当前位置:文档之家› 宝钢一些高强钢简述

宝钢一些高强钢简述

宝钢一些高强钢简述
宝钢一些高强钢简述

Q690高强钢的开发

Q690高强钢的开发 性能指标 Q690属于低合金高强钢,表1为国标与日本欧美同等级钢种化学成分对照表。 表1 牌号 质量等级 化学成分(质量分数)% Q690 C S i M n S P Nb V T i C r N i C u N M o B Al s 不大于 不小于 C 0.18 0.60 2.00 0.030 0.030 0.11 0.12 0.20 1.00 0.80 0.80 0.015 0.30 0.004 0.015 D 0.030 0.025 E 0.025 0.020 S700MC 0.12 0.60 2.10 0.015 0.025 0.09 0.20 0.22 0.50 0.005 0.015 WEL-T EN780 0.05 0.44 1.35 0.18 2.52 0.54 表2为国标与日本欧美同等级钢种力学性能对照表。 表2 牌号 屈服强度 (MPa)(<16mm) 抗拉强度(MPa)(<40mm) 延伸率%(<40mm) 冲击吸收能量 (Kv/J)(-20C O ) Q690 >690 770~940 >14 >47 S700MC >700 750~950 >12 WEL-TEN780 740 830 24 96 根据表2,确定研发Q690的性能指标参照GB\T1591-2008。 即: 屈服强度(MPa) 抗拉强度(MPa) 延伸率(%) 冲击吸收能量(Kv/J -20C O ) >690 770~940 >14 >47

Q690在其它钢厂的开发情况 Q690屈服强度高,轧制难度大,目前国内能够生产且生产规模比较大的钢厂有济钢、武钢、南钢、宝钢、舞钢。低合金高强钢板市场济钢市场占有率最高。 目前Q690产品绝大部分属于宽厚板,传统生产工艺为离线调质,直接淬火一回火工艺与离线调质工艺比较, 前者具有降低生产和资金成本和有利于板材性能提高的优点, 已成为国内外钢铁企业开发高强度中厚板产品广为关注的重要技术领域,下表为各大钢厂采用进口的中厚板轧线所配备的高水平直接淬火设备生产的产品级别 宝钢、舞钢、南钢、济钢均采用直接淬火—回火工艺生产Q690级别以上宽厚板产品。 宝钢采用低温大压下+DQ工艺开发出具有良好低温韧性的Q690高强钢厚板,板厚可达80mm,且具有良好的焊接性能,40mm以下Q690CF可实现不预热焊接。低温大压下技术是在较低温度下, 采用较大变形率轧制钢板。采用此方法轧制后的钢板具有稳定的拉伸性能和较高的低温冲击功 济钢生产的Q690在郑煤机、平顶山煤机、北方重工、内蒙一机厂、重庆庆江、淮北矿物局、大同煤矿等多家煤机厂的液压支架制造上进行了成功的实际应用,并在哈焊所进行了焊接工艺评定。 南京钢铁联合有限公司采用C-Mn微合金化的方法生产出高强度低碳贝氏体Q690D(E),为国内首创低碳贝氏体钢宽中厚板(卷)连铸—卷轧短工艺流程技术。

新型高强韧TWIP钢概述#精选、

新型高强韧TWIP钢概述 一背景 随着人们生活水平的日益提高,有车一族在城市中的比重越来越大,现代汽车的发展趋势是轻量化,节能和安全等,为适应这一发展需要,在汽车制造中有必要采用高强度的钢板。据统计,汽车重量每减轻1%,燃料消耗可降低0.6%~1.0%[1],而能耗高会导致尾气排放量增加,因此,汽车减重对节能和环保意义重大。汽车减重的一个重要手段是采用高强度钢。基于这种情况汽车工业迫切需要人们对高强度钢的研究和开发。近年来新开发的含15-25%Mn、2-4%Si和2-4%Al 的高Mn钢显示出极高的延伸率(60-95%)和中等的强 (600-1100MPa),其抗拉强度和延伸率的乘积在50000 MPa%以上,其优良的力学性能来自于形变过程中的孪生诱发塑性效应,即TWIP 效应。TWIP钢是现在研究较广泛的超高强度钢,它不仅具有高强度,高的应变硬化率,还有非常优良的塑性,韧性和成形性能。从现代汽车用钢对高强度和高塑性的要求来看,TWIP钢是最佳选择。 经过成分筛选,发现Fe-25Mn-3Si-3Al合金具有最佳的TWIP效应,其研发和实用化对汽车用钢板产业和汽车产业的调整升级起着重要作用,具有巨大的经济开发潜力。国外知名钢企业和研究机构在TWIP 钢的成分设计、处理工艺、微观机理等方面开展了广泛研究,目前,典型成分除Fe-Mn-Si-Al系外,还有Fe-Mn-C系和Fe-Mn-Al-C系TWIP 钢。国内的上海大学、上海交通大学、北京科技大学、东北大学等高校研究机构联合上海宝钢、鞍山鞍钢等大型钢铁企业在此领域进行了

深入的研究[2]。 二概念和力学性能 TWIP钢是twinning induced plasticity steel的简称,全称:孪生诱发塑性钢。 孪晶诱发塑性(TWIP)钢是第二代高强度用钢的一种,因其形变过程中能产生大量形变孪晶、推迟缩颈的形成,具有优异的强塑性及高应变硬化性、高能量吸收能力(20℃时吸收能达到0.5J/ram3)[2]而得名,是一种理想的汽车用抗冲击结构材料。Grassal等[9]在研究Fe-Mn-Si-Al系TRIP钢时发现了该钢,并提出孪晶诱发塑性(TWIP)的概念。 材料的力学性能决定于其基体组织,TWIP钢为单一的奥氏体(面心立方)组织,因而具有较低的屈服强度(约280 MPa),中等的抗拉强度(约600 MPa)[5]。面心立方结构的TWIP钢密排面密排程度高,滑移系,滑移方向多,因而塑性好,特别是当TWIP钢拉伸时,由于高应变区会应变诱发孪晶转变,由此显著延迟钢的缩颈,从而极大地提高了钢的塑性,因此具有极高的延伸率(大于80 %)[6]。除此之外,另一个令人瞩目的力学性能是具有高的能量吸收能力和没有低温脆性转变温度。如20℃时约为0.5J/mm3[2],为传统深冲钢的两倍以上;在﹣196℃~200℃形变温度区间内没有低温脆性转变温度。该钢在无外载荷的条件下,室温组织是稳定的奥氏体,基体中存在大量的退火孪晶,一旦施加一定的外部载荷后,因为应变诱发产生形变孪晶,发生大的无颈缩延伸,表现出优良的机械性能,如高的应变硬化率、高

新型高强钢焊丝的特性及应用

新型高强钢焊丝的特性及应用 一、概述 随着科学技术的进步和国家节能减排宏观政策的推广,高强钢的应用越来越多。从应用较早的煤矿机械,逐渐向大型钢结构、动力机车、特种车辆、大型客车、工程机械、管线和海洋工程等领域发展。我公司专业生产高强钢气体保护焊丝,拥有自主知识产权的高强钢气体保护焊丝国家发明专利。公司主导产品为GHS—50,GHS —60 , GHS—70,GHS—80,GHS—90(见图1)已经通过了CE 认证,DB认证正在办理中。 在第十九届北京·埃森焊接与切割展览会上,我公司展出了新型高强钢气体保护焊丝系列产品,本文将论述部分产品在相应领域的应用案例,全面介绍产品的性能与应用特点。 二、新型高强钢焊丝的性能特点 (1)公司产品通过微合金强化和微合金轫化,改善了组织,提高了强度。依靠微量元素来获取大量的针状铁素体组织,从而保证了低温冲击韧性。GHS—60焊丝的﹣60℃冲击吸收能量可以达到82J。 (2)通过合金元素的合理匹配,为用户提供了宽松的施工条件。在不同的焊接热输入条件下,都可以获得满意的力学性能。 (3)通过对关键微量元素的控制,降低了熔滴的表面张力,熔滴得到细化,从而大幅度降低了飞溅,获得良好的焊道成形)。 (4)焊丝具有良好的外观和线性,确保了焊接过程中优异的工艺性能。 三、新型高强钢焊丝的焊接工艺特点 新型高强钢焊丝的焊接工艺特点主要包括以下几个方面: (1)尽量不摆弧焊接新型高强钢焊丝应用了微量合金元素来促进针状铁素体的形成和抑制先共析铁素体的析出,大幅度的摆弧,将改变铁素体的形态,并在晶间析出有害的组织。因此,在焊接时尽量不要摆弧,以保证获得性能良好的焊缝。 (2)保护气要求新型高强钢焊丝尽可能采用富氩的混合气体进行焊接,以保证合金元素的过渡,获得良好的微观组织。 (3)焊前预热和焊后热处理对于Q550以上级别的高强钢板,预热和焊后热处理是必要的,还要控制焊接过程中的道间温度。必要时,需采用多人焊接。 (4)焊接工艺采用多层多道错位焊,以获得优良的焊接接头。引弧和收弧应错开50mm以上,避免在应力集中处引弧和收弧。 (5)焊材选用对于定位焊和打底焊,采用比母材强度低一级别的焊丝焊接,效果会更好。如Q690钢的焊接,定位焊和打底焊用GHS—70(GB /T8110,ER69—G),填充和盖面焊用GHS—80(GB/T8110,ER76—G)。 (6)合理的焊接顺序既要防止较大的焊接变形,又要控制焊接内应力,为此依据工件结构,制定合理的焊接顺序。 四、典型应用案例 1. 煤矿液压支架的焊接

钢结构:冷轧产品各国牌号对照表

材料类别宝钢企标国标 日本工业 标准 德国工业 标准 欧州标 准 美国材料试验 协会标准备注牌号牌号牌号牌号牌号标准号 冷轧低碳及超低碳钢板及钢带 商用级 (CQ) SPCC ST12 Q195 10 -P 10-S 08-P 08-S 08Al-P 08Al-S SPCC ST12FeP01 ASTM A366/A366M- 96(已由ASTM A366/A366M- 97取代) 1.1.GB11253 -89中的Q195 为普通碳素结 构钢。 2.2.此类钢可 制作汽车零部 件,家具外壳、 桶钢制家具等 简单成型、弯曲 或焊接加工的 产品。 冲压级 (DQ) SPCD ST13 10-Z 08-Z 08Al-Z SPCD USt13 RRSt13 FeP03 ASTM A619/A619M- 96(1997年后 作废) 可制作汽车门、 窗、挡泥板、马 达外壳等冲压 成型及较复杂 变形加工的零 部件。 深冲级 (DDQ) SPCE-F SPCE-HF SPCE-ZF ST14-F ST14-HF ST14-ZF ST14-T 08Al-F 08Al-HF 08Al-ZF SPCE ST14FeP04 ASTM A620/A620M- 96(已由ASTM A620/A620M- 97取代) 1. 1.可制作 汽车前车灯、油 箱、门、窗等深 冲成型及复杂、 剧烈变形加工 的零部件。 2.2.Q/BQB403 -99新增加 ST14-T是专供 上海大众汽车 厂用的。 特深冲级 (SD DQ) ST15FeP05 可制作汽车油 箱、前车灯、复 杂的车底板等 变形很复杂的 零部件。 超深 冲级(ED DQ) ST16 BSC2 (BIF2) FeP06 1. 1.此类为 超深冲无间隙 原子钢。 2. 2. EN 10130 -91的FeP06取

先进高强钢应用优势及未来研究方向

先进高强钢应用优势及未来研究方向 当前,由于环保和节能的需要,汽车的轻量化已经成为世界汽车发展的潮流。轻量化这一概念最先起源于赛车运动,车身减重后可以带来更好的操控性,发动机输出的动力能够产生更高的加速度。由于车辆轻,起步时加速性能更好,刹车时的制动距离更短。汽车的轻量化,就是在保证汽车的强度和安全性能的前提下,尽可能地降低汽车的整备质量,从而提高汽车的动力性,减少燃料消耗,降低排气污染。 1轻量化意义 汽车的油耗主要取决于发动机的排量和汽车的总质量,在保持汽车整体品质、性能和造价不变甚至优化的前提下,降低汽车自身重量可以提高输出功率、降低噪声、提升操控性、可靠性,提高车速、降低油耗、减少废气排放量、提升安全性。有研究结果表明,若汽车整车重量降低10%,燃油效率可提高6%-8%;汽车整备质量每减少100公斤,百公里油耗可降低0.3—0.6升;若滚动阻力减少10%,燃油效率可提高3%;若车桥、变速器等装置的传动效率提高10%,燃油效率可提高7%。汽车车身约占汽车总质量的30%,空载情况下,约70%的油耗用在车身质量上。因此,车身变轻对于整车的燃油经济性、车辆控制稳定性、碰撞安全性都大有裨益。 2AHSS优势 高强钢、铝合金、镁合金和塑料是当前汽车轻量化的4种主要材料。高强度钢主要用于汽车外壳和结构件。铝合金最适用于产生高应力的毂结构件,如罩类、箱类、歧管等。镁合金具有良好的压铸成型性能,适应制造汽车各类压铸件。塑料及其复合材料通过改变材料的机械强度及加工成型性能,以适应车上不同部件的用途要求。钢铁材料在与有色合金和高分子材料的竞争中继续发挥其价格便宜、工艺成熟的优势,通过高强度化和有效的强化措施可充分发挥其强度潜力,迄今为止仍然是汽车制造中使用最多的材料。 随着安全性、燃油经济性和驾驶性能标准的不断提升,这对车用材料提出了更高的要求。为应对这一挑战,全球钢铁工业成功研发了具有突出冶金性能和高成形性的先进高强度钢(AHSS)。AHSS具有以下优点: 1)安全性:鉴于钢铁独特的冶金性能和灵活的加工工艺,AHSS产品可以被设计制造成任意特殊形状,为乘员安全提供最佳保护方案。 2)轻量化:工程师们将AHSS与新的先进制造工艺相结合,使用更加轻薄的钢材制造出轻质汽车零部件,不仅保持了原有部件的强度和其他性能,而且在一定程度上还有所提升。 3)可循环利用性:钢材可以100%回收循环利用,而且汽车的生命周期评估表明,与使用其他替代材料相比,AHSS车辆排放量最少。 4)成本合理:工程学研究表明,与传统车用材料相比,AHSS几乎不增加任何成本,而像铝这种低密度材料则需额外增加每磅$2.75以上的成本。同时,多数整车制造厂已配备钢部件加工生产线和技术,AHSS可直接生产应用,而不需额外投入昂贵的新的加工装备和制造工艺。 3AHSS车用情况 2013款雪佛兰Silverado和美国通用GMC1500 SIERRA皮卡在其驾驶舱中使用了超过70%比重的AHSS,这不但增加了车身结构强度,而且还减少了前车架

常用宝钢钢材标准

常用宝钢钢材标准 一、无间隙原子高强度冷连轧钢板及钢带(Q/BQB 413-2009) 本标准适用于宝山钢铁股份有限公司生产的厚度为0.50mm~2.50mm的无间隙原子高强度冷连轧钢板及钢带。 通过控制钢中的化学成分来改善钢的塑性应变比(r值)和应变硬化指数(n 值)。由于钢中元素的固溶强化和无间隙原子的微观结构,这种钢既具有高强度,又具有非常好的冷成型性能,通常用来制作需要深冲压的复杂部件。 钢板及钢带按用途区分应符合下表的规定。 二、加磷高强度冷连轧钢板及钢带(Q/BQB 411-2009) 本标准适用于宝山钢铁股份有限公司生产的厚度为0.50mm~2.5mm的加磷高强度冷连轧钢板及钢带(以下简称钢板及钢带)。 在低碳钢或超低碳钢中,主要通过添加最大不超过0.12%的磷等固溶强化元素来提高钢强度。这种钢具有高强度和良好的冷成形性能,且具备良好的耐冲击和抗疲劳性能,通常用于汽车覆盖件和结构件制作。 钢板及钢带按用途区分应符合下表的规定。 三、冷连轧低碳钢板及钢带(Q/BQB 403-2009)等同于GB/T5213-20008冷轧低碳钢板及钢带 本标准适用于宝山钢铁股份有限公司生产的厚度为0.17mm~3.5mm的冷连轧低碳钢板及钢带 钢板及钢带按用途区分应符合下表的规定

室温储存条件下,对于表面质量要求为FC和FD的钢板及钢带,拉伸应变痕应符合下表的规定。 钢板及钢带各表面质量级别的特征应符合下表的规定。 四、冷连轧碳素钢板及钢带(Q/BQB 402-2009) 本标准适用于宝山钢铁股份有限公司生产的厚度为0.17mm~3.5mm的冷连轧碳素钢板及钢带 钢板及钢带按用途区分应符合下表的规定

不锈钢材料牌号对照表

0Cr18Ni9作为不锈钢耐热钢使用最广泛,用于食品用设备,一般化工设备,原子能用工业设备。通俗的讲0Cr18Ni9就是304不锈钢板,0Cr18Ni9Ti就是321,一个是国标,一个是美标。321是因为原来冶炼技术不好,无法降低碳含量才研制的,现在因冶炼技术的提高,超低碳钢冶炼已经很平常,所以321有被淘汰的趋势。目前321的产量已经很少了。只有一些军工还在使用。0Cr18Ni9钢(AISI304)是奥氏体不锈钢,是在最初发明的18-8型奥氏体不锈钢的基础上发展演变的钢种,该钢是不锈钢的主体钢种,其产量约占不锈钢总产量曲30%以上。由于此钢具有奥氏体结构,它不可能通过热处理手段予以强化,只能采用冷变形方式达到提高强度的目的。钢的奥氏体结构赋予了它的良好冷、热加工性能、无磁性和好的低温性能。0Cr18Ni9钢薄截面尺寸的焊接件具有足够的耐晶间腐蚀能力,在氧化性酸(HNO3)中具有优良的耐蚀性,在碱溶液和大部分有机酸和无机酸中以及大气、水、蒸汽中耐蚀性亦佳。 0Cr18Ni9钢的良好性能,使其成为应用量最大、使用范围最广的不锈钢牌号,此钢适于制造深冲成型的部件以及输送腐蚀介质管道、容器,结构件等,0Cr18Ni9亦可用子制造无磁、低温设备和部件。 0Cr19Ni10(AISI304L)是在0Cr18Ni9基础上,通过降低碳和稍许提高含镍量的超低碳型奥氏体不锈钢。此钢是为了解决因Cr23C6析出致使0Cr18Ni9钢在一些条件下存在严重的晶间腐蚀倾向而发展的。在开发初期,因冶金生产降碳较难,一度曾妨碍了它的广泛应用,在20世纪70年代新的二次精炼方法AOD和VOD工艺成功用于生产后,此钢才真正得到广泛应用。与0Cr18Ni9比较,此钢强度稍低,但其敏化态耐晶间腐蚀能力显著优于0Cr18Ni9。除强度外,此钢的其他性能同于0Cr18Ni9。它主要用于需焊接且焊后又不能进行面溶处理的耐蚀设备和部件。上述两个钢种,在易产生应力腐蚀环境和产生点蚀和缝隙腐蚀的条件下,在选用时应慎重。[1] 特性 具有良好的耐蚀性、耐热性、低温强度和机械性能,冲压弯曲等热加工性好,无热处理硬化现象,无磁性。 用途 家庭用品、橱柜、室内管线、热水器、锅炉、浴缸、汽车配件、医疗器具、建材、化学、食品工业、农业、船舶部件。 化学成份

钢材牌号对应表

我国在此是以钢材的用途分类作为表示方法分类的基础: 1)碳素结构钢:表示方法:Q+数字+(质量等级符号)+(脱氧方法符号)+(专门用途的符号)①钢号冠以“Q”,代表钢材的屈服点;②“Q”后面的数字表示屈服点数值,单位是MPa。例如Q235表示屈服点(σs)为235 MPa的碳素结构钢;③必要时钢号后面可标出表示质量等级和脱氧方法的符号。质量等级符号分别为A、B、C、D。脱氧方法符号:F表示沸腾钢;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。专门用途的碳素钢:例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。 2)优质碳素结构钢表示方法:数字+(元素符号)+(脱氧方法符号)+(专门用途的符号)①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.45%的钢,钢号为“45”,它不是顺序号,所以不能读成45号钢。 ②锰含量较高的优质碳素结构钢,应将锰元素标出,例如50Mn。③沸腾钢、半镇静钢及专门用途的优质碳素结构钢应在钢号最后特别标出,例如平均碳含量为0.1%的半镇静钢,其钢号为10b。 3)碳素工具钢表示方法:字母T+数字+(元素符号)+(质量等级符号)①钢号冠以“T”,以免与其他钢类相混。②钢号中的数字表示碳含量,以平均碳含量的千分之几表示。例如“T8”表示平均碳含量为0.8%。③锰含量较高者,在钢号最后标出“Mn”,例如 “T8Mn”。④高级优质碳素工具钢的磷、硫含量,比一般优质碳素工具钢低,在钢号最后加注字母“A”,以示区别,例如“T8MnA”。 4)易切削钢表示方法:字母Y+数字+(元素符号)①钢号冠以“Y”,以区别于优质碳素结构钢。②字母“Y”后的数字表示碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.3%的易切削钢,其钢号为“Y30”。③锰含量较高者,亦在钢号后标出“Mn”,例如“Y40Mn”。 5)合金结构钢表示方法:(专门用途符号)+数字+主要合金元素符号和数字+微量合金元素符号+(质量等级符号)+(专门用途符号)①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,如40Cr。 ②钢中主要合金元素,除个别微合金元素外,一般以百分之几表示。当平均合金含量<1.5%时,钢号中一般只标出元素符号,而不标明含量,但在特殊情况下易致混淆者,在元素符号后亦可标以数字“1”,例如钢号“12CrMoV”和“12Cr1MoV”,前者铬含量为0.4-0.6%,后者为0.9- 1.2%,其余成分全部相同。当合金元素平均含量≥1.5%、≥ 2.5%、≥ 3.5%……时,在元素符号后面应标明含量,可相应表示为2、3、4……等。例如18Cr2Ni4WA。③钢中的钒V、钛Ti、铝AL、硼B、稀土RE等合金元素,均属微合金元素,虽然含量很低,仍应在钢号中标出。例如 20MnVB钢中:钒为0.07-0.12%,硼为0.001-0.005%。④高级优质钢应在钢号最后加“A”,以区别于一般优质钢。⑤专门用途的合金结构钢,钢号冠以(或后缀)代表该钢种用途的符号。例如铆螺专用的30CrMnSi钢,钢号表示为ML30CrMnSi 6)低合金高强度钢表示方法:(专门用途符号)+数字+主要合金元素符号和数字+微量合金元素符号+(质量等级符号)+(专门用途符号)①钢号的表示方法,基本上和合金结构钢相同。②对专业用低合金高强度钢,应在钢号最后标明。例如16Mn钢,用于桥梁的专用钢种为“16Mnq”,汽车大梁的专用钢种为 “16MnL”,压力容器的专用钢种为“16MnR”。 7)弹簧钢弹簧钢按化学成分可分为碳素弹簧钢和合金弹簧钢两类,其钢号表示方法,前者基本上与优质碳素结构钢相同,后者基本上与合金结构钢相同。 8)滚动轴承钢表示方法:高碳铬轴承钢:字母G+Cr元素符号和数字渗碳轴承钢:字母G+数字+主要合金元素符号和数字+微量合金元素符号+(质量等级符号)①钢号冠以字母“G”,表示滚动轴承钢类。②高碳铬轴承钢钢号的碳含量不标出,铬含量以千分之

宝钢冷轧牌号对照表

宝钢冷轧牌号对照表低碳钢 Q/BQB 402-2003 Q/BQB 403-2003 Q/BQB 408-2003 JIS G3141-1996 JFS A2001-1998 EN 10130-1999 DIN 1623 (1) -1983 ASTM A1008-02el GB/T 5213-2001 ISO 3574-1994 SPCC DC01 BLC SPCC JSC270C DC01 St12 CS - CR1 SPCD DC03 BLD SPCD JSC270D DC03 RRSt13 DS - CR2 SPCE DC04 BUSD SPCE JSC270E DC04 St14 DDS SC1 CR3 SPCE DC05 BUFD SPCEN JSC270F DC05 - EDDS SC2 CR4 - DC06 BSUFD - JSC260G DC06 - - SC3 CR5 碳素结构钢 Q/BQB 410-2003 DIN 1623-(2)-1986 t37-2G St37-2G St44-3G St44-3G St52-3G St52-3G 加磷钢 Q/BQB411 JFS A2001-1998 JIS G3135-1986 PrEN 10268-2002 B170P1 JSC340P SPFC340 - B210P1 JSC390P SPFC390 - B250P1 JSC440P SPFC440 - B180P2 JSC340W - H180P B220P2 JSC390W - H220P 烘烤硬化钢 Q/BQB 416-2003 JFS A 2001-1998 JIS G 3135-1986 prEN 10268-2002 B140H1 JSC270H -- B180H1 JSC340H -- B180H2(BH340)-SPFC 340 H H180B 双相钢 Q/BQB 418-2003 JFS A2001-1998 SAE J2340-1999 B240/390DP -- B280/440DP -- B340/590DP JSC590Y 600DL1 B400/780DP JSC780Y - 低合金高强钢 Q/BQB419-2003 JFS A2001-1998 SAE J2340-1999 prEN 10268-2002 B340LA JSC440R 340X H340LA B410LA JSC590R - H420LA

汽车用高强钢发展综述分析解析

安 徽 工 业 大 学 研究生考试试卷 考试科目:_________________________ 阅 卷 人:_________________________ 专 业:_________________________ 学 号:_________________________ 姓 名:_________________________ 注 意 事 项 1、 考前研究生将上述项目填写清楚 2、 字迹要清楚,保持卷面清洁 3、 教师将成绩单送研究生学院归档 年 月 日 现代工程材料 研材料12 20120049 季承玺 方俊飞

汽车用高强钢发展综述 摘要:综述了目前国内外高强钢材汽车钢板的使用现状及全球趋势,探究了国内外在高强钢材的科技水平,并且在此基础上提出了高强钢材的应用前景,为汽车钢板行业实现可持续发展提供了思路。 关键词:汽车;高强钢;轻量化;种类;发展 1. 高强钢材的优势 与普通强度钢材相比,高强度钢材(以下简称高强钢)具有更高的屈服强度和抗拉强度,因此,采用高强钢构件替代普通强度钢构件可以减小截面尺寸,节约钢材用量,降低制造、运输、安装费用等。高强钢的应用不仅能体现更高的结构效率,还可以带来可观的经济效益和社会效益。 高强度钢材的优点有很多,研究结果表明,在同样的轴心受压条件下,采用高强度钢材的钢柱,在整体稳定方面,极限应力δu与屈服强度f y的比值δu/f y(即整体稳定系数φ),要比普通强度钢材钢柱高很多[1]。相对于普通钢材,钢结构采用高强度钢材具有以下优势:能够减小构件尺寸和结构重量,相应地减少焊接工作量和焊接材料用量,减少各种涂层(防锈、防火等)的用量,使得运输安装更加容易,降低钢结构的加工制作、运输和安装成本。高强度钢材能够降低钢材用量,从而大大减少铁矿石资源的消耗;焊接材料和各种涂层(防锈、防火等)用量的减少,也能够大大减少不可再生资源的消耗,同时能够减少因资源开采对环境的破坏。2. 低合金高强度钢生产工艺技术的发展 自60年代以来,在低合金高强度钢发展的第三阶段中,生产工艺技术有了长足的进步,这是由三方面因素促成的。 (1)对低合金高强度钢性能的要求有了新的认识和提高。对焊接钢材要求不仅有高的抗裂纹生成能力,还要求有良好的抗裂纹扩展能力,即良好的缺口韧性。强度越高,要求韧性越好。 (2)组织一性能关系的基础研究有了重大的突破。Hall和Petch的基础研究首次向人们展示,晶粒细化可以同时提高屈服强度和冲击韧性。Morrison和Wodhead 等的研究表明,在适当条件下,低合金高强度钢中可以形成一定体积分数的尺寸为纳米级的碳氮化物粒子,具有非常强烈的沉淀硬化效果,而加入的钒、妮、钦等元素,以前仅作为细化晶粒元素使用,实际上它们还有析出强化作用。Garland 和Plateau等关于第二相质点对塑性断裂过程影响的理论分析表明,材料的总体塑性与质点的形状有关,第二相质点的长宽比增加,提高沿夹杂物长度方向的拉伸塑性,由此产生塑性的各向异性。这种各向异性影响扁平产品的纵向弯曲性能以

宝钢高强度汽车钢板

宝钢高强度汽车钢板 宝钢新开发的高强度汽车用钢有4个强度级别(屈服强度),与欧洲标准一致。 1. 技术标准 表1 宝钢高强度汽车钢板的技术指标(欧洲标准) 注:厚度大于8mm屈服强度可降低20MPa。 注:Nb+ V+ Ti≤0.22% 2.实物水平

2.2 650MPa级冷弯照片 8mm钢板 3mm钢板 3mm和8mm钢板2.3 700MPa级冷弯照片 8mm钢板 8mm钢板 4mm钢板 3. 可供规格 4.焊接 宝钢汽车用热轧高强钢通过低碳低合金设计降低钢的碳当量和焊接裂纹敏感系数,具有良好的可焊接性能,不需预热就可直接进行焊接。 Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 Pcm=C+(Mn+Cr+Cu)/20+V/10+Mo/15+Si/30+Ni/60+5B 焊接方法 宝钢汽车用热轧高强钢可使用气体保护焊(MAG)和手工电弧焊(SMAW)、埋弧焊(SAW)进

行焊接,推荐使用气体保护焊(MAG )。 焊接热输入 焊接时使用推荐的热输入,可使热影响区具有良好的机械性能。并且热输入范围越宽说明该钢种的焊接性能越好。 焊接热输入由下列公式计算: 60 1000 k U I Q v ???= ? 下图为按钢板厚度推荐的最佳焊接热输入范围: 在厚度一定的条件下宝钢汽车用热轧高强钢的许用焊接热输入范围很宽,具有优良的焊接性能。 坡口形式 宝钢汽车用热轧高强钢适用于多种接头型式的焊接,常用的接头型式有:I 型坡口、V 型坡口 焊接材料 在焊接接头力学性能满足构件要求的情况下,为避免接头处的应力集中、降低焊缝的内应力,应尽可能选择强度不超过推荐值的焊材。

宝钢对照牌号

标准号 Q/BQB 402-2003 Q/BQB 403-2003 Q/BQB 408-2003 JIS G3141-1996 JFS A2001-1998 EN 10130-1999 DIN 1623-(1)-1983 ASTM A1008-02e1 GB/T 5213-2001 ISO 3574-1999 SPCC DC01(St12)BLC SPCC JSC270C DC01St12CS -CR1SPCD DC03(St13)BLD SPCD JSC270D DC03RRSt13DS -CR2SPCE DC04(St14,St15) BUSD SPCE JSC270E DC04St14DDS SC1CR3SPCEN DC05(BSC2)BUFD SPCEN JSC270F DC05-EDDS SC2CR4- DC06 (St16,St14-T BSC3) BSUFD - JSC260G DC06 - - SC3 CR5 标准号 Q/BQB 411-2003 JFS A2001-1998 JIS G3135-1986 prEN 10268-2002 B170P1JSC340P SPFC340-B210P1 JSC390P SPFC390-B250P1JSC440P SPFC440-B180P2(BP340)JSC340W -H180P B220P2(BP380) JSC390W - H220P 标准号Q/BQB 416-2003 JFS A2001-1998 JIS G3135-1986 prEN 10268-2002 B140H1JSC270H --B180H1JSC340H --B180H2(BH340) - SPFC340H H180B 标准号 Q/BQB 418-2003 JFS A2001-1998 SAE J2340-1999 B240/390DP --B280/440DP --B340/590DP JSC590Y 600DL1B400/780DP JSC780Y - 标准号Q/BQB 419-2003 JFS A2001-1998 SAE J2340-1999prEN 10268-2002 B340LA JSC440R 340X H340LA B410LA JSC590R - H420LA 标准号 Q/BQB 420-2003 EN 10142-2000JIS G3302-1994(Z) JFS A3011-1998(ZF) ASTM A653M-02a DC51D+Z (St01Z,St02Z,St03Z)DC51D+ZF SGCC JAC270C DD51D+Z (St01ZR,St02ZR)SGHC JAH270C DC52D+Z(St04Z) DC52D+ZF DX52D+Z,+ZF SGCD1JAC270D CS Type A, Type B DC53D+Z (St05Z) DC53D+ZF DX53D+Z,+ZF SGCD2 SGCD3 JAC270E FS Type A, Type B DC54D+Z(St06Z) DC54D+ZF -JAC270F DD54D+Z(St06ZR)--DC56D+Z(St07Z) DC56D+ZF DX56D+Z,+ZF - JAC270G EDDS 标准号 Q/BQB 420-2003 EN 10147-2000JIS G3302-1994(Z) ASTM A653M-02a S220GD+Z,S220GD+ZF S220GD+Z,+ZF -SS 230S250GD+Z,S250GD+ZF S250GD+Z,+ZF -SS 255S280GD+Z(StE280-2Z) S280GD+ZF S280GD+Z,+ZF SGC340SS 275S320GD+Z,S320GD+ZF S320GD+Z,+ZF -- S350GD+Z(StE345-2Z) S350GD+ZF S350GD+Z,+ZF -SS 340 Class 1 S550GD+Z,S550GD+ZF S550GD+Z,+ZF - SS 550 牌 号 宝钢冷轧企标与国内外相关标准对照 冷轧产品相近牌号对照表(1)-低碳钢 牌 号冷轧产品相近牌号对照表(2)-加磷钢 牌 号 冷轧产品相近牌号对照表(3)-烘烤硬化钢 牌 号 冷轧产品相近牌号对照表(4)-双相钢 热镀锌产品相近牌号对照表(1)-低碳钢 牌 号 冷轧产品相近牌号对照表(5)-低合金高强钢 牌 号DX51D+Z,+ZF CS Type C DX54D+Z,+ZF DDS 牌 号 热镀锌产品相近牌号对照表(2)-结构钢

宝钢热轧产品牌号对照表

宝钢热轧产品牌号对照表 热轧产品相近牌号对照表 ①Q/BQB302 Q/BQB 302-2003 DIN1614-2 -86 EN111-77 EN10111 -199 8 JIS G 3131 -1996 GB 710-91 /GB 711-88 DD11 SPHC StW22 FeP11 DD11 SPHC 08 DD12 SPHD RRStW23 FeP12 DD12 SPHD 08或08Al DD13 SPHE StW24 FeP13 DD13 SPHE 08Al ②Q/BQB303 表1 Q/BQB 303-2003 JIS G 3101:1995 GB 912-89/GB 3274-88 GB 71 0-91/GB 711-88 SS330 SS330 Q195,Q215A,Q215B,15 SS400 SS400 Q235A,Q255A SS490 SS490 Q275A SS540 SS540 - 表2 Q/BQB 303-2003 DIN17100-80 EN10025:1990 EN10025:199 3 GB 912-89/GB 3274-88 St33 St33 Fe310-0 S185 Q195,Q215A,Q215B St37-2 St37-2,RSt37-2 Fe360B S235JR Q235B St37-3 St37-3 Fe360C S235J0 Q235C St44-2 St44-2 Fe430B S275JR Q255B St50-2 St50-2 Fe490-2 E295 Q275,Q345A St52-3 St52-3 Fe510C S355J0 Q345C,Q390B,Q390C 表3 Q/BQB303-2003 DIN17102-80 EU113-72 EN10113-2:199 3 GB 912-89 GB 3274-88 StE255 StE255 FeE255KGN -- StE355 StE355 FeE355KGN S355N Q345B、Q345C 表4 Q/BQB303-2003 DIN17200-84 EN10083-2:1991 GB710-91 GB711-88

典型钢种的特点及应用

典型钢种特点及应用 类型 典型牌 号C% 常用工 艺 组织应用 其它要 点 碳素构件用钢Q195 Q275 <0.2% 一热轧状 态供货;一 般不经热 处理强化 (也可进 行一定热 处理) F+P 用在建筑、 车辆及其 它构件用 钢 分为沸腾 钢、镇静钢 和半镇静 钢:主要保 证力学性 能 普通低合金高强度 钢 12Mn 14MnMoV <0.23%轧制F+P 用于大型 桥梁、大型 压力容器 和船舶 主加Mn, 固溶强化 效果大;基 本上不加 Cr、Ni 微合金化 低合金高强度钢<0.1% 微合金化、 控制轧制 和控制冷 却 F+少量P 汽车压力 加工件、焊 接结构件 微合金化 的目的是 细化晶粒; 包括针状 铁素体型 微合金化 钢和双相 钢;强度高 延性好 调质钢 40Cr 40CrMn 40CrNiMo 0.3%~0.5% 淬火和高 温回火处 理 回火索氏 体(铁素体 基体和弥 散分布的 粒状碳化 物) 制造各种 轴类零件、 连杆、高强 度螺栓 1、较高塑 遍抗力 和疲劳 强度, 良好的 塑性和 韧性, 晶粒细 小 2、主加元 素:Si、 Mn、 Cr、Ni、 B 辅加元 素:W、 Mo、V、 Ti

类型 号C% 艺 组织应用 点 弹簧钢65Mn 50CrV 碳 素 弹 簧 钢 0.6%~0.9% 热成形: 淬火后中 温回火 冷成形: 冷变形或 热处理强 化再冷成 形 回火屈氏 体 制造弹簧 或类似弹 簧性能的 零件 搞弹性极 限、高疲 劳极限、 一定的塑 性和韧 性、耐高 温、耐腐 蚀、导电、 无磁;常 用合金元 素Mn、Si、 Cr、V、W、 Mo 合 金 弹 簧 钢 0.45%~0.7% 滚动轴承 钢GCr15钢0.95%~1.15% 一般经球 化退火处 理和淬火 加低温回 火处理 隐晶马氏 体基体上 分布着均 匀细小的 颗粒状碳 化物 主要用于 支撑轴 径;制造 各类工具 和耐磨零 件 主加合金 元素为 Cr,提高 淬透性; 轴承钢中 可能出现 三种碳化 物分布不 均匀的缺 陷: 碳化物网 状组织 碳化物带 状组织 碳化物液 析

汽车用先进高强度钢的特点和生产工艺

汽车用先进高强度钢的特点和生产工艺 发表时间:2018-11-07T09:37:30.243Z 来源:《防护工程》2018年第17期作者:刘振广王娜斌徐飞[导读] 汽车轻量化和安全性对汽车用钢的性能提出了新的、较高的要求 长城汽车股份有限公司徐水分公司河北省保定市 071000 摘要:汽车轻量化和安全性对汽车用钢的性能提出了新的、较高的要求,具体有以下6个方面:优良的成形性能;在保证塑性、延性指标的同时,提高强度降低冲压件重量;良好的表面状态和形貌、严格的尺寸精度;良好的连接性能和保型性能;抗时效性稳定性和油漆烘烤硬化性;耐蚀性能。先进高强度钢,其英文缩写为AHSS(Advanced High Strength Steel),主要包括双相(DP)钢、相变诱导塑性 (TRIP)钢、复相(CP)钢、马氏体(M)钢、热成形(HF)钢和孪晶诱导塑性(TWIP)钢。 关键词:先进高强度钢汽车用钢发明热轧冷轧 前言:迅猛发展的汽车工业更加突显出环保、能源等方面的难题。汽车用高强度钢对汽车工业的发展起着举足轻重的作用,是汽车轻量化的关键材料之一。在未来的数年内,我国汽车工业将会取得更大的发展,对汽车用高强度钢的要求也会越来越多,汽车开发公司需进一步加强与钢铁研究者的合作,这对发展汽车用高强度钢板,促进我国汽车行业发展以及提高我国汽车竞争能力大有裨益。 1高强度板料的特性高强度板料具有很高的抗拉强度、耐冲击性,其抗拉强度是普通材料的3倍甚至更多,因此对汽车的碰撞安全性能非常重要。高强度板料的这种特性对汽车的安全、减重和节能是非常重要的,其效果也是非常明显的。研究结果表明,使用高强度板料,汽车冲压件抗拉强度从220MPa提高到700MPa,材料厚度从1.8mm减小到1.4mm,而材料可吸收冲击能指数则基本保持不变。汽车减重也与材料强度密切相关。研究表明,材料抗拉强度从300MPa左右提高到900MPa左右,汽车减重率则从25%左右提升到40%左右。由此可以看出使用高强度板料已是汽车行业以后发展的趋势。但板料的强度和塑性一般是矛盾的,板料强度的提高必然导致塑性下降。而板料塑性的下降就为冲压件的成型带来了很多问题和难题,回弹就是其中冲压件成型过程中很难避免的缺陷之一。如何预防、减少高强度板料的回弹就成了摆在高强度板料冲压件面前最大的问题。 2 各种先进高强度钢的特点和生产工艺 2.1双相钢(DP) 双相钢组织是在纯净的铁素体晶界或晶内弥散分布着较硬的马氏体或贝氏体(一般在15%),强度与韧性协调很好,兼有高强度和良好的成形性。双相钢生产方法有热轧法和热处理法两种。热轧法是将热轧钢材的终轧温度控制在两相区的某一范围,然后快速冷却,即通过控制最终形变温度及冷却速度的方法获得铁素体+马氏体双相组织。该方法又分为两种:一是常规热轧法,即在通常的终轧及卷取温度下获得双相组织;二为极低温度卷取热轧法,即在Ms点以下进行卷取,以获得双相组织。热处理法是将热轧或冷轧后的钢材重新加热到两相区并保温一定时间,然后以一定速度冷却,从而获得所需要的铁素体+马氏体双相组织。 宝钢发明提供的一种热轧高强度双相钢板,其化学成分设计(按重量百分含量计)为:C:0.10一0.13%,Si:0.85一1.15%,Mn:1.40一1.70%,P:≤0.015%,S:≤0.005%,Al:0.015一0.035%,N:≤0. 006%,余量为铁和不可避免杂质。 生产过程:转炉吹炼和真空处理→连铸→加热和轧制→轧后进行分段冷却→卷取→空冷。 第一段水冷速度70一100℃/s,快速水冷目的是使材料迅速进入铁素体相区,中间空冷温度控制在620一660℃,空冷时间4一6s,空冷温度和时间的配合是为了获得适量的铁素体组织(体积分数80%左右)和较低的屈服强度,第二段水冷速度要求大于100℃/s,终冷温度≤200℃,第二段水冷的终冷温度优选150一200℃,其目的在于使未相变的奥氏体组织淬火成马氏体组织,提高钢材的抗拉强度。由于生产热轧双相钢的关键是控制热轧后的冷却方式,因此本方法可以通过控制相变组织类型和比例来得到双相钢板所需的性能。 通过该方法制造的钢板:屈服强度≥450MPa,抗拉强度≥800MPa,延伸率A50≥15%,具有较高的强度、塑型性和成形性,较好的延伸性、焊接性、冷弯性等使用性能 [2]。 2.2相变诱发塑性钢(TRIP) 相变诱发塑性钢是指钢中存在多相组织的钢。这些相通常为铁素体、贝氏体、残余奥氏体和马氏体。在形变过程中,稳定存在的残余奥氏体向马氏体转变时引起了相变强化和塑性增长。为此残余奥氏体必须有足够的稳定性,以实现渐进式转变,一方面强化基体,另一方面提高均匀的伸长率,达到强度和塑性同步增加的目标[3]。 鞍钢发明提供的一种高强塑积TRIP钢板,其化学成分以质量百分比计为:C:0.08%一0.5%,Si:0.4%一2.0%,Mn:3%一8%,P:≤0.10%,S:≤0.02%,Al:0.02%一4%,N:≤0.01%,Nb:0―0.5%,V:0―0.5%,Ti:0―0.5%,Cr:0―2%,Mo:0―1%。 生产过程,冶炼→连铸→热轧→酸洗→冷轧→罩式炉退火。热轧加热温度:1100一1250℃,保温时间为≥2h,开轧温度为≥1100℃,终轧温度850一950℃,卷取温度<720℃,热轧板厚度为2―4mm;如果客户要求钢板厚度在2―4mm之间,也可以不进行冷轧;冷轧累积压下量40%一80%。罩式炉退火:随炉加热,保温温度为:550一750℃,保温时间:1―20h,随炉冷却。得到的冷轧TRIP钢板强塑积大于30GPa%,显微组织中马氏体以面积率计为30―90%,奥氏体以体积率计为5一30%,其余为少量铁素体和渗碳体[4]。 2.3马氏体钢(MART) 马氏体钢的生产是通过高温奥氏体组织快速淬火转变为板条马氏体组织,可通过热轧、冷轧、连续退火或成形后退火来实现,是目前商业化高强度钢板中强度级别最高的钢种。 首钢发明提供的一种热轧马氏体钢,其化学成分按重量百分比为:C:0.10一0.18%,Si:0. 0l一0. 4,Mn:l.0一2.0,P:≤0.012%,S:≤0.006%,Nb:0.02一0.06%,Ti:0.0l一0.05%,Cr:0.1一0.5%,余量为Fe及其它杂质元素。生产过程:冶炼、铸造,形成钢坯;将所述钢坯加热至1200一1250℃,保温1一2小时;将保温后的钢坯进行热轧;对热轧后的钢坯采用直接冷却工艺,以30一70℃/s的冷却速率冷却到马氏体相变点以下后进行卷取。获得的热轧马氏体钢屈服强度大于1000MPa,抗拉强度达到1200一1320MPa,延伸率8一11%,d=8a冷弯性能良好[5]。

相关主题
文本预览
相关文档 最新文档