善混凝土质量。许多外加剂,可以提高混凝土强度,增加耐久性、密实性、抗冻性、抗渗性,改善其干燥收缩徐变性,有些外加剂能提高钢筋的耐蚀性等。只要掺用得当是不会降低混凝土性能的。 (4)可以节约能源。如节约水泥;能增加混凝土和易性,从而使得振捣、抹平等工序顺利进行,缩短振捣抹面时间,降低电耗和油耗。3 使用外加剂应注意的事宜必须认识到外加剂对混凝土有双重作用,使用得当能发挥良好作用,使用不当则会起反作用,其中存在着水泥对外加剂的适应性和掺量问题。 3.1 水泥的适应性

5000t新型干法水泥生产线回转窑工艺设计说明书

5000t 新型干法水泥生产线回转窑工艺设计 原始资料 一、物料化学成分(%) 成分 项目 Loss SiO2 Al2O3 Fe2O3 CaO MgO SO3 其它 合计 干生料 35.82 13.23 2.97 2.05 44.62 0.25 0.16 0.90 100 熟 料 0 22.34 5.38 3.65 66.67 0.58 0.06 1.32 100 煤 灰 51.60 31.79 4.14 3.62 0.66 2.29 5.90 100 二、煤的工业分析及元素分析(%) 工业分析(%) Qnet,ar (kJ/kg ) Mar F.Car Aar Var 1.00 44.78 25.56 28.66 24200 三、热工参数 1、温度。入预热器生料温度:50℃;入窑回灰温度:50℃;入窑一次风温度:25℃;入窑二次风温度:1100℃;环境温度:25℃;入窑、分解炉燃料温度:60℃;入分解炉三次风温度:900℃;出窑熟料温度:1360℃;废气出预热器温度:330℃;出预热器飞灰温度:300℃。窑尾气体温度:1100℃。 2、入窑风量比(%)。一次风(K 1):二次风(K2):窑头漏风(K3)=10:85:5。 3、燃料比(%)。回转窑(Ky):分解炉(Kf) =40:60。 4、出预热器飞灰量。0.1kg/kg 熟料。 5、出预热器飞灰烧失量。35.20%。 6、各处空气过剩系数。窑尾,αy=1.05分解炉出口αL=1.15预热器出口αf=1.40。 7、入窑生料采用提升机输送。 8、漏风。预热器漏风量占理论空气的比例K4=0.16;提升机带入空气量忽略;分解炉及窑尾漏风(包括分解炉一次空气量),占分解炉用燃料理论空气量的比例K6=0.05。 9、袋收尘器和增湿塔综合收尘效率为99.9%。 10、熟料形成热。根据简易公式(6-20)计算。 元素分析(%) Car Har Oar Nar Sar Aar War 60.10 3.96 7.91 0.97 0.35 25.71 1.00

聚羧酸减水剂的优势

推广聚羧酸减水剂的重要意义 (1)节约能源、资源 目前我国正处于高速发展、建设时期,能源资源相对紧缺是制约快速发展的重要问题。一方面聚羧酸减水剂与掺合料具有良好的匹配性,促进了工业副产品的应用,另一方面以其高减水率,可以节约大量的水泥,这就意味着一个工程可以节约成千上万吨的水泥,缓解目前资源和能源紧缺的问题,同时减少熟料烧成带来的环境污染方面有着重要的作用,符合绿色建材的发展方向。 (2)低环境负荷,促进绿色建材发展 甲醛为较高毒性的物质,在我国有毒化学品优先控制名单上甲醛高居第二位。甲醛已经被世界卫生组织确定为致癌和致畸形物质,是公认的变态反应源,也是潜在的强致突变物之一。研究表明,甲醛具有强烈的致癌和促癌作用。甲醛对人体健康的影响主要表现在嗅觉异常、刺激、过敏、肺功能异常、肝功能异常和免疫功能异常等方面。其浓度与危害性见表1-1。 表1 甲醛对人体健康的影响 萘系减水剂为萘磺酸甲醛缩合物,采用工业萘经浓硫酸磺化后,再用一定量

的甲醛与萘磺酸反应生成甲醛缩合物,最后用碱来中和,得到萘的磺化甲醛缩合物的钠盐和硫酸钠的混合物,即萘系减水剂。合成分为四个反应步骤,即磺化反应、水解反应、缩合反应及中和反应。其中缩合反应需要用到大量的甲醛,对环境造成污染。如果生产时合成工艺控制不当,产品很容易带有大量的游离甲醛,在运输和使用过程中对环境造成二次污染。 为了进一步控制室内环境污染,提高民用建筑工程的室内环境质量,目前国家建设部及有关部门提出:加强对混凝土外加剂的甲醛污染控制,提出了在控制混凝土外加剂里面的氨气污染同时,控制混凝土外加剂里面的甲醛污染,从而有效避免毛坯房室内空气中甲醛超标。聚羧酸减水剂合成采用水溶液自由基聚合,整个过程无甲醛及其他有害释放物,无废水废气排放,符合绿色建材的发展方向。 同时,聚羧酸减水剂的使用,有利于缓解CO2温室效应。2008年中国水泥产量13.9亿吨,CO2排放量为62亿吨,超过美国,位居世界第一。聚羧酸减水剂以其高减水率,可降低10~15%的水泥,可减少1~2亿吨CO2排放。 (3)提高混凝土耐久性,促进混凝土高性能化发展 混凝土工程因其工程量大,耐久性不足对未来社会造成非常沉重的负担。美国有调查表明,美国的混凝土基础设施工程总价值约为6万亿美元,每年所需维修费或重建费约为3千亿美元。美国50万座公路桥梁中20万座已有损坏,平均每年有150-200座桥梁部分或完全坍塌,寿命不足20年;美国共建有混凝土水坝3000座,平均寿命30年,其中32%的水坝年久失修。美国对二战前后兴建的混凝土工程,在使用30-50年后进行加固维修所投入的费用,约占建设总投资的40%-50%以上。目前,我国的基础设施建设工程规模宏大,每年高达2万亿元人民币以上,约30-50年后,这些工程也将进入维修期,所需的维修费或重建费将更为巨大。因此,提高混凝土的耐久性对于当前实现可持续发展战略,更好地利用资源、节约能源和保护环境,都具有十分重要的意义。 众所周知,碱是诱发混凝土碱-骨料反应[23]的主要因素之一,是影响混凝土耐久性的重要因素。而由于碱-骨料反应导致大坝损毁的在国内外屡见不鲜,如巴西的Moxoto大坝和法国的Chambon大坝,前者在工程完工3年后便出现了碱-骨料反应,后者在建成后50~60年发生了碱-骨料反应。混凝土中碱主要来源于水泥、粉煤灰、减水剂等原材料。世界上对于碱含量的控制也非常重视,南非

聚羧酸减水剂配方

聚羧酸减水剂配方 摘要:采用自由基水溶液共聚方法合成聚羧酸减水剂。通过正交试验考察不同配方时所合成的聚羧酸减水剂对水泥净浆流动度及经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳合成配方。 关键词:聚羧酸减水剂;水泥净浆;流动度;配方 聚羧酸型减水剂分子链上具有较多的活性基团,主链上连接的侧链较多,分子结构自由度大,高性能化潜力大,因此聚羧酸型减水剂是近年来国内外研究较为活跃的高性能减水剂之一,同时也是未来减水剂发展的主导方向。 本文采用聚合度分别约为9、23、35的自制聚氧乙烯基烯丙酯大单体(PA)分别与丙烯酸、甲基丙烯磺酸钠在引发剂过硫酸铵作用下进行自由基水溶液共聚反应,得到不同侧链长度的聚羧酸减水剂,分别记为JH9、JH23、JH35。通过正交试验分析考察单体及引发剂用量不同时所合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳配方。并分析在最佳合成配方下合成的不同侧链长度的聚羧酸减水剂对水泥净浆的初始流动度及经时损失的影响。 1 实验 1.1 原材料

丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、过硫酸铵(APS)均为市售化学试剂;聚氧乙烯基烯丙酯大单体,自制,其聚合度分别约为9、23、35;水泥,P.O42.5R,重庆腾辉江津水泥厂产。 1.2 聚羧酸减水剂的合成方法 将丙烯酸、甲基丙烯磺酸钠、过硫酸铵、聚氧乙烯基烯丙酯大单体分别用去离子水配成浓度为20%的水溶液。在装有搅拌器、回流冷凝管及温度计的三颈烧瓶中分批滴加单体及引发剂,滴加完毕后在75℃下保温反应一定时间。反应结束后,用浓度为20%的NaOH水溶液调节PH值至7~8,得到浓度约为20%的黄色或红棕色聚羧酸减水剂。 1.3 正交试验设计 采用正交试验方法,通过改变丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、聚氧乙烯基烯丙酯大单体(PA)、过硫酸铵(APS)4个因素的用量,考察四因素在三水平下合成的聚羧酸减水剂对水泥净浆初始流动度及流 动度经时损失的影响,从而确定聚羧酸减水剂的最佳合成配方。正交试验因素及水平见表1,表中引发剂APS用量为MAS、AA、PA等3种单体

聚羧酸高性能减水剂缓凝型说明书

森普牌SPYJ-3型聚羧酸系高性能减水剂(缓凝型) 产品说明书 森普牌SPYJ-3型聚羧酸系缓凝高性能减水剂是目前国内外最新的引领产品。它与常用的聚羧酸系高性能减水剂缓凝型相比,具有减水率高、掺量低、与水泥适应性好、坍落度损失小和无污染等特点。同时具有改善新拌混凝土各种性能指标和提高工作性等多种作用。本产品为无色透明液体,无毒、无腐蚀性、不易燃、对钢筋无锈蚀、对人体健康无害。 本产品目前参照执行GB/T8076-2008《混凝土外加剂》、GB/T8077-2012《混凝土外加剂匀质性试验方法》、TB/T3275-2011《铁路混凝土》、GB18582-2008《室内装饰装修材料内墙涂料中有害物质限量》标准。 一、技术性能 1.增强效果:与基准混凝土同坍落度和等水泥用量的前提下,减水率≥25%,混凝土各龄期强度均有显着提高,7天抗压强度比≥140%,28天抗压强度比≥130%。 2.泵送性能:具有显着的可泵性。与基准混凝土相比,在同水灰比的前提下,净增坍落度≥100mm,1小时坍落度经时变化量(用于配制泵送混凝土时)≤60mm。 3.缓凝效果:能显着增大混凝土的流动性,改善操作性,可延缓水泥水化放热峰值,避免施工结合层冷缝现象,有效提高其抗裂防水性能。 4.工作性能:具有显着改善新拌混凝土的和易性、保水性和泌水性等操作性能。 5.表面光洁:掺用本产品的混凝土,具有粘聚性强、含气量少和泌水率小等特点,能有效改善高架、高速公路、桥梁等各类清水混凝土表面的光洁和美观 6.张拉抗折:本产品具有先缓凝后早强的功能,在确保掺量的前提下,可满足混凝土的3d (除凝结时间) 张拉和28d抗折强度的要求 7.特效功能:在配制高强混凝土时,其弹性模量、抗渗性、抗收缩、抗徐变和耐久性等高性能指标均可满足要求。 二、匀质指标 根据产品的性能指标和用户的要求,符合国家、行业及企业标准。 三、应用范围 本产品适用于各类泵送混凝土、大体积混凝土、高架、高速公路、桥梁、水工混凝土。特别适用于重点工程和有特殊要求的混凝土。 四、使用方法 1.本产品掺量范围~%(以胶凝材料量计),可根据与水泥的适应性、气温的变化和混凝土坍落度等要求,在推荐范围内调整确定最佳掺量。 2.按计量,直接掺入混凝土搅拌机中使用。 3.在计算混凝土用水量时,应扣除液剂中的水量。 4.在使用本产品时,应按混凝土试配事先检验与水泥的适应性。 五、注意事项 1.在水泥变更品种或新进水泥时,应做与水泥兼容性检验。 2.对于要求缓凝的混凝土,应按混凝土试配事先检验凝结时间。 3.必须按试验配合比正确掺量,浇筑混凝土时,应严格按施工规范操作。 4.在与其他外加剂合用时,宜先检验其兼容性。 5.在冬季施工期间,为了提高混凝土早期强度,应适当调整混凝土的水泥用量。 6.与常规混凝土工程一样,必须按施工规范加强养护。 7.使用本产品,应提前1~3天通知厂方。 六、包装贮存 1.可采用灌车运装;塑料桶1000kg/桶;也可根据用户要求做特殊包装。 2.本产品质保期壹年,在质保期内如有沉淀,经搅匀后使用,不影响效果。

立磨调试说明书(DOC)

某3200吨/天熟料生产线原料磨及废气处理调试说明书 本操作说明书的内容,仅限于保证设备的正常运转及工艺操作的基本事项。为了保证顺利生产,提高设备的运转率,操作人员在必须掌握操作说明书内容的基础上,应了解每台设备的性能及其正确使用,以便在实际操作中解决出现的各类问题。 编制本操作说明书的基本依据是各类设计文件,同时结合以往生产调试中的经验。部分生产参数需等试生产时,根据本厂的实际情况确定。在生产中,已确定的部分内容可能需要修正。厂方的有关人员对本操作说明书内容有疑问时,请与我院派驻现场调试人员进行协商解决。为了更好地了解主要设备的原理、性能与操作方法,请参考有关的单机说明书。 由于水平有限,编写时间仓促,资料中不妥、错误之处在所难免,恳望批评指正。 第二章工艺设备及工艺流程介绍 本章叙述的内容:介绍原料调配站、原料粉磨、废气处理部分的工艺设备及工艺流程,设备的详细情况请参阅各单机设备的说明书,该部分的流程详见所附的工艺流程图。 一、工艺设备简介

二、工艺流程介绍 来自石灰石预均化库的石灰石经胶带输送机送至原料调配站的石灰石库。

辅助原料包括粘土、石英岩、硫酸渣。辅助原料和原煤共同设置一个堆棚,堆棚内设有粘土破碎机,破碎后的粘土由胶带输送机送至粘土预均化库,再由胶带输送机送至原料调配站的粘土库。石英岩及硫酸渣由经卸车坑由胶带输送机分别送至原料调配站的砂石英岩库和硫酸渣库。 原料调配站各库下均设有定量给料机,粘土库下另设有板式给料机卸料。在定量给料机的计量下实现各种物料的定量喂料,配好的混合料经除铁装置和金属探测器除铁探测后,由胶带输送机送入生料磨。 原料磨采用辊式磨,当入磨物料粒度≤80 mm,入磨水份≤3.5 %,出磨生料细度为80μm筛筛余12%,水份为0.5 %时,磨系统产量为250 t/h。 原料在磨内进行粉磨、烘干后,经选粉机分选,粗粉返回磨盘重新粉磨,合格成品随出磨气流至旋风筒收集。旋风筒收集下来的成品经空气输送斜槽、斗式提升机入生料库储存、均化。出旋风筒的气体经循环风机,一部分气体作为循环风入磨,其余气体则通过窑尾袋收尘器净化后,经窑尾废气排风机和烟囱排入大气。窑尾袋收尘器收下的粉尘经链式输送机输送,汇同增湿塔收下的粉尘经斗式提升机送入窑灰仓。仓内由开式斜槽助流,仓下由回转卸料器卸料,与出磨生料一起经空气输送斜槽、斗式提升机入生料均化库。 当原料磨正常生产时,来自窑系统的废气经窑尾高温风机、增湿塔后,进入原料磨作为烘干热源。从原料磨排出的废气由循环风机送入废气处理系统。当原料磨运行初期窑尾无高温废气则利用原料磨热风炉为生料烘干提供热源。 原料粉磨系统设有半自动取样装置,试样经过X-荧光分析仪检测,用分析结果调整各种原料的配合比例,保证出磨生料化学成分的合格与稳定。 为均化与储存生料,设有一座设置一座Φ15×47 m的生料均化库,库有效储量为6400 t,储存期为1.4 d。均化库底部为锥体,出库生料经库底多点流量控制阀、空气输送斜槽送至带有荷重传感器的生料搅拌仓。仓下设有两套流量控制阀,喂料仓下流量控制阀根据入窑生料量调节。生料经固体流量计计量后由空气输送斜槽及斗式提升机送入窑尾预热器二级至一级旋风筒的上升管道。 第三章自动调节回路 一.磨机出口气体温度的自动控制 通过调节冷风阀门开度,调节入磨风温,稳定磨机出口气体温度。

相关主题
文本预览
相关文档 最新文档