当前位置:文档之家› 含钾化合物在煤基活性炭制备中的作用

含钾化合物在煤基活性炭制备中的作用

含钾化合物在煤基活性炭制备中的作用
含钾化合物在煤基活性炭制备中的作用

煤基活性炭的定向制备与再生研究

煤基活性炭的定向制备与再生研究 煤基活性炭的定向制备与再生研究 摘要:对煤基活性炭生产过程中炭化与活化的机理展开了详细的分析和论述,同时分析了制备过程中影响质量的因素,并且具体分析了活性发电极材料的定向制备。介绍了活性炭再生以及评价方法,为煤基活性炭的快速发展提供参考。 关键词:煤基活性炭;炭化;活化;再生 中图分类号: TQ424.1 文献标识码: A 文章编号: 引言:活性炭又叫多孔炭,是一种具有高度发达的孔隙结构和极大表面积的人工炭材料,其物理化学性质稳定,耐酸碱,能经受水湿、高温及高压,不溶于水和有机溶剂,使用失效后可以再生,是一种循环经济性材料。并且活性炭的制备原料十分广泛,主要分为木质类和煤质类原料。木质类原料主要有果壳,农作物秸秆及纸浆废液等;煤质类原料主要有褐煤,无烟煤,焦炭煤及石油,石油沥青焦等。 一、煤基活性炭的生产 1、炭化 煤基活性炭的生产工艺中,炭化的主要目的是使煤分子结构中的含氧官能团断裂并使得自由基芳环进行分解聚合,从而可以增加碳的含量,为活化过程中需要形成的孔隙碳结构进行培育。煤基活性炭的炭化过程,简单的说就是在隔绝空气,不加入化学品的条件下热解。炭化过程首先是包括氢、氧等大部分的非碳元素经过分解之后,以气态的形式释放,之后一些自由的碳元素互相结合,形成有序结构,也就是石墨微晶单元形式,然后,那些无序的碳就可以填充进去,经过活化之后形成发达的空隙结构活性炭。 2、活化 煤基活性炭的活化过程就是利用水蒸气和二氧化碳等对碳进行 弱氧化的过程。活化过程分为化学活化法和物理活化法,所谓化学活化法是将化学药剂与含碳的物质进行混合,然后结合炭化进行活性炭的生产;而物理活化法是利用水蒸气和二氧化碳、氧气等与含碳物质

煤质活性炭在水处理中的应用方式

煤质活性炭在水处理中的应用方式 煤质柱状活性炭用于有毒气体的净化,废气处理,工业和生活用水的净化处理,溶剂回收等方面。并且广泛应用于工农业生产的各个方面,如石化行业的无碱脱臭(精制脱硫醇)、乙烯脱盐水(精制填料)、催化剂载体(钯、铂、铑等)、水净化及污水处理;电力行业的电厂水质处理及保护;化工行业的化工催化剂及载体、气体净化、溶剂回收及油脂等的脱色、精制;食品行业的饮料、酒类、味精母液及食品的精制、脱色;黄金行业的黄金提取、尾液回收。 煤质柱状活性炭用于饮用水深度处理时,通常有以下几种方式: 1.活性炭砂滤料双层滤料滤池,即用煤质柱状活性炭代替原有砂滤池中的部分砂滤料。炭一砂双层滤料滤池。通过炭层的吸附与砂层的过滤作用,可有效去除水中有机污染物。同时还可以除氨(NH4 双层滤料过滤过滤时,上层是无烟煤滤料,下层是石英砂,承托层滤料是鹅卵石(起承托作用,非过滤粒径或非过滤材料)。同理,三层滤料过滤过滤时,为了提高滤池出水水质,过滤器内的滤床设立单层滤料。将大颗粒而相对密度小的无烟煤滤料分布在上层;中颗粒中相对密度的滤料石英砂分布在中间层;小颗粒大相对密度的磁铁层滤料在下层,这样的滤料称为三层滤料池。这么设计特别适合于滤料脏了以后的反冲洗,滤料会自动分层,密度较小的在上层,密度较大的在下层。 2.用煤质柱状活性炭替换砂滤池中全部砂滤料,使起吸附兼过滤的作用。 3.快滤池后的单独活性炭池。即在砂滤池后面设置GAC滤池,进行二次过滤。砂滤池主要截除矾花。活性炭池吸附有机物、酚和嗅昧。与上两种工艺相比,单独活性炭池基建费用较高。但能

利用较多的活性炭吸附,降低运行费用,易更换活性炭,能更有效地去除TOC、挥发性有机物和特种有机物等。 4.生物活性炭(BAC)法工艺,指经臭氧预处理的水的活性炭吸附过程。 臭氧与颗粒活性炭相结合的臭氧生物活性炭净水处理工艺(BAC法),包括三个过程:臭氧氧化、活性炭吸附和生物降解。BAC法能高效去除水中的有机物,延长活性炭使用寿命。

活性炭吸附和脱附原理

活性炭吸附原理 1、依靠自身独特的孔隙结构 活性炭是一种主要由含碳材料制成的外观呈黑色,内部孔隙结构发达、比表面积大、吸附能力强的一类微晶质碳素材料。活性炭材料中有大量肉眼看不见的微孔,1克活性炭材料中微孔,将其展开后表面积可高达800-1500平方米,特殊用途的更高。也就是说,在一个米粒大小的活性炭颗粒中,微孔的内表面积可能相当于一个客厅面积的大小。正是这些高度发达,如人体毛细血管般的孔隙结构,使活性炭拥有了优良的吸附性能。、 2、分子之间相互吸附的作用力 也叫“凡德瓦引力”。虽然分子运动速度受温度和材质等原因的影响,但它在微环境下始终是不停运动的。由于分子之间拥有相互吸引的作用力,当一个分子被活性炭内孔捕捉进入到活性炭内孔隙中后,由于分子之间相互吸引的原因,会导致更多的分子不断被吸引,直到添满活性炭内孔隙为止。 活性炭脱附的几种方法 (1)升温脱附。物质的吸附量是随温度的升高而减小的,将吸附剂的温度升高,可以使已被吸附的组分脱附下来,这种方法也称为变温脱附,整个过程中的温度是周期变化的。微波脱附是由升温脱附改进的一种技术,微波脱附技术已应用于气体分离、干燥和空气净化及废水处理等方面。在实际工作中,这种方法也是最常用的脱附方法。 (2)减压脱附。物质的吸附量是随压力的升高而升高的,在较高的压力下吸附,降低压力或者抽真空,可以使吸附剂再生,这种方法也称为变压吸附。此法常常用于气体脱附。 (3)冲洗脱附。用不被吸附的气体(液体)冲洗吸附剂,使被吸附的组分脱附下来。采用这种方法必然产生冲洗剂与被吸附组分混合的问题,需要用别的方法将它们分离,因此这种方法存在多次分离的不便性。 (4)置换脱附。置换脱附的工作原理是用比被吸附组分的吸附力更强的物质将被吸组分置换下来。其后果是吸附剂上又吸附了置换上去的物质,必须用别的方法使它们分离。例如,活性炭对Ca2+、C1-有一定的吸附能力,这些离子占据了吸附活性中心,可对活性炭吸附无机单质或有机物产生不利影响。因此,用活性炭吸附待分离溶液中的物质后,选用CaCl2作为脱附剂可降低活性炭对吸附质的吸附稳定性,从而达到降低脱附活化能的目的。 (5)磁化脱附。由于单分子水的性质比簇团中的水分子活泼得多,能充分显示它的偶极子特性,从而使水的极性增强。预磁处理能增大水的极性,这就能充分解释经过预磁处理后活性炭的吸附容量减小的现象。当磁场强度增大时,分离出的单个水分子越多,则阻碍作用就越大,从而吸附容量减小得也就越多。活性炭

活性炭的生产方法及工艺

活性炭的生产方法及工艺 作者:易择活性炭 上文我们分享了目前市场上有哪些活性炭:按材质分主要有煤质活性炭、木质活性炭、果壳活性炭、椰壳活性炭等;按形状分类有不定型颗粒炭、柱状活性炭、蜂窝活性炭、粉末活性炭等。 那么活性炭是如何生产的?是经过怎样的生产工艺得到的呢?这次我们以煤质活性炭的生产过程为例,来聊聊活性炭的生产方法和工艺。 01原料选择 按原理来说,所有的煤炭都可以生产制作成活性炭。但因不同的煤质生产的出来的活性炭品质有很大差异,为了更好的适应市场和让资源得到合理的利用,目前国内煤质活性炭的生产原料,主要采用山西大同地区的弱粘结性烟煤和宁夏的太西无烟煤。 此外,新疆烟煤也适宜制作活性炭。近几年受新疆地区煤层开发和经济发展的影响,现在采用新疆烟煤生产活性炭的厂家也越来越多。另外陕西神木地区也有部分企业使用当地烟煤生产活性炭,但活化出来的产品吸附值普遍较低,碘吸附值主要在400-700mg/g(国标87标)。 02炭化活化工段 “活性炭是一种含碳材料经过炭化、活化处理后的炭质吸附剂”,据此句定义可知生产活性炭有两个必备的工段,就是炭化和活化。 炭化是活性炭制造过程中的主要热处理工艺之一,常采用的设备主要有流态化炉、回转炉和立式炭化炉。

煤质活性炭通常炭化的温度在350-600℃。在炭化过程中大部分非碳元素——氢和氧因原料的高温分解首先以气体形式被排除,排除了原料中的挥发分和水分,而获释的元素碳原子则组合成通称为基本石墨微晶的有序结晶生成物,使得炭颗粒形成了初步孔隙,具备了活性炭原始形态的结构。原料经过炭化之后,我们称之为炭化料,炭化料已经具备了一定的吸附能力,但吸附能力极低,经检测一般炭化料碘吸附值只有200mg/g左右。 活化方法根据活化剂的不同分为物理活化法(也称气体活化法)和化学活化法。 煤质活性炭常用的活化方法是物理活化法,以水蒸气、烟道气(水蒸气、CO2、N2等的混合气)、CO2或空气等作为活化气体、在800-1000℃的高温下与炭化料接触进行活化(实际生产过程中最常使用烟道气)。 活化过程通过开放原来闭塞的孔隙、扩大原有孔隙和形成新的孔隙三个阶段达到造孔的目的。活化主要是通过活化炉设备进行活化反应造孔,当下主流有斯列普炉(SLEP)、斯克特炉(STK)、耙式炉、回转炉,目前在国内斯列普炉是使用最多的气体活化法炉型。 03成品工段 成品工段主要是根据应用需要制作成粒度不同的产品,对于颗粒炭,主要有破碎、筛分和包装三个过程。 破碎设备通常是采用双辊式破碎机,通过调节双辊之间的间隙大小,控制产品的粒度大小,以提高合格粒度筛分的得率。 筛分设备通常采用振动筛,将破碎后的物料筛分成粒度较大、合格和粒度较大的三种。在实际生产过程中往往会在振动筛上加多层筛网筛出几种粒度范围内的产品,最后将粒度合格的产品进行包装销售。工业应用中通常采用500kg/包和25kg/包的方式进行包装。另外在生产过程中,对于特殊用途的产品也会用去石机和除铁机以降低产品的灰分。 对于粉末活性炭,主要是通过磨粉和包装两个过程。磨粉现在基本上大多工厂都是采用雷蒙磨设备生产,通过调节磨机的分析器可以生产出粒度为200目和325目的成品粉炭。 04深处理工段 针对某些特殊用途的产品,会将成品炭再进行酸洗、碱洗、水洗等深加工处理。

活性炭生产工艺简介

1.煤质活性炭主流生产工艺及产污分析 (1)生产工艺流程 煤质活性炭生产工艺主要工序为破碎磨粉、成型、炭化、活化、成品处理等。 回转炉炭化、斯列普炉活化工艺流程是国内煤质活性炭生产的主流工艺,主要分布在宁夏、山西,约占全国煤质活性炭生产企业总数的72%。 图1 活性炭生产工艺流程图 合格的原料煤入厂后,被粉碎到一定细度(一般为200目),然后配入适量黏结剂(一般为煤焦油)在混捏设备中混合均匀,然后在一定压力下用一定直径模具挤压成炭条,炭条经炭化、活化后,经筛分、包装制成成品活性炭。 (2)生产过程中的排污节点、污染物排放种类、排放方式

破碎磨粉工序排放颗粒物(煤尘),排放方式主要是有组织排放。 成型工序排放颗粒物(煤尘)、挥发性有机物,多以无组织形式逸散。 炭化、活化工序排放的主要污染物为颗粒物、SO2、NO X、苯并[a]芘(B aP)、苯、非甲烷总烃(NMHC)及氰化氢(HCN),排放方式为有组织排放。具体详见下表。 表1煤质活性炭污染物排放方式、排放种类、行业特征污染物 (3)无组织排放 煤质活性炭工业生产过程无组织排放节点有混捏成型工序、煤焦油储罐区、炭化工序车间门窗处、成型料晾晒场等。排放的污染物为挥发性有机物和一氧化碳。 污染末端治理 (1)磨粉、混捏、成品筛分包装工序粉尘治理 活性炭行业磨粉、混捏、成品筛分包装工序产生粉尘污染,磨粉工序生产设备内产生的粉尘经旋风除尘器及布袋除尘器收集,并作为原料回用,除尘效率98%以上。新建和大型企业成品筛分包装工序有回收设施回收,规模较小企业存在无组织排放现象。混捏工序无组织废气无处理措施,通过标准制定,引导企业

煤基活性炭电极材料的制备及电化学性能

第34卷第2期煤 炭 学 报V o.l34 N o.2 2009年2月J OURNAL OF C H I N A COAL SOC I ETY F eb. 2009 文章编号:0253-9993(2009)02-0252-05 煤基活性炭电极材料的制备及电化学性能 张传祥1,2,张 睿1,成 果1,谢应波1,詹 亮1,乔文明1,凌立成1 (1 华东理工大学化学工程联合国家重点实验室,上海 200237;2 河南理工大学材料科学与工程学院,河南焦作 454000) 摘 要:以太西无烟煤为原料、KOH为活化剂制备高比表面积的活性炭.采用N2吸附法对活性炭的比表面积、孔容和孔径分布进行了表征,并评价了其用作超级电容器电极材料的电化学特性.在碱炭比为4 1,800 条件下活化1h制备的活性炭比表面积达3059m2/g,总孔容为 1 66c m3/g,中孔率63%.该活性炭在3m ol/L KOH电解液中的比电容为322F/g,大电流密度 下充放电时的比电容保持率高,漏电流仅有0 06mA,是理想的超级电容器电极材料. 关键词:活性炭;超级电容器;比表面积;比电容 中图分类号:TQ536 9 文献标识码:A Preparation and electroche m ical properties of coal based activated carbons Z HANG Chuan x iang1,2,Z HANG Ru i1,C HENG Guo1,X I E Y i n g bo1, ZHAN L iang1,Q I A O W en m ing1,LI N G L i cheng1 (1 S t a t e K e y La boratory of Che m ic a lE ng ineeri ng,E ast China University of Sc i ence and Technol ogy,Shangha i 200237,Ch i na;2 School o f M ateri a l S cie nce and Engineeri ng,H e nan P olytec hn ic Un i versit y,Jiaozuo 454000,Ch i na) Abst ract:Anthracite fr o m Ta i x iCoa lM i n e w as activated by KOH to prepare h i g h perfor m ance activated carbons as electr odes for e lectric doub le layer capacitors(EDLCs).The effect of preparation para m eters on the properties o f acti v ated car bons w as i n vesti g ated and t h e ir EDLC properties w ere m easured i n3m ol/L KOH aqueous so lution. The surface area of t h e AC sa m ple prepared w ith KOH/coal ratio of4 1at800 for1h reaches3059m2/g,and its pore volum e is1 66c m3/g,i n w hich the m esoporosity is63%.The as prepared acti v ated carbons exh i b it lar ge capacitances(322F/g)and lo w leakage current(0 06mA). K ey w ords:activated car bon;super capac itor;spec ific surface area;specific capac itance 电化学电容器(EDLC)又称超级电容器(super capac itor),是介于充电电池和电容器之间的一种新型的储能器件,具有功率密度大、循环寿命长、可快速充放电,安全和无污染等特点,是一种高效、实用和环境友好的能量储存装置[1-2].在便携式仪器设备、数据记忆存储系统、电动汽车电源、应急后备电源等许多领域都有广阔的应用前景及独特的应用优势[3-7].高比表面积活性炭因具有比表面积大、化学稳定性高以及导电性好等优点,一直是制造双电层电容器电极的首选材料.从容量、功率密度、阻抗等方面考虑,作为理想的电极材料,不仅要有高的比表面积,而且要有合理的孔径分布[4].煤作为高比表面积活性炭的前驱体具有以下优点[8-13]:首先,在煤中碳是主要元素,无烟煤的碳含量可达到90%;其次,煤 收稿日期:2008-02-24 责任编辑:柳玉柏 基金项目:国家自然科学基金资助项目(50672025);国家自然科学基金重点项目(50730003);上海市 登山行动计划 基础研究重点项目(06J C14018) 作者简介:张传祥(1970 ),男,河南台前人,副教授,博士研究生 E-m ai:l zcx223@163 co m;联系人:张睿,男,山西静乐人,副教授.Te:l021-********,E-m ai:l z hangru i davi d@ecust edu c n

煤质活性炭生产工艺

煤质活性炭生产工艺 无烟煤活性炭采用优质无烟煤为原材料,成品无烟煤活性炭从外观上一般分为颗粒活性炭、柱状活性炭、蜂窝活性炭、粉末活性炭等,有时可根据客户需求另行加工。 一、活性炭生产过程表述: 1.原料初选: 选用优质无烟煤,用螺旋洗料机将原材料进行反复水洗,去除材料中杂质,将水洗过的原材料经过晴天晾晒,为炭化作准备; 2.炭化阶段: 生产活性炭一般需要2台回转炉,一台炭化用,一台活化用。先将炭化炉升温,温度达到达到150℃左右,材料内的水分几乎蒸发完毕;炭化炉温度达到400℃时,木质材料有机物急剧地进行热分解,炉温达到在500-700℃左右时为高温煅烧阶段,煅烧过程中生成液体产物已经很少,排出残留在木炭中的挥发性物质,高温煅烧是炭化阶段最重要的环节,直接决定了木炭的固定碳含量,优良的炭化料固定碳含量一般在85%以上。炭化料出炉初步进行生化检测,检测其水分、固定炭含量、灰分与碘值等, 3.活化阶段: 将活化炉升温,将炭化过的原料进入到活化炉,高压注入水蒸汽、二氧化碳、空气(主要是氧)或它们的混合物(烟道气)为活化介质,在高温下(600~900℃左右,活化段温度)进行活化,炉内温度为电脑显示控制,活化的温度与时间长短会对活性炭的碘值有直接的影响。活性炭活化阶段是生产活性炭最关键的一环,直接决定了活性炭的品质,即碘值。 4.活化好的炭避免与空气接触,直接进入经冷却塔冷却,待活性炭的温度降到100摄氏度左右为冷却完毕,此时可表观活性炭的成色,以质地均匀,乌黑密实的炭为上乘,此时进行生化指标检测,根据活性炭的国家标准检测方法检测,确定活性炭成品的质量指标。 5.用皮带输送机送往破碎机粉碎,利用排风机的吸力将输送带上活化料吸入破碎机中,重量较大的沙石等杂质留在除杂机上被除去,粉碎后的细炭由风力吸入分离器中,粗炭由分离器返回破碎机中再碎,合格炭随风力送往旋风或震动筛中分离,旋风分离器排出的气体再经袋滤器捕集细炭粉之后排空,由旋风分离器与振动筛分离的炭,可直接作为成品出售。若用户对活性炭纯度要求较高,则上述所

活性炭在生活中的作用

活性炭在生活中的作用 人类生活中活性炭的使用越来越广泛,比如:自来水厂用活性炭脱臭、饮用水净化、糖的脱色、军用防毒面具、香烟过滤嘴、空气净化器、解毒、醒酒、治理放射元素污染,降低土壤中残留农药,调理土壤性能,治理室内甲醛,蔬菜保鲜等等。 这主要是因为: 1、活性炭自身独特的孔隙结构,活性炭是一种主要由含碳材料制成的外观呈黑色,内部孔隙结构发达、比表面积大、吸附能力强的一类微晶质碳素材料。活性炭材料中有大量肉眼看不见的微孔,1克活性炭材料中微孔,将其展开后表面积可高达800-1500平方米,特殊用途的更高。 也就是说,在一个米粒大小的活性炭颗粒中,微孔的内表面积可能相当于一个客厅面积的大小。正是这些高度发达,如人体毛细血管般的孔隙结构,使活性炭拥有了优良的吸附性能。 2、活性炭分子之间相互作用力,也叫“凡德瓦引力”。虽然分子运动速度受温度和材质等原因的影响,但它在微环境下始终是不停运动的。 由于分子之间拥有相互吸引的作用力,当一个分子被活性炭内孔捕捉进入到活性炭内孔隙中后,由于分子之间相互吸引的原因,会导致更多的分子不断被吸引,直到添满活性炭内孔隙为止。 3、活性炭能吸附各种有害物质,不同材料和用途的活性炭,其内孔径大小也不一样。一般而言,优质椰壳活性炭吸附有害物质的质量可以接近甚至达到其本身的质量。 活性炭吸附有害物质的特性活性炭为物理吸附原理,在作用过程中,依靠空气作为媒介,因此被界定为被动空气净化材料。 广州怡森环保设立有活性炭制作加工工厂,专业生产各类煤质活性炭产品,广泛应用于环保、飞机制造、石油、家具、化工、医药、印刷等工业领域,为有机废气治理提供核心材料。

煤质活性炭生产工艺

煤质活性炭生产工艺公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

煤质活性炭生产工艺 无烟煤活性炭采用优质无烟煤为原材料,成品无烟煤活性炭从外观上一般分为颗粒活性炭、柱状活性炭、蜂窝活性炭、粉末活性炭等,有时可根据客户需求另行加工。 一、活性炭生产过程表述: 1.原料初选: 选用优质无烟煤,用螺旋洗料机将原材料进行反复水洗,去除材料中杂质,将水洗过的原材料经过晴天晾晒,为炭化作准备; 2.炭化阶段: 生产活性炭一般需要2台回转炉,一台炭化用,一台活化用。先将炭化炉升温,温度达到达到150℃左右,材料内的水分几乎蒸发完毕;炭化炉温度达到400℃时,木质材料有机物急剧地进行热分解,炉温达到在500-700℃左右时为高温煅烧阶段,煅烧过程中生成液体产物已经很少,排出残留在木炭中的挥发性物质,高温煅烧是炭化阶段最重要的环节,直接决定了木炭的固定碳含量,优良的炭化料固定碳含量一般在85%以上。炭化料出炉初步进行生化检测,检测其水分、固定炭含量、灰分与碘值等, 3.活化阶段: 将活化炉升温,将炭化过的原料进入到活化炉,高压注入水蒸汽、二氧化碳、空气(主要是氧)或它们的混合物(烟道气)为活化介质,在高温下(600~900℃左右,活化段温度)进行活化,炉内温度为电脑显示控制,活化的温度与时间长

短会对活性炭的碘值有直接的影响。活性炭活化阶段是生产活性炭最关键的一环,直接决定了活性炭的品质,即碘值。 4.活化好的炭避免与空气接触,直接进入经冷却塔冷却,待活性炭的温度降到100摄氏度左右为冷却完毕,此时可表观活性炭的成色,以质地均匀,乌黑密实的炭为上乘,此时进行生化指标检测,根据活性炭的国家标准检测方法检测,确定活性炭成品的质量指标。 5.用皮带输送机送往破碎机粉碎,利用排风机的吸力将输送带上活化料吸入破碎机中,重量较大的沙石等杂质留在除杂机上被除去,粉碎后的细炭由风力吸入分离器中,粗炭由分离器返回破碎机中再碎,合格炭随风力送往旋风或震动筛中分离,旋风分离器排出的气体再经袋滤器捕集细炭粉之后排空,由旋风分离器与振动筛分离的炭,可直接作为成品出售。若用户对活性炭纯度要求较高,则上述所收集的活性炭,还必须经过酸洗、水浇和脱水处理,以除去活性炭中铁盐和灰分等杂质,然后活性炭还需烘干,使含水率降至≥10%,即为活性炭成品。 二.以下是我公司生产工艺图 三.以下是我公司生产设备图

活性炭活化原理

活性炭的活化机理及应用 材研1407 朱明2014200483 活性炭是一种非常优良的吸附剂,它是利用植物原料(木屑、木炭、果壳、果核)、煤 和其它含碳工业废料作原料,通过物理和化学方法对原料进行破碎、过筛、催化剂活化、漂洗、烘干和筛选等一系列工序加工制造而成。根据活化介质的不同,活性炭活化方法分 为物理活化法、化学活化法和物理—化学复合活化法。物理活化水蒸汽、二氧化碳、空气 或它们的混合气体对环境污染小,因其依靠氧化碳原子形成孔隙结构,活化温度较高且活 性炭得率低。化学活化法活性炭得率较高,孔隙发达,吸附性能好。但此法对设备腐蚀性大,环境污染严重。热解能量循环利用困难。而且活性炭中残留化学药品.在应用方面受 到限制。 一.活性炭的活化机理 1.物理活化法 物理活化法一般分两步进行,先将原料在500℃左右炭化,再用水蒸汽或CO2 等气体在高温下进行活化。高温下,水蒸汽及二氧化碳都是温和的氧化剂,碳材料内部C原子与活化剂结合并以CO+H 2或CO的形式逸出,形成孔隙结构。物理活化法所需的活化温度一般较化学活化法高,而且活化所需的时间也更长,因此耗能比较大,成本高。尽管有这些缺点,物理活化法在实际生产中的应用仍然十分广泛,原因在于其制得的活性炭无需过多 的后处理步骤,不像化学活化法制得的活性炭需要除去残留的活化剂。 将炭化材料在高温下用水蒸气、二氧化碳或空气等氧化性气体与炭材料发生反应,使炭材料中无序炭部分氧化刻蚀成孔,在材料内部形成发达的微孔结构。炭化温度一般在600℃,活化温度一般在800℃∽900℃。其主要化学反应式如下: C+2H2O 2H2+CO2 △H=18kcal C+H2O H2+CO △H=31kcal CO2+C 2CO △H=41kcal 上述三个化学反应均是吸热反应,即随着活化反应的进行,活化炉的活化反应区域温度将逐步下降,如果活化区域的温度低于800℃,上述活化反应就不能正常进行,所以在活化炉的活化反应区域需要同时通入部分空气与活化产生的煤气燃烧补充热量,或通过补充外加热源,以保证活化炉活化反应区域的活化温度。 活化反应属于气固相系统的多相反应,活化过程中包括物理和化学两个过程,整个过程包括气相中的活化剂向炭化料外表面的扩散、活化剂向炭化料内表面的扩散、活化剂被炭化料内外表面所吸附、炭化料表面发生气化反应生成中间产物(表面络合物)、中间产物分解

活性炭的制备

活性炭的制备 1 活性炭的制备原料 (1) 2 活性炭的制备方法 (1) 3 煤基活性炭的制备方法 (2) 4 煤基活性炭中的粘结剂 (3) 1 活性炭的制备原料 活性炭的结构特性依赖于前躯体的性质、原料的炭化、活化和化学的调整条件[22]。选择合适的原料是影响活性炭性质的一个重要因素,活性炭可用各种类型的碳质材料来制备,来源非常广泛,大体可以分为以下几类: ①有机高分子聚合物,如萨兰树脂、酚醛树脂、聚糖醇等; ②植物类,主要是利用植物的坚果壳或核,如核桃壳、杏核、椰壳等; ③煤及煤的衍生物,如各种不同煤化度的煤及其混合物。 原料的选择一般以低灰分、高含碳量以及尽可能低的挥发分为最佳。较好的原料主要是煤(褐煤、长焰煤、烟煤、无烟煤)、木材、果壳。由于煤来源广泛、价格低廉、制备工艺相对简单而应用较多。煤的主要成分是碳,表面化学性质活泼,孔隙率高、比表面积大,其多孔结构有利于制成活性吸附材料。在以煤为原料制备活性炭的技术开发方面,德国、日本、美国、俄罗斯和中国已做了大量的研究工作,并取得了一定成果。 2 活性炭的制备方法 活性炭的制备方法主要可以分为:碳化法、活化法、碳沉积法、热收缩等方法。碳化法是将碳质原料置于惰性气氛中,以适当的热解条件得到碳化产品的方法。其基本原理是基于加热过程中各基团、桥键、自由基和芳环等复杂的分解聚合反应,表现为碳化产物的孔隙发展、孔径的扩大和收缩。在碳化过程中,碳质原料中的热不稳定组分以挥发分形式脱出,从而在半焦上留下孔隙。碳化法适用于高挥发分原料,是所有其他方法的基础。影响碳化过程的主要因素是升温速率、碳化温度与恒温时间。采用的升温速率一般在5~15°C/min,碳化温度多在500~

机电一体化在煤基活性炭生产上的应用

机电一体化在煤基活性炭生产上的应用 煤基活性炭生产行业的发展日渐蓬勃,其技术也被越来越关注。本文先从机电一体化技术单独分析开始,在介绍其功能原理的同时又简要分析了其技术优势。又从煤基活性炭生产工艺开始,探究出了其发展存在的问题,最后介绍机电一体化运用到煤基活性炭生产链上的种种优越性。 标签:机电一体化;煤基活性炭;特征模型;匹配对接 0 引言 随着全球科技的高速发展,各科类行业的交织发展在很大深度上得到推进,这也间接导致能源工程与机械工程行业在技术与设备方面进行改革的必要。经济全球化的来到,有关机构早已感受到改革趋势的紧迫性,要想在市场上稳固的立足,只能通过技术改造和生产模式转型。煤基活性炭作为一种优良的吸附性产品,在其生产过程中,运用机电一体化替换纯人力操作生产具有超前的优越性。 1 机电一体化的技术优势与应用现况 机电一体化作为一种新型科技机械技术,它的主要特性是指在传统的机械设备里引入电子计算机控制系统,使得普通机械生产设备变得智能化、系统化。从另外一个角度讲,机电一体化是把光学、信息学、微观加工学以及微机电一体化的新型技术。机电一体化不管是在数控领域、机器领域、还是集成制造领域都取得了很大的成效。 1.1 功能原理与应用解析 所谓机电一体化系统,原理上讲就是将机器、电子与通讯等独立功能与特性技术相结合为一体的高级综合系统,一款机电一体化系统的核心组成要素是总集成系统与子系统的对接接口设计。大多数机电一体化设备的总性能是由多个子设备的功能特性的协同效应来组成的,这就是机电一体化系统的总系统功能。对于机电单元件功能剖析,需要逐步探究机电对接特性来解决相关问题。而解决这类问题的一般思路就是将各个单元控件作为整体与相关功能部件融合,在充分考虑接口适配器的时候建立机电一体化接入口特性模型(见图1)来解析其功能特性。 1.2 技术优势 机电一体化技术具有的安全性高,不管是从监视、警报还是自我保护方面,都具备其独特的优越性,最大程度上降低安全系数;得益于机电一体化的高强数字处理与控制的特点,以及超高的灵活性,保证了其生产效率与质量;系统化运行模式对产品的加工与质量检测监控能够在最短时间内发现问题并做出正确的处理,保证流程的持稳运行。

影响活性炭吸附能力的三大主要因素

活性炭水处理所涉及的吸附过程和作用原理较为复杂,影响活性炭吸附能力的因素也较多。活性炭吸附能力的影响因素主要有以下三点: 一、活性炭的性质 由于吸附现象发生在吸附剂表面上,所以吸附剂的比表面积是影响吸附的重要因素之一,比表面积越大,吸附性能越好;活性炭的微孔分布是影响吸附的另一重要因素;此外活性炭的表面化学性质、极性及所带电荷,也影响吸附的效果。 二、吸附质(溶质或污染物)的性质 同一种活性炭对于不同污染物的吸附能力有很大差别。 (一)溶解度 对同一族物质的溶解度随链的加长而降低,而吸附容量随同系物的系列上升或分子量的增大而增加。溶解度越小,越易吸附。 (三)极性 活性炭基本可以看成是一种非极性的吸附剂,对水中非极性物质的吸附能力大于极性物质。 (四)吸附物的浓度 吸附质的浓度在一定范围时,随着浓度增高,吸附容量增大。因此吸附质(溶质)的浓度变化,活性炭对该种吸附质(溶质)的吸附容量也变化。 三、溶液pH 由于活性炭能吸附水中氢、氧离子,因此影响对其他离子的吸附。活性炭从水中吸附有机污染物质的效果,一般随溶液pH值的增加而降低,pH值高于9.0时,不易吸附,pH值越低时效果越好。在实际应用中,通过试验确定最佳pH值范围。 水处理分为上水处理和下水处理:

上水通常指生活用水、工业用水、纯水等经过人工处理后使用的水;下水通常指生活污染水、工业污水等。1.上水的活性炭处理:20世纪末我国有些水厂开始应用臭氧与活性炭滤池联合使用的生物活性炭法。实践表明,有如下作用: 能去除水中容解的有机物;能降低UV的吸收值,降低水中总有机碳(total otganic carbon,TOC)、化学需氧量及氯的含量;能将低进水中三卤甲烷前体;对色度、铁、锰、酚有去除效果;能使致实验为阳 性的水分显阴性。韩研活性炭采用先进的水质深度处理技术,结合城市自来水使用分配的实际情况,将椰壳活性炭投入小型、高效,且能去除致癌、致突变、致畸等污染物的净化装置,以自来水为原料作更深度的加工,保证饮用水的高质量。这样既确保了居民的健康,又在居民经济承受范围之内。2.下水活性炭处理:1953年发生在日本的水俣病事件,就是含甲基汞工业废气污染水体,使水俣湾打批居民发生神经性中毒的公害大事。韩研活性炭上引入聚硫脲有利于提高对汞吸附能力。该活性炭对汞的吸附能力最佳。含二氯乙烷的废水可以用活性炭柱吸附,饱和后用蒸汽再生,蒸汽冷凝后分成去水,常可定量地回收二氯甲烷。 xx公司相关产品介绍: 水处理活性炭系列介绍 污水处理粉末活性炭http: 煤质污水处理活性炭http: 果壳净水活性炭http:

煤基活性炭生产用斯列普活化炉生产工艺探讨

煤基活性炭生产用斯列普活化炉生产工艺探讨 肖宏生,张文辉 (煤炭科学研究总院北京煤化学研究所,北京 100013) 摘要:讨论了煤基活性炭生产用斯列普活化炉合理工艺的控制,探讨了降低煤基活性炭生产成本、提高活性炭质量的途径。 关键词:斯列普活化炉;工艺 中图分类号:T Q 424 1 文献标识码:A 文章编号:1006 6772(2001)01 0057 04 收稿日期:2001-01-10 作者简介:肖宏生(1965-),男,辽宁庄河人,工程师,长期从事活性炭产品开发和工程设计工作。 煤基活性炭是中国产量最大的活性炭产品,据统计,1999年中国煤基活性炭产量超过9万t,其中产品80%出口。中国煤基活性炭生产主要采用斯列普活化炉,斯列普活化炉是活化炉的一种,由于其具有生产能力大、产品质量均匀稳定、产品的吸附指标高、能同时生产多种规格活性炭、正常生产时不需外加热源、炉子使用寿命长等特点,因而被国内煤质活性炭厂广为采用。自20世纪50年代,中国从前苏联引进设计能力为1000t/a 斯列普活化炉后,经过国内几代科研人员的不断改进和重新设计,目前,斯列普活化炉已发展成设计能力为300t/a 、500t/a 、800t/a 、1000t/a 4个系列。其中500t/a 斯列普活化炉因其造价较低,产出较为合理,国内煤质活性炭厂多采用此炉型,但是国内活性炭厂500t/a 斯列普活化炉工艺控制存在一定差别。 斯列普活化炉工艺参数控制的合理与否直接关系到活化炉的产量、产品质量及炉子的使用寿命。斯列普活化炉工艺参数控制包括炭化料、加料与卸料、活化温度、蓄热室顶部温度、燃烧室温度、通 入活化炉的蒸汽压力与流量、通入活化炉的空气压力与流量、炉内压力、加热半炉氧含量、加热半炉与冷却半炉切换周期。 本文根据笔者多年经验就500t/a 斯列普活化炉的合理工艺参数的控制、生产成本的降低和产品质量的提高进行了探讨。 1 炭化料质量对斯列普活化炉操作的影响 炭化料是加入活化炉进行活化的原料。炭化料的质量直接影响活性炭的质量、产量及炉子的使用寿命。对炭化料的要求主要包括炭化料的热稳定性、强度、灰熔点、灰分含量、堆积重、粒度、挥发分、水分及水容量。 炭化料的热稳定性要好,其在高温下不能碎裂及有结块性。炭化料若有结块性,其在活化炉的补充炭化带就会结块堵塞活化炉的产品道;炭化料若在高温下碎裂,则会使料层致密,活化介质不易穿透料层,造成活化不均匀,产品的吸附指标难于提高,活化料中常有过烧现象即白点或白条。另外,由于炭化料的碎裂容易导致活化炉产品道膨料造成

活性炭室内空气净化的吸附应用原理

活性炭空气净化的吸附应用原理 1 室空气品质 随着科学技术的飞速发展,人类在生活居室环境方面获得了巨大的改善。空调的广泛使用给人们创造了一个以温湿度为主的舒适性环境,但同时也带来了室空气品质问题,尤其是无新风系统的空调房间,导致了“病态建筑综合症”、“建筑相关病”和多种化学物过敏症。“ 病态建筑综合症”的常见症状主要有头痛、神经疲劳、皮肤干燥、鼻塞、流鼻涕、流泪、眼痒等等。“建筑相关病”是指由空气中的某种成分直接引起的病症,比较严重的有“军团病”、“超敏性肺炎”等,有时甚至能带来生命危险。 所谓室空气品质,一般是指在某个具体的环境,空气中的某些要素对人群工作、生活的适宜程度,是反映了人们的具体要求而形成的一种概念。这种概念是建立在“以人为本”的基础上的。显然,人们不仅要求适宜的室温湿度,而且人们还要求室空气是新鲜的,无污染的,从而引发了对室空气品质的广泛研究。 室空气基本污染物与污染源如下表一室主要污染物及其来源:悬浮微粒、燃烧、抽烟、人体、烟草烟雾、人的吸烟行为、石棉、保温材料、氡及其蜕变物、墙体和地基、建筑材料、家具、挥发性有机物(vocs)油漆、清洁剂、建筑材料、一氧化碳、燃烧、吸烟、二氧化碳、燃烧、呼吸、微生物、家畜、人体、过敏物、动物、毛发、昆虫、花粉、臭氧

室空气有害物的种类繁多,但一般都是以低浓度的形式存在,有时还远远低于人的嗅觉阈值,但这并不意味着人体无害,恰恰相反,人一生中有五分之四的时间在室度过,长期受低浓度污染物的直接毒害,其后果还是相当严重的。 为了清除室空气中的有害物质,通风是一种非常有效的办法,但是它也有缺点:在室外大气污染日趋严重的今天,燃料的燃烧、工业生产及机动车辆排放的废气使得室外空气的质量也很差,而且室外空气与室空气的交换会带来巨大的能耗。 局部通风有时也因为污染源较分散或根本就不知道气态污染物从何而来而无法实现。目前通用的过滤器只是过滤灰尘,还不具备清除有害气体和细菌的功能。成功分离低浓度的气态污染物质和细菌对改善室陆空气品质至为重要。 活性炭吸附材料对室气态污染物具有优秀的吸附性能,使活性炭过滤器逐渐应用于民用建筑空调系统中。在通风量不变的条件下,它能使室空气得到更全面的净化。 2 活性炭的发展历史及分类 使用活性炭作为一种吸附材料已具有悠久的历史。早在古埃及时代,人类就会利用木炭来消除伤口散发的气味;1773年,勒首次科学地证明了木炭对气体具有吸附力;1808年,木炭被用到蔗糖业;第一次世界大战期间,为了消除化学武器的威胁,活性炭防毒面具问世,这是活性炭第一次应用于空气净化领域;上个世纪六十年代,具有独特化学结构、物理结构且吸附性能优异的新型纤维状活性炭材料研制成功。目前对吸附材料的研究集中于非均匀吸附剂的加工工艺、微观特征、能量不均匀性及吸附性能

年产10万吨煤质活性炭生产项目建议书

年产10万吨煤质活性炭生产线项目建议书 中国活性炭技术咨询公司 二OO年六月二十日

编制:*****(高级经济师)

目录 1、总论--------------------------------------------------5 1、1概述-------------------------------------------------5 1、2研究工作的范围---------------------------------------7 2、需求预测和建设规模------------------------------------8 2、1需求预测---------------------------------------------8 2、2建设规模和工艺流程-----------------------------------10 3、原料、燃料状况----------------------------------------13 3、1原料、辅助材料和燃料的种类和数量---------------------13 3、2原料来源和供应运输条件-------------------------------13 4、建设条件和厂址选择-------------------------------------14 4、1交通运输和水、电、汽的供应条件-----------------------14 4、2厂址选择的建议---------------------------------------15 5、设计方案-----------------------------------------------15 5、1项目构成---------------------------------------------15 5、2总平面布置-------------------------------------------17 5、3技术来源和生产方式-----------------------------------17 6、环境保护-----------------------------------------------18 7、企业组织、劳动定员和人员培训---------------------------19 7、1企业组织----------------------------------------------19

活性炭过滤器原理及技术流程

活性炭颗粒的大小对吸附能力也有影响。一般来说,活性炭颗粒越小,过滤面积就越大。所以,粉末状的活性炭总面积最大,吸附效果最佳,但粉末状的活性炭很容易随水流入水族箱中,难以控制,很少采用。 活性炭过滤器原理及技术参数分析 一、活性炭过滤器作用原理 活性炭是一种很细小的炭粒单位面积有很大的微孔,通常我们叫他毛细管孔。这种毛细管具有很强的吸附能力,由于炭粒的表面积很大,在与与水中杂质充分接触。这些杂质能被吸附在微孔中,从而去掉水中胶体等杂质。活性炭还能吸附水中的CL离子以及臭氧,对水中的有机物也有一定的吸附能力,能明显的对水中的色素进行吸附,在水处理行业一般我们要求碘值在700mg以上,这样的活性炭的吸附能力较强。 二、活性炭过滤器制作结构 活性炭过滤器一般采用不锈钢304材质,碳钢材质,因为活性炭吸附水中CL等氧化剂、金属离子,微孔中的细菌以及化学物质,对罐体产生腐蚀,所以一般活性炭过滤器内要衬胶防腐。 三、活性碳过滤器技术参数 1、过滤速度:8-12m3/h 2、工作温度:常温工作压力 3、反洗压缩空气量:18-25L/m2.S 4、滤料层高:1000-1200mm 膨胀率50% 5、反洗强度:9-15L/m2.S 6、反冲洗时间:4-6分钟 四、活性炭过滤装置的工作方式: Ⅰ采水:生水自活性炭塔槽上方流入,经活性炭过滤装置下方流出,而得到去除杂质、臭味等水质。 Ⅱ逆洗:目的为逐出活性炭上方之沉积物。经一段时间的过滤后,若干杂质沉积在活性炭上方排出并除去。 Ⅲ沉整:在逆洗时活性炭会上浮,逆洗完成后将所有阀门关闭使活性炭因重力而沉下。 Ⅳ洗净:在逆洗时恐有杂质附在活性炭下面,用正洗来洗净以免在采水时候污染水质。

活性炭的生产工艺

活性炭的生产工艺 木质材料炭化过程发生什么变化? 木材、木屑、树根、果核和果壳等木质材料的炭化,是把它放在炭化设备内加热,进行热分解。在热解过程,发生一系列复杂化学反应,产生很多新生产物,木质材料发生了变化。根据热分解过程的温度变化和生成产物的情况等特征,炭化过程大体上可分为如下四个阶段。 1. 干燥阶段 这个阶段的温度在20—150摄氏度,热解速度非常缓慢,主要是木材中所含水分依靠外部供给的热量进行蒸发,木质材料的化学组成几乎没有变化。 2. 预炭化阶段 这个阶段的温度为50—275摄氏度,木质材料热分解反应比较明显,木质材料化学组成开始发生变化,其中不稳定的组分,如半纤维素分解生成二氧化碳、一氧化碳和少量醋酸等物质。 以上两个阶段都要外界供给热量来保证热解温度的上升,所以又称为吸热分解阶段。 3. 炭化阶段 这个阶段的温度为75—400摄氏度,在这个阶段中,木质材料急剧地进行热分解,生成大量分解产物。生成的液体产物中含有大量醋酸、甲醇和木焦油,生成的气体产物中二氧化碳含量逐渐减少,而甲烷、乙烯等可燃性气体逐渐增多。这一阶段放出大量反应热,所以又称为放热反应阶段。 4. 煅烧阶段 温度上升450—500摄氏度,这个阶段依靠外部供给热量进行木炭的煅烧,排出残留在木炭中的挥发性物质,提高木炭的固定碳含量。这时生成液体产物已经很少。 应当指出,实际上这四个阶段的界限难以明确划分,由于炭化设备各个部位受热量不同,木质材料的导热系数又较小,因此,设备内木质材料所处的位置不同,甚至大块木材的内部和外部,也可能处于不同热解阶段。 炭化对原料的要求 炭化的原料很多,薪材、森林采伐剩余物、森林抚育时消除的杂木、木材加工厂的剩余物,如木屑等都可以进行炭化。除木屑为粒状,需采用特殊炭化炉炭化外,其他原料多以木段为主,都适合大多数炭化炉或炭窑炭化原料的要求。 炭化原料树种可分为三类:第一类为硬阔叶材,如水青冈、麻栎、苦槠、榆等;第二类为软阔叶材,如杨、柳、椴等;第三类为针叶材,如马尾松、南亚松、湿地松等。要生产出高质量的木炭,以适合冶金工业和二硫化碳工业等工业部门使用,炭化原料应选用硬阔叶材,而针叶材常用来生产松木炭,用于制造活性炭。 炭化材最好大小均匀,一般要求直径不大于0厘米,若直径太大,应把它劈开,劈裂线长度要求小于12厘米。炭化材的长度以炭化炉或炭窑的高度决定,若大材不劈开,因木材的导热性差,炭化时产生的气体混合物,由木材内部通向外部,所需通过的路径很长,炭化时间也长。会导致木材机械强度下降。 供炭化的薪材多属萌芽林,故最好在秋冬季采伐,此时,树木处于休眠阶段,树液停止流动,根部贮存物质,不受损害,利于来年萌芽更新;而且秋季天气晴朗,相对湿度小,木材含水量低,伐下的薪材易干燥,可缩短炭化时间,减少燃料消耗,生产的木炭裂缝少,质量高。此外,腐朽木、病害枯死的木的木材,均不宜作炭化原料,因为腐朽木材炭化时,木炭疏松、易碎和容易自燃,大大降低木炭质量。

相关主题
文本预览
相关文档 最新文档