当前位置:文档之家› 因式分解

因式分解

一.分组分解练习

2. { EMBED Equation.3 |=--+422

2ab b a 3.

4.1-a 2+2ab-b 2= 5.1-a 2-b 2-2ab=

6.x 2+2xy+y 2-1= 7.x 2-2xy+y 2-1=

8.x 2-2xy+y 2-z 2= 9. =

10. = 11. =

12.x 2 - 4y 2 + x + 2y = 13.

14. 15.ax-a+bx-b=

16.a2-b2-a+b= 17.4a2-b2+2a-b=

二.十字相乘法:

1.x2+2x-15=

2.x2-6x+8=

3.2x2-7x-15=

4.2x2-5x-3=

5.5x2-21x+18=

6. 6x2-13x+6=

7.x4-3x2-4=

8. 3x4+6x2-9=

9. x2-2xy-35y2= 10. a2-5ab-24b2= 11.5x2+4xy-28y2=

三.综合训练

1. 2. 997 2– 9

3.

4. 若是完全平方式,求的值。

5.已知求的值。

6.已知x+2y=,x-y= ,求x2+xy-2y2的值。

7.已知a+b=2,求的值。

8.已知:a=10000,b=9999,求a2+b2-2ab-6a+6b+9的值。

9.若,求的最小值.

10.已知求的值。

11. 已知a, b, c是△ABC的三条边长,当b2 +2ab = c2+2ac时,试判断△ABC属于哪一类三角形

12. 求证:对于任何自然数n ,的值都能被6整除.

13.若a、b、c为△ABC的三边,且满足a2+b2+c2-ab-bc-ca=0。探索△ABC的形状,并说明理由。

14.分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数).

15.分解因式4x2-4xy+y2+6x-3y-10.

16. 有两个孩子的年龄分别为x、y岁,已知x+ xy=99, 试求这两个孩子的年龄.

人教新课标版初中八上

15.4因式分解能力提高题

一、综合题(每小题8分,共16分)

1.解方程组并求7m(m+2n)2-2(m+2n)3的值.

2.证明:无论a,b取何值时,a2b2-2ab+2均为正值.

二、应用题(8分)

3.退休职工老李投资到乡下办养猪场,共建了成猪和仔猪两个正方形猪场.已知成猪场的面积比仔猪场的面积大80平方米,两个猪场围墙总长为160米,则成猪场的面积是多少?

三、创新题(8分)

4.证明:无论x,y取何值时,x2+y2都大于或等于2xy,并且只有当x=y时,x2+y2才等于2xy.

四、中考题(每小题6分,共12分)

(一)中考真题再现

5.(2007·上海)分解因式:2a 2-2ab_______________.

(二)中考命题探究

6.已知x-2y=2,x+2y=6,则x 2-4y 2+2x-4y 的值是_______________.

五、附加题(20分)

7.已知实数m ,n ,k 满足m-n=8,mn+k 2=-16.计算m+n+k 的值.

参考答案

一、1.分析:先将原多项式用提取公因式方法进行分解因式,找出因式与方程组中两个方程的关系即可. 解:7m(m+2n)2-2(m+2n)3

=(m+2n)2[7m-2(m+2n)]

=(m+2n)2[5m-4n].

当m+2n=4,5m-4n=7时,

原式=42×7=112.

点拨:这一类型题就是把这个多项式因式分解,一般情况下它的因式中一定含有已知条件中(如本题中m+2n 、

5m-4n 的项)出现代数式的项(或通过条件变形得到的式子).这样就可以把已知数据代入.

2.分析:由条件可以看出若把2拆成1+1,则原式中可出现符合完全平方公式的结构特征的式子,可用完全平方

公式将其因式分解.

证明:原式=a 2b 2-2ab+1+1

=(ab)2-2ab+12+1

=(ab-1)2+1.

∵(ab-1)2≥0,故(ab-1)2+1≥1.

所以a 2b 2-2ab+2为正值.

点拨:判定一个多项式大于0(或小于0)只需将它化成kp 2的形式.

二、3.分析:设成猪场边长为a 米,仔猪场边长为b 米,则它的周长分别为4a ,4b ,就是4a+4b=160(米),它们的

面积分别为a 2,b 2,有a 2-b 2=80,由此可求a ,b 的值,问题可解.

解:设两个猪场边长分别为a 米,b 米,则由题意可列方程组

整理得 将③代入④得1-b=2,⑤ 将③⑤重新组成方程组得

解这个方程组得a=21,b=19.

所以成猪场的面积为a 2=212=441(平方米).

答:成猪场的面积为441平方米.

点拨:本题只要设出未知数,方程组很容易列关键在于解方程组,因为方程②是个二次方程,目前我们还不能

解,若将其左边因式分解(按平方差公式)将出现因式a+b ,将其用40代换可求a-b ,则把二次方程化为一次方程,这样可重新组成一个二元一次方程组.

三、4.分析:由题意可知题中所涉及的代数式x 2+y 2,2xy 正好是符合完全平方公式中的结构特征,故可用完全平

方公式进行证明.

证明:∵(x-y)2≥0,

∴x 2+y 2-2xy ≥0.

∴x 2+y 2≥2xy .

并且仅当x=y 时,(x-y )2=0即x 2+y 2-2xy=0,也就是x 2+y 2=2xy .

点拨:利用乘方(偶次方)可判断一个可化为偶次方的数(式子)的符号,进一步可比较其中展开式中的一些

式子的大小.

四、(一)5.2a(a-b) 分析:2a 2-2ab 只有两项,可以考虑两种方法,提公因式法和平方差公式,观察可知只能用提

公因式法进行分解,原式=2a(a-b).

点拨:考查多项式的因式分解和提公因式法,题目设置注重基础,同时考查了考生思维的严密性和认真程度. (二)6.16 分析:将原式分解因式再代入求值,原式=(x+2y)·(x-2y)+2(x-2y)=(x-2y)(x+2y+2),当x-2y=2,x+2y=6

时,原式=2×(6+2)=16.

点拨:本题最好不要根据条件将x ,y 值求出来,再代入求多项式的值,这样计算量太大了,还容易出错.所以

做题要讲究方法,若方法得当会达到事半功倍的效果,方法不当会造成事倍功半的效果.

五、7.分析:从表面上看本题无从下手,但是如果把这两个式子作恰当处理,再综合到一起,或许会出现一些意

想不到的效果,我们共同来试一下吧!

解:∵m-n=8,

② ③ ④

∴(m-n)2=64.①

又∵mn+k2=-16,

∴4(mn+k2)=-64.②

①+②得m2+n2+2mn+4k2=0.

∴(m+n)2+4k2=0.

故有m+n=0,k=0.

所以m+n+k=0.

点拨:本题所采取的思路是通过两个已知的等式构造出一个平方和为0的式子,这样几个平方项的底数均得0,这样可以直接得出m,n,k的关系,从而使问题获解.

因式分解的常见变形技巧

在因式分解学习过程中,除要掌握教材上介绍的三种基本方法:提公因式,公式法,分组分解法外,还常常要进行一些灵活的变换。下面就简单介绍一下这些常见的变换方法。掌握了这些变换方法后,这类因式分解问题基本可以迎刃而解了。需要说明的是,要想熟练掌握这些技巧,还需要同学们结合平时的练习去体验我们所讲的方法和思路。

技巧一符号变换

有些多项式有公因式或者可用公式,但是结构不太清晰的情况下,可考虑变换部分项的系数,先看下面的体验题。

体验题1(m+n)(x-y)+(m-n)(y-x)

指点迷津y-x= -(x-y)

体验过程原式=(m+n)(x-y)-(m-n)(x-y)

=(x-y)(m+n-m+n)

=2n(x-y)

小结符号变化常用于可用公式或有公因式,但公因式或者用公式的条件不太清晰的情况下。

实践题1分解因式:-a2-2ab-b2

技巧二系数变换

有些多项式,看起来可以用公式法,但不变形的话,则结构不太清晰,这时可考虑进行系数变换。

体验题2分解因式4x2-12xy+9y2

体验过程原式=(2x)2-2(2x)(3y)+(3y)2

=(2x-3y)2

小结系数变化常用于可用公式,但用公式的条件不太清晰的情况下。

实践题2分解因式

技巧三指数变换

有些多项式,各项的次数比较高,对其进行指数变换后,更易看出多项式的结构。

体验题3分解因式x4-y4

指点迷津把x2看成(x2)2,把y4看成(y2)2,然后用平方差公式。

体验过程原式=(x2)2-(y2)2

=(x2+y2)(x2-y2)

=(x2+y2)(x+y)(x-y)

小结指数变化常用于整式的最高次数是4次或者更高的情况下,指数变化后更易看出各项间的关系。

实践题3分解因式a4-2a4b4+b4

技巧四展开变换

有些多项式已经分成几组了,但分成的几组无法继续进行因式分解,这时往往需要将这些局部的因式相乘的形式展开。然后再分组。

体验题4a(a+2)+b(b+2)+2ab

指点迷津表面上看无法分解因式,展开后试试:a2+2a+b2+2b+2ab。然后分组。

体验过程原式= a2+2a+b2+2b+2ab

=(a+b)2+2(a+b)

=(a+b)(a+b+2)

小结展开变化常用于已经分组,但此分组无法分解因式,相当于重新分组。

实践题4x(x-1)-y(y-1)

技巧五拆项变换

有些多项式缺项,如最高次数是三次,无二次项或者无一次项,但有常数项。这类问题直接进行分解往往较为困难,往往对部分项拆项,往往拆次数处于中间的项。

体验题5 分解因式3a3-4a+1

指点迷津本题最高次是三次,缺二次项。三次项的系数为3,而一次项的系数为-4,提公因式后,没法结合常数项。所以我们将一次项拆开,拆成-3a-a试试。

体验过程原式= 3a3-3a-a+1

=3a(a2-1)+1-a

=3a(a+1)(a-1)-(a-1)

=(a-1)[3a(a+1)-1]

=(a-1)(3a2+3a-1)

另外,也可以拆常数项,将1拆成4-3。

原式=3a3-4a+4-3

=3(a3-1)-4(a-1)

=3(a-1)(a2+a+1)-4(a-1)

=(a-1)(3a2+3a+3-4)

=(a-1)( 3a2+3a-1)

小结拆项变化多用于缺项的情况,如整式3a3-4a+1,最高次是三,其它的项分别是一,零。缺二次项。通常拆项的目的是将各项的系数调整趋于一致。

实践题5分解因式3a3+5a2-2

技巧六添项变换

有些多项式类似完全平方式,但直接无法分解因式。既然类似完全平方式,我们就添一项然后去一项凑成完全

平方式。然后再考虑用其它的方法。

体验题6分解因式x2+4x-12

指点迷津本题用常规的方法几乎无法入手。与完全平方式很象。因此考虑将其配成完全平方式再说。

体验过程原式= x2+4x+4-4-12

=(x+2)2-16

=(x+2)2-42

=(x+2+4)(x+2-4)

=(x+6)(x-2)

小结添项法常用于含有平方项,一次项类似完全平方式的整式或者是缺项的整式,添项的基本目的是配成完全平方式。

实践题6分解因式x2-6x+8

实践题7分解因式a4+4

技巧七换元变换

有些多项式展开后较复杂,可考虑将部分项作为一个整体,用换元法,结构就变得清晰起来了。然后再考虑用公式法或者其它方法。

体验题7分解因式(x+1)(x+2)(x+3)(x+4)+1

指点迷津直接展开太麻烦,我们考虑两两结合。看能否把某些部分作为整体考虑。

体验过程(x+1)(x+2)(x+3)(x+4)+1

=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)+1*

令x2+5x=m.

上式变形为(m+4)(m+6)+1

m2+10m+24+1

=(m+5)2

=(x2+5x+5)2

*式也可以这样变形,令x2+5x+4=m

原式可变为:

m(m+2)+1

=m2+2m+1

=(m+1)2

=(x2+5x+5)2

小结换元法常用于多项式较复杂,其中有几项的部分相同的情况下。如上题中的x2+5x+4与x2+5x+6就有相同的项x2+5x.,换元法实际上是用的整体的观点来看问题。

实践题8分解因式x(x+2)(x+3)(x+5)+9

实践题答案

实践题1分解因式:-a2-2ab-b2

实践详解各项提出符号,可用平方和公式.

原式=-a2-2ab-b2

=-( a2+2ab+b2)

= -(a+b)2

实践题2分解因式

实践详解原式=()2+2.+()2

=(+)2

实践题3分解因式a4-2a4b4+b4

指点迷津把a4看成(a2)2,b4=(b2)2

实践详解原式=(a2-b2)2

=(a+b)2(a-b)2

实践题4x(x-1)-y(y-1)

指点迷津表面上看无法分解因式,展开后试试:x2-x-y2+y。然后重新分组。

实践详解原式= x2-x-y2+y

=(x2-y2)-(x-y)

=(x+y)(x-y)-(x-y)

=(x-y)(x+y-1)

实践题5分解因式3a3+5a2-2

指点迷津三次项的系数为3,二次项的系数为5,提出公因式a2后。下一步没法进行了。所以我们将5a2拆成3a2 +2a2,化为3a3+3a2+2a2-2.

实践详解原式=3a3+3a2+2a2-2

=3a2(a+1)+2(a2-1)

=3a2(a+1)+2(a+1)(a-1)

=(a+1)(3a2+2a-2)

实践题6分解因式x2-6x+8

实践详解原式=x2-6x+9-9+8

=(x-3)2-1

=(x-3)2-12

=(x-3+1)(x-3-1)

=(x-2)(x-4)

实践题7分解因式a4+4

原式=a4+4a2+4-4a2

=(a2+2)2-4a2

=(a2+2+2a)(a2+2-2a)

=(a2+2a+2)(a2-2a+2)

实践题8分解因式x(x+2)(x+3)(x+5)+9

指点迷津将x(x+5)结合在一起,将(x+2)(x+3)结合在一起..

实践详解原式=[x(x+5)][(x+2)(x+3)]+9

=(x2+5x)(x2+5x+6) +9

令x2+5x=m

上式可变形为

m(m+6)+9

=m2+6m+9

=(m+3)2

=(x2+5x+3)2

因式分解的解题方法与技巧(2)

4.对称式的因式分解

在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.

例7分解因式x4+(x+y)4+y4

分析这是一个二元对称式,二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如

x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解.

解∵x4+y4

=(x+y)4-4x3y-6x2y2-4xy2

=(x+y)4-4xy(x+y)2+2x2y2.

∴原式=(x+y)4-4xy(x+y)2+2x2y2+(x+y)4

=2(x+y)4-4xy(x+y)2+2x2y2

=2[(x+y)4-2xy(x+y)2+(xy)2]

=2[(x+y)2-xy]2-2(x2+y2+xy)2,

例8分解因式a2(b-c)+b2(c-a)+c2(a-b).

此题中若将式中的b换成a,c换成b,a换成c,即为c2(a-b)+a2(b-c)+b2(c-a),,原式不变,这类多项式称为关于a、b、c的轮换对称式,轮换对称式的因式分解,用因式定理及待定系数法比较简单,下面先粗略介绍一下因式定理,为了叙述方便先引入符号f(x)、f(a)如对一元多项式3x2-5x-2可记作f(x)=3x2-5x-2,f(a)即表示当x=a时多项式的值,如x=1时多项式3x2-5x-2的值为f(1)=3×12-5×1-2=-4,当x=2时多项式3x2-5x-2的值为f(2)=3×22-5×2-2=0.

因式定理如果x=a时多项式f(x)的值为零,即f(a)=0,则f(x)能被x-a整除(即含有x-a之因式).

如多项式f(x)=3x2-5x-2,当x=2时,f(2)=0,即f(x)含有x-2的因式,事实上f(x)=3x2-5x-2=(3x+1)(x-2).

证明设f(x)=a n x n+a n-1x n-1+…+a1x+a0,

若f(a)=0,则

f(x)=f(x)-f(a)

=(a n x n+a n-1x n-1+…+a1x+a0)

=(a n a n+a n-1a n-1+…+a1a+a0)

=a n(x n-a n)+a n-1(x n-1-a n-1)+…+a1(x-a),

由于(x-a)|(x n-a n),(x-a)|(x n-1-a n-1),…,(x-a)|(x-a),

∴(x-a)|f(x),

对于多元多项式,在使用因式定理时可以确定一个主元,而将其它的元看成确定的数来处理.

现在我们用因式定理来解例8.

解这是一个含有a、b、c三个字母的三次多项式,现以a为主元,设f(a)=a2(b-c)+b2(c-a)+c2(a-b),易知当a=b 和a=c时,都有f(a)=0,故a-b和a-c是多项式的因式,而视b为主元时,同理可知b-c也是多项式的因式,而三次多项式至多有三个因式故可设a2(b-c)+b2(c-a)+c2(a-b)=k(a-b)(b-c)(c-a),其中k为待定系数,令a=0,b=1,c=-1可得k=-1.

∴a2(b-c)+b2(c-a)+c2(a-b)

=-(a-b)(b-c)(c-a).

例9分解因式a3(b-c)+b3(c-a)+c3(a-b).

分析这是一个关于a、b、c的四次齐次轮换多项式,可用因式定理分解,易知a-b,b-c,c-a是多项式的三个因式,而四次多项式还有一个因式,由轮换对称性可知这个一次因式应是a+b+c,故可设

a3(b-c)+b3(c-a)+c3(a-b)=k(a-b)(b-c)(c-a)(a+b+c)(其中k为待定系数),取,a=0,b=1,c=-1可得k=-1,所以

原式=-(a-b)(b-c)(c-a)(a+b+c).

因式定理使用得更多的还是一元n次多项式的因式分解.

例10 (1985年武汉市初中数学竞赛题)证明:2x+3为多项式2x4-5x3-10x2+15x+18的因式.

证明以 f(x)记多项式.

+15-

∴2x+3是f(x)的因式.

例11 分解因式x3-19x-30.

分析这里常数项是30,如果多项式f(x)=x3-19x-30有x-a这种形式的因式,那么a一定是30的因数,这是因为

f(a)=a3-19a-30=0即a3-19a=30.

∵a|(a3-19a), ∴a|30

解 30的因数为±1,±2,±3,±4,±5,±6,±10,±15,±30.

∵f(1)=-48,f(-1)=-12,f(2)=-60,f(-2)=0,f(3)=-60,f(-3)=0,f(5)=0.(这里已有f(-2)、f(-3)、f(5)等于零了,三次多项式只有三个一次因式,所以不必再计算了.)

∴x3-19x-30=k(x+2)(x+3)(x-5),

∴x3的系数为1,∴k=1,

故 x3-19x-30=(x+2)(x+3)(x-5).

练习:

1.分解因式(x+y)3-x3-y3+3xy.

2.分解因式(ab+bc+ca)(a+b+c)-abc.

3.(1986年五城市联赛试题)若a为自然数,则a4-3a2+9是质数,还是合数?给出你的证明.

4.(1985年北京市初中数学竞赛题)若a为自然数,证明:

10|(a1985-a1949).

参考答案:

1.原式=(x+y)3-(x3+y3)+3xy=…=3xy(x+y+1).

2.(a+b)(b+c)(c+a).

3.原式=(a2-3a+3)(a2+3a+3).

再讨论:a=1或2时,知为质数,a>2为合数.

4.∵a1985-a1949=a1949(a2+1)(a4-a2+1)(a12-a6+1)(a+1)(a2-a+1)(a6-a3+1)(a6+a3+1)(a2+a+1)(a-1).当a的个位数字分别为0~9时,上式右端总含有因数2和5,

∴10|(a1985-a1949)

初二奥数辅导因式分解(一)

多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生

的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:

(1)a2-b2=(a+b)(a-b);

(2)a2±2ab+b2=(a±b)2;

(3)a3+b3=(a+b)(a2-ab+b2);

(4)a3-b3=(a-b)(a2+ab+b2).

下面再补充几个常用的公式:

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;

(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;

(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.

运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式:

(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;

(2)x3-8y3-z3-6xyz;

(3)a2+b2+c2-2bc+2ca-2ab;

(4)a7-a5b2+a2b5-b7.

解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)

=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]

=-2x n-1y n(x2n-y2)2

=-2x n-1y n(x n-y)2(x n+y)2.

(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).

(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

=(a-b)2+2c(a-b)+c2

=(a-b+c)2.

本小题可以稍加变形,直接使用公式(5),解法如下:

原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)

=(a-b+c)2

(4)原式=(a7-a5b2)+(a2b5-b7)

=a5(a2-b2)+b5(a2-b2)

=(a2-b2)(a5+b5)

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)

=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

例2 分因式:a3+b3+c3-3abc.

本题实际上就是用因式分解的方法证明前面给出的公式(6).

分析我们已经知道公式

(a+b)3=a3+3a2b+3ab2+b3

的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

这个式也是一个常用的公式,本题就借助于它来推导.

解原式=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-bc-ca).

说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为

a3+b3+c3-3abc

显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.

如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

等号成立的充要条件是x=y=z.这也是一个常用的结论.

例3 分解因式:x15+x14+x13+…+x2+x+1.

分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为

x16-1=(x-1)(x15+x14+x13+…x2+x+1),

所以

说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.

2.拆项、添项法

因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.

例4 分解因式:x3-9x+8.

分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

解法1 将常数项8拆成-1+9.

原式=x3-9x-1+9

=(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1)

=(x-1)(x2+x-8).

解法2 将一次项-9x拆成-x-8x.

原式=x3-x-8x+8

=(x3-x)+(-8x+8)

=x(x+1)(x-1)-8(x-1)

=(x-1)(x2+x-8).

解法3 将三次项x3拆成9x3-8x3.

原式=9x3-8x3-9x+8

=(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

=(x-1)(x2+x-8).

解法4 添加两项-x2+x2.

原式=x3-9x+8

=x3-x2+x2-9x+8

=x2(x-1)+(x-8)(x-1)

=(x-1)(x2+x-8).

说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.

例5 分解因式:

(1)x9+x6+x3-3;

(2)(m2-1)(n2-1)+4mn;

(3)(x+1)4+(x2-1)2+(x-1)4;

(4)a3b-ab3+a2+b2+1.

解 (1)将-3拆成-1-1-1.

原式=x9+x6+x3-1-1-1

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

=(x3-1)(x6+2x3+3)

=(x-1)(x2+x+1)(x6+2x3+3).

(2)将4mn拆成2mn+2mn.

原式=(m2-1)(n2-1)+2mn+2mn

=m2n2-m2-n2+1+2mn+2mn

=(m2n2+2mn+1)-(m2-2mn+n2)

=(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1).

(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.

原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4

=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2

=[(x+1)2+(x-1)2]2-(x2-1)2

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).

(4)添加两项+ab-ab.

原式=a3b-ab3+a2+b2+1+ab-ab

=(a3b-ab3)+(a2-ab)+(ab+b2+1)

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

=a(a-b)[b(a+b)+1]+(ab+b2+1)

=[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1).

说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.

3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

例6 分解因式:(x2+x+1)(x2+x+2)-12.

分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.

解设x2+x=y,则

原式=(y+1)(y+2)-12=y2+3y-10

=(y-2)(y+5)=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5).

说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.

例7 分解因式:

(x2+3x+2)(4x2+8x+3)-90.

分析先将两个括号内的多项式分解因式,然后再重新组合.

解原式=(x+1)(x+2)(2x+1)(2x+3)-90

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

=(2x2+5x+3)(2x2+5x+2)-90.

令y=2x2+5x+2,则

原式=y(y+1)-90=y2+y-90

=(y+10)(y-9)

=(2x2+5x+12)(2x2+5x-7)

=(2x2+5x+12)(2x+7)(x-1).

说明对多项式适当的恒等变形是我们找到新元(y)的基础.

例8 分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.

解设x2+4x+8=y,则

原式=y2+3xy+2x2=(y+2x)(y+x)

=(x2+6x+8)(x2+5x+8)

=(x+2)(x+4)(x2+5x+8).

说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.

例9 分解因式:6x4+7x3-36x2-7x+6.

解法1 原式=6(x4+1)+7x(x2-1)-36x2

=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2

=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2

=[2(x2-1)-3x][3(x2-1)+8x]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.

解法2

原式=x2[6(t2+2)+7t-36]

=x2(6t2+7t-24)=x2(2t-3)(3t+8)

=x2[2(x-1/x)-3][3(x-1/x)+8]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

例10 分解因式:(x2+xy+y2)-4xy(x2+y2).

分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.

解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则

原式=(u2-v)2-4v(u2-2v)

=u4-6u2v+9v2

=(u2-3v)2

=(x2+2xy+y2-3xy)2

=(x2-xy+y2)2.

练习一

1.分解因式:

(2)x10+x5-2;

(4)(x5+x4+x3+x2+x+1)2-x5.

2.分解因式:

(1)x3+3x2-4;

(2)x4-11x2y2+y2;

(3)x3+9x2+26x+24;

(4)x4-12x+323.

3.分解因式:

(1)(2x2-3x+1)2-22x2+33x-1;

(2)x4+7x3+14x2+7x+1;

(3)(x+y)3+2xy(1-x-y)-1;

(4)(x+3)(x2-1)(x+5)-20.

初二奥数辅导因式分解(二)

来源:作者:agangxu 发布时间:2006-11-28

1.双十字相乘法

分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.

例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为

2x2-(5+7y)x-(22y2-35y+3),

可以看作是关于x的二次三项式.

对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为

-22y2+35y-3=(2y-3)(-11y+1).

再利用十字相乘法对关于x的二次三项式分解

所以

原式=[x+(2y-3)][2x+(-11y+1)]

=(x+2y-3)(2x-11y+1).

上述因式分解的过程,实施了O次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:

它表示的是下面三个关系式:

(x+2y)(2x-11y)=2x2-7xy-22y2;

(x-3)(2x+1)=2x2-5x-3;

(2y-3)(-11y+1)=-22y2+35y-3.

这就是所谓的双十字相乘法.

用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:

(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);

(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.

例1 分解因式:

(1)x2-3xy-10y2+x+9y-2;

(2)x2-y2+5x+3y+4;

(3)xy+y2+x-y-2;

(4)6x2-7xy-3y2-xz+7yz-2z2.

解 (1)

原式=(x-5y+2)(x+2y-1).

(2)

原式=(x+y+1)(x-y+4).

(3)原式中缺x2项,可把这一项的系数看成0来分解.

原式=(y+1)(x+y-2).

(4)

原式=(2x-3y+z)(3x+y-2z).

说明 (4)中有三个字母,解法仍与前面的类似.

2.求根法

我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并f(x),g(x),…等记号表示,如

f(x)=x2-3x+2,g(x)=x5+x2+6,…,

当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)

f(1)=12-3×1+2=0;

f(-2)=(-2)2-3×(-2)+2=12.

若f(a)=0,则称a为多项式f(x)的一个根.

定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.

定理2

的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.

我们根据上述定理∮们蠖嘞钍降母 慈范ǘ嘞钍降囊淮我蚴剑 佣 远嘞钍浇 幸蚴椒纸

猓?/DIV>

例2 分解因式:x3-4x2+6x-4.

分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有

f(2)=23-4×22+6×2-4=0,

即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.

解法1 用分组分解法,使每组都有因式(x-2).

原式=(x3-2x2)-(2x2-4x)+(2x-4)

=x2(x-2)-2x(x-2)+2(x-2)

=(x-2)(x2-2x+2).

(完整版)因式分解练习题(公式法)

因式分解习题(二)公式法分解因式 专题训练一:利用平方差公式分解因式 题型(一):把下列各式分解因式 1、24x - 2、29y - 3、21a - 4、224x y - 5、2125b - 6、222x y z - 7、2240.019m b - 8、2219 a x - 9、2236m n - 10、2249x y - 11、220.8116a b - 12、222549p q - 13、2422a x b y - 14、41x - 15、4416a b - 16、 44411681a b m - 题型(二):把下列各式分解因式 1、22()()x p x q +-+ 2、 22(32)()m n m n +-- 3、2216()9()a b a b --+ 4、229()4()x y x y --+ 5、22()()a b c a b c ++-+- 6、224()a b c -+

题型(三):把下列各式分解因式 1、53x x - 2、224ax ay - 3、322ab ab - 4、316x x - 5、2433ax ay - 6、2(25)4(52)x x x -+- 7、324x xy - 8、343322x y x - 9、4416ma mb - 10、238(1)2a a a -++ 11、416ax a -+ 12、 2216()9()mx a b mx a b --+ 题型(四):利用因式分解解答下列各题 1、证明:两个连续奇数的平方差是8的倍数。 2、计算 ⑴22758258- ⑵22429171- ⑶223.59 2.54?-? ⑷2222211111(1)(1)(1)(1)(1)234910 - --???--

因式分解分类练习经典全面

因式分解练习题(提取公因式) 专项训练一:确定下列各多项式的公因式。 1、ay ax + 2、36mx my - 3、2410a ab + 4、2155a a + 5、22x y xy - 6、22129xyz x y - 7、()()m x y n x y -+- 8、()()2 x m n y m n +++ 9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。 1、22____()R r R r ππ+=+ 2、222(______)R r πππ+= 3、2222121211 ___()22 gt gt t t +=+ 4、2215255(_______)a ab a += 专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。 1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()2 2___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()n n a b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数 9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把下列各式分解因式。 1、nx ny - 2、2a ab + 3、3246x x - 4、282m n mn + 5、23222515x y x y - 6、22129xyz x y - 7、2336a y ay y -+ 8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+ 11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +- 13、3222315520x y x y x y +- 14、432163256x x x --+ 专项训练五:把下列各式分解因式。 1、()()x a b y a b +-+ 2、5()2()x x y y x y -+- 3、6()4()q p q p p q +-+ 4、()()()()m n P q m n p q ++-+- 5、2()()a a b a b -+- 6、2()()x x y y x y --- 7、(2)(23)3(2)a b a b a a b +--+ 8、2()()()x x y x y x x y +--+ 9、()()p x y q y x --- 10、(3)2(3)m a a -+- 11、()()()a b a b b a +--+ 12、()()()a x a b a x c x a -+---

人教版初中数学因式分解知识点训练及答案

人教版初中数学因式分解知识点训练及答案 一、选择题 1.下列各式从左到右的变形中,属于因式分解的是( ) A .m (a +b )=ma +mb B .a 2+4a ﹣21=a (a +4)﹣21 C .x 2﹣1=(x +1)(x ﹣1) D .x 2+16﹣y 2=(x +y )(x ﹣y )+16 【答案】C 【解析】 【分析】 根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】 A 、是整式的乘法,故A 不符合题意; B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意; C 、把一个多项式转化成几个整式积的形式,故C 符合题意; D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意; 故选C . 【点睛】 本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式. 2.已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ y B .x ≥ y C .x < y D .x > y 【答案】D 【解析】 【分析】 判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系. 【详解】 解:22222202()x y a b ab a a b a -=++-+=-++20, 2()0a b -≥Q ,20a ≥,200>, 0x y ∴->, x y ∴>, 故选:D . 【点睛】 本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大. 3.下列各式从左到右的变形中,是因式分解的为( ). A .()x a b ax bx -=- B .()()222 111x y x x y -+=-++

因式分解技巧(单墫著)1

目录 0 什么是因式分解001 1 提公因式00 2 1.1 一次提净002 1.2 视“多”为一00 3 1.3 切勿漏1 003 1. 4 注意符号004 1.5仔细观察004 1.6化“分”为整00 5 习题100 6 2应用公式00 7 2.1平方差007 2.2立方和与立方差00 8 2.3完全平方008 2.4完全立方00 9 2.5问一知三010 2.61 21984 不是质数011 习题 2 012 3分组分解013 3.1三步曲013 3.2殊途同归013 3.3平均分配014 3.4瞄准公式015 3.5从零开始015 习题3017 4拆项与添项018 4.1拆开中项018 4.2皆大欢喜018 4.3旧事重提019 4.4无中生有019 4.5配成平方020 习题 4 021 5十字相乘022 5.1知己知彼022 5.2孰能生巧024 5.3再进一步025 5.4二次齐次式026 5.5系数和为零027 第1页共87 页

第 2 页 共 87 页 习题 5 028 6 二次二次式的分解 029 6.1 欲擒故纵 029 6.2 三元齐次 031 6.3 项数不全 032 6.4 能否分解 032 习题 6 034 7 综合运用 035 7.1 善于换元 035 7.2 主次分清 037 7.3 一题两解 038 7.4 展开处理 039 7.5 巧运匠心 040 习题7 042 8 多项式的一次因式 044 8.1 余数定理 044 8.2 有理根的求法 045 8.3 首1多项式 047 8.4 字母系数 049 习题8 050 9 待定系数法 051 9.1 二次因式 051 9.2 既约的情况 054 习题9 055 10 轮换式与对称式 056 10.1 典型方法 056 10.2 齐次与非齐次 059 10.3 ab c b a 3322-++ 061 10.4 焉用牛刀 062 10.5 整除问题 063 10.6 原来是零 065 10.7 四元多项式 067 习题10 068 11 实数集与复数集内的分解 071 11.1 求根公式 071 11.2 代数基本定理 073 11.3 单位根 074 11.4 攻玉之石 076 习题11 079 12 既约多项式 080 12.1 艾氏判别法 080

因式分解公式法、十字相乘法教师版

2、运用公式法进行因式分解 【知识精读】 把乘法公式反过来,就可以得到因式分解的公式。 主要有:平方差公式 a b a b a b 22-=+-()() 完全平方公式 a ab b a b 2222±+=±() 立方和、立方差公式 a b a b a ab b 3322±=±?+()()μ 补充:欧拉公式: 特别地:(1)当a b c ++=0时,有a b c abc 3333++= (2)当c =0时,欧拉公式变为两数立方和公式。 运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。但有时需要经过适当的组合、变形后,方可使用公式。 用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。 下面我们就来学习用公式法进行因式分解 【分类解析】 1. 把a a b b 2222+--分解因式的结果是( ) A. ()()()a b a b -++22 B. ()()a b a b -++2 C. ()()a b a b -++2 D. ()()a b b a 2222-- 分析:a a b b a a b b a b 22222222212111+--=++---=+-+()()。 再利用平方差公式进行分解,最后得到()()a b a b -++2,故选择B 。 说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。同时要注意分解一定要彻底。 2. 在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用 例:已知多项式232x x m -+有一个因式是21x +,求m 的值。 分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出m 的值。 解:根据已知条件,设221322x x m x x ax b -+=+++()() 则222123232x x m x a x a b x b -+=+++++()() 由此可得211120 23a a b m b +=-+==???????()()()

因式分解知识点分类练习.doc

因式分解练习题 ( 提取公因式 ) 专项训练一:确定下列各多项式的公因式。 1、 ay ax 2、3mx 6my 3、4a210ab 4、15a2 5a 5、x2y xy 2 6、12xyz 9x2 y 2 7、 m x y n x y 8、 x m n y m n 2 9、abc(m n)3 ab(m n) 10、12x(a b)2 9m(b a)3 专项训练二:利用乘法分配律的逆运算填空。 1、2 R 2 r ____( R r ) 2、2 R 2 r 2 (______) 3、1 gt1 2 1 gt2 2 ___(t12 t2 2 ) 4、15a2 25ab 2 5a(_______) 2 2 专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。 1、x y __( x y) 2、b a __(a b) 3、z y __( y z) 4、 y 2 ___(x y)2 x 5、( y x) 3 __( x y)3 6、(x y)4 __( y x) 4 7、( a b) 2n ___(b a) 2n (n为自然数 ) 8、( a b) 2n 1 ___(b a)2 n 1 (n为自然数 ) 9、 1 x (2 y) ___(1 x)( y 2) 10、 1 x (2 y) ___(x 1)( y 2) 11、(a b)2 (b a) ___( a b)3 12、(a b)2 (b a)4 ___( a b)6 专项训练四、把下列各式分解因式。 1、 nx ny 2、a2ab 3、4x36x2 4、8m2n2mn 5、25x2y315x2 y2 6、12 xyz9x2 y2 7、3a2y3ay 6 y

初中数学因式分解难题汇编及答案

初中数学因式分解难题汇编及答案 一、选择题 1.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( ) A .-2 B .2 C .-50 D .50 【答案】A 【解析】 试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可. 当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2. 考点:因式分解的应用. 2.若()()21553x kx x x --=-+,则k 的值为( ) A .-2 B .2 C .8 D .-8 【答案】B 【解析】 【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值. 【详解】 ∵()()253215x x x x -+=-- ∴2k -=- 解得2k = 故答案为:B . 【点睛】 本题考查了因式分解的问题,掌握十字相乘法是解题的关键. 3.已知12,23x y xy -==,则43342x y x y -的值为( ) A .23 B .2 C .83 D .163 【答案】C 【解析】 【分析】 利用因式分解以及积的乘方的逆用将43342x y x y -变形为(xy)3(2x-y),然后代入相关数值进 行计算即可. 【详解】 ∵12,23 x y xy -==, ∴43342x y x y - =x 3y 3(2x-y)

=(xy)3(2x-y) =23×1 3 =8 3 , 故选C. 【点睛】 本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键. 4.下列等式从左到右的变形属于因式分解的是() A.a2﹣2a+1=(a﹣1)2B.a(a+1)(a﹣1)=a3﹣a C.6x2y3=2x2?3y3D.mx﹣my+1=m(x﹣y)+1 【答案】A 【解析】 【分析】 直接利用因式分解的定义分析得出答案. 【详解】 解:A、a2﹣2a+1=(a﹣1)2,从左到右的变形属于因式分解,符合题意; B、a(a+1)(a﹣1)=a3﹣a,从左到右的变形是整式乘法,不合题意; C、6x2y3=2x2?3y3,不符合因式分解的定义,不合题意; D、mx﹣my+1=m(x﹣y)+1不符合因式分解的定义,不合题意; 故选:A. 【点睛】 本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别. 5.下列各式中不能用平方差公式进行计算的是( ) A.(m-n)(m+n) B.(-x-y)(-x-y) C.(x4-y4)(x4+y4) D.(a3-b3)(b3+a3) 【答案】B 【解析】 A.(m-n)(m+n),能用平方差公式计算; B.(-x-y)(-x-y),不能用平方差公式计算; C.(x4-y4)(x4+y4),能用平方差公式计算; D. (a3-b3)(b3+a3),能用平方差公式计算. 故选B. 6.下列各式中,从左到右的变形是因式分解的是()

因式分解分类练习题(经典全面)

2 因式分解练习题(提取公因 式) 平昌县得胜中学任璟(编) 专项训练一:确定下列各多项式的公因式。 2 3 2 2 5、 25x y -15x y 6、12xyz-9x 2y 2 2 7、3a y - 3ay 6 y 1、ay ax 2、3mx -6my 2 3、4a 10ab 2 4、 15a 5a 2 2 x y _xy 6、12xyz-9x 2y 2 2 8、 a b-5ab 9b -24x 2y -12xy 2 28y 3 2 9、 - x xy - xz 10、 7、 mx-y i 亠n x-y 3 9、abc(m-n) -ab(m-n) 10、12x(a-b)2-9m(b-a)3 专项训练二:利用乘法分配律的逆运算填空 1、 2兀R 十2^r= __ (R+r) 2、 2兀 R 十2兀r = 2兀( ) 3、1 gt 1^丄 gt 22= (tj+t 22) 4、15a 2+25ab 2 =5a( ) 2 2 专项训练三、在下列各式左边的括号前填上 + ”或“-”使等式成立< 1、x + y=__(x + y) 2、b_a = __(a_b) 2 2 3、-z + y=__(y-z) 4、( y-x) = _____ (x-y) 3 3 4 4 5 (y -x) =—(x -y) 6、-(x-y) =_(y -x) 7、 (a —b)2n =___(b —a)2n (n 为自然数) 8、 ( a —b)2nHr =___( b —a)2n ^n 为自然数 9、 ( 1-x )(2-y)=___(1-x)(y-2) 2 3 11、(a -b) (b-a)=___(a -b) 专项训练四、把下列各式分解因式 2 1、nx-ny 2、a ab ) 10、( 1-x)(2-y)=___(x-1)(y-2) 12、(a —b)2 (b —a)4 =___(a —b)6 3、4x 3 -6x 2 4、8m 2n 2mn 11、-3ma 6ma -12ma 2 2 2 3 13、15x y 5x y-20x y 专项训练五:把下列各式分解因式 1、x(a b) - y(a b) 3、6q(p q)-4p(p q) 5、a(a-b) (a-b)2 7、(2 a b)(2a-3b)-3a(2a b) 12、56x 3yz 14x 2y 2z-21xy 2z 2 4 3 2 14、-16x - 32 x 56x 2、5x(x_ y) 2y(x_ y) 4、 (m n)(P q)- (m n)( p — q) 6、x(x- y)2 - y(x- y) 8、x(x y)(x _y)「x(x y)

初二数学因式分解精选100题

初二数学因式分解精选100题

提升课堂托辅中心 初二数学因式分解精选100题 2013年1月25日 一、选择题 1.下列各式中从左到右的变形,是因式分解的是( ) A (a +3)(a -3)=a 2-9 B x 2+x -5=(x -2)(x +3)+1 C a 2 b +ab 2=ab (a +b ) (D)x 2+1=x (x +x 1) 2.下列各式的因式分解中正确的是( ) A -a 2+ab -ac = -a (a +b -c ) B 9xyz -6x 2y 2=3xyz (3-2xy ) C 3a 2x -6bx +3x =3x (a 2-2b ) D 21xy 2+21x 2y =2 1xy (x +y ) 3.把多项式m 2(a -2)+m (2-a )分解因式等于( ) (A)(a -2)(m 2+m ) (B)(a -2)(m 2-m ) (C)m (a -2)(m -1) (D)m (a -2)(m+1) 4.下列多项式能分解因式的是( ) (A)x 2-y (B)x 2+1 (C)x 2+y +y 2 (D)x 2-4x +4 5.下列多项式中,不能用完全平方公式分解因式的是 ( ) (A) 412m m ++ (B)222y xy x -+- (C)224914b ab a ++- (D) 13292+-n n

6.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是() (A)4x(B)-4x(C)4x4(D)-4x4 7.下列分解因式错误的是() (A)15a2+5a=5a(3a+1) (B)-x2-y2= -(x2-y2)= -(x+y)(x-y)(C)k(x+y)+x+y=(k+1)(x+y) (D)a3-2a2+a=a(a-1)2 8.下列多项式中不能用平方差公式分解的是() (A)-a2+b2(B)-x2-y2(C)49x2y2-z2 (D)16m4-25n2p2 9.下列多项式:①16x5-x;②(x-1)2-4(x-1)+4;③(x+1)4-4x(x+1)+4x2;④-4x2-1+4x,分解因式后,结果含有相同因式的是()(A)①②(B)②④ (C)③④(D)②③ 10.两个连续的奇数的平方差总可以被k整除,则k等于() (A)4 (B)8 (C)4或-4 (D)8的倍数 11下列各式中从左到右的变形属于分解因式的是() A a(a+b-1)=a2+ab-a B a2 –a-2=a(a-1)-2C- 4 a2+9b2=(-2a+3b)(2a+3b) D.2x+1=x(2+1/x) 12下列各式分解因是正确的是()

因式分解一

因式分解(一) 模块一 因式分解的概念 知识导航 一、定义 把一个多项式化成几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,又叫做把这个多项式分解因式. 二、实质 因式分解是一种恒等变形,是一种化和为积的变形,因式分解与整式乘法是相反方向的变形 三、结果形式 ①每个因式都必须是整式; ②分解到不能再分为止; ③单项式要写在多项式的前面; ④相同因式要写成幂的形式; ⑤没有大括号和中括号; ⑥每个因式第一项系数一般不为负数. 四、因式分解的常用方法 提公因式法、运用公式法、分组分解法、十字相乘法 五、因式分解的一般步骤 如果多项式的各项式有公因式,应先提公因式;如果各项没有公因式,再考虑能否应用公式法,十字相乘法;如还不能则考虑分组分解法或其他方法. 例1 (1)下列各式从左边到右边的变形中,是因式分解的是( ) A .3ab (a +b )=3a 2b +3ab 2 B .2x 2+4x =222(1)x x + C .a 2-4b 2=(a +2b )(a -2b ) D .3x 2-6xy +3x =3x (x -2y ) (2)一个多项式分解因式的结果是(b 3+2)(2-b 3),那么这个多项式是( ) A .b 4-4 B .4-b 4 C .b 6+4 D .-b 6-4 练习 (1)下列从左到右的变形,属因式分解的是( ) A .(x +a )(x -a )=x 2-a 2 B .x 2-4x +3=x (x -4)+3 C .x 3-8x 2=x 2(x -8) D .x +y =x (1y x +) (2)下列分解因式错误的是( ) 整式乘积 多项式

《公式法因式分解》教学设计

《公式法因式分解》教学设计 永年县第八中学——胡平亮 一、教学内容:冀教版七年级数学第十一章公式法分解因式 二、教学目标: 知识与技能 1、经历逆用平方差公式的过程. 2、会运用平方差公式,并能运用公式进行简单的分解因式. 过程与方法 1、在逆用平方差公式的过程中,培养符号感和推理能力. 2、培养学生观察、归纳、概括的能力. 情感与价值观要求: 在分解过程中发现规律,并能用符号表示,从而体会数学的简捷美;让学生在合作探究的学习过程中体验成功的喜悦;培养学生敢于挑战;勇于探索的精神和善于观察、大胆创新的思维品质。 三、教学重点: 利用平方差公式进行分解因式 四、教学难点: 领会因式分解的解题步骤和分解因式的彻底性。 五、教学准备: 深研课标和教材,分析学情,制作课件 六、教学过程; 一、知识回顾 1、根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么? (1)、(2x-1)2=4x2-4x+1 否 (2)、 3x2+9xy-3x=3x(x+3y-1) 是 (3)、4x2-1-4xy+y2=(2x+1)(2x-1)-y(4x-y) 否 2、把下列各式进行因式分解

(1). a3b3-a2b-ab (2)(3x+y)(3x-y) (3)、(x+5)(x-5) 利用一组整式的乘法运算复习平方差公式,为探究运用平方差公式进行分解因式打下基础。 二、导入新课: 你能把多项式:x2 -25、9x2 -y2分解因式吗? 利用一组运用平方差公式分解因式的习题,引导学生利用逆向思维去探究如何分解 a2- b2类的二次二项式。学生从对比整式的乘法去探索分解因式方法,可以感受到这种互逆变形以及它们之间的联系。 三、探究与交流 a2- b2=(a+b)(a-b) (1)用语言怎样叙述公式? (2)公式有什么结构特征? (3)公式中的字母a、b可以表示什么?引导学生观察平方差公式的结构特征, 学生在互动交流中,既形成了对知识的全面认识,又培养了观察、分析能力以及合作交流的能力。 判断:下列多项式能不能运用平方差公式分解因式? (1) m2-1 (2)4m2-9 (3)(3)4m2+9 (4)(4)x2-25y + (5) -x2-25y2 (6) -x2-25y2 通过这一组判断,使学生加深理解和掌握平方差公式的结构特征,既突出了重点,也培养了学生的应用意识。 四、体验新知: (A)通过自学例1: 分解因式(1)25-16x2 (2)9a2 -1/4b2 引导学生得出分解因式的一般步骤,向学生渗透“化归”思想。 要让学生明确: (1)要先确定公式中的a和b; (2)学习规范的步骤书写。 (B)例2、分解因式9(m+n)2-(m-n)2

(完整版)因式分解培优题(超全面、详细分类)

因式分解专题培优 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下: 因式分解的一般方法及考虑顺序: 1、基本方法:提公因式法、公式法、十字相乘法、分组分解法. 2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法. 3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法. 一、运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1),其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例题1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7.

人教版初中数学因式分解真题汇编含答案

人教版初中数学因式分解真题汇编含答案 一、选择题 1.下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=- D .244(2)(2)x x x x -+=+- 【答案】C 【解析】 【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底. 【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()2 1x xy x x x y ++=++,故B 选项错误; C. ()()()2 x x y y y x x y -+-=- ,故C 选项正确; D. 244x x -+=(x-2)2,故D 选项错误, 故选C. 【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底. 2.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形 B .钝角三角形 C .等腰三角形 D .等边三角形 【答案】C 【解析】 【分析】 已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状. 【详解】 已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0, ∵a+b-c ≠0, ∴a-b=0,即a=b , 则△ABC 为等腰三角形. 故选C . 【点睛】 此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键. 3.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( )

初一数学下册因式分解

因式分解的常用方法 第一部分:方法介绍 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多 数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍: 一、提公因式法.:ma+mb+mc=m(a+b+c) 二、运用公式法: 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)平方差公式:))((2 2 b a b a b a -+=- (2)完全平方公式:2 2 2 2 2 2 )(2,)(2b a b ab a b a b ab a -=+-+=++ (3)立方和公式: (4)立方差公式: 例.已知a b c ,,是ABC ?的三边,且2 2 2 a b c ab bc ca ++=++, 则ABC ?的形状是( ) A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:2 2 2 2 2 2 222222a b c ab bc ca a b c ab bc ca ++=++?++=++ 222()()()0a b b c c a a b c ?-+-+-=?== 三、分组分解法: (一)分组后能直接提公因式 例1、分解因式:bn bm an am +++ 分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。 解:原式=)()(bn bm an am +++ =)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++ 例2、分解因式:bx by ay ax -+-5102 解法一:第一、二项为一组; 解法二:第一、四项为一组; 第三、四项为一组。 第二、三项为一组。 解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a -- 练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy

中考试题分类因式分解(含答案)

一、选择题 1.(2008安徽)下列多项式中,能用公式法分解因式的是() A.B.C.D. 答案:C 2. (2008宁夏)下列分解因式正确的是() A.B. C.D. 答案:C 3. (08绵阳市)若关于x的多项式x2-px-6含有因式x-3,则实数p的值为(). A.-5 B.5 C.-1 D.1 答案:A 4. (2008 台湾)有两个多项式M=2x2+3x+1,N=4x2-4x-3,则下列哪一个为M与N的 公因式( ) C (A) x+1 (B) x-1 (C) 2x+1 (D) 2x-1 答案:C 5. (08赤峰)把分解因式得:,则的值为() A.2 B.3 C.D. 答案:A 二.填空题 1.(2008年四川省宜宾市)因式分解:3y2-27= . 答案: 2.(2008年浙江省衢州市)分解因式: 答案: 3.(08浙江温州)分解因式:. 答案:

4.(08山东日照)分解因式:=____________. 答案: 6、(2008浙江义乌)因式分解:.. 答案: 7(2008浙江金华)、如果x+y=-4,x-y=8,那么代数式的值是cm。 答案:-32; 8.(2008浙江宁波) 分解因式. 答案: 9.(2008山东威海)分解因式=. 答案: 10.(2008年山东省滨州市)分解因式:(2a+b)2-8ab=_______________. 答案: 11.(2008年山东省临沂市)分解因式:=___________. 答案:a(3+a)(3-a) 12.(2008年山东省潍坊市)分解因式x3+6x2-27x=________________. 答案:. x(x-3)(x+9) 13.(2008年辽宁省十二市)分解因式:. 答案: 14.(2008年浙江省绍兴市)分解因式 答案: 15.(2008年沈阳市)分解因式:. 答案: 16.(2008年四川巴中市)把多项式分解因式,结果为.

初中数学因式分解习题

数学因式分解习题: 1、提公因式法因式分解 () 2226m n mn -= (4)9123y 23--y =___________________ (6)x n x m 221624-- 2、利用平方差公式因式分解 29a - = (6)22814y x -=____________________ 3、利用完全平方公式因式分解 (4)24129m m -+= (5) ________________102522=+-n mn m 4、利用十字相乘法因式分解 (8)256x x -+= (9)2412x x +-= 5、将下列多项式因式分解 (1)2510a b abc - (2)81182+-a a (5)245a a -- (6)2441a a -+ (7)220m m -- (三)把下列各式分解因式: 3、2244y xy x -+- 4、212x x -- 7、-x x 253+ 8、 322344x y x y xy ++

9、2()10()25x y x y +-++ 10、22(2)(2)x y x y +-+ (四)用适当的方法计算: (3)22300600297297-?+ (4)22231019923?-? (五)把下列各式因式分解 2、 ()()224a b a b +-- 解:原式= 3、 323412x x x +-- 解:原式=

分式练习题 7.若关于x 的方程01 11=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-1 8.若方程,) 4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-1 9.如果,0,1≠≠= b b a x 那么=+-b a b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.1 1+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10 二、填空题(每小题3分,共30分) 11. 满足方程:2 211-=-x x 的x 的值是________. 12. 当x =________时,分式x x ++51的值等于2 1. 13.分式方程02 22=--x x x 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时. 15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余

第一讲因式分解(一)

第一讲因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下: 原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5) =(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4) =(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

因式分解题型分类解析

因式分解 一、因式分解的概念: 因式分解(分解因式):把一个多项式化为几个整式()的形式。 二、因式分解的方法: 1、提公因式法: (1)公因式的构成一般情况下有三部分: ①系数一各项系数的最大公约数; ②字母——各项含有的相同字母; ③指数——相同字母的最低次数; (2)提公因式法的步骤: 第一步是找出公因式; 第二步是提取公因式并确定另一因式。 (3)注意:①提取完公因式后,看另一个因式的项数与原多项式的项数是否一致,可用来检验是否漏项; ②提取公因式后各因式应该是最简形式,即分解到“底”; ③如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的。 2、公式法: 运用公式法分解因式的实质是:把整式中的乘法公式反过来使用; 常用的公式: ①平方差公式: a2-b2= ②完全平方公式: a2+2ab+b2= a2-2ab+b2= 3、十字相乘法:x2+(a+b)x+ab= 特点:(1)二次项系数是1; (2)常数项是两个数的乘积; (3)一次项系数是常数项的两因数的和。

一、按知识点: 题型一: 概念的理解: 例1、下列由左到右的变形,哪些是因式分解?哪些不是?请说出理由。 (1)、()ay ax y x a +=+ (2)、()()()1121222-+++=-++y y y x x y xy x (3)、)3)(3(92-+=-x x a a ax (4)、2 22 )1(12x x x x +=++ (5)、a a a a ??=223 例3、下列各式中能用平方差公式分解因式的是( ) ①2 2 b a -- ②2 242b a - ③42 2--y x ④192 2+-b a ⑤ 22)()(x y y x -+- ⑥14-x

初二数学因式分解讲解

十字相乘法 一、导入 二、前一节课我们学习了关于x2+(p+q)x+pq这类二次三项式的因式分解,这类式子的特点是:二次项系数为1,常数项是两个数之积,一次项系数是常数项的两个因数之和。 因此,我们得到x2+(p+q)x+pq=(x+p)(x+q). 课前练习:下列各式因式分解 1.- x2+2 x+15 2.(x+y)2-8(x+y)+48; 3.x4-7x2+18;4.x2-5xy+6y2。 答:1.-(x+3)(x-5);2.(x+y-12)(x+y+4); 3.(x+3)(x-3)(x2+2);4.(x-2y)(x-3y)。 我们已经学习了把形如x2+px+q的某些二次三项式因式分解,也学习了通过设辅助元的方法把能转化为形如x2+px+q型的某些多项式因式分解。 对于二次项系数不是1的二次三项式如何因式分解呢?这节课就来讨论这个问题,即把某些形如ax2+bx+c的二次三项式因式分解。 二、新课 例1 把2x2-7x+3因式分解。 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3)。 用画十字交叉线方法表示下列四种情况: 1 1 1 3 1 -1 1 -3 2 × 3 2 ×1 2 ×-3 2 ×-1 1×3+2×1 1×1+2×3 1×(-3)+2×(-1)1×(-1)+2×(-3) =5 =7 = -5 =-7 经过观察,第四种情况是正确有。这是因为交叉相乘后,两项代数和恰等于一次项系数-7。 解2x2-7x+3=(x-3)(2x-1)。 一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2排列如下: a1c1 a2×c2 a1c2 + a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax2+bx+c=(a1x+c1)(a2x+c2)。 像这种借助开十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。 例2把6x2-7x-5分解因式。 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其

相关主题
文本预览
相关文档 最新文档