当前位置:文档之家› 电位差计校准电表实验报告(完整版)

电位差计校准电表实验报告(完整版)

原电池电动势的测定实验报告

实验九原电池电动势的测定及应用 一、实验目的 1.测定Cu-Zn电池的电动势和Cu、Zn电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC-Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=-(9-1) 式中G ?是电池反应的吉布斯自由能增量;n为电极反应中得失电子的数目;F为法拉第常数(其数值为965001 ?);E为电池的电动势。所以测出该电池的电动势E后,进而 C mol- 又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计 测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就

可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22()()2Zn Zn s Zn a e ++ - + 正极起还原反应: 22()2()C u C u a e C u s + +- + 电池总反应为: 2222()()()()C u Zn Zn s C u a Zn a C u s ++++ ++ 电池反应的吉布斯自由能变化值为: 22ln C u Zn Zn C u a a G G RT a a ++?=?- (9-2) 上述式中G ? 为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221C u Zn a a + +==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn C u a R T E E nF a ++ =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1ln 2C u C u C u RT F a ??+ ++=- (9-6) 22,1ln 2Zn Zn Zn RT F a ??+ + -=- (9-7) 式中2,Cu Cu ?+ 和2,Zn Zn ?+ 是当221C u Zn a a + +==时,铜电极和锌电极的标准电极电势。 对于单个离子,其活度是无法测定的,但强电解质的活度与物质的平均质量摩尔浓度和

实验报告-温差电动势的测量

大学物理实验报告 实验3-7 温差电动势的测量 一、实验目的: 测量热电偶的温差电动势。 二、实验器材: UJ31型箱式电位差计、热电偶、光点式或数字式验流计、标准电池、直流稳压电源、温度计、电热杯、带温度显示的水浴锅、保温杯。 三、实验原理: 1、热电偶 两种不同金属组成一闭合回路时,若两个接点A、B处于不同温度T0和T,则在两接点A、B间产生电动势,称为温差电动势,这种现象称为温差现象。温差电动势ε的大小除和热电偶材料的性质有关外,另一决定的因素就是两个接触点的温度差(T-T0)。电动势与温差的关系比较复杂,当温差不大时,取其一级近似可表示为 ε =C(T-T ) 式中C为热电偶常数(或称温差系数),等于温差1℃的电动势,其大小决定于组成热电偶的材料。 热电偶可制成温度计。为此,先将T0固定用实验方法确定热电偶的ε-T关系,称为定标。定标后的热电偶与电位差计配合可用于测量温度。与水银温度计相比,温差电偶温度计具有测量范围大(-200~2000℃),灵敏度和准确度高,便于实验遥测和A/D变换等一系列优点。 2、电位差计 电位差计时准确测量电势差的仪器,其精度很高。用伏 特表测量电动势x E,伏特表读数为U=x E-IR,其中R为 伏特表内阻。由于U

如图,如果两个电动势相等,则电路中没有电流通过,I=0, N E =x E 。如果 N E 是标准电池,则利用这种互相抵消的方法就能准确地测量被测的电动势x E , 这种方法称为补偿法,电位差计就是基于这种补偿原理而设计的。 在实际的电位差中, N E 必须大小可调,且电压很稳定。电位差计的工作原 理如图所示,其中外接电源E 、制流电阻P R 和精密电阻AB R 串联成一闭合电路,称为辅助回路。当有一恒定的标准电流 o I 流过电阻AB R 时,改变AB R 上两滑动头C 、D 的位置就能改变C 、D 间的电位差 CD V 的大小。由于测量时应保证 o I 恒定不变,所 以在实际的电位差计中都根据o I 大小把电阻的数 值转换成电压值,并标在仪器上。CD V 相当于上面 的“ N E ”,测量时把滑动头C 、D 两端的电压 CD V 引出与未知电动势x E 进行比较。 (1)校准: 根据标准电池电动势N E 的大小,选定C 、D 间的电阻为N R , 使 N E =o I N R ,调节P R 改变辅助回路中的电流,当验流计指零时,AB R 上的电压 恰与补偿回路中标准电池的电动势N E 相等。由于 N E 和 N R 都准确地已知,这时 辅助回路中的电流就被精确地校准到所需要的o I 值。 (2) 测量: 把开关倒向x E 一边,只要x E ≤o I N R ,总可以滑动C 、D 到' D 'C 、使检流计再度指零。这时'D 'C 、间的电压恰和待测的电动势x E 相等。设'D 'C 、之间的电阻为 x R ,可得x E = o I x R 。因o I 已被校准,x E 也就知道了。 由于电位差计的实质是通过电阻的比较把待测电压与标准电池的电动势作比较,此时有 N N x x E R R E = 因而只要精密电阻AB R 做得很均匀准确、标准电池的电动势 N E 准确稳定、

电焊机电流表电压表校准规范

电焊机电流、电压表校准规范1.0 目的 为确保本公司的电焊机数显电流、电压表的测量能力与测量要求相一致,特制定本规范。 2.0 适用范围 本规范适用于公司电焊机数显电流、电压表的首次校准、后续校准和使用中校验,主要用于电焊机数显电流、电压表现场校准。 3.0 程序要求 电焊机主要用于金属焊接,焊接电流的大小直接关系到焊接件的质量。对电焊机的校准,主要是比较实测输出电流与电焊机仪表指示电流或调节器指示电流之间的关系。 3.1 对比校准原则 公司内部校准应该在适宜的环境下进行,包括温度、湿度,场所等。 应配置经检定的检测标准器具。 校准人员需经过专业培训,考试合格。 校准人员在校准过程中,应严格按校准规范操作,并客观的记录校准内容和保存原始记录资料。 本规范依据JJG124-2005《电流表、电压表、功率表及电阻表检定规程》。 3.2 校准周期 一般情况下,校准间隔建议为12个月。用户要求或损伤或有怀疑时应重新校准。 3.3 校准条件 3.3.1 环境条件 温度(0~35)℃ 相对湿度≤85%. 3.3.2 校准用计量标准装置 a)钳形电流表或其他大电流精密测量装置; b)数字电压表或数字万用表的电压档。 3.3.3 校准用辅助装置 电焊机负载箱或其他电功率负载装置或有电工生成稳定电弧。 3.3.4 校准地点:使用地点 3.3.5 校准人:公司量具管理员和电工人员 4.0 校准项目和方法 本公司的电焊机数显电流、电压表的校准项目和方法如下: 1)检查外观,电流表、电压表外观检查面板完好、玻璃清晰,不存在任何影响测量性能的缺陷。 2)输出电流、电压测试 用直接比较法进行校准,在常用范围内均匀选取校准点。用钳形电流表测量电流,电压表测 量电压。 用可调或不可调负载作为输出负载时,用合适容量的导线将负载箱串接入电焊机输出回路中

电位差计校准电流表

电位差计校准电流表

电位差计校准电流表 专业: 摘要: 电位差计不需要从待测电路中取出电流,不会干扰到待测电路的工作状态,因而可以进行精密测量。由于结构中采用了高精密度的电阻元件,标准电池和灵敏的检流计,因而测量结果具有很高的精度。由于学生式电位差计准确度等级为0.1级,而通常所用的电流表只有0.5级。本实验通过设计一个合理的电路和选定合适的器材,校准一个20mA电流表。 关键字:电位差计等级电流表校准 引言: 通过用电位差计校准电表和测电阻,加强对设计性实验的练习,培养独立工作能力;并且学习到校准电表和测电阻的一种方法;还能更好地掌握电位差计的使用方法,加深对电位差计工作原理的理解。 实验目的: 1、了解补偿法测电动势的原理 2、掌握电位差计测电动势的使用方法 3、学习用电位差计校准电表的方法 原理简述: 实验前,计算RX允许通过的Imax,为避免发热,常取1/5Im为最大工作电流 一、实验中应用的原理 1、电位补偿原理 一定的电源具有一定的电动势,如果直接用伏特计接在电源的两极,用电压表不能准地测电动势。电压表可以测量电路各部分的电压,但不能测量具有内阻的电源的电动势。因为电压表并联在电源的两端时(图1),根据闭合欧姆定律可知,电压表的指示是此时电源的端电压,而不是它的电动势。因为这时电路中有电流通过,根据全电路欧姆定律有:

即 r I E V r I V E x x ?-=?+= 图1 补偿法原理图 E —电源电动势;r —电源内阻;I —回路中电流;V —电压表指示数;电压表的指示数V ,表示电源的端电压;Ir 为电源内阻上的电压降。由于电源内阻是未知的,因此由上式不能根据V 的值准确确定电源的电动势。显然只有在待测电路中没有电流通过的条件下,测得的电源两极之间的端电压才是电源的电动势的准确值。利用补偿法可以满足这种条件。其原理如图1所示。图中E x 是被测电动势,E s 是可调节电动势大小的标准电源。两个电源通过检流计G 对接在一起。调节电动势E s 的大小,使回路中检流计指针指示为零(即回路电流为零),则E x 与E s 的电动势大小相等,则有E x =E s 。 此时称电路达到平衡。知道了平衡状态下E s 的大小,就可以确定被测电动势E x 的值了,这种测定电源电动势的方法叫补偿法。利用补偿法制成的测量电位差(或电动势)的仪器就叫做电位差计。 图2是将被测电动势的电源Ex 与一已知电动势的电源E O “+”端对“+”端,“-”端对“-” 端地联成一回路,在电路中串联检流计“G ”,若两电源电动势不相等,即Ex≠E 0, 回路中必有电流,检流计指针偏转;如果电动势E O 可调并已知,那么改变E O 的大小,使电路满足E X =E 0,则回路中没有电流,检流计指示为零,这时待测电动势E X 得到己知电动势E O 的完全补偿。可以根据已知电动势值E O 定出E X ,这种方法叫补偿法。如果要测任一电路中两点之间的电压,只需将待测电压两端点接入 图2 上述补偿回路代替Ex ,根据补偿原理就可以测出它的大小。我们知道,用电压表测量电压时,总要从被测电路上分出一部分电流,从而改变了被测电路的状态,用补偿法测电压时,补偿电路中没有电流,所以不影响被测电路的状态。这是补偿测量法最大的优点和特点。 2、电位差计的工作原理 电位差计的原理线路如图2所示。其中E s 为标准电池,E x 为被测电源,E 是工作电源,G 是检流计。由工作电源E ,电阻R 、R 1及R n 串联组成的电路称为辅助电路(R -R s -R n -E )。调节R n 可改变电路的工作电流。使用电位差计可分两个步骤。 (1)校准工作电流

原电池电动势的测定实验报告

实验九 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。

在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22()()2Zn Zn s Zn a e ++-+? 正极起还原反应: 22()2()Cu Cu a e Cu s ++-+? 电池总反应为: 2222()()()()Cu Zn Zn s Cu a Zn a Cu s ++++++? 电池反应的吉布斯自由能变化值为: 22ln Cu Zn Zn Cu a a G G RT a a ++?=?- (9-2) 上述式中G ?为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221Cu Zn a a ++==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn Cu a RT E E nF a + + =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1 ln 2Cu Cu Cu RT F a ??+ + += - (9-6)

电位差实验报告

电位差实验报告 篇一:大学物理实验报告----电位差计的使用 大学物理实验报告——电位差计的使用 篇二:电位差计校准电表实验报告(完整版) 电位差计校准电流表 1 2 3 4 5 篇三:物理实验报告9_电位差计 实验名称:电位差计 实验目的: a.了解电位差计改装的原理,掌握一般使用的方法 b.学习使用电位差计校准电流表 实验仪器: UJ33a型电位差计等。 实验原理和方法: 一、“UJ33a型电位差计”使用方法 倍率开关K1平时处于“断”位置,使用时旋转到所需位置(本实验

为“?1”位置),开关K3旋转至“测量”位置。接通电源后,旋动“调零”旋钮使检流计指零;将K2键扳向“标准”,旋动“工作电流调节”旋钮,使检流计指针指零,这时工作电流达到额定值10.0000ma,仪器准备就绪。 测量时,将调节补偿电压的三个盘或旋钮调到与待测电压差不多大小后,将K2键扳向“未知” 位置,调节读数盘(一般调最右边的大盘即可),使检流计指针返零,松开K2键,即可读数。测量完毕,K1扳回“断”位置。二、电位差计工作原理和测量线路电位差计采用比较法(补偿法)测量电压,测量时无须从待测电路取出电流,不会干扰待测电路的工作状态,因而可以进行精密的测量。由于在结构上采用了高精度的电阻元件、标准电池和灵敏的检流计,因而测量结果具有很高的精度。使用时将K2键扳向“标准”,使标准电阻两端的电压()与标准电池电动势比较,调节“工作电流调节”旋钮使检流计指零,则工作电流为10.000ma,再将待测电压与某一段电阻上的电压进行比较,从而确定待测电压。 三、校准微安表按照线路图连接好电路,并将标准电阻两旁的导线接到电位差计的“未知”接线柱,就可进行微安表校准。所谓“校准”就是在每个电表电流读数下,测定电阻两端的准确电压,从而算出准确电流,再与电表读数电流进行比较。所谓“上行”是指电流表读数由小到大逐点测定相应的电压值(读至小数点后3位);“下行”则由大到小逐点进行测定。校准电流数据填入到数据记录表中。注意:1.校准电表前必须先进行检流计调零,并校准工作电流;2.校准时要随

电流表电压表校验标准

目录 目录 1、目的: (3) 2、适用范围: (3) 3、校验工具: (3) 4、校验方法一:(钳形表校验法) (3) 1.将被测表平放,调整表面中间的调节位校正旋钮,使被测表的指针位置在左边的0 起点刻度。 (3) 2.将钳形表选取适当的量程,校验电流表选取直流电流档,校验电压表选取直流电压 档,量程大于被校准的电表量程。 (3) 3.电流表校验: (3) 5、校验方法二:(标准电流、电压表校验法) (4) 1)待验电压表与标准电压表并联; (4) 6、校验结果说明 (5) 7、合格证(图样) (5) 9、附件 (5)

目录 1.目的 (3) 2.适用范围 (3) 3.校验工具 (3) 4.校验方法一:(钳形表校验法) (3) 5.校验方法二:(标准电流、电压表校验法) (4) 6.校验结果说明 (5) 7.合格证(图样) (5) 9.附件 (5)

1.目的 校验的目的是验证电表的好坏、准确性、精确度等,使其具有实际应用价值。 2.适用范围 本标准适用于我公司内所有设备的电流表、电压表检测。 3.校验工具 标准电流表1只,量程;标准电压表1只,量程、标准钳形表1只,量程交流电压,直流电压,交流电流,交流电流;连接线路若干 4.校验方法一:(钳形表校验法) 4.1将被测表平放,调整表面中间的调节位校正旋钮,使被测表的指针位置在左边的0起点刻度。 4.2将钳形表选取适当的量程,校验电流表选取直流电流档,校验电压表选取直流电压档,量程大于被校准的电表量程。 4.3电流表校验: 4.3.1将钳形表表口卡住输出电源线,电源线与被校验的电流表串联或在电源线上使用使用互感线圈。 4.3.2将测量电流值调至最小值,接通电源如被测电流表表针发生转动,此电流表功能正常,记录被测电流表数值及标准钳形表测量的电流数值。 4.3.3调整测量电流,至测电流表指针到达表盘标尺1/2位置,记录被测电流表及及标准钳形表测量的电流数值。 4.3.4继续调整测量电流,至被测电流表指针到达表盘标尺2/3位置,记录被测电流表及及标准钳形表测量的电流数值。 4.3.5对比每组测量的数据值,如误差在允许误差范围内,则校验电流表正常,否则更换损坏电流表。

用电位差计校准电压表

用电位差计校准电压表 *** *** ******** 摘 要:电压表经过长期使用,准确度降低,实验室一般用电位差计加以校准,作出校 准曲线,消除误差,达到校准的目的。 关 键 字:电位差计 电压表 校准 引 言:由于电位差计准确度等级,而通常所用的电压表只有0.5级甚至5级,从精度 上来说完全可以用电位差计来校准电表,但电位差计的量程较小,要用小量程的电位差计校准大量程的电压表必须设计一个合理的电路通过分压的方式实现。 实验原理:电压表和电位差计都是测量电位差的仪器,只要将美两者并联去测量同一个电 压即可进行校准.只是一般电位计的量程较小,不能与量程较大的电压表同时去测一较大电压,为此我们只要用一分压箱(可以利用两个电阻箱来设计)分压,用电位差计测得分压箱上一定比例的电压,再乘上所使用的分压箱的倍率,即可得到电压表两端的实际电压。同样,调节滑线变阻器,读出电压表量程范围内均匀分布的8~10个电压值,即可作出电压表的校准曲线.如果电压表量程小于电位差计量程,则可直接校准. 电位差计原理简述 ①电位差计按电压补尝原理构成。将被测电动势与一已知电动势的电源正端相对,负端相对连成回路电路中检流计指示为零,这时待测电动势与已知电动势补尝。电位差计测电动势应有两点要求:可调和精确。 ②电位差计每次使用前还应校准 如图,将天关倒向x E 保持R 不变,只 要x E ≤ab R I 0求,调节c,d 使检流计无偏 转,这时c,d 间的电阻为x R ,电压为 x E =x R I 0. 校准电位差计 用电位差计校准电压表 电压表和电位差计都是测量电位的仪器,只要两者并联去测量同一个电压即可进行校准。只是一般的电位计的量程较小,不能与量程较大的电压表同时去测一较大的电压,为此我们可以将一分压箱与电压表并联,只要用电位差计测得分压箱上一定比例的电压,再乘上所使用的分压箱的倍率,即可得到电压表两端的实际电压,同样,调节滑线变阻器,读出电压表量程范围内均匀分布的8~10个电压值,即可作出电压表的校准曲线。

电表的校准(高考秘籍必看)

实验 电表的改装和校准 1. 实验目的 (1) 掌握改装电流表和电压表的原理和方法; (2) 学会校准电流表和电压表。 2. 实验仪器 微安表(量程100μA)二个,毫安表(量程15mA),伏特表(量程15V),ZX21型旋转式电阻箱,滑线变阻器(0~100Ω),直流稳压电源(0~15V),单刀双掷开关各一个。 3. 实验原理 在实验工作中,我们往往要用不同量程的电流表或电压表来测量大小悬殊的电流或电压。例如从几微安到几十安,从几毫伏到几千伏。但电表厂一般只制造若干规格的微安表和毫安表(通常称为表头),我们可以根据实际需要,用并联分流电阻或串联分压电阻的方法, 把它们改装成不同量程的电流表和电压表。 (1) 扩大微安表的量程 若要扩大微安表(或毫安表)的量程,只要在微安表两端并联一个低电阻R s ,(称为分流电阻)即可,如图16-1所示。由于并联了分流电阻R s , 大部分电流将从R s 流过,这样由分流电阻R s 和表头组成的整体就可以测量较大的电流了。 图16-1 与表头并联的分流电阻R s 设微安表的量程I g ,内阻为R g ,若要把它的量程扩大为I 0 ,分流电阻R s 应当多大? 当AB 间的电流为I 0时,流过微安表的电流为I g (这时微安表的指针刚好指到满刻度),流过R s 的电流I s = I 0 - I g ,由于并联电路两端电压相等,故 0()g s g g I I R I R -= 0g g s g I R R I I ∴= - (1) 通常取I 0= 10I g ,100I g ,… ,故分流电阻R s 一般为R g / 9 ,R g / 99 ,… 。 即:要把表头的量程扩大m 倍,分流电阻应取 1 g s R R m = - (2) 把微安表改装成电压表 若要把微安表改装成电压表,只要用一个高电阻R m (称为分压电阻)与原微安表串联即可,如图16-2所示。由于串联了分压电阻R m ,总电压的大部分降在R m 上,这样由分压电阻R m 和表头组成的整体就可以测量较大的电压了。 设微安表的量程为I g ,内阻为R g ,若要把它改 图16-1 与表头串联的分压电阻R m 装成量程为V 0的电压表,分压电阻R m 应取多大?

用电位差计校准毫安表实验

用电位差计校准毫安表实验 电势差计是最常用的电工仪器之一,其工作原理是基于补偿法 . 在测量时由于补偿回路中电流为零,即不从被测电路中取得电流,故不改变被测电路的工作状态( 当然不是绝对的检流计灵敏度越高,越接近于零) . 电势差计不仅可以用来测定电源的电动势,而且还可以作为校准电流表或电压表的标准仪器,或对电阻作精确测定. 【预习要求】 1.复习实验九电势差计 . 2.参阅实验三十五电表改装和万用表设计 . 【实验目的】 1.训练应用误差理论,来进行测量电路的设计和测量条件的选择. 2.加深对补偿法测量原理的理解和运用. 【实验仪器】 UJ31型电势差计,毫安表,电压表,标准电阻,电阻箱,稳压电源,滑线变阻器 【如图所示】

1 . 校准量程为3V 的电压表 (1) 调节稳压电源在4V左右,设计校准电压表的控制电路(参阅实验三十变阻器的分压与限流电路). (2) 根据电势差计和待校表的量程,选取适当的分压比和分压器的电阻 . (3) 作ΔU ~U 校准曲线,对待校表精度作出评价 . 2 . 校准量程为 3 mA 的电流表 (1) 调节稳压电源作3V 固定输出,设计校准电流表的控制电路 . (2) 要求控制电路电流调节范围为0.3 ~3mA ,选取适当取样电阻和滑线变阻器阻值 . (3) 作ΔI ~I 校准曲线,对待校表精度作出评价 . 3 .用UJ31型电势差计测毫安表的内阻,画出实验电路图,正确选择电位差计的量程和标准电阻大小,并计算不确定度 . 【思考题】

1.在校准电表时,为什么需要把电压(或电流)从小到大,再从大到小做一遍?如果两者不结果完全一致,说明了什么问题? 2.在毫安表的内阻测定时,是否也一定要先进行工作电流标准化,才能进行测量?能否可以不用标准电阻,直接通过用电势差计测出 毫安表两端电压后,再除以毫安表电流读数来求出它的内阻?

用电位差计校准电表(三)

电位差计校准电流表 机设二班 王晓亮201010310217 [实验目的] 1、了解补偿法测电动势的原理 2、掌握电位差计测电动势的使用方法 3、学习用电位差计校准电表的方法 [实验原理] 电位差计是电子测量中直接用来精密测量电动势或电位差的仪器。也可用来间接测量电流、电阻和校准各种精密电表,有着广泛的用途。 电位差计是根据补偿原理将被测电动势与准确已知的标准电动势相比较而工作的。 1、补偿原理 一定的电源具有一定的电动势,如果直接用伏特计接在电源的两极,测出来的将不是电动势,而是端电压,因为这时电路中有电流通过,根据全电路欧姆定律有: 即 r I E V r I V E x x ?-=?+= 图1 补偿法原理图 式中r 为电源内阻,V 是伏特计的指示值,显然只有在待测电路中没有电流通过的条件下,测得的电源两极之间的端电压才是电源的电动势的准确值。利用补偿法可以满足这种条件。其原理如图1所示。图中E x 是被测电动势,E s 是可调节电动势大小的标准电源。两个电源通过检流计G 对接在一起。调节电动势E s 的大小,使回路中检流计指针指示为零(即回路电流为零),则E x 与E s 的电动势大小相等,则有E x =E s 。 此时称电路达到平衡。知道了平衡状态下E s 的大小,就可以确定被测电动势E x 的值了,这种测定电源电动势的方法叫补偿法。利用补偿法制成的测量电位差(或电动势)的仪器就叫做电位差计。 2、电位差计的工作原理 电位差计的原理线路如图2所示。其中E s 为标准电池,E x 为被测电源,E 是工作电源,G 是检流计。由工作电源E ,电阻R 、R 1及R n 串联组成的电路称为辅助电路(R -R s -R n -E )。调节R n 可改变电路的工作电流。使用电位差计可分两个步骤。 (1)校准工作电流 根据标准电池E s 的电动势调节工作电流,将开关K 置于“1”位置,则E s ,G ,R s 形成补偿电路(E s -K -G -R s -E s ),调节R n 使辅助电路的工作电流I 为某值时,使R s 两端的电压与标准电池的电动势E s 相补偿,检流计G 中无电池通过,此时有E s =IR s ,即辅助回路(E -R -R s -R n -E )中的电流I 达标准化,s s R E I = (2)测量未知电动势 将开关K 合在“2”位置,此时待测电动势为E x ,检流计G 与R 上的R x 段构成待测补偿电路(E x

用电位差计测电动势实验报告

用电位差计测电动势实验报告 篇一:十一线电位差计测电动势(实验报告) 大学物理实验报告 实验名称电位差计测量电动势实验日期实验人员 【实验目的】 1. 了解电位差计的结构,正确使用电位差计; 2. 理解电位差计的工作原理——补偿原理; 3. 掌握线式电位差计测量电池电动势的方法; 4. 熟悉指针式检流计的使用方法。 【实验仪器】 11线板式电位差计、检流计、标准电池、待测电池、稳压电源、单刀双掷开关、保护电路组 【实验原理】 电源的电动势在数值上等于电源内部没有净电流通过时两极件的电压。如果直接用电压表测量电源电动势,其实测量结果是端电压,不是电动势。因为将电压表并联到电源两端,就有电流I通过电源的内部。由于电源有内阻r0,在电源内部不可避免地存在电位降Ir0,因而电压表的指示值只是电源的端电压(U=E-Ir0)的大小,它小于电动势。

显然,为了等于其电动势E。 1. 补偿原理 ?? 如图1所示,把电动势分别为ES 、EX和检流计G 联成闭合回路。当ES EX时,检流计指针偏向另一边。只有当ES = EX时,回路中才没有电流,此时I=0 ,检流计指针不偏转,我们称这两个电动势处于补偿状态。反过来说,若I=0 ,则ES = EX。 能够准确的测量电源的电动势,必须使通过电源的电流I为零。此时,电源的端电压U才 图1 补偿电路 2. 十一线电位差计的工作原理 如图2所示,AB为一根粗细均匀的电阻丝共长11米,它与直流电源组成的回路称作工 作回路,由它提供稳定的工作电流I0;由待测电源EX、检流计G、电阻丝CD构成的回 路称为测量回路;由标准电源ES、检流计G、电阻丝CD 构成的回路称为定标(或校准) 回路。调节总电流I0的变化可以改变电阻丝AB单位长度上电位差U0的大小。C、D 为AB上的两个活动接触点,可以在电阻丝上移动,以

含答案 电表改装与校准

电表改装与校准 一、选择题 1、电表准确度等级是国家对电表规定的质量指标,它以数字标明在电表的表盘上,共有七 个等级,请从下列给出的数字中选出选择正确的等级指标:( B ) A :0.1、0.5、1.0、1.5、2.0、3.0、4.0 B :0.1、0.2、0.5、1.0、1.5、2.5、5.0 C :0.1、0.2、0.5、1.0、1.5、2.5、3.0 D :0.1、0.2、0.5、1.0、1.2、1.5、2.0 2、已知一电表满偏电流I g =100uA,R g =3800Ω,现要将其改装为量程是2 mA 的电流表,则需并联电阻为 ( B ) A 、100Ω B 、200Ω C 、400Ω D 、1000Ω 3.用量程为20mA 的1.0级毫安表测量电流。毫安表的标尺共分100个小格,指针指示为60.5格。 (1)该表的最大绝对误差=?max C mA ; A 、2; B 、0.5; C 、0.2; D 、0.02 (2)测量的相对误差为 B ; A 、1%; B 、1.7%; C 、2%; D 、5% (3)电流测量结果应表示为: B 。 (A )(60.5±0.2)mA ; (B )(12.1±0.2)mA ; (C )(20.0±0.1)mA ; (D )(12.10±0.01)mA 。 4.校准50mA 电流表时测量一组数据如下表: 标准电阻R s =10Ω。则该电流表准确读定级为( B ) A 、1.0 B 、2.5 C 、5.0 D 、0.5 5.用C31-V 型直流电压表的2V 档测一直流电压,该表的准确度等级为0.5级,标尺分格为100格,当指针指在43.5格时,记录测量指示值为 D ; A .0.85V , B .0.630V , C.0.50V , D.0.870V 6.在示波器实验中,某同学测的波形周期为8.0div ,t/div 开关置于“1μs ”,其微调置校准位置,则该同学得到的波形频率为: D 。 A .1kHZ , B .10kHZ , C .12.5kHZ , D .125kHZ 二、填空题 1、电表改装实验中表头的内阻和灵敏度采用___半偏______法测量,改装电流表时,与表头

电位差计的原理和使用

实验八 电位差计的原理和使用 【实验目的】 1.掌握电位差计的工作原理和正确使用方法,加深对补偿法测量原理的理解和运用。 2.训练简单测量电路的设计和测量条件的选择。 【实验仪器】 UJ31型直流电位差计、SS1791双路输出直流稳压电源、标准电池、标准电阻、AC15/5灵敏电流计、FJ31型直流分压箱、滑线变阻器、直流电阻箱、待校验电表、待测干电池、待测电阻、开关和导线等。 【实验原理】 如图5.8.1所示,电位差计的工作原理是根据电 压补偿法,先使标准电池E n 与测量电路中的精密电阻R n 的两端电势差U st 相比较,再使被测电势差(或电压)E x 与准确可变的电势差U x 相比较,通过检流计G 两次指零来获得测量结果。电压补偿原理也可从电势差计的“校准”和“测量”两个步骤中理解。 校准:将K 2打向“标准”位置,检流计和校准电路联接,R n 取一预定值,其大小由标准电池E S 的电动势确定;把K 1合上,调节R P ,使检流计G 指零,即E n = IR n ,此时测量电路的工作电流已调好为 I = E n /R n 。校准工作电流的目的:使测量电路中的R x 流过一个已知的标准电流I o ,以保证R x 电阻盘上的电压示值(刻度值)与其(精密电阻R x 上的)实际电压值相一致。 测量:将K 2打向“未知”位置,检流计和被测电路联接,保持I o 不变(即R P 不变),K 1合上,调节R x ,使检流计G 指零,即有E x = U x = I o R x 。 由此可得x n n x R R E E = 。由于箱式电位差计面板上的测量盘是根据R x 电阻值标出其对应的电压刻度值,因此只要读出R x 电阻盘刻度的电压读数,即为被测电动势E x 的测量值。 所以,电位差计使用时,一定要先“校准”,后“测量”,两者不能倒置。 【实验装置】 1. UJ31型电位差计 UJ31型箱式电位差计是一种测量低电势的电位差计,其测量范围为mV .V 1171-μ(1K 置1?档)或mV V 17110-μ(1K 置10?档)。使用V V 4.6~7.5外接工作电源,标准 图5.8.1 电位差计的工作原理 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

电位差计的原理及使用预习原始数据实验报告

实验预习报告 院(系)名称班 别 姓名 专业名称学号 实验课程名称普通物理实验(2) 实验项目名称电位差计的原理及使用 内容包含:实验目的、实验原理简述、实验中注意事项、实验预习中的问题探讨 【实验目的】 1.了解电位差计的结构,正确使用电位差计; 2.理解电位差计的工作原理——补偿原理; 3.掌握线式电位差计测量电池电动势的方法; 4.熟悉指针式检流计的使用方法。 【实验原理】 电源的电动势在数值上等于电源内部没有净电流通过时两极件的电压。如果直接用电压表测量电源电动势,其实测量结果是端电压不是电动势。因为将电压表并联到电源两端,就有电流I 通过电源的内部。由于电源有内阻r0,在电源内部不可避免地存在电位降Ir0,因而电压表的指示值只是电源的端电压(U=E-Ir0 )的大小,它小于电动势。显然,为了能够准确的测量电源的电动势,必须使通过电源的电流I为零。此时,电源的端电压U才等于其电动势E。 1.补偿原理 如图1所示,把电动势分别为ES 、EX和检流计G联成闭合回路。当ES < EX时,检流计指针偏向一边。当ES > EX时,检流计指针偏向另一边。只有当ES = EX时,回路中才没有电流,此时I=0 ,检流计指针不偏转,我们称这两个电动势处于补偿状态。反过来说,若I=0 ,则ES = EX 。 图1 电流计的保护: 图1电路中,当两比较电动势电压稍有变化,电流计将产生极大偏转,这将直接损坏电表。 为保护小量程电表,通常给电流表串联一大电阻R(图2),以减小流经电表的电流,调节比较电动势,使电流计示值为零,再减小串联电阻阻值,调节比较电动势,使电流计示值为零….如此反复进行,直至串联电阻为零时,电流表示值也为零。 2. 十一线电位差计的工作原理 如图3所示,AB为一根粗细均匀的电阻丝共长11米,它与直流电源组成的回路称作工作回路,由它提供稳定的工作电流Io;由待测电源Ex、检流计G、电阻丝MN构成的回路称为测量回路;由标准电源Es、检流计G、电阻丝MN构成的回路称为定标(或校准)回路。调节总 电流I0的变化可以改变电阻丝AB单位长度上电位差Uo的大小。M、N 为AB上的两个活动接触点,可以在电阻丝上移动,以便从AB上取适当的电位差来与测量支路上的电位差(或电动势补偿)。

电位差计校准电压表

电位差计校准电压表 一、实验目的 1.理解电位差计的工作原理,掌握电位差计的使用方法。 2.掌握使用电位差计校准电表的方法。 3.学习简单电路的设计方法,培养独立工作的能力。 二、实验仪器 UJ31型直流低电势箱式电位差计、直流稳压电源(3V)、滑线变阻器、待校电压表(量程1V)、电阻箱2个、单刀单掷开关、连接导线 三、实验原理 1.电位补偿原理如图 是将被测电动势的电源Ex与一已知电动势的电源EO“+”端对“+”端,“-”端对“-”端地联成一回路,在电路中串联检流计“G”,若两电源电动势

不相等,即Ex≠EO回路中必有电流,检流计指针偏转;如果电动势EO可调并已知,那么改变EO的大小,使电路满足EX=E0,则回路中没有电流,检流计指示为零,这时待测电动势EX得到己知电动势EO 的完全补偿。可以根据已知电动势值EO定出EX,这种方法叫补偿法。 2UJ31型直流低电势箱式电位差计测量电压原理. 电位差计的工作原理是根据电压补偿法,先使标准电池与测量电路中的精密电阻的两端电势差相比较,再使被测电势差(或电压)与准确可变的电势差相比较,通过检流计G两次指零来获得测量结果。电压补偿原理也可从电势差计的“校准”和“测量”两个步骤中理解。 四、实验步骤: ◆连接并校准电位差计 1、根据室温下,标准电池电动势的值连接好校准电位差计的线路。 2、将电位差计选择开关旋至“标准”位置,进行工作电流标准化调节,调节各电阻旋钮使检流计G指零,注意工作电流调定后,在测量未知电动势时不得再调节工作电流调节盘。 ◆校准电压表

1、测量线路图如图所示, 根据电位差计的量程和被校电表量程选好分压箱的倍率。(校准10V量程,R1/R2=171/10000,电位差计量程为0—171mv) 2、将电位差计选择开关打到未知档,调节滑动变阻器R,使电压表指示值为第一个测量的指示值(从较小值开始),读出电位差计的读数,再乘以分压箱的倍率即为此时电压表两端的实际电压U1。 3、逐渐增大电压表指示值,重复上面操作,得电压表指示最大值,共测10次。 4、再从最大值开始逐渐减小电压值,重复2、3操作,测得10组电压值U2。 5.数据处理

电动势的测定及其应用(实验报告)

实验报告电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m=-nFE 式中△r G m是电池反应的吉布斯自由能增量;n为电极反应中电子得失数;F为法拉第常数;E为电池的电动势。从式中可知,测得电池的电动势E后,便可求得△r G m,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计

UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温度不同引起标准电池电动势变化时,通过调节n R ,使工作电流保持不变。x R 被分成Ⅰ(1?)、Ⅱ(1.0?)和Ⅲ(001.0?)三个电阻转盘,并在转盘上标出对应x R 的电压值,电位差计处于补偿状态时可以从这三个转盘上直接读出未知电动势或未知电压。左下方的“粗”和“细”两个按钮,其作用是:按下“粗”铵钮,保护电阻和灵敏电流计串联,此时电流计的灵敏度降低;按下“细”按钮,保护电阻被短路,此时电流计的灵敏度提高。2K 为标准电池和未知电动势的转换开关。标准电池、灵敏电流计、工作电源和未知电动势x E 由相应的接线柱外接。 UJ25型电位差计的使用方法: (1)将2K 置到“断”,1K 置于“1?”档或“10?”档(视被测量值而定),分别接上标准电池、灵敏电流计、工作电源。被测电动势(或电压)接于“未知1”(或“未知2”)。 (2)根据温度修正公式计算标准电池的电动势)(t E n 的值,调节n R 的示值与其相等。将2K 置“标准”档,按下 “粗”按钮,调节1p R 、2p R 和3p R ,使灵敏电流计指针指零,再按下 “细”按钮,用2p R 和3p R 精确调节至灵敏电流计指针指零。此操作过程称为“校准”。 (3) 将2K 置“未知1”(或“未知2”)位置,按下“粗”按钮,调节读数转盘Ⅰ、 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

相关主题
文本预览
相关文档 最新文档