Is the entropy Sq extensive or nonextensive
- 格式:pdf
- 大小:253.21 KB
- 文档页数:10
thermodynamics n. 热力学 system n. 体系 thermodynamic state 热力学状态 dimension 量纲 SI= International System of Units 国际单位制 强度(热力学)变量 广度(热力学)变量celsius scale 摄氏刻度 → fahrenheit scale 华氏刻度 kelvin scale 开尔文刻度 → Rankine scale dead-weight gauge 静压、压力表 mano meter (流体)压力计 product 乘积 kinetic energy 动能 221mu E k = potential energy 势能mgz E P =conservation守恒* Terms in chapter 2sublimation curve 升华线 fusion curve 熔融线vaporization curve (蒸发)汽化线single-phase region 单相区 triple point 三相点univariant 单变量 divariant 多变量critical point 临界点 critical pressure 临界压力critical temperature 临界温度dome-shaped curve 圆拱形曲线saturated vapors at their condensation temperatures 露点的饱和蒸汽 saturated liquids at their vaporization(boiling) temperatures 泡点的饱和液体vapor pressure 蒸汽压subcooled-liquid region 过冷液体区 superheated-vapor region 过热蒸汽区partial derivative 偏导数differentiate v . 求微分,求导 differentiation n. derivate n. 求导数 derivation 求导数,求解incompressible fluid 不可压缩流体 ideal-gas理想气体simple fluid简单流体 (argon 、krypton 、xenon )virial expansion维里展开式 virial coefficients 维里系数 virial equation维里方程equation of state状态方程compressibility factor 压缩因子 RTPVZ = volume expansivity体积膨胀系数PT V V ⎪⎭⎫ ⎝⎛∂∂=1βisothermal compressibility 等温压缩系数 TP V V ⎪⎭⎫ ⎝⎛∂∂=1κ acentric factor偏心因子isothermal process 等温过程 isobaric process 等压过程 isochoric process等容过程 adiabatic process 绝热过程 polytropic process 多变过程throttling process节流过程 0=∆Htruncate equation to two terms 截断方程前二项 cubic equation of state 立方型状态方程reduced pressure 对比压力 reduced temperature 对比温度 reduced density对比密度corresponding-state parameters 对应态参数 generalized correlations 普遍化关联nonpolar非极性的 slightly polar 弱极性的 highly polar高极性的volumetric properties 容积性质 realistic 现实主义的,逼真的dashed line虚线dotted line 点线 straight line 实线Terms in chapter 3internal energy 内能 transport across kinetic energy 动能 221mu E t =potential energy 势能 m g z E p = conservation 守恒operator 算符,运算符 (such as “Δ”) system 体系 surroundings 环境 closed system 封闭体系 open system 开放体系finite change 有限的变化 infinitesimal change 无限的变化 differential change 微分(小)的变化 intensive property 强度性质 extensive property 广度性质specific or molar property 单位(比)性质或摩尔性质 property — variable — functionthermodynamics state of the system 体系热力学状态 thermodynamics properties 热力学性质 state function(s) 状态函数equilibrium 平衡 (the) phase rule 相率reversible process 可逆过程irreversible process 不可逆过程mechanically reversible 机械可逆thermostate 恒温箱constant—temperature bath 恒温浴efficiency 效率,(有效)系数enthalpy 焓heat capacity 热容constant—volume heat capacity 恒容热容constant—pressure heat capacity 恒压热容vector quantity 矢量scalar magnitude 数量,纯量continuity equation 连续方程steady state (flow process) 移去(流动过程)datum level 基准面shaft work 体积功stirring work 搅拌功work associated with moving the flow streams 流动功expansion work 膨胀功surface work 表面功electricity work 电功calorimeter 量热计(测定焓)intensive property 强度性质extensive property 广度性质shaft work 轴功enthalpy 焓entropy 熵heat-capacity 热容Gibbs energy (G) 吉布斯自由能Helmholtz energy (A) 亥姆霍茨自由能internal energy 内能system 系统,体系close system 封闭体系equilibrium state 平衡态total differential of F F的全微分exact differential expression 全微分表达式Maxwell equations 麦克斯威尔方程homogeneous fluid 均相流体residual property 剩余性质real gas 真实气体actual gasideal gas 理想气体explicit function 显函数volume explicit 体积显函数pressure explicit 压力显函数isentropic process 等熵过程reversible adiabatic process 绝热可逆过程pseudocritical parameter 虚拟临界参数path variables 过程变量state variables 状态变量constant pressure heat capacity CP 等压热容constant volume heat capacity C V 等容热容residual property 剩余性质reference state 参比态reference conditionpartial derivative 偏导数total derivative 全导数β volume expansivity 体积膨胀系数κ isothermal compressibility 等温压缩系数quality 干度fugacity 逸度fugacity coefficient 逸度系数*Terms in Chapter 4chemical potential 化学势,化学位partial property 偏性质partial molar property 偏摩尔性质ideal solution 理想溶液real solution 真实溶液excess property 超额/过量性质excess Gibbs energy 超额/过量自由焓partial excess property 偏摩尔超额/过量性质activity 活度activity coefficient 活度系数standard state 标准态property change of mixing 混合性质regular solution 正规溶液atherpical solution 无热溶液local-composition 局部组成local molar fraction 局部摩尔分数*Terms in Chapter 5First Law of thermodynamics(energy conservation law)热力学第一定律steady-state flow processes 稳定状态流动过程control volume 控制体heat Engines 热机Carnot engine 卡诺热机thermal efficiency 热效率thermodynamic efficiency 热力学效率isentropic efficiency 等熵效率ideal work and lost work 理想功和损耗功exergy 火用available Energy, availability, utilizable Energy 有效能*Terms in Chapter 6steam Power cycle 蒸汽动力循环Carnot-engine cycle 卡诺循环cycle with feed water heaters 抽气回热循环heat-power cycle 热电循环exhaust steam 乏气heat reservoir 热源working substance of the engine 工质specific steam consumption 汽耗率SSCrefrigeration Cycle 制冷循环vapor-compression cycle 蒸汽压缩(制冷)循环absorption refrigeration 吸收式制冷Carnot refrigeration 卡诺冷机reversed heat-engine cycle 逆热机循环multi-stage compression refrigeration多级压缩制冷heat pump 热泵throttling expansion process 节流膨胀过程reversible adiabatic expansion process 可逆绝热膨胀过程inversion curve and inversion point 转变曲线和转变点condenser 冷凝器expander 膨胀机compressor 压缩机evaporator 蒸发器supheater 过热器turbine 透平机boiler 锅炉pump 泵*Statements of the second lawstatement1: No apparatus can operate in such a way that its only effect (in system and surrounings) is to convert heat absorbed by a system completely into work done by the system。
英语三年级上册第三课1、 say never the word abandons中文翻译:我们能失败例句:♪ Never mentioned The word addiction ♪翻译:♪Never mention the word addiction♪。
2、abstract中文翻译:抽象的例句:Apart from anything else, the party doesn't approve of abstract art. 翻译:the party doesn't approve of abstract art.。
xx年级核心词汇表:13、 academia sinica中文翻译:中央研究院例句:in 1980, he was elected Fellow of Academia Sinica. 翻译:xx年当选中央研究院院士。
1、。
4、accessary中文翻译:附属的例句:Accessary QA make sure the bulk accessary meet customer's requirement. 翻译:辅料QA确保所有的辅料符合客人要求。
5、acreage中文翻译:英亩数例句:Extensive acreage which is a forest area... 翻译:的森林土地...。
6、 adjusted current assets中文翻译:调整后的流动资产经调整的流动资产调整后的负债例句:There are two main types of assets: current assets and noncurrent assets.1、翻译:同资产相似,债务也有两种主要分类:流动债务与非流动债务。
2、。
7、admiration中文翻译:钦佩例句:has always developed admiration for me. 翻译:has always developed admiration for me.。
Unit 3Transition to Modern Information ScienceChapter One&Part4 Extensive Reading @Part 1 Notes to Text@Part5Notes to Passage & Part 2 Word Study@Part3 Practice on Text @Part6 Practice on Passage@Part 1 Notes to TextTransition to Modern Information Science1)With the 1950‘s came increasing awareness of the potentialof automatic devices for literature searching and informationstorage and retrieval.随着二十世纪五十年代的来临,人们对用于文献资料搜索、信息储存与检索的自动装置的潜力认识日益增长。
注释:该句是一个完全倒装句。
主语是awareness;介词短语With the 1950‘s是状语,修饰谓语动词came。
2)As these concepts grew in magnitude and potential, so did thevariety of information science interests. 由于这些概念的大量增长,潜移默化,对信息科学研究的各种兴趣也亦如此。
注释:介词短语in magnitude and potential作方式状语,意思是“大量地,潜移默化地”;后面的主句因为so放在句首而倒装。
So指代前文的grew in magnitude and potential。
3) Grateful Med at the National Library of Medicine美国国家医学图书馆数据库注释:Grateful Med是对另一个NLM(国家医学图书馆)基于网络的查询系统的链接。
proton affinitieSProton affinity is a useful parameter for describing gas phase ion-molecule reactions in fields such as atmospheric chemistry, plasma chemistry, mass spectrometry, and astrophysics . The pro-ton affinity E pa (often designated in the literature as PA) of a mo-lecular species M is defined as the negative of the enthalpy change for the gas phase reactionM + H+→ MH+ .A closely related quantity is the gas phase basicity Δbase G° (of-ten designated as GB), which is the negative of the Gibbs energy change for the same reaction . Thus the two are related byΔbase G° = E pa + TΔS,where T is the temperature and ΔS is the entropy change in the reaction (which can be calculated if the molecular structure of M and M+ is known) .Direct measurement of the proton affinity is possible for only a few molecules, mainly olefins and carbonyl compounds . However, these measurements have been used to establish a scale of E pa values that permits proton affinities to be determined for many other molecules, including unstable species and reaction interme-diates . The basis for this scale is described by Hunter and Lias in Reference 1 .The E pa and Δbase G° values at a temperature of 298 K are tabu-lated below for selected molecules . Many values are given to one decimal place, but the majority are not accurate to better than one or two kilojoules per mole . The methods of measurement are de-scribed in Reference 1, which contains a much more extensive and detailed tabulation .Compounds are listed by molecular formula in the Hill order, but with all compounds that do not contain carbon appearing be-fore those that do contain carbon .references1 . Hunter, E . P . L ., and Lias, S . G .,J. Phys. Chem. Ref. Data27, 413,1998 .2 . Hunter, E . P ., and Lias, S . G ., “Proton Affinity Evaluation”, in NISTChemistry WebBook, NIST Standard Reference Database No . 69, Linstrom, P . J ., and Mallard, W . G ., Eds ., March 2003, National Institute of Standards and Technology, Gaithersburg, MD 20899, <http://webbook .nist .gov> .3 . Do, K ., Klein, T . P ., Pommerening, C . A ., Bachrach, S . M ., andSunderlin, L . S ., J. Am. Chem. Soc . 120, 6093, 1998 .4 . Kim, H .-T ., Green, R . J ., Qian, J ., and Anderson, S . L ., J. Chem. Phys.112, 5717, 2000 .5 . Park, S . T ., Kim, S . K ., and Kim, M . S ., J. Chem. Phys. 114, 5568, 2001 .6 . Hiraoka, K ., Mizuno, T ., Eguchi, D ., Takao, T ., and Ino, S ., J. Chem.Phys. 116, 7574, 2002 .7 . Oresmaa, L . O ., Haukka, M ., Vainiotalo, P ., and Pakkanen, T . A ., J. Org.Chem . 67, 8216, 2002 .8 . Wang, F ., Ma, S ., Zhang, D ., and Cooks, R . G ., J. Phys. Chem. A 102,2988, 1998 .9 . Bouchoux, G ., Gal, J .-F ., Szulejko, J . E ., McMahon, T . B ., Tortajada, J .,Luna, A ., Yanez, M ., and Mo, O ., J. Phys. Chem. A 102, 9183, 1998 . 10 . van Beelen, E ., Koblenz, T . A ., Ingemann, S . and Hammerum, S ., J.Phys. Chem. A 108, 2728, 2004 .Molecular formulaE paΔbase G°Name kJ/mol kJ/mol NotesAr Argon 369 .2 346 .3 AsF3Arsenic(III) fluoride 636 .7 604 .2 AsH3Arsine 747 .9 712 .0 BHO2Metaboric acid 763 .0 730 .5 BH3O3Boric acid 728 .1 698 .4 B2H6Diborane 615 586 .0 B3H6N3Borazine 802 .5 772 .8 B4H10Tetraborane(10) 605 572 .5 B5H9Pentaborane(9) 699 .4 666 .9 BaO Barium oxide1215 .41187 .6 Br Bromine (atomic) 554 .4 531 .2 BrH Hydrogen bromide 584 .2 557 .7 BrLi Lithium bromide 819 792 .5 CaO Calcium oxide1190 .61162 .3 Cl Chlorine (atomic) 513 .6 490 .1 ClH Hydrogen chloride 556 .9 530 .1 ClLi Lithium chloride 827 800 .5 Co Cobalt 742 .7 719 .8 Cr Chromium 791 .3 768 .4 CsHO Cesium hydroxide1117 .91092 .2 Cs2O Cesium oxide1442 .91412 .2 Cu Copper 655 .3 632 .4F Fluorine (atomic) 340 .1 315 .1FH Hydrogen fluoride 484 456 .7 FO Fluorine oxide 508 .7 482 .2 F2Fluorine 332 305 .5 F2O2S Sulfuryl fluoride 605 .5 580 .510-174Molecular formulaE paΔbase G°Name kJ/mol kJ/mol NotesF3N Nitrogen trifluoride 568 .4 538 .6F3OP Phosphoryl fluoride 694 .0 664 .2F3P Phosphorus(III) fluoride 695 .3 662 .8F4Si Tetrafluorosilane 502 .9 476 .6F6S Sulfur hexafluoride 575 .3 550 .7Fe Iron 754 731 .1FeO Iron(II) oxide 907 880 .5GeH4Germane 713 .4 687 .1HI Hydrogen iodide 627 .5 601 .3HKO Potassium hydroxide1101 .81075 .4HLi Lithium hydride1021 .7 996 .4HLiO Lithium hydroxide1000 .1 972 .1HNO3Nitric acid 751 .4 731 .5HN3Hydrazoic acid 756 .0 723 .5HNa Sodium hydride10951070 .6HNaO Sodium hydroxide1071 .81044 .8HO Hydroxyl 593 .2 564 .0HO2Hydroperoxy 660 627 .5HP Phosphorus monohydride 670 .3 639 .6H2Hydrogen 422 .3 394 .7H2N2O2Nitramide 757 .4 725 .0H2O Water 691 660 .0H2O2Hydrogen peroxide 674 .5 643 .8H2O4S Sulfuric acid 717 681Ref . 3H2P Phosphino 709 .2 675 .7H2S Hydrogen sulfide 705 673 .8H2Se Hydrogen selenide 707 .8 676 .4H2Si Silylene 839 .2 804 .1H2Te Hydrogen telluride 735 .9 704 .5H3N Ammonia 853 .6 819 .0H3P Phosphine 785 750 .9H4N2Hydrazine 853 .2 822 .4H4Si Silane 639 .7 613 .4H6OSi2Disiloxane 749 718 .3He Helium 177 .8 148 .5I Iodine (atomic) 608 .2 583 .5K2O Potassium oxide1342 .51311 .8Kr Krypton 424 .6 402 .4La Lanthanum1013 991 .9Li2Dilithium11621133 .1Li2O Lithium oxide12061175 .3Lu Lutetium 992 970 .6Mg Magnesium 819 .6 797 .3MgO Magnesium oxide 988 959 .4Mg2Dimagnesium 919 886 .5Mn Manganese 797 .3 774 .4N Nitrogen (atomic) 342 .2 318 .7NO Nitric oxide 531 .8 505 .3NO2Nitrogen dioxide 591 .0 560 .3NP Phosphorus nitride 789 .4 757 .0N2Nitrogen 493 .8 464 .5N2O Nitrous oxide 549 .8 523 .3Protonation at NN2O Nitrous oxide 575 .2 548 .7Protonation at ONa2Disodium1146 .81118 .2Na2O Sodium oxide1375 .91345 .2Ne Neon 198 .8 174 .4Ni Nickel 737 714 .1O Oxygen (atomic) 485 .2 459 .6OP Phosphorus monoxide 682 649 .5OSi Silicon monoxide 777 .8 750 .4Protonation at OProton Affinities 10-175Molecular formulaE paΔbase G°Name kJ/mol kJ/mol NotesOSi Silicon monoxide 533 500 .5Protonation at SiOSr Strontium oxide12091180 .7O2Oxygen 421 396 .3O2S Sulfur dioxide 672 .3 643 .3O3Ozone 625 .5 595 .9O3S Sulfur trioxide 588 .3 560 .3O4Os Osmium(VIII) oxide 676 .9 650 .6P Phosphorus 626 .8 604 .8Pd Palladium 696 673 .4Rh Rhodium 768 745 .4Ru Ruthenium 774 751 .4S Sulfur 664 .3 640 .2SSi Silicon monosulfide 627 596 .6Protonation at SiSSi Silicon monosulfide 683 660 .2Protonation at SSc Scandium 914 892 .0Si Silicon 837 814 .1Ti Titanium 876 853 .7U Uranium 995 .2 973 .2V Vanadium 859 .4 836 .8Xe Xenon 499 .6 478 .1Y Yttrium 967 945 .9Zn Zinc 608 .6 586 .0CBrF3Bromotrifluoromethane 580 .0 550 .3CBrN Cyanogen bromide 749 .8 719 .2CClF3Chlorotrifluoromethane 571 .3 541 .5CClN Cyanogen chloride 722 .1 691 .5CCl2Dichloromethylene 861 828 .5CCl2S Carbonothioic dichloride 752 .5 721 .8CFN Cyanogen fluoride 632 601 .3CF2Difluoromethylene 765 732 .5CF2O Carbonyl fluoride 666 .7 637 .0CF3I Trifluoroiodomethane 628 .0 598 .2CF3NO Trifluoronitrosomethane 703 .3 670 .8CF4Tetrafluoromethane 529 .3 503 .7CHCl Chloromethylene 874 .1 839 .9CHF Fluoromethylene 797 .9 763 .8CHF3Trifluoromethane 619 .5 589 .7CHF3O3S Trifluoromethanesulfonic acid 699 .4 666 .9CHN Hydrogen cyanide 712 .9 681 .6CHN Hydrogen isocyanide 772 .3 739 .8CHNO Isocyanic acid (HNCO) 753 718 .8CHNO Fulminic acid 758 725 .5CHO Oxomethyl (HCO) 636 601 .8CHO2Formyloxyl 623 .4 590 .9CH2F2Difluoromethane 620 .5 589 .7CH2N2Diazomethane 858 .9 826 .7CH2N2Cyanamide 805 .6 774 .9CH2O Formaldehyde 712 .9 683 .3CH2O2Formic acid 742 .0 710 .3CH2S Thioformaldehyde 759 .7 730 .5CH2Se Selenoformaldehyde 764 .0 734 .9CH3Br Bromomethane 664 .2 638 .0CH3Cl Chloromethane 647 .3 621 .1CH3F Fluoromethane 598 .9 571 .5CH3I Iodomethane 691 .7 665 .5CH3NO Formamide 822 .2 791 .2CH3NO2Nitromethane 754 .6 721 .6CH3NO2Methyl nitrite 798 .9 766 .4CH3NO3Methyl nitrate 733 .6 714 .8CH3N3Methyl azide 833 800 .510-176 Proton AffinitiesMolecular formulaE paΔbase G°Name kJ/mol kJ/mol NotesCH4Methane 543 .5 520 .6CH4N Methylamidogen 832 .8 801 .6CH4N2O Urea 873 .5 841 .6Protonation at O; Ref . 8CH4N2S Thiourea 893 .7 863 .9CH4O Methanol 754 .3 724 .5CH4O3S Methanesulfonic acid 761 .3 728 .9CH4S Methanethiol 773 .4 742CH5N Methylamine 899 .0 864 .5CH5NO O-Methylhydroxylamine 844 .8 812 .3CH5N3Guanidine 986 .3 949 .4CH5P Methylphosphine 851 .5 817 .6CH6N2Methylhydrazine 898 .8 866 .4CN Cyanide>595>564Protonation at NCNS Thiocyanate 751 718 .5CO Carbon monoxide 594 562 .8Protonation at CCO Carbon monoxide 426 .3 402 .2Protonation at OCOS Carbon oxysulfide 628 .5 602 .6Protonation at SCOSe Carbon oxyselenide 670 644 .1Protonation at SeCO2Carbon dioxide 540 .5 515 .8CS Carbon monosulfide 791 .5 760CS2Carbon disulfide 681 .9 657 .7CSe Carbon monoselenide 831 .8 800 .2Protonation at CCSe2Carbon diselenide 725 700 .9C2ClF3O Trifluoroacetyl chloride 681 .6 649 .8C2Cl3N Trichloroacetonitrile 723 .2 692 .6C2F3N Trifluoroacetonitrile 688 .4 657 .7C2H Ethynyl 753 720 .8C2HCl3O Trichloroacetaldehyde 722 .3 690 .5C2HCl3O2Trichloroacetic acid 770 .0 739 .1C2HF Fluoroacetylene 686 661 .3C2HF3Trifluoroethene 699 .4 666 .9C2HF3O2Trifluoroacetic acid 711 .7 680 .7C2H2Acetylene 641 .4 616 .7C2H2ClN Chloroacetonitrile 745 .7 715 .1C2H2F21,1-Difluoroethene 734 705 .1C2H2F2trans-1,2-Difluoroethene 688 .6 657 .9C2H2O Ketene 825 .3 793 .6C2H3ClO2Chloroacetic acid 765 .4 734 .5C2H3Cl3O2,2,2-Trichloroethanol 729 .3 698 .9C2H3F Fluoroethene 729 700 .1C2H3FO2Fluoroacetic acid 765 .4 734 .5C2H3F3O2,2,2-Trifluoroethanol 700 .2 669 .9C2H3F3O Methyl trifluoromethyl ether 719 .2 690 .0C2H3N Acetonitrile 779 .2 748C2H3N Isocyanomethane 839 .1 806 .6C2H3NO Methyl isocyanate 764 .4 732 .0C2H3NS Methyl thiocyanate 796 .7 766 .1C2H3NS Methyl isothiocyanate 799 .2 766 .7C2H3N31H-1,2,3-Triazole 879 .3 847 .4C2H3N31H-1,2,4-Triazole 886 .0 855 .9C2H4Ethylene 680 .5 651 .5C2H4F2O2,2-Difluoroethanol 727 .4 697 .0C2H4F3N2,2,2-Trifluoroethylamine 846 .8 812 .9C2H4N2Aminoacetonitrile 824 .9 791 .0C2H4O Acetaldehyde 768 .5 736 .5C2H4O Oxirane 774 .2 745 .3C2H4O2Acetic acid 783 .7 752 .8C2H4O2Methyl formate 782 .5 751 .5C2H4S Thiirane 807 .4 777 .6C2H5Br Bromoethane 696 .2 669 .7Proton Affinities 10-177Molecular formulaE paΔbase G°Name kJ/mol kJ/mol NotesC2H5BrO2-Bromoethanol 766 .1 735 .7C2H5Cl Chloroethane 693 .4 666 .9C2H5ClO2-Chloroethanol 766 .1 735 .7C2H5F Fluoroethane 683 .4 655 .8C2H5FO2-Fluoroethanol 715 .6 685 .2C2H5I Iodoethane 724 .8 698 .3C2H5N Ethenamine 898 .9 866 .5C2H5N Ethyleneimine 905 .5 872 .5C2H5NO Acetamide 863 .6 832 .6C2H5NO N-Methylformamide 851 .3 820 .3C2H5NO2Nitroethane 765 .7 733 .2C2H5NO2Ethyl nitrite 818 .9 786 .4C2H5NO2Glycine 886 .5 852 .2C2H5NO2Acetohydroxamic acid 854 .0 823 .0C2H5NS Thioacetamide 884 .6 852 .8C2H6Ethane 596 .3 569 .9C2H6Hg Dimethyl mercury 771 .6 740 .8C2H6N2Ethanimidamide 970 .7 938 .2C2H6N2trans-Dimethyldiazene 865 .1 834 .4C2H6N2O2-Aminoacetamide 882 .3C2H6N2O2N-Methyl-N-nitromethanamine 828 .3 795 .8C2H6O Ethanol 776 .4 746C2H6O Dimethyl ether 792 764 .5C2H6OS Dimethyl sulfoxide 884 .4 853 .7C2H6O21,2-Ethanediol 815 .9 773 .6C2H6S Ethanethiol 789 .6 758 .4C2H6S Dimethyl sulfide 830 .9 801 .2C2H6S2Dimethyl disulfide 815 .3 782 .8C2H7N Ethylamine 912 .0 878C2H7N Dimethylamine 929 .5 896 .5C2H7NO Ethanolamine 930 .3 896 .8C2H7O3P Dimethyl hydrogen phosphite 894 .8 862 .4C2H7P Dimethylphosphine 912 .0 877 .9C2H8N21,2-Ethanediamine 951 .6 912 .5C2H8N21,1-Dimethylhydrazine 927 .1 894 .7C2N2Cyanogen 674 .7 645 .8C2O Dicarbon monoxide 774 .7 747 .0C3Carbon trimer 767 .0 736 .3C3F6O Perfluoroacetone 670 .4 639 .7C3HN Cyanoacetylene 751 .2 720 .5C3H2F6O1,1,1,3,3,3-Hexafluoro-2-propanol 686 .6 656 .2C3H2N2Malononitrile 723 .0 694 .1C3H32-Propynyl 741 708 .5C3H3Cl3O1,1,1-Trichloro-2-propanone 768 .3 736 .3C3H3F3O1,1,1-Trifluoroacetone 723 .9 692 .0C3H3F3O2Methyl trifluoroacetate 740 .5 709 .6C3H3N Acrylonitrile 784 .7 753 .7C3H3NO Oxazole 876 .4 844 .5C3H3NO Isoxazole 848 .6 816 .8C3H3NO2-Oxopropanenitrile 746 .9 716 .2C3H3NS Thiazole 904 872 .1C3H3N31,3,5-Triazine 848 .8 819 .6C3H4Allene 775 .3 745 .8C3H4Propyne 748 .2 723 .0C3H4Cyclopropene 818 .5 787 .8C3H4ClN3-Chloropropanenitrile 773 .1 742 .4C3H4N21H-Pyrazole 894 .1 860 .5C3H4N2Imidazole 942 .8 909 .2C3H4N2S2-Thiazolamine 930 .6 898 .7C3H4O Acrolein 797 .0 765 .110-178 Proton AffinitiesMolecular formulaE paΔbase G°Name kJ/mol kJ/mol NotesC3H4O1-Propen-1-one 834 .1 803 .4C3H4O3Ethylene carbonate 814 .2 784 .4C3H5Allyl 736 707 .4C3H5Cyclopropyl 738 .9 702 .0C3H5ClO2Ethyl chloroformate 764 .8 733 .8C3H5FO1-Fluoro-2-propanone 795 .4 763 .5C3H5F3O2,2,2-Trifluoroethyl methyl ether 747 .6 718 .4C3H5N Propanenitrile 794 .1 763 .0C3H5N2-Propyn-1-amine 887 .4 853 .5C3H5N Ethyl isocyanide 851 .3 818 .9C3H5NO Acrylamide 870 .7 839 .8C3H5NO Methoxyacetonitrile 758 .1 727 .4C3H5NO2-Azetidinone 852 .6 821 .7C3H5NS(Methylthio)acetonitrile 784 .8 754 .1C3H5N31H-Pyrazol-3-amine 921 .5 889 .6C3H5N31H-Pyrazol-4-amine 907 .6 874 .0C3H6Propene 741 .6Ref . 5C3H6Cyclopropane 750 .3 722 .2C3H6N23-Aminopropanenitrile 866 .4 832 .5C3H6N2Dimethylcyanamide 852 .1 821 .4C3H6N2S2-Imidazolidinethione 921 .9 891 .2C3H6O Methyl vinyl ether 859 .2 830 .3C3H6O Propanal 786 .0 754 .0C3H6O Acetone 812 782 .1C3H6O Oxetane 801 .3 773 .9C3H6O2Propanoic acid 797 .2 766 .2C3H6O2Ethyl formate 799 .4 768 .4C3H6O2Methyl acetate 821 .6 790 .7C3H6O3Dimethyl carbonate 830 .2 799 .2C3H6S(Methylthio)ethene 858 .2 829 .3C3H6S Thietane 834 .8 805 .0C3H6S Methylthiirane 833 .3 801 .5C3H7N Allylamine 909 .5 875 .5C3H7N Cyclopropylamine 904 .7 869 .9C3H7N Azetidine 943 .4 908 .6C3H7N1-Methylaziridine 934 .8 904 .1C3H7N Propyleneimine 925 .1 892 .1C3H7NO N,N-Dimethylformamide 887 .5 856 .6C3H7NO N-Methylacetamide 888 .5 857 .6C3H7NO Propanamide 876 .2 845 .3C3H7NO2Isopropyl nitrite 845 .5 813 .0C3H7NO2L-Alanine 901 .6 867 .7C3H7NO2Sarcosine 921 .2 888 .7C3H7NO2S L-Cysteine 903 .2 869 .3C3H7NO3L-Serine 914 .6 880 .7C3H8Propane 625 .7 607 .8C3H8N2O N,N’-Dimethylurea 903 .3 873 .5C3H8N2S N,N’-Dimethylthiourea 926 .0 895 .1C3H8O1-Propanol 786 .5 756 .1C3H8O2-Propanol 793 .0 762 .6C3H8O Ethyl methyl ether 808 .6 781 .2C3H8O21,3-Propanediol 876 .2 825 .9C3H8O22-Methoxyethanol 768 .8 729 .8C3H8O3Glycerol 874 .8 820C3H8S1-Propanethiol 794 .9 763 .6C3H8S2-Propanethiol 803 .6 772 .3C3H8S Ethyl methyl sulfide 846 .5 815 .3C3H9As Trimethylarsine 897 .3 864 .9C3H9BO3Trimethyl borate 815 .8 783 .4C3H9N Propylamine 917 .8 883 .9Proton Affinities 10-179Molecular formula E pa Δbase G °NamekJ/mol kJ/mol NotesC 3H 9N Isopropylamine 923 .8 889 .0C 3H 9N Ethylmethylamine 942 .2 909 .2C 3H 9N Trimethylamine948 .9 918 .1C 3H 9NO 2-Methoxyethylamine 928 .6 894 .6C 3H 9NO Trimethylamine oxide 983 .2 953 .5C 3H 9NO 3-Amino-1-propanol 962 .5 917 .3C 3H 9O 3P Trimethyl phosphite 929 .7 899 .9C 3H 9O 4P Trimethyl phosphate 890 .6 860 .8C 3H 9P Trimethylphosphine 958 .8 926 .3C 3H 10N 21,3-Propanediamine 987 .0 940 .0C 3H 10OSi Trimethylsilanol814 .0 781 .5C 4F 8Perfluorocyclobutane >544Ref . 6C 4H 21,3-Butadiyne737 .2 712 .8C 4H 4F 6O Bis(2,2,2-trifluoroethyl) ether 702 .3 674 .9C 4H 4N 2Pyrazine 877 .1 847 .0C 4H 4N 2Pyrimidine 885 .8 855 .7C 4H 4N 2Pyridazine 907 .2 877 .1C 4H 4N 2O 2Uracil872 .7 841 .7C 4H 4N 2S 22,4(1H ,3H )-Pyrimidinedithione 911 .4 880 .5C 4H 4O Furan812 781Ref . 10C 4H 4O 3Succinic anhydride 797Ref . 9C 4H 4S Thiophene815 .0 784 .3C 4H 5Cl 3O 2Ethyl trichloroacetate 790 .4 759 .4C 4H 5F 3O 2Ethyl trifluoroacetate 758 .8 727 .9C 4H 5N Pyrrole875 .4 843 .8C 4H 5N Cyclopropanecarbonitrile 808 .2 777 .5C 4H 5NO 2Ethyl cyanoformate 745 .7 714 .7C 4H 5NS 2-Methylthiazole 930 .6 898 .7C 4H 5N 3O Cytosine949 .9 918C 4H 61,2-Butadiene 778 .9 749 .8C 4H 61,3-Butadiene 783 .4 757 .6C 4H 62-Butyne 775 .8 745 .1C 4H 6Cyclobutene784 .4 753 .6C 4H 6F 3NO 2,2,2-Trifluoro-N,N - dimethylacetamide 849 .0 818 .0C 4H 6N 21-Methylimidazol959 .6 927 .7C 4H 6N 22-Methyl-1H -imidazole 963 .4 929 .6C 4H 6N 24-Methyl-1H -imidazole 952 .8 920 .9C 4H 6N 21-Methyl-1H -pyrazole 912 .0 880 .1C 4H 6N 23-Methyl-1H -pyrazole 906 .0 874 .2C 4H 6N 24-Methyl-1H -pyrazole 906 .8 873 .4C 4H 6O 2-Methylpropenal 808 .7 776 .8C 4H 6O 3-Buten-2-one 834 .7 802 .8C 4H 6O Cyclobutanone 802 .5 772 .7C 4H 6O 2,3-Dihydrofuran 866 .9 834 .4C 4H 6O 2,5-Dihydrofuran 823 .4 796C 4H 6O 2trans -2-Butenoic acid 824 .0 793C 4H 6O 2Methacrylic acid816 .7 785 .7C 4H 6O 2Cyclopropanecarboxylic acid 821 .4 790 .4C 4H 6O 2Vinyl acetate 813 .9 782 .9C 4H 6O 2Methyl acrylate 825 .8 794 .8C 4H 6O 22,3-Butanedione 801 .9 770 .1C 4H 6O 2γ-Butyrolactone840 .0 808 .1C 4H 6O 22,3-Dihydro-1,4-dioxin 823 .5 792 .8C 4H 6O 3Acetic anhydride 844Ref . 9C 4H 72-Methylallyl 778 747 .3C 4H 7N Butanenitrile798 .4 767 .7C 4H 7N 2-Methylpropanenitrile 803 .6 772 .8C 4H 7N 1-Isocyanopropane 856 .8 824 .3C 4H 7NO2-Butenamide887 .1856 .110-180Proton AffinitiesMolecular formulaE paΔbase G°Name kJ/mol kJ/mol NotesC4H7NO2-Methyl-2-propenamide 880 .4 849 .4C4H7NO4L-Aspartic acid 908 .9 875C4H8trans-2-Butene 747 719 .9C4H8Isobutene 802 .1 775 .6C4H8N2(Dimethylamino)acetonitrile 884 .5 853 .7C4H8N2O3L-Asparagine 929 891 .5C4H8N2O3N-Glycylglycine 882C4H8O Ethyl vinyl ether 870 .1 840 .4C4H8O2-Methoxy-1-propene 894 .9 866 .1C4H8O Butanal 792 .7 760 .8C4H8O Isobutanal 797 .3 765 .5C4H8O2-Butanone 827 .3 795 .5C4H8O Tetrahydrofuran 822 .1 794 .7C4H8O2Propyl formate 804 .9 773 .9C4H8O2Isopropyl formate 811 .3 780 .3C4H8O2Ethyl acetate 835 .7 804 .7C4H8O2Methyl propanoate 830 .2 799 .2C4H8O21,3-Dioxane 825 .4 796 .2C4H8O21,4-Dioxane 797 .4 770 .0C4H8O3Ethyl methyl carbonate 842 .7 810 .8C4H8S Tetrahydrothiophene 849 .1 819 .3C4H9N Pyrrolidine 948 .3 915 .3C4H9NO N-Methylpropanamide 920 .4 889 .4C4H9NO2-Methylpropanamide 878 .6 846 .7C4H9NO N-Ethylacetamide 898 .0 867 .0C4H9NO N,N-Dimethylacetamide 908 .0 877 .0C4H9NO Morpholine 924 .3 891 .2C4H9NO2tert-Butyl nitrite 863 .9 831 .4C4H9NO2Ethyl N-methylcarbamate 888 .8 857 .8C4H9NO3L-Threonine 922 .5 888 .5C4H9NS N,N-Dimethylthioacetamide 925 .3 894 .4C4H10Isobutane 677 .8 671 .3C4H10N2Piperazine 943 .7 914 .7C4H10N23-Ethyl-3-methyldiaziridine 903 .8 871 .3C4H10O1-Butanol 789 .2 758 .9C4H10O2-Butanol 815 .7 784 .6C4H10O2-Methyl-1-propanol 793 .7 762 .2C4H10O2-Methyl-2-propanol 802 .6 772 .2C4H10O Diethyl ether 828 .4 801C4H10O Methyl propyl ether 814 .9 785 .7C4H10O Isopropyl methyl ether 826 .3 797 .1C4H10O21,4-Butanediol 915 .6 854 .9C4H10O21,2-Dimethoxyethane 858 .0 820 .2C4H10O31,2,4-Butanetriol 905 .9 841C4H10S1-Butanethiol 801 .7 770 .5C4H10S2-Methyl-1-propanethiol 802 .6 771 .4C4H10S2-Methyl-2-propanethiol 816 .4 785 .1C4H10S Diethyl sulfide 856 .7 827 .0C4H11N Butylamine 921 .5 886 .6C4H11N tert-Butylamine 934 .1 899 .9C4H11N Isobutylamine 924 .8 890 .8C4H11N Diethylamine 952 .4 919 .4C4H11N Isopropylmethylamine 952 .4 919 .4C4H11N Ethyldimethylamine 960 .1 929 .1C4H11NO N-Ethyl-N-hydroxyethanamine 914 .7 882 .2C4H11NO4-Amino-1-butanol 984 .5 932 .1C4H11NO2Diethanolamine 953 920C4H12N21,4-Butanediamine1005 .6 954 .3C4H12N2N,N’-Dimethyl-1,2-ethanediamine 989 .2 946 .9C4H12Sn Tetramethylstannane 823 .7 797 .4Proton Affinities 10-181Molecular formulaE paΔbase G°Name kJ/mol kJ/mol NotesC4H14OSi21,1,3,3-Tetramethyldisiloxane 845 .3 814 .6C4NiO4Nickel carbonyl 742 .3 716 .0C5F5N Perfluoropyridine 764 .9 733 .0C5FeO5Iron pentacarbonyl 833 .0 798 .5C5H3ClN46-Chloro-1H-purine 873 .6 841 .7C5H4BrN2-Bromopyridine 904 .8 873 .0C5H4BrN3-Bromopyridine 910 .0 878 .2C5H4BrN4-Bromopyridine 917 .8 886 .0C5H4ClN2-Chloropyridine 900 .9 869C5H4ClN3-Chloropyridine 903 .4 871 .5C5H4ClN4-Chloropyridine 916 .1 884 .2C5H4FN3-Fluoropyridine 902 .0 870 .1C5H4FN2-Fluoropyridine 884 .6 852 .7C5H4N2O24-Nitropyridine 874 .3 842 .5C5H4N2O34-Nitropyridine 1-oxide 868 .0 837 .3C5H4N41H-Purine 920 .1 888 .2C5H4N4O Hypoxanthine 912 .3 880 .5C5H5Cyclopentadienyl 831 .5 799 .1C5H5N Pyridine 930 898 .1C5H5NO3-Pyridinol 929 .5 897 .7C5H5NO Pyridine-1-oxide 923 .6 892 .9C5H5N5Adenine 942 .8 912 .5C5H5N5O Guanine 959 .5 927 .6C5H61,3-Cyclopentadiene 821 .6 798 .4C5H6N22-Pyridinamine 947 .2 915 .3C5H6N23-Pyridinamine 954 .4 922 .6C5H6N24-Pyridinamine 979 .7 947 .8C5H6N2O2Thymine 880 .9 850 .0C5H6O2-Methylfuran 865 .9 833 .5C5H6O3-Methylfuran 854 .0 821 .5C5H6O3Glutaric anhydride 816Ref . 9C5H6O33-Methylsuccinic anhydride 807Ref . 9C5H6S2-Methylthiophene 859 .0 826 .5C5H7F3O2Propyl trifluoroacetate 763 .9 732 .9C5H8trans-1,3-Pentadiene 834 .1 804 .4C5H82-Methyl-1,3-butadiene 826 .4 797 .6C5H82-Pentyne 810 .2 778 .0C5H83-Methyl-1-butyne 814 .9 787 .8C5H8Cyclopentene 766 .3 733 .8C5H81-Methylcyclobutene 841 .5 807 .3C5H8Vinylcyclopropane 816 .3 787 .5C5H83,3-Dimethylcyclopropene 847 .8 817 .1C5H8N21,3-Dimethyl-1H-pyrazole 933 .9 902 .3C5H8N21,4-Dimethyl-1H-imidazole 976 .7 944 .9C5H8N21,5-Dimethyl-1H-pyrazole 934 .3 902 .8C5H8N23,4-Dimethyl-1H-pyrazole 927 .3 895 .4C5H8N23,5-Dimethyl-1H-pyrazole 933 .5 900 .1C5H8N21,2-Dimethyl-1H-imidazole 984 .7 952 .6C5H8N21,5-Dimethyl-1H-imidazole 977 .6 945 .8C5H8O trans-2-Pentenal 839 .0 807 .2C5H8O3-Methyl-2-butenal 856 .9 825 .0C5H8O3-Methyl-3-buten-2-one 843 .1 811 .3C5H8O Cyclopropyl methyl ketone 854 .9 823C5H8O Cyclopentanone 823 .7 794 .0C5H8O3,4-Dihydro-2H-pyran 865 .8 833 .4C5H8O23-Methyl-2-butenoic acid 822 .9 791 .9C5H8O2cis-2-Methyl-2-butenoic acid 822 .5 791 .5C5H8O2Cyclobutanecarboxylic acid 817 .4 786 .4C5H8O2Methyl trans-2-butenoate 851 .3 820 .4C5H8O2Methyl methacrylate 831 .4 800 .510-182 Proton AffinitiesMolecular formulaE paΔbase G°Name kJ/mol kJ/mol NotesC5H8O2Methyl cyclopropanecarboxylate 842 .1 811 .2C5H8O22,4-Pentanedione 873 .5 836 .8C5H9N2-Isocyano-2-methylpropane 870 .7 838 .3C5H9N3-(Dimethylamino)-1-propyne 940 .3 909 .5C5H9N Pentanenitrile 802 .4 771 .7C5H9N2,2-Dimethylpropanenitrile 810 .9 780 .2C5H9NO3-Ethoxypropanenitrile 807 .2 776 .5C5H9NO N,N-Dimethyl-2-propenamide 904 .3 873 .4C5H9NO N-Methyl-2-pyrrolidone 923 .5 891 .6C5H9NO2L-Proline 920 .5 886 .0C5H9NO4L-Glutamic acid 913 .0 879 .1C5H9N3Histamine 999 .8 961 .9C5H102-Methyl-2-butene 808 .8 779 .9C5H10N2O1,3-Dimethyl-2-imidazolidinone 918 .4 886 .0C5H10N2O3L-Glutamine 937 .8 900C5H10O Allyl ethyl ether 833 .7 804 .5C5H10O Pentanal 796 .6 764 .8C5H10O2-Pentanone 832 .7 800 .9C5H10O3-Pentanone 836 .8 807C5H10O3-Methyl-2-butanone 836 .3 804 .4C5H10O Tetrahydropyran 822 .8 795 .4C5H10O2-Methyltetrahydrofuran 840 .8 811 .6C5H10O2Butyl formate 806 .0 775C5H10O2Propyl acetate 836 .6 805 .6C5H10O2Isopropyl acetate 836 .6 805 .6C5H10O2Methyl butanoate 836 .4 805 .4C5H10O2Methyl isobutanoate 836 .6 805 .7C5H10O2cis-1,2-Cyclopentanediol 885 .6 853 .1C5H10S Thiacyclohexane 855 .8 826 .0C5H11N Allyldimethylamine 957 .8 926 .8C5H11N Piperidine 954 .0 921C5H11N N-Methylpyrrolidine 965 .6 934 .8C5H11NO2,2-Dimethylpropanamide 889 .0 857 .2C5H11NO2L-Valine 910 .6 876 .7C5H11NO2S L-Methionine 935 .4 901 .5C5H12N2O Tetramethylurea 930 .6 899 .6C5H12N2S Tetramethylthiourea 947 .6 916 .6C5H12O2,2-Dimethyl-1-propanol 795 .5 765 .2C5H12O Butyl methyl ether 820 .3 791 .2C5H12O Methyl tert-butyl ether 841 .6 812 .4C5H12O Ethyl isopropyl ether 842 .7 813 .5C5H12S2,2-Dimethyl-1-propanethiol 809 .5 778 .2C5H12Si Vinyltrimethylsilane 833 804 .1C5H13N Pentylamine 923 .5 889 .5C5H13N2-Methyl-2-butanamine 937 .8 903 .6C5H13N2,2-Dimethylpropylamine 928 .3 894 .0C5H13N Ethylisopropylamine 960 .0 926 .7C5H13N N,N-Dimethyl-1-propanamine 962 .8 931 .9C5H13N Diethylmethylamine 971 .0 940 .0C5H13N31,1,3,3-Tetramethylguanidine1031 .6 997 .4C5H14N2N,N,N’,N’-Tetramethylmethanediamine 952 .2 919 .8C5H14N2N,N-Dimethyl-1,3-propanediamine1025 .0 975 .3C5H14N21,5-Pentanediamine 999 .6 946 .2C6CrO6Chromium carbonyl 739 .2 714 .6C6F6Hexafluorobenzene 648 .0 624 .4C6HF5Pentafluorobenzene 690 .4 662 .7C6H2F41,2,3,4-Tetrafluorobenzene 700 .4 672 .7C6H2F41,2,3,5-Tetrafluorobenzene 747 .3 719 .6C6H2F41,2,4,5-Tetrafluorobenzene 746 .5 718 .8C6H3F31,2,3-Trifluorobenzene 724 .3 696 .6Proton Affinities 10-183C6H3F31,2,4-Trifluorobenzene 729 .5 699 .4C6H3F31,3,5-Trifluorobenzene 741 .9 715 .4C6H4Benzyne 841 808 .5C6H4F2o-Difluorobenzene 731 .2 703 .5C6H4F2m-Difluorobenzene 749 .7 722C6H4F2p-Difluorobenzene 718 .7 692 .8C6H4N22-Pyridinecarbonitrile 872 .9 841C6H4N23-Pyridinecarbonitrile 877 .0 845 .1C6H4N24-Pyridinecarbonitrile 880 .6 848 .8C6H4O2p-Benzoquinone 799 .1 769 .3C6H5Phenyl 884 851 .5C6H5Br Bromobenzene 754 .1 725 .8C6H5Cl Chlorobenzene 753 .1 724 .6C6H5F Fluorobenzene 755 .9 726 .6C6H5NO Nitrosobenzene 854 .3 823 .6C6H5NO4-Pyridinecarboxaldehyde 904 .6 872 .8C6H5NO2Nitrobenzene 800 .3 769 .5C6H5N3Azidobenzene 820 787 .5C6H5O Phenoxy 873 .2Ref . 4 C6H6Benzene 750 .4 725 .4C6H6BrN3-Bromoaniline 873 .2 841 .4C6H6ClN3-Chloroaniline 868 .1 836 .3C6H6ClN4-Chloroaniline 873 .8 842 .0C6H6ClN2-Chloro-4-methylpyridine 921 .2 889 .4C6H6ClN2-Chloro-6-methylpyridine 908 .0 876 .2C6H6ClNO2-Chloro-6-methoxypyridine 909 .9 878 .0C6H6FN3-Fluoroaniline 867 .3 835 .5C6H6FN4-Fluoroaniline 871 .5 839 .7C6H6IN3-Iodoaniline 878 .7 846 .8C6H6N Anilino 949 .8 917 .4C6H6N2O3-Pyridinecarboxamide 918 .3 886 .4C6H6N2O24-Nitroaniline 866 .0 834 .2C6H6N46-Methyl-1H-purine 939 .2 907 .3C6H6O Bis(2-propynyl) ether 783 .9 756 .5C6H6O Phenol 817 .3 786 .3C6H7N Bis(2-propynyl)amine 910 .0 876 .9C6H7N Aniline 882 .5 850 .6C6H7N2-Methylpyridine 949 .1 917 .3C6H7N3-Methylpyridine 943 .4 911 .6C6H7N4-Methylpyridine 947 .2 915 .3C6H7NO1-Methyl-2(1H)-pyridinone 925 .8 894 .8C6H7NO2-Aminophenol 898 .8 866 .9C6H7NO3-Aminophenol 898 .8 866 .9C6H7NO2-Methoxypyridine 934 .7 902 .8C6H7NO3-Methoxypyridine 942 .7 910 .9C6H7NO4-Methoxypyridine 961 .7 929 .8C6H7NO3-Methylpyridine-1-oxide 935 .2 902 .8C6H81,3-Cyclohexadiene 837 804 .5C6H81,4-Cyclohexadiene 837 808 .0C6H8N21,2-Benzenediamine 896 .5 865 .8C6H8N21,3-Benzenediamine 929 .9 899 .2C6H8N21,4-Benzenediamine 905 .9 874 .0C6H8N2O Bis(2-cyanoethyl) ether 813 .8 786 .4C6H8O2,4-Dimethylfuran 894 .7 862 .3C6H8O2,5-Dimethylfuran 865 .9 835 .2C6H8O3,4-Dimethylfuran 869 .0 838 .3C6H8O21,3-Cyclohexanedione 881 .2 849 .4C6H8O21,4-Cyclohexanedione 812 .5 782 .7C6H8O21,2-Cyclohexanedione 849 .6 818 .9C6H8O34-Methylglutaric anhydride 820Ref . 9。
Reading K&K chapter 9and start on chapter 10.Also,some of the material we’ll be discussing this week is taken from Mandl,chapter 11.Gibbs Free EnergyAs we discussed last time,the Gibbs free energy is obtained from the energy via two Legendre transformations to change the independent variables from entropy to temperature and from volume to pressure,dU (σ,V,N )=+τdσ−p dV +µdNF =U −τσH =U +pVdF (τ,V,N )=−σdτ−p dV +µdN dH (σ,p,N )=+τdσ+V dp +µdN↓↓G =F +pV G =H −τσG =U −τσ+pVdG (τ,p,N )=−σdτ+V dp +µdN .There are a couple of general points to make here.First of all,if the system has other ways of storing energy,those ways should be included in all these thermodynamic functions.For example,if the system is magnetic and is in a magnetic field,then there will have to be an integral of the magnetization (magnetic dipole moment per unit volume)times the magnetic field times the volume element to account for the magnetic energy.The second point is that if the system contains several different kinds of particles,then µdN is replaced by i µi dN i ,where the index i runs over the particle types.(We will be doing this shortly!)The above way of writing the energy,the Helmholtz free energy,F ,the enthalpy,H ,and the Gibbs free energy,G are really just shorthand for what might actually have to be included.As remarked earlier,the Gibbs free energy is particularly useful for situations in which the system is in contact with a thermal reservoir which keeps the temperature constant,dτ=0,and a pressure reservoir which keeps the pressure constant,dp =0.Then if the number of particles doesn’t change,the Gibbs free energy is an extremum dG =0,and in fact,it must be a minimum (because the entropy enters with a minus sign!).Another thing to note is that τ,p ,and µare intensive parameters while σ,V ,N ,and G itself are extensive parameters.This means that for fixed temperature and pressure,G must be proportional to the number of particles.Or,G =Nf (τ,p )where f is some function of the temperature and pressure.If we differentiate with respect to N ,we have ∂GIf we compare this with the earlier expression for dG,we see that f(τ,p)=µ(τ,p).In other words,the chemical potential of a single component system depends only on the temperature and pressure.Furthermore,G(τ,p,N)=Nµ(τ,p).What happens when there is more than one kind of particle in the system?In this case,we can show thatG(τ,p,N1,N2,...)=iN iµi,We must have for anyλ,G(τ,p,λN1,λN2,...)=λG(τ,p,N1,N2,...),as this just expresses the fact that G and the N i are extensive parameters.Now,set x i=λN i and differentiate with respect toλ,i ∂G∂λ=G(τ,p,N1,N2,...).Note that∂x i/∂λ=N i and whenλ→1,then x i→N i,and∂G/∂N i=µi,soG(τ,p,N1,N2,...)=iN iµi,but it is not necessarily true thatµi depends only onτand p.As an example,We can write down the Gibbs free energy for a classical ideal gas.We worked out the Helmholtz free energy in lecture10.For a single component ideal gas,it isF=Nτlognn Q Z int−1+pV,=NτlogN/Vτn Q Z int,where we used the ideal gas law to replace Nτwith pV and N/V with p/τ.Of course, we could also have obtained this result with our expression forµthat we worked out in lecture10!Note that,as advertised,µis a function only of p andτ.If we have a multicomponent ideal gas,the situation is slightly more complicated. Starting from the Helmholtz free energy again,we haveG=iN iτlogn in i,Q Z i,int−iN iτ+pV,=iN iτlog(N i/N)(N/V)øn i,Q Z i,int−Nτ+pV,=i N iτlogx i pand−N C b to the Gibbs free energy.The message is that energies must be measured on a common scale.We will sometimes assume the internal partition functions are calculated with the internal ground state energy set to0and explicitly add any binding energies to the chemical potentials.Other times,we will assume that all binding energies are incorporated into the internal partition functions!Chemical EquilibriumSuppose we have a chemical reaction which takes place at constant temperature and pressure.Then,we know that the Gibbs free energy is a minimum.But in addition to this condition,we also have the constraint imposed by the reaction.In particular,we can write any chemical reaction asν1A1+ν2A2+ν3A3+···+νl A l=0,where A i stands for a particular compound andνi denotes the relative amount of that compound which occurs in the reaction.For example,the formation of water from hydrogen and oxygen is typically written,2H2+O2→2H2O.This becomes2H2+O2−2H2O=0,withA1=H2,A2=O2,A3=H2O,ν1=2,ν2=1,ν3=−2.If the reaction occurs,the change in numbers of molecules is described byνi,dN i=νi dR,where dR is the number of times the reaction occurs in the direction that makes the left hand side.Then the change in the Gibbs free energy isdG=i µi dN i=iµiνi dR=iµiνidR.This must be an extremum which means that there is no change in G if the reaction or the inverse reaction occurs(dR=±1),soiµiνi=0,when a reaction occurs at constant temperature and pressure.Note 1:the expression we’ve just derived also holds if the temperature and volume are held fixed.This is most easily seen by noting that when the temperature and pressure are held fixed,the reaction proceeds until i µi νi =0at which point the system has some particular volume determined by the total amount of reactants,the pressure and temperature.If we start with the temperature fixed and some particular volume,the reaction proceeds to equilibrium at which point the system has some pressure.Now imagine that one had started with this pressure,and allowed the reaction to proceed at constant pressure.Assuming there are not multiple minima in G ,the reaction will wind up at the same place and have the same volume!Note 2:the expression we’ve just derived holds for a single chemical reaction.If there are several reactions going on but the net reaction can be reduced to a single reaction,the above holds.For example,if the reaction is catalyzed by another molecule via an intermediate step,the reaction rate might differ with and without the catalyst,but the equilibrium will be the same.Note 3:the νi are fixed.It is the chemical potentials which adjust to satisfy the equilibrium condition.Other constraints may need to be satisfied as well.For example,in the water reaction above,the equilibrium condition provides one equation for the three unknown chemical potentials.Two other conditions might be the total amount of hydrogen and the total amount of oxygen.Note 4:if there is more than one reaction,there may be several equations similar to i µi νi =0which must be satisfied at equilibrium.As an example,considerN 2+O 2↔2NO .The equilibrium condition,i µi νi ,can be writtenµN 2+µO 2=2µNO .In other words,we just substitute the appropriate chemical potentials for the chemicals in the reaction equation.If we also have2N ↔N 2,2O ↔O 2,N +O ↔NO ,then we also have the additional relations among the chemical potentials (at equilibrium),2µN =µN 2,2µO =µO 2,µN +µO =µNO .Note that there are five kinds of molecules.There must be a total amount of nitrogen and a total amount of oxygen (two conditions),and there are four conditions of chemical equilibrium.There are six conditions for five chemical potentials.However,the fourequilibrium conditions are not all independent.For example,the last one can be derived from the previous three.The Law of Mass ActionWe’ve seen that for chemical equilibrium,the chemical potentials adjust to satisfy the equilibrium condition, i µi νi =0.Among other things,the chemical potentials depend on the concentrations of the molecules.To bring this out,we’ll consider the case that all molecules participating in a reaction can be treated as an ideal classical gas.(This,of course,works for low density gases,but also for low concentration solutes.)Thenµi =τlog n ieasier to determine the constant experimentally than to calculate it from the molecular properties!Application:pHWater can undergo the reactionH2O↔H++OH−.In water at room temperature a very small fraction of the water molecules are dissociated into hydrogen and hydroxyl ions.The equilibrium concentrations satisfy[H+][OH−]=10−14mol2l−2.The notation[whatever]denotes the concentration of whatever.This is almost in the form of the law of mass action.We need to divide by the concentration of H2O to place it in the proper form.However,the concentration of water in water is about56mol/l and it doesn’t change very much,so we can treat it as a constant,and then the law of mass action takes the form of the above equation.Note that in pure water,the concentrations must be equal,so[H+]=[OH−]=10−7mol l−1.The pH of a solution is defined aspH=−log10[H+].The pH of pure water is7.If an acid,such as H Cl is dissolved in water,the increased availability of H+shifts the equilibrium to increase[H+]and decrease[OH−],but the product stays constant.When H+goes up,the pH goes down.Similarly,adding a base, such as Na OH,increases the concentration of[OH−]and increases the pH.Other Ways of Expressing the Law of Mass ActionWe have written the law of mass action in terms of the particle concentrations,n i= N i/V.The partial pressure of component i is p i=N iτ/V,or n i=p i/τ.If we substitute these forms in the law of mass action and rearrange slightly,we havei pνii=iτνiK(τ)=τνi K(τ)=Kp(τ),where the equilibrium constant is now called K p(τ),depends only on temperature,and is the product of K(τ)and the appropriate power of the temperature.We can also write the law of mass action in terms of the fractional particle concentra-tions,x i=N i/N=p i/p,introduced earlier.We simply divide each partial pressure above by p(or each concentration by the overall concentration n=N/V and we havei xνii=τ∂τp,N i,soH=G−τ∂G∂τG∂τ∆G∂τiµiνin i,Q Z i,int.We substitute into our expression for Q p and obtain,Q p=τ2∂∂τi(νi log(τn i,Q Z i.int)),=−τ2∂∂τlogi(τn i,Q Z i.int)νi,=−τ2∂increase in the equilibrium constant means the reaction goes to the left and a decrease means the reaction goes to the right.We see that if Q p is positive(we have to add heat to go from left to right,an endothermic reaction),then our equilibrium constant decreases with temperature.This means increasing the temperature moves the reaction to the right. Rule of thumb:increasing the temperature causes the reaction to go towards whatever direction it can absorb energy.We’ve just shown that increasing the temperature drives an endothermic reaction to the right.It will drive an exothermic reaction to the left.Application:the Saha EquationThis section is related to K&K,chapter9,problem2.Consider the ionization of atomic hydrogen,p++e−↔H.Ionizing hydrogen from its ground state requires an energy of13.6eV,and as the above reaction is written,it’s exothermic from left to right.If we are considering low density gases,we can treat them as classical ideal gases and apply our law of mass action:[p+][e−]n H,Q Z H,int exp(I/τ),where the partition function for the hydrogen atom is to be computed with the ground state at the zero of energy,as we’ve taken explicit account of the binding energy I=13.6eV. This(or more properly,some of the forms we will derive below)is called the Saha equation.Some of the factors in the equilibrium constant are easy to calculate and others are hard to calculate!Let’s do the easy ones.First of all,the mass of a proton and the mass of a hydrogen atom are almost the same,so the quantum concentrations of the proton and the hydrogen are almost the same and we can cancel them out.The quantum concentrationof the electron isn e,Q=m eτby neutral hydrogen throughout our galaxy and others.In any case,the energy difference between these states is small enough to be ignored in computing the internal partition function for the purposes of the Saha equation.When all is said and done,we have[p+][e−]2π¯h2 3/2e−I/τ1[H]≈m eτ[H]m eτn i =(n i+1,Q Z i+1,int)(n e,Q Z e,int)state)of the j th state of ion i+1.This state has multiplicity g i+1,j.(If there is more than one state at a given energy we say that energy is degenerate and the multiplicity is the number of such states.Sometimes the multiplicity is called the degeneracy or the statistical weight.)Similarly, i,k and g i,k are the energy and multiplicity of the k th state of ion i.The fraction of ions i+1which are in state j is given by a Boltzmann factor,n i+1,jZ i+1,int.If we substitute this expression into the Saha equation,and also substitute the quantum concentration of the electrons and the internal partition function of the electrons(2),wegetn i+1,j[e−]g i,km eτn0,0=m eτ。
热力学中熵的计算摘要:本论文主要目的是对热力学中熵的计算做一详细的说明,同时附带对熵的产生、物理意义、优缺点、以及熵的推广做一简要说明。
Abstract:The purpose of this paper is a detailed description of the calculation of thermodynamic entropy, while accompanying the generation of entropy,the promotion of the physical meaning of the advantages anddisadvantages, and entropy are briefly discussed.关键字:孤立系,封闭系,开放系,定容摩尔热容量,定压摩尔热容量,广延量,强度量。
Keywords: isolated system, closed system, open system, constant volume molar heat capacity at constant pressure molar heat capacity, extensive quantity,intensity volume名词解释:孤立系:和外界既没物质交换也没能量交换的系统。
封闭系:和外界没有物质交换但有能量交换的系统。
开放系:和外界既有物质交换也有能量交换的系统。
定容摩尔热容量:一摩尔物质在体积固定的容器中升高(或降低)一开尔文吸收(或放出)的热量,符号Cvm。
定压摩尔热容量:一摩尔物质在压强不变的容器中升高(或降低)一开尔文吸收(或放出)的热量,符号Cpm。
广延量:一类与物质质量或物质的量有关的量。
强度量: 一类与物质质量或物质的量无关的量。
一、熵的提出熵是由德国物理学家克劳修斯于1850年提出的,最早熵的提出是建立在卡诺热机循环理论基础上,卡诺给出了热机工作效率的计算公式,并且还给出了卡诺定理,即工作在两个确定温度之间的所有热机,可逆热机的效率最高。
化学常见术语英文说法BET 公式BET formula DLVO 理论DLVO theory HLB 法hydrophile-lipophile balance method pVT 性质pVT propertyZ 电势zeta pote ntial阿伏加德罗常数Avogadro'number阿伏加德罗定律Avogadro law阿累尼乌斯电离理论Arrhenius ionization theory 阿累尼乌斯方程Arrhenius equation 阿累尼乌斯活化能Arrhenius activation energy 阿马格定律Amagat law 艾林方程Erying equation爱因斯坦光化当量定律Einstein 's law of photochemical equivalence 爱因斯坦-斯托克斯方程Einstein-Stokes equation安托万常数Antoine constant安托万方程Antoine equation盎萨格电导理论Onsager's theory of condu ctance半电池half cell半衰期half time period饱和液体saturated liquids饱和蒸气saturated vapor饱和吸附量saturated extent of adsorption饱和蒸气压saturated vapor pressure爆炸界限explosion limits比表面功specific surface work比表面吉布斯函数specific surface Gibbs function 比浓粘度reduced viscosity 标准电动势standard electromotive force 标准电极电势standard electrode potential 标准摩尔反应焓standard molar reaction enthalpy标准摩尔反应吉布斯函数standard Gibbs function of molar reaction 标准摩尔反应熵standard molar reaction entropy标准摩尔焓函数standard molar enthalpy function标准摩尔吉布斯自由能函数standard molar Gibbs free energy function 标准摩尔燃烧焓standard molar combustion enthalpy标准摩尔熵standard molar entropy标准摩尔生成焓standard molar formation enthalpy标准摩尔生成吉布斯函数standard molar formation Gibbs function 标准平衡常数standard equilibrium constant标准氢电极standard hydrogen electrode标准态standard state 标准熵standard entropy 标准压力standard pressure 标准状况standard condition 表观活化能apparent activation energy 表观摩尔质量apparent molecular weight 表观迁移数apparent transference number 表面surfaces表面过程控制surface process control表面活性剂surfactants 表面吸附量surface excess表面张力surface tension表面质量作用定律surface mass action law波义尔定律波义尔温度Boyle lawBoyle temperature波义尔点Boyle point玻尔兹曼常数玻尔兹曼分布玻尔兹曼公式Boltzmann constant Boltzmann distribution Boltzmann formula玻尔兹曼熵定理Boltzmann entropy theorem玻色-爱因斯坦统计Bose-Einstein statistics 泊Poise不可逆过程irreversible process 不可逆过程热力学thermodynamics of irreversible processes不可逆相变化irreversible phase change 布朗运动brownian movement 查理定律Charle ' s law 产率yield敞开系统open system 超电势over potential 沉降sedimentation沉降电势sedimentation potential 沉降平衡sedimentation equilibrium 触变thixotropy粗分散系统thick disperse system催化剂catalyst单分子层吸附理论mono molecule layer adsorption单分子反应unimolecular reaction单链反应straight chain reactions 弹式量热计bomb calorimeter 道尔顿定律Dalton law道尔顿分压定律Dalton partial pressure law 德拜和法尔肯哈根效应Debye and Falkenhagen effect德拜立方公式Debye cubic formula 德拜-休克尔极限公式Debye- Huckel 's limiting equation 等焓过程isenthalpic process 等焓线isenthalpic line 等几率定理theorem of equal probability 等温等容位Helmholtz free energy 等温等压位Gibbs free energy 等温方程equation at constant temperature 低共熔点eutectic point 低共熔混合物eutectic mixture低会溶点lower consolute point 低熔冰盐合晶cryohydric 第二类永动机perpetual machine of the second kind第三定律熵third-law entropy 第一类永动机perpetual machine of the first kind缔合化学吸附association chemical adsorption电池常数cell constant 电池电动势electromotive force of cells 电池反应cell reaction 电导conductance 电导率conductivity 电动势的温度系数temperature coefficient of electromotive force电动电势zeta potential 电功electric work 电化学electrochemistry 电化学极化electrochemical polarization 电极电势electrode potential 电极反应reactions on the electrode 电极种类type of electrodes 电解池electrolytic cell 电量计coulometer 电流效率current efficiency 电迁移electro migration 电迁移率electromobility 电渗electroosmosis 电渗析electrodialysis 电泳electrophoresis 丁达尔效应Dyndall effect 定容摩尔热容molar heat capacity under constant volume定容温度计Constant voIume thermometer 定压摩尔热容molar heat capacity under constant pressure定压温度计constant pressure thermometer定域子系统localized particle system动力学方程kinetic equations 动力学控制kinetics control 独立子系统independent particle system 对比摩尔体积reduced mole volume对比体积reduced volume 对比温度reduced temperature 对比压力reduced pressure 对称数symmetry number 对行反应reversible reactions 对应状态原理principle of corresponding state 多方过程polytropic process 多分子层吸附理论adsorption theory of multi-molecular layers 二级反应second order reaction 二级相变second order phase change 法拉第常数faraday constant 法拉第定律Faraday ' s law反电动势back E.M.F. 反渗透reverse osmosis 反应分子数molecularity 反应级数reaction orders 反应进度extent of reaction 反应热heat of reaction 反应速率rate of reaction 反应速率常数c onstant of reaction rate范德华常数van der Waals constant范德华方程van der Waals equation范德华力van der Waals force 范德华气体van der Waals gases范特霍夫方程van' t Hoff equation范特霍夫规则van' t Hoff rule范特霍夫渗透压公式van' t Hoff equation of osmotic pressure非基元反应non-elementary reactions 非体积功non-volume work 非依时计量学反应time independent stoichiometric reactions菲克扩散第一定律Fick ' s first law of diffusion沸点boiling point 沸点升高elevation of boiling point费米-狄拉克统计Fermi-Dirac statistics 分布distribution 分布数distribution numbers分解电压decomposition voltage分配定律distribution law分散系统disperse system分散相dispersion phase分体积partial volume分体积定律partial volume law 分压partial pressure 分压定律partial pressure law 分子反应力学mechanics of molecular reactions 分子间力intermolecular force分子蒸馏molecular distillation 封闭系统closed system附加压力excess pressure 弗罗因德利希吸附经验式Freundlich empirical formula of adsorption 负极negative pole 负吸附negative adsorption 复合反应composite reaction盖吕萨克定律Gay-Lussac law 盖斯定律Hess law甘汞电极calomel electrode感胶离子序lyotropic series 杠杆规则lever rule高分子溶液macromolecular solution 高会溶点upper consolute point隔离法the isolation method 格罗塞斯-德雷珀定律Grotthus- Draoer 's law 隔离系统isolated system根均方速率root-mean-square speed 功work 功函work content 共轭溶液conjugate solution共沸温度azeotropic temperature构型熵configurational entropy 孤立系统isolated system固溶胶solid sol固态混合物solid solution 固相线s olid phase line光反应photoreaction光化学第二定律the second law of actinochemistry 光化学第一定律the first law of actinochemistry 光敏反应photosensitized reactions 光谱熵spectrum entropy 广度性质extensive property 广延量extensive quantity 广延性质extensive property 规定熵stipulated entropy 过饱和溶液oversaturated solution过饱和蒸气oversaturated vapor过程process 过渡状态理论transition state theory过冷水super-cooled water 过冷液体overcooled liquid 过热液体overheated liquid 亥姆霍兹函数Helmholtz function 亥姆霍兹函数判据Helmholtz function criterion亥姆霍兹自由能Helmholtz free energy亥氏函数Helmholtz function 焓enthalpy 亨利常数Henry constant 亨利定律Henry law 恒沸混合物constant boiling mixture 恒容摩尔热容molar heat capacity at constant volume恒容热heat at constant volume 恒外压constant external pressure 恒压摩尔热容molar heat capacity at constant pressure恒压热heat at constant pressure 化学动力学chemical kinetics 化学反应计量式stoichiometric equation of chemical reaction化学反应计量系数stoichiometric coefficient of chemical reaction化学反应进度extent of chemical reaction化学亲合势chemical affinity 化学热力学chemical thermodynamics 化学势chemical potential 化学势判据chemical potential criterion化学吸附chemisorptions 环境environment 环境熵变entropy change in environment 挥发度volatility 混合熵entropy of mixing混合物 mixture活度 activity活化控制 activation control 活化络合物理论 activated complex theory活化能 activation energy霍根 -华森图Hougen-Watson Chart 基态能级 energy level at ground state基希霍夫公式 Kirchhoff formula基元反应 elementary reactions 积分溶解热 integration heat of dissolution吉布斯-杜亥姆方程 Gibbs-Duhem equation 吉布斯-亥姆霍兹方程 Gibbs-Helmhotz equation 吉布斯函数 Gibbs function 吉布斯函数判据 Gibbs function criterion 吉布斯吸附公式 Gibbs adsorption formula 吉布斯自由能 Gibbs free energy吉氏函数 Gibbs function 极化电极电势 polarization potential of electrode 极化曲线 polarization curves 极化作用 polarization 极限摩尔电导率 limiting molar conductivity几率因子 steric factor 计量式 stoichiometric equation 计量系数 stoichiometric coefficient 价数规则 rule of valenceJoule-Thomson experimentJoule-Thomson coefficient Joule-Thomson effect 焦耳定律 Joule's law 接触电势 contact potential 接触角 contact angle节流过程 throttling process节流膨胀 throttling expansion 节流膨胀系数 coefficient of throttling expansion结线 tie line结晶热 heat of crystallization解离化学吸附 dissociation chemical adsorption 界面 interfaces界面张力 surface tension浸湿 immersion wetting浸湿功 immersion wetting work 精馏 rectify 聚(合)电解质 polyelectrolyte 聚沉 coagulation 聚沉值 coagulation value 绝对反应速率理论 absolute reaction rate theory绝对熵 absolute entropy 绝对温标 absolute temperature scale 绝热过程 adiabatic process 绝热量热计 adiabatic calorimeter 绝热指数 adiabatic index卡诺定理Carnot theorem 卡诺循环Carnot cycle 开尔文公式 Kelvin formula柯诺瓦洛夫-吉布斯定律 Konovalov-Gibbs law 科尔劳施离子独立运动定律Kohlrausch ' s Law of Independent Migration of Ions 可能的电解质 potential electrolyte 可逆电池 reversible cell 可逆过程 reversible process 可逆过程方程 reversible process equation 可逆体积功 reversible volume work 可逆相变 reversible phase change 克拉佩龙方程Clapeyron equation 克劳修斯不等式 Clausius inequality焦耳 Joule 焦耳 -汤姆生实验 焦耳 -汤姆生系数 焦耳 -汤姆生效应克劳修斯-克拉佩龙方程Clausius-Clapeyron equation控制步骤control step 库仑计coulometer 扩散控制diffusion controlled 拉普拉斯方程Laplace ' s equation拉乌尔定律Raoult law 兰格缪尔-欣谢尔伍德机理Langmuir-Hinshelwood mechanism兰格缪尔吸附等温式Langmuir adsorption isotherm formula雷利公式Rayleigh equation 冷冻系数coefficient of refrigeration 冷却曲线cooling curve 离解热heat of dissociation 离解压力dissociation pressure 离域子系统non-localized particle systems 离子的标准摩尔生成焓standard molar formation of ion 离子的电迁移率mobility of ions 离子的迁移数transport number of ions离子独立运动定律law of the independent migration of ions离子氛ionic atmosphere 离子强度ionic strength 理想混合物perfect mixture理想气体ideal gas 理想气体的绝热指数adiabatic index of ideal gases理想气体的微观模型micro-model of ideal gas理想气体反应的等温方程isothermal equation of ideal gaseous reactions理想气体绝热可逆过程方程adiabatic reversible process equation of ideal gase理想气体状态方程state equation of ideal gas理想稀溶液ideal dilute solution 理想液态混合物perfect liquid mixture粒子particles 粒子的配分函数partition function of particles 连串反应consecutive reactions 链的传递物chain carrier链反应chain reactions 量热熵calorimetric entropy 量子统计quantum statistics 量子效率quantum yield 临界参数critical parameter 临界常数critical constant 临界点critical point 临界胶束浓度critical micelle concentration 临界摩尔体积critical molar volume 临界温度critical temperature临界压力critical pressure临界状态critical state零级反应zero order reaction 流动电势streaming potential流动功flow work 笼罩效应cage effect路易斯-兰德尔逸度规则Lewis-Randall rule of fugacity 露点dew point 露点线dew point line 麦克斯韦关系式Maxwell relations 麦克斯韦速率分布Maxwell distribution of speeds 麦克斯韦能量分布MaxwelIdistribution of energy 毛细管凝结condensation in capillary 毛细现象capillary phenomena 米凯利斯常数Michaelis constant摩尔电导率molar conductivity 摩尔反应焓molar reaction enthalpy 摩尔混合熵mole entropy of mixing摩尔气体常数molar gas constant 摩尔热容molar heat capacity 摩尔溶解焓mole dissolution enthalpy 摩尔稀释焓mole dilution enthalpy 内扩散控制internal diffusions control 内能internal energy 内压力internal pressure 能级energy levels 能级分布energy level distribution 能量均分原理principle of the equipartition of energy 能斯特方程Nernst equation 能斯特热定理Nernst heat theorem 凝固点freezing point 凝固点降低lowering of freezing point 凝固点曲线freezing point curve 凝胶gelatin 凝聚态condensed state 凝聚相condensed phase 浓差超电势concentration over-potential 浓差极化concentration polarization 浓差电池concentration cells 帕斯卡pascal 泡点bubble point 泡点线bubble point line 配分函数partition function 配分函数的析因子性质p roperty that partition function to be expressed as a productof the separate partition functions for each kind of state 碰撞截面collision cross section 碰撞数the number of collisions 偏摩尔量partial mole quantities 平衡常数(理想气体反应)equilibrium constants for reactions of ideal gases平动配分函数partition function of translation 平衡分布equilibrium distribution 平衡态equilibrium state 平衡态近似法equilibrium state approximation 平衡状态图equilibrium state diagram平均活度mean activity 平均活度系统mean activity coefficient平均摩尔热容mean molar heat capacity 平均质量摩尔浓度mean mass molarity 平均自由程mean free path 平行反应parallel reactions 铺展spreading普遍化范德华方程universal van der Waals equation 其它功the other work 气化热heat of vaporization 气体常数gas constant气体分子运动论kinetic theory of gases 气体分子运动论的基本方程foundamental equation of kinetic theory of gases 气溶胶aerosol 气相线vapor line 迁移数transport number 潜热latent heat 强度量intensive quantity 强度性质intensive property亲液溶胶hydrophilic sol氢电极hydrogen electrodes 区域熔化zone melting 热heat热爆炸heat explosion热泵heat pump热功当量mechanical equivalent of heat 热函heat content热化学thermochemistry热化学方程thermochemical equation 热机heat engine热机效率efficiency of heat engine热力学thermodynamics热力学第二定律热力学第三定律热力学第一定律热力学基本方程the second law of thermodynamics the third law of thermodynamics the first law of thermodynamics fundamental equation of thermodynamics热力学几率thermodynamic probability热力学能thermodynamic energy热力学特性函数characteristic thermodynamic function热力学温标thermodynamic scale of temperature 热力学温度thermodynamic temperature 热熵thermal entropy热效应heat effect熔点曲线melting point curve熔化热heat of fusion溶胶colloidal sol溶解焓dissolution enthalpy溶液solution溶胀swelling润湿wetting润湿角wetting angle萨克尔-泰特洛德方程Sackur-Tetrode equation三相点triple point三相平衡线triple-phase line熵entropy熵判据entropy criterion熵增原理principle of entropy increase渗透压osmotic pressure渗析法dialytic process生成反应formation reaction升华热heat of sublimation实际气体real gas舒尔采-哈迪规则Schulze-Hardy rule松驰力relaxation force松驰时间time of relaxation速度常数reaction rate constant速率方程rate equations速率控制步骤rate determining step塔费尔公式Tafel equation态-态反应state-state reactions唐南平衡Donnan equilibrium淌度mobility特鲁顿规则Trouton rule特性粘度intrinsic viscosity体积功volume work统计权重statistical weight统计热力学statistic thermodynamics统计熵statistic entropy途径path途径函数path function外扩散控制external diffusion control完美晶体perfect crystalline完全气体perfect gas微观状态microstate微态microstate 韦斯顿标准电池Weston standard battery维恩效应Wien effect 维里方程virial equation 维里系数virial coefficient 稳流过程steady flow process 稳态近似法stationary state approximation 无热溶液athermal solution 无限稀溶液solutions in the limit of extreme dilution物理化学Physical Chemistry 物理吸附p hysisorptions吸附adsorption 吸附等量线adsorption isostere吸附等温线adsorption isotherm吸附等压线adsorption isobar吸附剂adsorbent 吸附量extent of adsorption 吸附热heat of adsorption 吸附质adsorbate 析出电势evolution or deposition potential 析因子性质property that partition function to be expressed as a product of the separate partition functions for each kind of state 稀溶液的依数性colligative properties of dilute solutions稀释焓dilution enthalpy系统system 系统点system point 系统的环境environment of system 相phase 相变phase change 相变焓enthalpy of phase change 相变化phase change 相变热heat of phase change 相点phase point 相对挥发度relative volatility 相对粘度relative viscosity 相律phase rule 相平衡热容heat capacity in phase equilibrium 相图phase diagram 相倚子系统system of dependent particles 悬浮液suspension 循环过程cyclic process压力商pressure quotient 压缩因子compressibility factor 压缩因子图diagram of compressibility factor 亚稳状态metastable state 盐桥salt bridge 盐析salting out 阳极anode 杨氏方程Young' s equation 液体接界电势l iquid junction potential液相线liquid phase lines 一级反应first order reaction 一级相变first order phase change 依时计量学反应time dependent stoichiometric reactions 逸度fugacity 逸度系数coefficient of fugacity 阴极cathode 荧光fluorescence 永动机perpetual motion machine 永久气体Permanent gas 有效能available energy 原电池primary cell 原盐效应salt effect 增比粘度specific viscosity 憎液溶胶lyophobic sol 沾湿adhesional wetting 沾湿功the work of adhesional wetting 真溶液true solution 真实电解质real electrolyte 真实气体real gas 真实迁移数true transference number 振动配分函数partition function of vibration 振动特征温度characteristic temperature of vibration 蒸气压下降depression of vapor pressure正常沸点normal point 正吸附positive adsorption 支链反应branched chain reactions 直链反应straight chain reactions 指前因子pre-exponential factor 质量作用定律mass action law 制冷系数coefficient of refrigeration 中和热heat of neutralization轴功shaft work转动配分函数partition function of rotation 转动特征温度characteristic temperature of vibration 转化率convert ratio 转化温度conversion temperature 状态state 状态方程state equation状态分布state distribution状态函数state function准静态过程quasi-static process 准一级反应pseudo first order reaction 自动催化作用auto-catalysis 自由度degree of freedom 自由度数number of degree of freedom 自由焓free enthalpy 自由能free energy 自由膨胀free expansion 组分数component number 最低恒沸点lower azeotropic point最高恒沸点upper azeotropic point 最佳反应温度optimal reaction temperature 最可几分布mostprobable distribution 最可几速率most propable speed。
物理学英语专业词汇表BET公式 BET formulaDLVO理论DLVO theoryHLB法 hydrophile-lipophile balance methodpVT性质pVT propertyζ电势zeta potential阿伏加德罗常数Avogadro’number阿伏加德罗定律Avogadro law阿累尼乌斯电离理论 Arrhenius ionization theory阿累尼乌斯方程 Arrhenius equation阿累尼乌斯活化能Arrhenius activation energy阿马格定律Amagat law艾林方程Erying equation爱因斯坦光化当量定律Einstein ’s law of photochemical equivalence 爱因斯坦-斯托克斯方程Einstein-Stokes equation安托万常数Antoine constant安托万方程Antoine equation盎萨格电导理论 Onsager’s theory of conductance半电池 half cell半衰期 half time period饱和液体saturated liquids饱和蒸气saturated vapor饱和吸附量 saturated extent of adsorption饱和蒸气压saturated vapor pressure爆炸界线explosion limits比表面功specific surface work比表面吉布斯函数 specific surface Gibbs function比浓粘度reduced viscosity标准电动势standard electromotive force标准电极电势standard electrode potential标准摩尔反响焓standard molar reaction enthalpy标准摩尔反响吉布斯函数 standard Gibbs function of molar reaction标准摩尔反响熵 standard molar reaction entropy标准摩尔焓函数standard molar enthalpy function标准摩尔吉布斯自由能函数 standard molar Gibbs free energy function标准摩尔焚烧焓 standard molar combustion enthalpy标准摩尔熵standard molar entropy标准摩尔生成焓standard molar formation enthalpy标准摩尔生成吉布斯函数 standard molar formation Gibbs function标准均衡常数 standard equilibrium constant标准氢电极standard hydrogen electrode标准态standard state标准熵standard entropy标准压力standard pressure标准情况 standard condition表观活化能apparent activation energy表观摩尔质量 apparent molecular weight表观迁徙数apparent transference number表面surfaces表面过程控制surface process control表面活性剂surfactants表面吸附量surface excess表面张力surface tension表面质量作用定律surface mass action law波义尔定律Boyle law波义尔温度Boyle temperature波义尔点 Boyle point第 1 页玻尔兹曼常数Boltzmann constant玻尔兹曼散布Boltzmann distribution玻尔兹曼公式Boltzmann formula玻尔兹曼熵定理Boltzmann entropy theorem玻色-爱因斯坦统计Bose-Einstein statistics泊 Poise不行逆过程irreversible process不行逆过程热力学 thermodynamics of irreversible processes不行逆相变化 irreversible phase change布朗运动brownian movement查理定律 Charle ’s law产率yieldopen system敞开系统超电势over potential沉降sedimentation沉降电势sedimentation potential沉降均衡sedimentation equilibrium触变thixotropy粗分别系统thick disperse system催化剂catalyst单分子层吸附理论 mono molecule layer adsorption单分子反响unimolecular reaction单链反响straight chain reactions弹式量热计bomb calorimeter道尔顿定律Dalton law道尔顿分压定律 Dalton partial pressure law德拜和法尔肯哈根效应 Debye and Falkenhagen effect德拜立方公式 Debye cubic formula德拜-休克尔极限公式 Debye-Huckel’s limiting equation等焓过程 isenthalpic process等焓线isenthalpic line等几率定理theorem of equal probability等温等容位Helmholtz free energy等温等压位Gibbs free energy等温方程equation at constant temperature低共熔点eutectic point低共熔混淆物eutectic mixture低会溶点lower consolute point低熔冰盐合晶cryohydric第二类永动机 perpetual machine of the second kind第三定律熵 third-law entropy第一类永动机perpetual machine of the first kind缔合化学吸附association chemical adsorption电池常数cell constant电池电动势electromotive force of cells电池反响cell reaction电导conductance电导率conductivity电动势的温度系数temperature coefficient of electromotive force 电动电势zeta potential电功electric work电化学electrochemistry电化学极化electrochemical polarization电极电势electrode potential电极反响reactions on the electrode电极种类type of electrodes第 2 页电解池electrolytic cell电量计coulometer电流效率current efficiency电迁徙electro migration电迁徙率electromobility电渗electroosmosis电渗析electrodialysis电泳electrophoresis丁达尔效应Dyndall effect定容摩尔热容 molar heat capacity under constant volume定容温度计 Constant voIume thermometer定压摩尔热容 molar heat capacity under constant pressure定压温度计 constant pressure thermometer定域子系统localized particle system动力学方程kinetic equations动力学控制kinetics control独立子系统independent particle system对照摩尔体积reduced mole volume对照体积 reduced volume对照温度reduced temperature对照压力reduced pressure对称数symmetry number对行反响reversible reactions对应状态原理principle of corresponding state多方过程polytropic process多分子层吸附理论 adsorption theory of multi-molecular layers 二级反响 second order reaction二级相变second order phase change法拉第常数faraday constant法拉第定律Faraday’s law反电动势back E.M.F.反浸透reverse osmosis反响分子数molecularity反响级数reaction orders反响进度extent of reaction反响热heat of reaction反响速率rate of reaction反响速率常数constant of reaction rate范德华常数van der Waals constant范德华方程van der Waals equation范德华力van der Waals force范德华气体van der Waals gases范特霍夫方程van ’t Hoff equation范特霍夫规则van ’t Hoff rule范特霍夫浸透压公式 van ’t Hoff equation of osmotic pressure 非基元反响 non-elementary reactions非体积功non-volume work非依时计量学反响 time independent stoichiometric reactions 菲克扩散第必定律 Fick ’s first law of diffusion沸点boiling point沸点高升elevation of boiling point费米-狄拉克统计Fermi-Dirac statistics散布distribution散布数distribution numbers分解电压decomposition voltage分派定律distribution law第 3 页物理学英语专业词汇表分别系统disperse system分别相dispersion phase分体积partial volume分体积定律partial volume law分压partial pressure分压定律partial pressure law分子反响力学mechanics of molecular reactions分子间力intermolecular force分子蒸馏molecular distillation关闭系统closed system附带压力 excess pressure弗罗因德利希吸附经验式Freundlich empirical formula of adsorption 负极negative pole负吸附negative adsorption复合反响 composite reaction盖·吕萨克定律 Gay-Lussac law盖斯定律Hess law甘汞电极calomel electrode感胶离子序lyotropic series杠杆规则lever rule高分子溶液macromolecular solution高会溶点upper consolute point隔绝法the isolation method格罗塞斯-德雷珀定律Grotthus-Draoer ’s law隔绝系统isolated system根均方速率 root-mean-square speed功 work功函work content共轭溶液conjugate solution共沸温度azeotropic temperature构型熵configurational entropy孤立系统isolated system固溶胶solid sol固态混淆物solid solution固相线solid phase line光反响photoreaction光化学第二定律 the second law of actinochemistry光化学第必定律 the first law of actinochemistry 光敏反响 photosensitized reactions光谱熵spectrum entropy广度性质extensive property广延量extensive quantity广延性质extensive property规定熵stipulated entropy过饱和溶液oversaturated solution过饱和蒸气oversaturated vapor过程process过渡状态理论transition state theory过冷水super-cooled water过冷液体overcooled liquid过热液体overheated liquid亥姆霍兹函数Helmholtz function亥姆霍兹函数判据Helmholtz function criterion亥姆霍兹自由能Helmholtz free energy亥氏函数Helmholtz function焓 enthalpy第 4 页物理学英语专业词汇表亨利常数Henry constant亨利定律Henry law恒沸混淆物constant boiling mixture恒容摩尔热容 molar heat capacity at constant volume恒容热 heat at constant volume恒外压constant external pressure恒压摩尔热容 molar heat capacity at constant pressure恒压热 heat at constant pressure 化学动力学 chemicalkinetics化学反响计量式stoichiometric equation of chemical reaction 化学反响计量系数 stoichiometric coefficient of chemical reaction 化学反响进度 extent of chemical reaction 化学亲合势 chemical affinity化学热力学chemical thermodynamics化学势chemical potential化学势判据 chemical potential criterion化学吸附chemisorptions环境environment环境熵变 entropy change in environment挥发度 volatility混淆熵entropy of mixing混淆物mixture活度activity活化控制activation control活化络合物理论 activated complex theory活化能 activation energy霍根- 华森图 Hougen-Watson Chart基态能级 energy level at ground state基希霍夫公式 Kirchhoff formula基元反响 elementary reactions积分溶解热 integration heat of dissolution吉布斯-杜亥姆方程Gibbs-Duhem equation吉布斯-亥姆霍兹方程Gibbs-Helmhotz equation吉布斯函数 Gibbs function吉布斯函数判据 Gibbs function criterion吉布斯吸附公式 Gibbs adsorption formula吉布斯自由能 Gibbs free energy吉氏函数Gibbs function极化电极电势 polarization potential of electrode极化曲线polarization curves极化作用polarization极限摩尔电导率 limiting molar conductivity几率因子steric factor计量式stoichiometric equation计量系数stoichiometric coefficient价数规则rule of valence简并度degeneracy键焓 bond enthalpy胶冻broth jelly胶核colloidal nucleus胶凝作用demulsification胶束 micelle胶体colloid胶体分别系统 dispersion system of colloid胶体化学collochemistry胶体粒子colloidal particles第 5 页micelle 物理学英语专业词汇表胶团焦耳 JouleJoule-Thomson experiment 焦耳- 汤姆生实验 焦耳- 汤姆生系数 Joule-Thomson coefficient焦耳- 汤姆奏效应 Joule-Thomson effect焦耳定律 Joule`s law接触电势 contact potential接触角 contact angle节流过程 throttling process节流膨胀 throttling expansion节流膨胀系数 coefficient of throttling expansion结线 tie line结晶热 heat of crystallization解离化学吸附 dissociation chemical adsorption界面 interfaces界面张力 surface tension浸润 immersion wetting浸润功 immersion wetting work精馏 rectify 聚(合)电解质 polyelectrolyte聚沉 coagulation聚沉值 coagulation value 绝对反响速率理论 absolute reaction rate theory绝对熵 absolute entropy绝对温标 absolute temperature scale绝热过程 adiabatic process绝热量热计 adiabatic calorimeter绝热指数 adiabatic index卡诺定理 Carnot theorem卡诺循环 Carnot cycle开尔文公式 Kelvin formula柯诺瓦洛夫-吉布斯定律 Konovalov-Gibbs law科尔劳施离子独立运动定律 Kohlrausch ’s Law of Independent Migration of Ions 可能的电解质 potential electrolyte可逆电池 reversible cell可逆过程 reversible process可逆过程方程 reversible process equation可逆体积功 reversible volume work可逆相变 reversible phase change克拉佩龙方程 Clapeyron equation克劳修斯不等式 Clausius inequality克劳修斯-克拉佩龙方程 Clausius-Clapeyron equation控制步骤 control step库仑计 coulometer扩散控制 diffusion controlled拉普拉斯方程 Laplace ’s equation拉乌尔定律 Raoult law 兰格缪尔-欣谢尔伍德机理 Langmuir-Hinshelwood mechanism兰格缪尔吸附等温式 Langmuir adsorption isotherm formula 雷利公式 Rayleigh equation冷冻系数 coefficient of refrigeration冷却曲线 cooling curve离解热 heat of dissociation离解压力 dissociation pressure离域子系统 non-localized particle systems 标准摩尔生成焓 standard molar formation of ion第 6 页物理学英语专业词汇表离子的电迁徙率mobility of ions离子的迁徙数transport number of ions离子独立运动定律law of the independent migration of ions离子氛ionic atmosphere离子强度ionic strength理想混淆物perfect mixture理想气体ideal gas接触电势contact potential接触角contact angle节流过程throttling process节流膨胀throttling expansion节流膨胀系数coefficient of throttling expansion结线tie line结晶热heat of crystallization解离化学吸附dissociation chemical adsorption界面interfaces界面张力surface tension浸润immersion wetting浸润功immersion wetting work精馏rectify聚(合)电解质polyelectrolyte聚沉coagulation聚沉值coagulation value绝对反响速率理论absolute reaction rate theory绝对熵absolute entropy绝对温标absolute temperature scale绝热过程adiabatic process绝热量热计adiabatic calorimeter绝热指数adiabatic index卡诺定理Carnot theorem卡诺循环Carnot cycle开尔文公式Kelvin formula柯诺瓦洛夫-吉布斯定律Konovalov-Gibbs law科尔劳施离子独立运动定律 Kohlrausch ’s Law of Independent Migration of Ions 可能的电解质 potential electrolyte可逆电池reversible cell可逆过程 reversible process可逆过程方程reversible process equation可逆体积功reversible volume work可逆相变reversible phase change克拉佩龙方程Clapeyron equation克劳修斯不等式Clausius inequality克劳修斯-克拉佩龙方程Clausius-Clapeyron equation控制步骤control step库仑计coulometer扩散控制diffusion controlled拉普拉斯方程Laplace ’s equation拉乌尔定律Raoult law兰格缪尔-欣谢尔伍德机理 Langmuir-Hinshelwood mechanism兰格缪尔吸附等温式 Langmuir adsorption isotherm formula 雷利公式 Rayleigh equation冷冻系数coefficient of refrigeration冷却曲线cooling curve离解热heat of dissociation离解压力dissociation pressure离域子系统non-localized particle systems第 7 页离子的标准摩尔生成焓 standard molar formation of ion离子的电迁徙率 mobility of ions离子的迁徙数transport number of ions离子独立运动定律law of the independent migration of ions离子氛ionic atmosphere离子强度ionic strength理想混淆物perfect mixture理想气体ideal gas理想气体的绝热指数adiabatic index of ideal gases理想气体的微观模型micro-model of ideal gas理想气体反响的等温方程isothermal equation of ideal gaseous reactions理想气体绝热可逆过程方程 adiabatic reversible process equation of ideal gases 理想气体状态方程 state equation of ideal gas理想稀溶液 ideal dilute solution理想液态混淆物perfect liquid mixture粒子 particlespartition function of particles粒子的配分函数连串反响 consecutive reactions链的传达物 chain carrier链反响chain reactions量热熵calorimetric entropy量子统计quantum statistics量子效率quantum yield临界参数critical parameter临界常数 critical constant临界点critical point临界胶束浓度critical micelle concentration临界摩尔体积critical molar volume临界温度critical temperature临界压力critical pressure临界状态critical state零级反响zero order reaction流动电势streaming potential流动功flow work笼盖效应cage effect路易斯-兰德尔逸度规则 Lewis-Randall rule of fugacity露点 dew point露点线dew point line麦克斯韦关系式Maxwell relations麦克斯韦速率散布Maxwell distribution of speeds麦克斯韦能量散布 MaxwelIdistribution of energy毛细管凝结condensation in capillary毛细现象capillaryphenomena米凯利斯常数 Michaelis constant摩尔电导率molar conductivity摩尔反响焓molar reaction enthalpy摩尔混淆熵 mole entropy of mixing摩尔气体常数 molar gas constant摩尔热容molar heat capacity摩尔溶解焓mole dissolution enthalpy摩尔稀释焓mole dilution enthalpy内扩散控制internal diffusions control内能internal energy内压力internal pressure能级energy levels能级散布energy level distribution第 8 页能量均分原理 principle of the equipartition of energy能斯特方程 Nernst equation能斯特热定理Nernst heat theorem凝结点freezing point凝结点降低lowering of freezing point凝结点曲线freezing point curve凝胶gelatin凝集态condensed state凝集相condensed phase浓差超电势concentration over-potential浓差极化concentration polarization浓差电池concentration cells帕斯卡pascal泡点bubble point泡点线bubble point line配分函数partition function配分函数的析因子性质 property that partition function to be expressed as a product of the separate partition functions for each kind of state碰撞截面collision cross section碰撞数the number of collisions偏摩尔量partial mole quantities均衡常数(理想气体反响) equilibrium constants for reactions of ideal gases 平动配分函数 partition function of translation均衡散布equilibrium distribution均衡态equilibrium state均衡态近似法equilibrium state approximation均衡状态图equilibrium state diagram均匀活度mean activity均匀活度系统mean activity coefficient均匀摩尔热容mean molar heat capacity均匀质量摩尔浓度 mean mass molarity均匀自由程mean free path平行反响parallel reactions破乳demulsification铺展spreading广泛化范德华方程 universal van der Waals equation其余功 the other work气化热heat of vaporization气溶胶aerosol气体常数gas constant气体分子运动论kinetic theory of gases气体分子运动论的基本方程 foundamental equation of kinetic theory of gases 气溶胶 aerosol气相线vapor line迁徙数transport number潜热latent heat强胸怀intensive quantity强度性质intensive property亲液溶胶hydrophilic sol氢电极hydrogen electrodes地区融化zone melting热 heat热爆炸heat explosion热泵heat pump热功当量mechanical equivalent of heat热函heat content第 9 页物理学英语专业词汇表热化学thermochemistry热化学方程thermochemical equation热机heat engine热机效率efficiency of heat engine热力学thermodynamics热力学第二定律 the second law of thermodynamics热力学第三定律 the third law of thermodynamics 热力学第必定律 the first law of thermodynamics热力学基本方程 fundamental equation of thermodynamics 热力学几率 thermodynamic probability热力学能thermodynamic energy热力学特征函数 characteristic thermodynamic function热力学温标 thermodynamic scale of temperature热力学温度thermodynamic temperature热熵thermal entropy热效应heat effect熔点曲线melting point curve融化热heat of fusion溶胶colloidal sol溶解焓dissolution enthalpy溶液solution溶胀swelling乳化剂emulsifier乳状液emulsion湿润wetting湿润角wetting angle萨克尔-泰特洛德方程Sackur-Tetrode equation三相点triple point三相均衡线triple-phase line熵 entropy熵判据entropy criterion熵增原理principle of entropy increase浸透压osmotic pressure渗析法dialytic process生成反响formation reaction升华热heat of sublimation实质气体 real gas舒尔采-哈迪规则Schulze-Hardy rule松驰力relaxation force松驰时间time of relaxation速度常数reaction rate constant速率方程rate equations速率控制步骤rate determining step塔费尔公式Tafel equation态-态反响 state-state reactions唐南均衡Donnan equilibrium淌度mobility特鲁顿规则Trouton rule特征粘度intrinsic viscosity体积功volume work统计权重statistical weight统计热力学statistic thermodynamics统计熵statistic entropy门路pathpath function门路函数外扩散控制external diffusion control第10 页物理学英语专业词汇表完满晶体perfect crystalline完整气体 perfect gas微观状态microstate微态microstate韦斯顿标准电池Weston standard battery维恩效应Wien effect维里方程virial equation维里系数virial coefficient稳流过程steady flow process稳态近似法stationary state approximation无热溶液athermal solution无穷稀溶液 solutions in the limit of extreme dilution物理化学 Physical Chemistry物理吸附physisorptions吸附adsorption吸附等量线adsorption isostere吸附等温线adsorption isotherm吸附等压线adsorption isobar吸附剂adsorbent吸附量extent of adsorption吸附热heat of adsorption吸附质adsorbate析出电势evolution or deposition potential析因子性质 property that partition function to be expressed as a product of the separate partition functions for each kind of state稀溶液的依数性 colligative properties of dilute solutions稀释焓 dilution enthalpy系统system系统点system point系统的环境environment of system相 phase相变phase change相变焓enthalpy of phase change相变化phase change相变热heat of phase change相点phase point相对挥发度relative volatility相对粘度 relative viscosity相律phase rule相均衡热容heat capacity in phase equilibrium相图phase diagram相倚子系统system of dependent particles悬浮液suspension循环过程cyclic process压力商pressure quotient压缩因子compressibility factor压缩因子图diagram of compressibility factor亚稳状态metastable state盐桥salt bridge盐析salting out阳极anode杨氏方程Young’s equation液体接界电势liquid junction potential液相线liquid phase lines一级反响first order reaction一级相变first order phase change第11 页物理学英语专业词汇表依时计量学反响time dependent stoichiometric reactions逸度fugacity逸度系数coefficient of fugacity阴极cathode荧光fluorescence永动机perpetual motion machine永远气体Permanent gas有效能available energy原电池primary cell原盐效应salt effect增比粘度specific viscosity憎液溶胶lyophobic sol沾湿adhesional wetting沾湿功the work of adhesional wetting真溶液true solution真切电解质real electrolyte真切气体 real gas真切迁徙数true transference number振动配分函数partition function of vibration振动特点温度 characteristic temperature of vibration蒸气压降落 depression of vapor pressure 正常沸点normal point正吸附positive adsorption支链反响branched chain reactions直链反响straight chain reactions指前因子pre-exponential factor质量作用定律mass action law制冷系数coefficient of refrigeration中和热heat of neutralization轴功shaft work转动配分函数partition function of rotation转动特点温度 characteristic temperature of vibration转变率 convert ratio转变温度conversion temperature状态state状态方程state equation状态散布state distribution状态函数state function准静态过程quasi-static process准一级反响pseudo first order reaction自动催化作用auto-catalysis自由度degree of freedom自由度数number of degree of freedom自由焓free enthalpy自由能free energy自由膨胀free expansion组分数component number最低恒沸点lower azeotropic point最高恒沸点upper azeotropic point最正确反响温度optimal reaction temperature最可几散布most probable distribution最可几速率 most propable speed第12 页。
arXiv:cond-mat/0409631v1 [cond-mat.stat-mech] 23 Sep 2004IstheentropySqextensiveornonextensive?∗ConstantinoTsallis†SantaFeInstitute,1399HydeParkRoad,SantaFe,NewMexico87501,USAandCentroBrasileirodePesquisasFisicas,RuaXavierSigaud150,22290-180RiodeJaneiro-RJ,Brazil(Dated:February2,2008)
ThecornerstonesofBoltzmann-GibbsandnonextensivestatisticalmechanicsrespectivelyaretheentropiesSBG≡−kWi=1pilnpiandSq≡k(1−Wi=1pqi)/(q−1)(q∈R;S1=SBG).Throughthemwerevisittheconceptofadditivity,andillustratethe(notalwaysclearlyperceived)factthat(thermodynamical)extensivityhasawelldefinedsenseonlyifwespecifythecompo-sitionlawthatisbeingassumedforthesubsystems(sayAandB).Ifthecompositionlawisnotexplicitlyindicated,itistacitlyassumedthatAandBarestatisticallyindependent.Inthiscase,itimmediatelyfollowsthatSBG(A+B)=SBG(A)+SBG(B),henceextensive,whereasSq(A+B)/k=[Sq(A)/k]+[Sq(B)/k]+(1−q)[Sq(A)/k][Sq(B)/k],hencenonextensiveforq=1.InthepresentpaperweillustratetheremarkablechangesthatoccurwhenAandBarespeciallycorre-lated.Indeed,weshowthat,insuchcase,Sq(A+B)=Sq(A)+Sq(B)fortheappropriatevalueofq(henceextensive),whereasSBG(A+B)=SBG(A)+SBG(B)(hencenonextensive).Webelievethatthesefactssubstantiallyimprovetheunderstandingofthemathematicalneedandphysicaloriginofnonextensivestatisticalmechanics,anditsinterpretationintermsofeffectiveoccupationoftheWaprioriavailablemicrostatesofthefullphasespace.Inparticular,wecanappreciatetheoriginofthefollowingimportantfact.Inordertohaveentropicextensivity(i.e.,limN→∞S(N)/N<∞,where
N≡numberofelementsofthesystem),wemustuse(i)SBG,ifthenumberWeffofeffectivelyoccupiedmicrostatesincreaseswithNlikeWeff∼W∼µN(µ≥1);(ii)Sqwithq=1−1/ρ,ifWeff∼Nρdifferentclasses.Thecontributionofthepresentpaperistoillustrate,forthefirsttimeasfaraswecantell,thederivationofthesefactsdirectlyfromthesetofprobabilitiesoftheWmicrostates.
I.INTRODUCTIONAquantityX(A)associatedwithasystemAissaidadditivewithregardtoa(specific)compositionofAandBifitsatisfies
X(A+B)=X(A)+X(B),(1)where+insidetheargumentofXpreciselyindicatesthatcomposition.Forexample,supposewepartitiontheinte-riorofasingleclosedbottleintwoparts.Ifnochemicalorotherreactionsoccurbetweenthegasmoleculesthatmightbeinsidethebottle,norbetweenthesemoleculesandthebottleitself(anditsinternalphysicalpartition),thenumberofgasmoleculesisanadditivequantitywithregardtotheeliminationofthepartitionsurface.Thesamehappenswiththetotalenergyofanidealgas,whereallinteractionshavebeenneglected,includingthegrav-itationalone.Moretrivially,thetotalheightofvarious
N<∞.(4)Clearly,allquantitiesthatareadditivewithregardtoagivencomposition,alsoareextensivewithregardto2thatsamecomposition(andlimN→∞X(N)/N=X(1)),whereastheoppositeisnotnecessarilytrue.Forex-ample,thetotalenergy,thetotalentropyandthetotalmagnetizationofthestandardIsingferromagneticmodelwithNspinsonasquarelatticeareextensivebutnotadditivequantities.Inotherwords,theyareasymp-toticallyadditive,butnotstrictlyadditive.Ofcourse,therearequantitiesthatareneitheradditivenorevenextensive.Theyarecallednonextensive.Alltypesofbehaviorscanexist,suchasX(N)∝Nγ(γ≥0).Forinstance,thermodynamicalquantitiesthat,withregardtosomespecificcomposition,exhibitγ=0arecalledintensive.Suchisthecaseofthetemperature,pres-sure,chemicalpotentialandsimilarquantitiesinagreatvarietyof(thermodynamicallyequilibrated)systemsob-servedinnature.Alesstrivialexampleofnonexten-sivequantityemergeswithinaspatiallyhomogeneousd−dimensionalclassicalgaswhoseNparticles(exclu-sively)interactthroughatwo-bodyinteractionpoten-tialthatisstronglyrepulsiveatshortdistanceswhereasitisattractiveatlongdistances,decayinglike1/rα
(r≡distancebetweentwoparticles),and0≤α/d.Thetotalpotentialenergyofsuchasystemcorresponds[1]toγ=2−α/dif0≤α/d<1(i.e.,nonextensive),andtoγ=1forα/d>1(i.e.,extensive).Theto-talpotentialenergyofthisparticularmodelhasaloga-rithmicN-dependance(i.e.,nonextensive)atthelimitingvalueα/d=1.TheLennard-Jonesmodelforgasescorre-spondsto(α,d)=(6,3),andhasthereforeanextensivetotalenergy.Incontrast,ifweassumeaclusterofstarsgravitationallyinteracting(togetherwithsomephysicalmechanismeffectivelygeneratingrepulsionatshortdis-tances),wehave(α,d)=(1,3),hencenonextensivityforthetotalpotentialenergy.Thephysicalnonextensivitywhichnaturallyemergesinsuchanomaloussystemsis,insometheoreticalapproaches,desguisedbyartificiallydividingthetwo-bodycouplingconstant(whichhasinfactnomeansof“knowing”thetotalnumberofparticlesoftheentiresystem)byN1−α/d.Fortheparticularcaseα=0thisyieldsthewidely(andwildly!)useddivisionbyNofthecouplingconstant,typicalforavarietyofmeanfieldapproaches.See[2]formoredetails.Boltzmann-Gibbs(BG)statisticalmechanicsisbasedontheentropy