当前位置:文档之家› 二极管在电路中的作用讲解

二极管在电路中的作用讲解

二极管在电路中的作用讲解
二极管在电路中的作用讲解

1.二极管在电路中的应用是必不可少的,无论是做整流电路还是钳位作用还是其他的一些作用,都会用到它.

二极管可分为发光二极管(LED),整流二极管,稳压二极管,开关二极管等等.这里只介绍前面说的几种.

1.发光二极管相信大家都见过,一般作为指示灯用,例如电脑的硬盘灯一闪一闪的表示你的硬盘正在工作(如果不闪,则很可能是你的机器忙不过来或者是处在待机状态),还有就是一些随身听上的指示灯,以及充电器的指示灯.发光二极管相对其他二极管正向导通电压较大,一般在1.6V到1.8V间.二其他二极管一般在0.2-0.3V(鍺管),0.6-0.8V (硅管)。

2.整流二极管,也是很常见的,利用的是二极管的单向导通特性,从而可以将负极性电信号滤掉---半波整流,也可以进行其它的整流----例如全波整流。

二极管还具有稳压作用,这是因为二极管反向接通时,在二极管被击穿的情况下,其电流将瞬间增大,这样在外电压增大时,由于二极管被击穿后增加的电流会通过二极管而不会经过与二极管并联的负载上,从而可以保护与其并联的器件。常见的有保护场效应管,即在场效应管栅极反向并接一个二极管。二极管击穿电压一般在4V-7V.

钳位作用:钳位作用就是利用二极管的正向导通电压在导通后维持在0.2-0.4V(鍺管),

0.6-0.8V(硅管),从而使与其连接的器件两端电压维持在一个范围内,最简单就是三极管的BE结电压在导通时可保持在钳位电压,这点常用于三极管的静态分析。一般无特别说明硅管取0.7V,鍺管取0.3V。

开关二极管常见型号有1N4148,1N4150,1N4448,利用的是二极管的高速转换特性。限于水平,暂不作详细介绍。

其它二极管还有肖特基二极管,隧道二极管,双向出发二极管,微功耗基准电压二极管等,由于其制作工艺不同而具有不同的功能。

2.晶体二极管在电路中常用“D”加数字表示,如:D5表示编号为5的二极管。

1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;

而在反向电压作用下导通电阻极大或无穷大。正因为二极管具有上述特性,无绳电话机中常

把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。

电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004)、隔离二极管(如

1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。

2、识别方法:二极管的识别很简单,小功率二极管的N极(负极),在二极管外表大多采用

一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有

采用符号标志为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识

别,长脚为正,短脚为负。

3、测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好

相反。

4、常用的1N4000系列二极管耐压比较如下:

型号1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007

耐压(V)50 100 200 400 600 800 1000

电流(A)均为1

3.稳压二极管在电路中的作用及工作原理

稳压二极管工作原理一种用于稳定电压的单结二极管。它的伏安特性,稳压二极管符号如图1所示。结构同整流二极管。加在稳压二极管的反向电压增加到一定数值时,将可能有大量载流子隧穿伪结的位垒,形成大的反向电流,此时电压基本不变,称为隧道击穿。当反向电压比较高时,在位垒区内将可能产生大量载流子,受强电场作用形成大的反向电流,而电压亦基本不变,为雪崩击穿。因此,反向电压临近击穿电压时,反向电流迅速增加,而反向电压几乎不变。这个近似不变的电压称为齐纳电压(隧道击穿)或雪崩电压(雪崩击穿)。ab126计算公式大

图1 稳压二极管伏安特性曲线

图2 等效电路理想模式838电子

图3 理想模式导通状态常见的两种稳压电路接法

图4 实际模式导通状态

图5 实际模式导通状态常见的两种稳压接线电路

稳压二极管的主要参数

1.Vz—稳定电压。

指稳压管通过额定电流时两端产生的稳定电压值。该值随工作电流和温度的不同而略有改变。由于制造工艺的差别,同一型号稳压管的稳压值也不完全一致。例如,2CW51型稳压管的Vzmin为3.0V, Vzmax 则为3.6V。

2.Iz—稳定电流。

指稳压管产生稳定电压时通过该管的电流值。低于此值时,稳压管虽并非不能稳压,但稳压效果会变差;高于此值时,只要不超过额定功率损耗,也是允许的,而且稳压性能会好一些,但要多消耗电能。

3.Rz—动态电阻。

指稳压管两端电压变化与电流变化的比值。该比值随工作电流的不同而改变,一般胜作电流愈大,动态电阻则愈小。例如,2CW7C稳压管的工作电流为5mA时,Rz为18Ω;工作电流为1OmA时,Rz为8Ω;为20mA时,Rz为2Ω ; > 20mA则基本维持此数值。

4.Pz—额定功耗。

由芯片允许温升决定,其数值为稳定电压Vz和允许最大电流Izm的乘积。例如2CW51稳压管的Vz为3V,Izm为20mA,则该管的Pz为60mWo

5.Ctv—电压温度系数。

是说明稳定电压值受温度影响的参数。例如2CW58稳压管的Ctv是+0.07%/°C,即温度每升高1°C,其稳压值将升高0.07%。

6.IR—反向漏电流。

指稳压二极管在规定的反向电压下产生的漏电流。例如2CW58稳压管的VR=1V时,IR=O.1uA;在

VR=6V时,IR=10uA。

(三)选择二极管的基本原则

1.要求导通电压低时选锗管;要求反向电流小时选硅管。

2.要求导通电流大时选面结合型;要求工作频率高时选点接触型。

3.要求反向击穿电压高时选硅管。

4.要求耐高温时选硅管。

4. 1N4148与3.3V反接,有何用途,稳压,反相导通?

另:如果我想让5V的输出电压更加稳定,能否在输出反相并联一个5V的肖特基二极管?

答1、反接后是并在经限流电阻输出的电源上(烦请描述清楚些)的话,是提高稳压值的,一般1N4148导通后有0.45-0.55V的压降,借此与常见稳压二极管反串后可以替代一些不在系列上的稳压二极管,如此电路应是稳压在3.7-3.8V之间的电源电路;另若要得到更稳定的稳压电源,最好是采用7805系列的三端模快,

答2、如果是与3.3V串联反接,可能是为了防止3.3V倒灌到别的电路中去了。

答3、1N4148是普通的二极管,主要是用于单向导通。1N4148与3.3V反接,看是在什么线路上。可能是由别的电压整流到3.3V; 或者是信号钳位保护,当信号电压超过3.3V时,二极管导通。在开关电源中,增加反相并联的肖特基二极管没用,增加电容才能使输出稳定。

答4、一般是防静电,除了防净电,还可在电源接反的情况下,保护其它电路(如MCU).

答5、我见过的一般在reset (电阻电容)电路中,是不是在上电的时候起到保护作用?(AVR 的芯片很多都是这样连的- zjcsharp)

答6、Reset电路里的二极管是加快电容放电速度的作用

答7、1N4148是一般的二极管,具有单向导电性,除以上各位所说的功能外,还可作整流用。

答8、两者是串联还是并联?如果是串联的那是提高热稳定性的,使稳压值不因工作电流和温

度的变化而变化.如果是反接并联,好像还没有这么用的,只能做0.5~0.7V稳压管用了,没有必要吧

答9、普通的二极管可以做稳压钳位单向导通可以做感性器件的防倒灌保护电路

答10、增加稳压电压,稳压管3.7V+4148可作4.3稳压管子

答11、1N4148是快速恢复二极管,用于保护。比如电平倒灌或者感生电动势等。如果是高频感生电动势,则需要用肖特基二极管

5.什么是二极管

二极管的英文是diode。二极管的正.负二个端子,正端称为阳极,负端称为阴极。电流只能从阳极向阴极方向移动.一些初学者容易产生这样一种错误认识:“半导体的一‘半’是一半的‘半’;面二极管也是只有一‘半’电流流动(这是错误的),所有二极管就是半导体”。其实二极管与半导体是完全不同的东西。我们只能说二极管是由半导体组成的器件。半导体无论那个方向都能流动电流。

二极管的特性与应用

几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。

二极管的工作原理

晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电

流,称为二极管的击穿现象。

二极管的类型

半导体可分为本征半导体.P型半导体.N型半导体。

本征半导体:硅和锗都是半导体,而纯硅和锗(11个9的纯度)晶体称本征半导体。硅和锗为4价元素,其晶体结构稳定。

P型半导体:P型半导体是在4价的本征半导体中混入了3价原子,譬如极小量(一千万之一)的铟合成的晶体。由于3价原子进入4价原子中,因此这晶体结构中就产生了少一电子的部分。由于少一电子,所以带正电。P型的“P”正是取“Positve(正)”一词的第一个字母。

N型半导体:若把5价的原子,譬如砷混入4价的本征半导体,将产生多余1个电子的状态结晶,显负电性。这N是从“Negative(负)”中取的第一个字母。

二极管的导电特性

二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。

1. 正向特性。

在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。

2. 反向特性。

在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。

二极管的主要参数

用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数:

1、额定正向工作电流

是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。

2、最高反向工作电压

加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工作电压值。例如,IN4001二极管反向耐压为50V,IN4007反向耐压为1000V。

3、反向电流

反向电流是指二极管在规定的温度和最高反向电压作用下,流过二极管的反向电流。反向电流越小,管子的单方向导电性能越好。值得注意的是反向电流与温度有着密切的关系,大约温度每升高10,反向电流增大一倍。例如2AP1型锗二极管,在25时反向电流若为250uA,温度升高到35,反向电流将上升到500uA,依此类推,在75时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过热而损坏。又如,2CP10型硅二极管,25时反向电流仅为5uA,温度升高到75时,反向电流也不过160uA。故硅二极管比锗二极管在高

温下具有较好的稳定性。

二极管的识别

小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。

6.整流二极管的作用

1.一种将交流电能转变为直流电能的半导体器件。通常它包含一个PN结,有阳极和阴极两个端子。

P区的载流子是空穴,N区的载流子是电子,在P区和N区间形成一定的位垒。外加使P区相对N区为正的电压时,位垒降低,位垒两侧附近产生储存载流子,能通过大电流,具有低的电压降(典型值为0.7V),称为正向导通状态。

2.若加相反的电压,使位垒增加,可承受高的反向电压,流过很小的反向电流(称反向漏电流),称为反向阻断状态。整流二极管具有明显的单向导电性,。

整流二极管可用半导体锗或硅等材料制造。硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造。这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频整流电路。

二极管整流电路

一、半波整流电路

图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。

变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。

下面从图5-2的波形图上看着二极管是怎样整流的。

变压器砍级电压

e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π 时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,Rfz,上无电压。在π~2π时间内,重复0~π 时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc。以及负载电流的大小还随

时间而变化,因此,通常称它为脉动直流。

这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。

二、全波整流电路(单向桥式整流电路)

如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是

全波整流电路的电原理图。

全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2ae2aRfz与e2b 、D2、Rfz ,两个通电回路。、D1、、e2b ,构成

全波整流电路的工作原理,可用图5-4 所示的波形图说明。

★在0~π间内,e2aD1 导通,在Rfz 上得到上正下负的电压;e2b 对D2为反向电压,D2 不

导通(见图5-4(b)。

★在π-2π时间内,e2b 对D2为正向电压,D2导通,在Rfz 上得到的仍然是上正下负的电压;

e2aD1为反向电压,D1 不导通(见图5-4(C)。对Dl为正向电压,

如此反复,由于两个整流元件D1、D2轮流导电,结果负载电阻Rfz 上在正、负两个半周作用期间,都有同一方向的电流通过,如图5-4(b)所示的那样,因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(Usc=0.9e2,比半波整流时大一倍)。

图5-3所示的全波整滤电路,需要变压器有一个使两端对称的次级中心抽头,这给制作上带来很多的麻烦。另外,这种电路中,每只整流二极管承受的最大反向电压,是变压器次级电压最大值的两

倍,因此需用能承受较高电压的二极管。

图5-5(a )为桥式整流电路图,(b)图为其简化画法。

三、桥式整流电路

桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。

桥式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz 、D3通电回路,在Rfz ,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz 、D4通电回路,同样在Rfz 上形成上正下负的另外半波的整流电压。

上述工作状态分别如图5-6(A)(B)所示。

如此重复下去,结果在Rfz ,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整

洗电路小一半!

四、整流元件的选择和运用

需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1 所列参数可供选择二极

管时参考。

另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以

把二极管串联或并联起来使用。

图5-7 示出了二极管并联的情况:两只二极管并联、每只分担电路总电流的一半,三只二极管并联,每只分担电路总电流的三分之一。总之,有几只二极管并联,"流经每只二极管的电流就等于总电流的几分之一。但是,在实际并联运用时",由于各二极管特性不完全一致,不能均分所通过的电流,会使有的管子困负担过重而烧毁。因此需在每只二极管上串联一只阻值相同的小电阻器,使各并联二极管流过的电流接近一致。这种均流电阻R一般选用零点几欧至几十欧的电阻器。电流越大,R应选得越小。

图5-8示出了二极管串联的情况。显然在理想条件下,有几只管子串联,每只管子承受的反向电压就应等于总电压的几分之一。但因为每只二极管的反向电阻不尽相同,会造成电压分配不均:内阻大的二极管,有可能由于电压过高而被击穿,并由此引起连锁反应,逐个把二极管击穿。在二极管上并联的

电阻R,可以使电压分配均匀。

6.交流接触器的直流运行

我们在第一章中巳介绍过交流接触器,它的线圈是通过交流电流而工作的,因此在磁系统调整不好时会出现振动和噪声,当交流接触器的动铁芯和静铁芯之间因有杂物而闭合不严时,通过线圈的电流较大,严重时将烧毁线圈,特别是额定电流较大的交流接触器,上述问题更为严重,同时,交流接触器的功率因数很低,浪费电能。因此,有必要对交流接触器进行改造,其中比较行之有效的方法是将交流接触器的交流运行改为直流运行。

将交流接触器改为直流运行后,有如下优点:

1、可以消除运行时的振动和噪音;

2、降低交流接触器的释放电压,在电源电压较低时交流接触器不会释放。

3、交流接触器线圈及铁芯的温升可显著降低,延长交流接触器的使用寿命。

4、可以节约大量的有功功率和无功功率。

综上所述,将交流接触器改为直流运行。对安全生产和节约用电都有较大的实际意义。

交流接触器改为直流运行,对接触器不需作任何改动,只需要略加改变交流接触器的控制线路即可。改动的方案有很多,按接触器吸合和运行来分,可分为交流吸合直流运行;以及直流吸合直流运行两种方案。

一、交流吸合、直流运行

1、交流吸合、直流运行控制线路之一

交流吸合、直流运行控制线路之一如图21501所示:

图21501交流吸合,直流运行控制线路的原理如下:

起动时,按下起动按钮SB1,接触器KM获电吸合,其自锁触头KM闭合,通过电容C自锁。放开起动按钮SB2后,按钮SB1和SB2的常闭触头将二极管VD 接通,使二极管VD与接触器KM的线圈并联。这时KM仍保持吸合状态,并转入直流运行。电容C串入电路起降压限流作用。正半波时,二极管VD反偏不导通,电压经过电容C加到KM线圈上,线圈电流的方向是从左至右。负半波时,二极管VD正偏导通,电源电压通过二极管VD加到电容C上,这时,KM线圈产生自感电动势,二极管为自感电流提供通路,线圈中电流的方向仍是从左至右(此时的电流是自感电流)。因此,电源电压的方向虽然变化,但是流过线圈的电流却始终不变。放松按钮SB2后,交流接触器进入直流运行状态。这时交流接触器相当于一个直流电磁铁,一旦吸合后,磁阻极小,吸力很大,只需要较小的激磁安匝就可以保持吸合状态。线路中串联的电容C在此起降压限流的作用,适当选择电容的容量,可使接触器运行的电流大大减小,所以该线路可以节约电能。另外,交流接触器改为直流运行后,吸力也稳定,消除了交流运行时的噪声。

2、交流吸合、直流运行的控制电路之二

图21502的工作原理简述如下:

按下起动按钮SB2,按触器KM线圈获电吸合,其自锁触头KM闭合,通过电容C自锁。在变压器初极回路中的另一常开辅助触头KM闭合,接通变压器T的初级电源。松开按钮SB2后,SB2的常闭触头接通了中间继电器KA的线圈回路,使其获电吸合,其常开触头KA闭合,使续流二极管VD3与接触器KM的线圈并联,使接触器KM投入直流运行。

3、元件的选择

变压器T二次回路的二极管VD1为半波整流二极管;VD2为中间继电器KA 线圈的续流二极管。这两个二极管的反向耐压和正向电流应根据KA的额定电流和电压来选取。一般用IN4007型的二极管,足可胜任。

图21501与图21502各线路中的电容C可参考下列数据选取(设交流接触器线圈的额定电压为380伏):

CJ10-40型取0.47徽法;CJ10-60型取1徽法;CJ10-100型取1.47徽法;CJ12B-250型取2徽法;CJ12B-600型取6徽法。

所选的电容器最好是无极性交流电容器,如果选用无极性直流电容器,其额定工作电压要大于两倍的电源电压。

图中的二极管VD一般选择正向额定电流为1安培,但当交流接触器的额定电流大于400安培时,最好选择正向额定电流为5A的二极管;二极管的反向耐压应该选择大于800伏。在交流接触器的额定电流小于400A时,可选廉价的

IN4007型二极管,它的正向电流为1A,反向耐压为1000伏。

二、直流吸合、直流运行控制线路

1、直流吸合、直流运行控制线路之一

图21503的控制线路中的按钮部分的接线,与前面介绍的正转控制线路相同,接触器部分的接线也较简单,所以此处略去了接线图。

图21503的工作原理如下:

按下起动按钮SB2,电源L1通过中间继电器KA常闭触头、二极管VD1整流、电阻R限流,给接触器KM的线圈供电,使接触器KM获电吸合,接触器KM的两个常开辅助触头闭合,其中一个短路按钮SB2而自锁;另一个接通中间继电器KA的线圈回路,使中间继电器KA获电吸合,其常闭触头KA断开,切断VD1、R的回路。中间继电器KA的作用是:待KM可靠吸合之后,方才切断VD1、R的电路,以保证起动可靠。改变电阻R的阻值,可以调节接触器KM起动时的吸力。R阻值小,接触器KM起动时的吸力大,反之则吸力小。调试时如果发现起动时接触器KM不容易吸合,可适当减小电阻R的阻值,直至在电源电压较低时也能可靠吸合为止。

2、直流吸合、直流运行控制线路之二

直流吸合、直流运行控制线路之二如图21504所示:

3、直流吸合、直流运行控制线路之三

直流吸合、直流运行控制线路之三如图21505所示:

图21504与图21505基本相同,它们的不同点是起动完成后,断开VD1、R线路的方法不一样,图21504是借助常开按钮SB2的复位来切断;而图21505

是利用接触器KM的常闭辅助触头来切断。另一个不同是图21504用四根控制线,而图21505却只用三根控制线。此外,图21504所示线路,起动时接触器线圈中流过的起动电流较大,所以使用时,起动按钮SB2被按下的时间不宜太长,起动完毕,应立即将SB2释放。

图21505所示线路,按下按钮SB2起动时,接触器线圈KM获电开始吸合,其常闭触头断开,但常开触头尚未闭合时,电容C已串入在线路中,起到了降压作用。接触器在刚刚起动时,由于常闭触头KM的断开而切断了电阻R和VD1的起动线路,此时接触器还未来得及可靠吸合,仍然需要较大的激磁安匝。如果电容C的容量选得偏小,会造成起动失败,接触器出现“吸-放-吸-放”现象,使衔铁跳动不止,产生很大的噪音。如果电阻R的阻值偏大,也会出现上述现象,使接触器起动失败。因此,要将电阻R及电容C的参数选得适当,它们的具体数值最好通过实际的现场调试决定。

4、元件的选择

图21503至图21505所示的三个直流吸合直流运行的控制线路中的电容C、二极管VD1、VD2以及电阻R的参数,可参考“交流吸合、直流运行的控制线路”选取。

注意:电容器C的额定电压应大于800伏;VD1、VD2的反向电压分别为400伏、800伏;接触器线圈的额定电压为380伏。电容C的容量在可能的情况下,尽量取小值,一般可通过试验决定。只要在接触器起动时,接触器能可靠吸合即可。

另外,安装时,停止按钮SB1要尽可能安装在靠近接触器线圈处,这样停车时接触器可瞬时释放。

三、多个交流接触器直流运行线路

以上所介绍的各种直流运行线路,都是一个交流接触器应用的控制线路,在实际的工作中,许多场合都是多个交流接触器集中于一个配电柜中。在这种情况下,如果还采用上述电路来改造交流接触器的直流运行,将出现投资大,占用空间多等弊端。所以,此时最好采用下面的多只交流接触器直流运行线路。

多个交流接触器直流运行线路如图21506所示。

图21506的工作原理简述如下:

按下起动按钮SB2,L1与L2两端的380伏特电压经VD5半波整流,使接触器KM获电吸合,KM的常开触头闭合,接通保持回路。由于保持电压方向与合闸电压方向一致,所以接触器不会产生跳动,能够可靠吸合。其它虚线框内的交流接触器的接法与已画出接线图的接触器相同。所以省略未画出。

由于起动时接触器KM线圈内流过很大的起动电流,所以起动时间要尽可能

短。另外,在某一个接触器起动时,要将远远高于保持电压(约7.2伏特)的起动电压(约171伏特)引入公共母线及起动回路,使其它已闭合的接触器也承受这个较高的起动电压。所以在起动完成后,要迅速切断起动回路,图中,中间继电器KA就是完成这一任务的。

起动前,直流继电器KA两端只有7.2伏特的接触器保持电压,所以不会吸合,但当某个接触器起动时,将171伏特的起动电压引入公共母线,此时KA吸合,其常闭触头断开迅速切断起动回路,同时也使公共母线与起动电压脱离。

当起动按钮复位后,中间继电器KA也复位,其常闭触头恢复闭合,为第二只接触器起动作准备。

按下停止按钮SB1,接触器KM断电释放。第二只接触器及以后的第三、以及第四等接触器的起动过程与上述过程相同。

采用图21506控制线路的优点是,所用元件少、占用空间也少、投资低、合闸的成功率高。

元件的选择

图21506中所用元件参数如下:

二极管VD1~VD4,2CZ型20安培600伏特;VD5,2CZ型20安培、1000伏特;

中间继电器KA,DZ51—040,220伏特;

电容C,CZJD型0.47微法,630伏特;

电阻,5—65欧姆,15~30瓦特(可用电炉丝自绕)

变压器T,100—300伏安,380伏特/8伏特或者220伏特/8伏特。

7.关键词:交流接触器,无声运行,电子节电

由于供电、监控、制造等领域对电器工作的可靠性、自动化要求,工矿企业往往对接触器的使用量特别大,每个投入使用的接触器大多是24小时连续运行。如CJ12系列交流接触器,操作电磁铁的电

耗分配为:短路环电耗占25.3%,铁芯电耗占65%~75%,线圈电耗占3%~5%。这样,就白白浪费掉许多电能,给企业增加额外电费,加大了生产成本。为了减少这些无功电能损耗,采用二极管作为交流接

触器无声运行的整流器件,利用二极管半波整流、电阻限流,改为直流操作(即无声运行)大幅度降低了铁

芯涡流损耗和磁滞损耗以及短路后的损耗,从而大大地降低电磁铁的电耗,根据测定100~600A的

接触器可节电93%~99%,100A以下的接触器可节电68%~92%。如一台CJ1-600/3的接触器交流操作时,需有功260W,需无功1kvar。改为直流操作后需有功8W,不但不汲取无功反而可输出无功0.45kvar

,全年可节约有功电量2200kW?h,节约无功电量12700kW?h,使交流接触器无声运行还有以下几点好处:①无噪音、改善工作环境;②运行温度低;③延长了接触器的使用寿命。

(完整版)2018年技能高考电气类《晶体二极管及二极管整流电路》试题含答案,推荐文档

《晶体二极管及二极管整流电路》试题时间:60分钟总分:分班级:班命题人: 一、判断题 1. 半导体的导电能力在不同条件下有很大差别,若提高环境温度导电能力会减弱。(错误) 2. 本征半导体温度升高后两种载流子浓度仍然相等。(正确) 3. N型半导体中,主要依靠自由电子导电,空穴是少数载流子。(正确) 4. P型半导体中不能移动的杂质离子带负电,说明P型半导体呈负电性。(错误) 5. PN结正向偏置时,其内外电场方向一致。(错误) 6. 晶体二极管为一个由p型半导体和n型半导体形成的PN结。(正确) 7. 半导体二极管主要是依靠PN结而工作的。(正确) 8. 二极管具有单向导电性。(正确) 9. 二极管是线性器件。(错误) 10. 二极管和三极管都是非线性器件。(正确) 11. 二极管处于导通状态,呈现很大的电阻,在电路中相当于开关的断开特性。(错误) 12. 二极管两端加上正向电压就一定会导通。(错误) 13. 二极管的核心是一个PN结,PN结具有单向导电特性。(正确) 14. PN结的单向导电性,就是PN结正向偏置时截止,反向偏置时导通。(错误) 15. 二极管两端加上反向电压时,反向电流不随反向电压变化而变化,这时二极管的状态为截止。(正确) 16. 二极管的截止特性是其两端的反向电压增加时,而反向电流基本不变。(正确) 17. 二极管只要工作在反向击穿区,就一定会被击穿损坏。(错误) 18. 点接触型二极管其PN结的静电容量小,适用于高频电路。(正确) 19. 整流二极管多为面接触型的二极管,结面积大、结电容大,但工作频率低。(正确) 20. 整流二极管多为点接触型的二极管,结面积小、结电容大,但工作频率低。(错误) 21. 点接触型二极管只能使用于大电流和整流。(错误) 22. 制作直流稳压电源元件中,整流二极管按照制造材料可分为硅二极管和锗二极管。(正确) 23. 半导体二极管按结构的不同,可分为点接触型和面接触型,各自能承受的正向电流值有较大区别。(正确) 24. 晶体二极管击穿后立即烧毁。(错误) 25. 热击穿和电击穿过程都是不可逆的。(正确) 26. 所谓理想二极管,就是当其正向偏置时,结电阻为零,等效成开关闭合;当其反向偏置时,结电阻为无穷大,等效成开关断开。(正确) 27. 二极管的最高反向工作电压是指整流二极管两端的反向电压不能超过规定的电压所允许的值。 如超过这个允许值,整流管就可能击穿。(正确) 28. 整流二极管在最高反向工作电压下工作时,反向电流越大,说明整流二极管的单向导电性能越好。(错误) 29. 使用稳压管时应阳极接高电位,阴极接低电位。(错误) 30. 发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。(正确) 31. 稳压二极管是一个特殊的面接触型的半导体硅二极管,其V-A特性曲线与普通二极管相似,但反向击穿曲线比较陡。(正确) 32. 稳压二极管稳压时它工作在正向导通状态。(错误) 33. 稳压二极管在起稳定作用的范围内,其两端的反向电压值,称为稳定电压。 不同型号的稳压二极管,稳定电压是不同的。(正确) 34. 稳压二极管是一个可逆击穿二极管,稳压时工作在反向偏置状态,但其两端电压必须大于它的稳压值Uz,否则处于截止状态。(正确) 35. 稳压管与其它普能二极管不同,其反向击穿是可逆性的,当去掉反向电压稳压管又恢复正常。(正确) 36. 稳压二极管如果反向电流超过允许范围,二极管将会发生热击穿,所以,与其配合的电阻往往起到限流的作用。(正确) 37. 整流电路由二极管组成,利用二极管的单向导电性把直流电变为交流电。(错误) 38. 用两只二极管就可实现单相全波整流,而单相桥式整流电路却用了四只二极管,这样做虽然多用了两只二极管,但降低了二极管承受的反向电压。(正确) 39. 同种工作条件,单相半波整流电路和单相全波整流电路,其二极管承受的反向电压大小一样。(错误) 40. 同种工作条件,单相半波整流电路和单相桥式整流电路,其二极管承受的反向电压大小不同。(错误) 41. 在电容滤波整流电路中,滤波电容可以随意选择(错误) 42. 在电容滤波整流电路中,电容耐压值要大于负载开路时整流电路的输出电压。(正确) 43. 在滤波电路中,只有电容滤波电路和电感滤波电路。(错误) 44. 电容滤波器,电容越小,则滤波效果越好。(错误) 45. 电容滤波电路的特点是:纹波成分大大减少,输出的直流电比较平滑,电路简单。(正确) 46. 滤波电路一般是由储能元件组成,主要利用储能特性把脉动直流电变为平滑的直流电。(正确) 二、单选题 1. 本征半导体是( B )。

完整版二极管7种应用电路详解

极管7种应用电路详解之一 许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它 在电路中的应用 第一反应是整流, 对二极管的其他特性和应用了解不多, 认识上也认为掌握了二极管的 单向导电特性,就能分析二极管参与的各种电路, 实际上这样的想法是错误的, 而且在某种程度上是害 了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析, 许多二极管电路无法用单向导电 特性来解释其工作原理。 二极管除单向导电特性外, 还有许多特性,很多的电路中并不是利用单向导电特性就能分析二 极管所构成电 路的工作原理, 而需要掌握二极管更多的特性才能正确分析这些电路, 例如二极管构成的 简易直流稳压电路,二极管构成的温度补偿电路等。 941二极管简易直流稳压电路及故障处理 二极管简易稳压电路主要用于一些局部的直流电压供给电路中, 由于电路简单,成本低,所以 应用比较广泛。 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是 0.6V 左右,对锗二极管而言是 0.2V 左右。 如图9-40所示是由普通3只二极管构成的简易直流稳压电路。电路中的 VD1、VD2和VD3 是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。 图9-40 3只普通二极管构成的简易直流稳压电路 1 ?电路分析思路说明 分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难 了。 关于这一电路的分析思路主要说明如下。 (1) 从电路中可以看出 3只二极管串联,根据串联电路特性可知, 这3只二极管如果导通会同时导通, 如果截止 会同时截止。 (2) 根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还 是交流的电压,此时二极管均处于导通状态。从电路中可以看出,在 VD1正极通过电阻 R1接电路中 的直流工作电压+V , VD3的负极接地,这样在 3只串联二极管上加有足够大的正向直流电压。由此分 析可知,3只二 极管VD1、VD2和VD3是在直流工作电压+V 作用下导通的。 (3) 从电路中还可以看出,3只二极管上没有加入交流信号电压, 因为在VD1正极即电路中的 A 点与 地之间接 有大容量电容 C1,将A 点的任何交流电压旁路到地端。 2 ?二极管能够稳定直流电压原理说明 电路中,3只二极管在直流工作电压的正向偏置作用下导通,导通后对这一电路的作用是稳定 了电路中A 点的直流电压。 众所周知,二极管内部是一个 PN 结的结构,PN 结除单向导电特性之外还有许多特性,其中 !£ mime i-yAn^Of

二极管及其应用电路--笔记整理

半导体二极管及其应用电路 1.半导体的特性 自然界中的各种物质,按导电能力划分为:导体、绝缘体、半导体。半导体导电能力介于导体和绝缘体之间。它具有热敏性、光敏性(当守外界热和光的作用时,它的导电能力明显变化)和掺杂性(往纯净的半导体中掺入某些杂质,会使它的导电能力明显变化)。利用光敏性可制成光电二极管和光电三极管及光敏电阻;利用热敏性可制成各种热敏电阻;利用掺杂性可制成各种不同性能、不同用途的半导体器件,例如二极管、三极管、场效应管等。 2.半导体的共价键结构 在电子器件中,用得最多的材料是硅和锗,硅和锗都是四价元素,最外层原子轨道上具有4个电子,称为价电子。每个原子的4个价电子不仅受自身原子核的束缚,而且还与周围相邻的4个原子发生联系,这些价电子一方面围绕自身的原子核运动,另一方面也时常出现在相邻原子所属的轨道上。这样,相邻的原子就被共有的价电子联系在一起,称为共价键结构。 当温度升高或受光照时,由于半导体共价键中的价电子并不像绝缘体中束缚得那样紧,价电子从外界获得一定的能量,少数价电子会挣脱共价键的束缚,成为自由电子,同时在原来共价键的相应位置上留下一个空位,这个空位称为空穴, 自由电子和空穴是成对出现的,所以称它们为电子空穴对。在本征半导体中,电子与空穴的数量总是相等的。我们把在热或光的作用下,本征半导体中产生电子空穴对的现象,称为本征激发,又称为热激发。 由于共价键中出现了空位,在外电场或其他能源的作用下,邻近的价电子就可填补到这个空穴上,而在这个价电子原来的位置上又留下新的空位,以后其他价电子又可转移到这个新的空位上。为了区别于自由电子的运动,我们把这种价电子的填补运动称为空穴运动,认为空穴是一种带正电荷的载流子,它所带电荷和电子相等, 符号相反。由此可见, 本征半导体中存在两种载流子:电子和空穴。而金属导体中只有一种载流子——电子。本征半导体在外电场作用下,两种载流子的运动方向相反而形成的电流方向相同。本征半导体的导电能力取决于载流子的浓度。温度越高,载流子的浓度越高。因此本征半导体的导电能力越强,温度时影响半导体性能的一个重要的外部因素。

电阻,电容,电感,二极管,三极管,在电路中的作用

电阻,电容,电感,二极管,三极管,在电路中的作用 电阻 定义:导体对电流的阻碍作用就叫导体的电阻。 电阻(Resistor)是所有电子电路中使用最多的元件。电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生热能。电阻在电路中通常起分压分流的作用,对信号来说,交流与直流信号都可以通过电阻。 电阻都有一定的阻值,它代表这个电阻对电流流动阻挡力的大小。电阻的单位是欧姆,用符号“Ω”表示。欧姆是这样定义的:当在一个电阻器的两端加上1伏特的电压时,如果在这个电阻器中有1安培的电流通过,则这个电阻器的阻值为1欧姆。出了欧姆外,电阻的单位还有千欧(KΩ,兆欧(MΩ)等。 电阻器的电气性能指标通常有标称阻值,误差与额定功率等。 它与其它元件一起构成一些功能电路,如RC电路等。 电阻是一个线性元件。说它是线性元件,是因为通过实验发现,在一定条件下,流经一个电阻的电流与电阻两端的电压成正比——即它是符合欧姆定律:I=U/R

常见的碳膜电阻或金属膜电阻器在温度恒定,且电压和电流值限制在额定条件之内时,可用线性电阻器来模拟。如果电压或电流值超过规定值,电阻器将因过热而不遵从欧姆定律,甚至还会被烧毁。线性电阻的工作电压与电流的关系如图1所示。电阻的种类很多,通常分为碳膜电阻,金属电阻,线绕电阻等:它又包含固定电阻与可变电阻,光敏电阻,压敏电阻,热敏电阻等。但不管电阻是什么种类,它都有一个基本的表示字母“R”。 电阻的单位用欧姆(Ω)表示。它包括?Ω(欧姆),KΩ(千欧),MΩ(兆欧)。其换算关系为: 1MΩ=1000KΩ ,1KΩ=1000Ω。 电阻的阻值标法通常有色环法,数字法。色环法在一般的的电阻上比较常见。由于手机电路中的电阻一般比较小,很少被标上阻值,即使有,一般也采用数字法,即: 101——表示100Ω的电阻;102——表示1KΩ的电阻;103——表示10KΩ的电阻;104——表示100KΩ的电阻;105——表示1MΩ的电阻;106——表示10MΩ的电阻。 如果一个电阻上标为223,则这个电阻为22KΩ。电阻在手机机板上一般的外观示意图如图5所示,其两端为银白色,中间大部分为黑色。

光敏二极管和光敏三极管区别

光敏二极管和光敏三极管简介及应用 光敏二极管和光敏三极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优。 一、光敏二极管 1.结构特点与符号 光敏二极管和普通二极管相比虽然都属于单向导电的非线 性半导体器件,但在结构上有其特殊的地方。 光敏二极管在电路中的符号如图Z0129 所示。光敏二极管 使用时要反向接入电路中,即正极接电源负极,负极接电 源正极。 2.光电转换原理 根据PN结反向特性可知,在一定反向电压范围内,反向电 流很小且处于饱和状态。此时,如果无光照射PN结,则因 本征激发产生的电子-空穴对数量有限,反向饱和电流保持不变,在光敏二极管中称为暗电流。当有光照射PN结时,结内将产生附加的大量电子空穴对(称之为光生载流子),使流过PN结的电流随着光照强度的增加而剧增,此时的反向电流称为光电流。不同波长的光(兰光、红光、红外光)在光敏二极管的不同区域被吸收形成光电流。被表面P型扩散层所吸收的主要是波长较短的兰光,在这一区域,因光照产生的光生载流子(电子),一旦漂移到耗尽层界面, 就会在结电场作用下,被拉向N区,形成部分光电流;彼长较长的红光,将透过P型层在耗尽层激发出电子一空穴对,这些新生的电子和空穴载流子也会在结电场作用下,分别到达N区和P 区,形成光电流。波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。在N区内因光照产生的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,形成光电流。因此,光照射时,流过PN结的光电流应是三部分光电流之和。 二、光敏三极管 光敏三极管和普通三极管的结构相 类似。不同之处是光敏三极管必须 有一个对光敏感的PN结作为感光 面,一般用集电结作为受光结,因 此,光敏二极管实质上是一种相当 于在基极和集电极之间接有光敏二 极管的普通二极管。其结构及符号 如图Z0130所示。 三、光敏二极管的两种工作状态 光敏二极管又称光电二极管,它是 一种光电转换器件,其基本原理是 光照到P-N结上时,吸收光能并转变为电能。它具有两种工作状态:

二极管在电源中的应用

DiodeDiode-零件介绍 零件介绍 &规格书认识

讨论内容
一,二极管的分类 二,规格书认识 三,常见的零件封装
四,在开关电源中的应用

一,二极管的分类
二极管按其用途可分为: 二极管按其用途可分为: 普通二极管和特殊二极管。 普通二极管和特殊二极管。 普通二极管: 普通二极管: 整流二极管、 整流二极管、快速二极管、 快速二极管、稳压二极管、 稳压二极管、检波二极管、 检波二极管、开关二极 管等。 管等。 特殊二极管: 特殊二极管: 发光二极管、 发光二极管、变容二极管、 变容二极管、隧道二极管、 隧道二极管、触发二极管等。 触发二极管等。 本次课程, 本次课程,主要介绍整流二极管、 主要介绍整流二极管、快速二极管和稳压二极管。 快速二极管和稳压二极管。

二,规格书的认识
1,整流二极管和快速二极管 整流二极管结构主要是平面接触型, 整流二极管结构主要是平面接触型,其特点是允许通过的电流比 较大, 较大,反向击穿电压比较高, 反向击穿电压比较高,但PN结电容比较大, 结电容比较大,一般广泛应 用于处理频率不高的电路中。 用于处理频率不高的电路中。例如整流电路、 例如整流电路、箝位电路、 箝位电路、保护电 路等。 路等。整流二极管在使用中主要考虑的问题是: 整流二极管在使用中主要考虑的问题是:最大整流电流和 最高反向工作电压应大于实际工作中的值。 最高反向工作电压应大于实际工作中的值。 快速二极管的工作原理与普通二极管是相同的, 快速二极管的工作原理与普通二极管是相同的,但由于普通二极 管工作在开关状态下的反向恢复时间较长, 管工作在开关状态下的反向恢复时间较长,一般大于500nS,不 能适应高频开关电路的要求。 能适应高频开关电路的要求。快速二极管主要应用于高频整流电 路、高频开关电源、 高频开关电源、高频阻容吸收电路、 高频阻容吸收电路、逆变电路等, 逆变电路等,其反向恢 复时间可达10nS。快速二极管主要包括快速恢复二极管 快速二极管主要包括快速恢复二极管( 快速恢复二极管(简称 FRD)和肖特基二极管( 肖特基二极管(简称SBD) 。

光电二极管教程

光电二极管教程 工作原理 结光电二极管是一种基本器件,其功能类似于一个普通的信号二极管,但在结半导体的耗尽区吸收光时,它会产生光电流。光电二极管是一种快速,高线性度的器件,在应用中具有高量子效率,可应用于各种不同的场合。 根据入射光确定期望的输出电流水平和响应度是有必要的。图1描绘了一个结光电二极管模型,它由基本的独立元件组成,这样便于直观了解光电二极管的主要性质,更好地了解Thorlabs光电二极管工作过程。 图1: 光电二极管模型 光电二极管术语 响应度 光电二极管的响应度可以定义为给定波长下,产生的光电流(I PD)和入射光功率(P)之比: 工作模式(光导模式和光伏模式) 光电二极管可以工作在这两个模式中的一个: 光导模式(反向偏置)或光伏模式(零偏置)。工作模式的选择根据应用中速度和可接受暗电流大小(漏电流)而定。 光导模式 处于光导模式时,有一个外加的偏压,这是我们DET系列探测器的基础。电路中测得的电流代表器件接受到的光照; 测量的输出电流与输入光功率成正比。外加偏压使得耗尽区的宽度增大,响应度增大,结电容变小,响应度趋向直线。工作在这些条件下容易产生很大的暗电流,但可以选择光电二极管的材料以限制其大小。(注: 我们的DET器件都是反向偏置的,不能工作在正向偏压下。)

光伏模式 光伏模式下,光电二极管是零偏置的。器件的电流流动被限制,形成一个电压。这种工作模式利用了光伏效应,它是太阳能电池的基础。当工作在光伏模式时,暗电流最小。 暗电流 暗电流是光电二极管有偏压时的漏电流. 工作在光导模式时, 容易出现更高的暗电流, 并与温度直接相关. 温度每增加 10 °C, 暗电流几乎增加一倍, 温度每增加 6 °C, 分流电阻增大一倍. 显然, 应用更大的偏压会降低结电容, 但也会增加当前暗电流的大小. 当前的暗电流也受光电二极管材料和有源区尺寸的影响. 锗器件暗电流很大, 硅器件通常比锗器件暗电流小.下表给出了几种光电二极管 材料及它们相关的暗电流, 速度, 响应波段和价格. 结电容 结电容(C j)是光电二极管的一个重要性质,对光电二极管的带宽和响应有很大影响。需要注意的是,结区面积大的二极管结体积也越大,也拥有较大的充电电容。在反向偏压应用中,结的耗尽区宽度增加,会有效地减小结电容,增大响应速度。 带宽和响应 负载电阻和光电二极管的电容共同限制带宽。要得到最佳的频率响应,一个50欧姆的终端需要使用一条50欧姆的同轴电缆。带宽(f BW)和上升时间响应(t r)可以近似用结电容(C j)和负载电阻(R load)表示: 终端电阻 使用负载电阻将光电流转换为电压(V OUT)以便在示波器上显示: 根据光电二极管的类型,负载电阻影响其响应速度。为达到最大带宽,我们建议在同轴电缆的另一端使用50欧姆的终端电阻。其与电缆的本征阻抗相匹配,将会最小化谐振。如果带宽不重要,您可以增大负载电阻(R load),从而增大给定光功率下的光电压。终端不匹配时,电缆的长度对响应影响很大,所以我们建议使电缆越短越好。 分流电阻

电阻电容电感二极管三极管在电路中的作用

电阻电容电感二极管三极管在电路中的作用 2009-10-13 21:06 电阻 定义:导体对电流的阻碍作用就叫导体的电阻。 电阻(Resistor)是所有电子电路中使用最多的元件。电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生热能。电阻在电路中通常起分压分流的作用,对信号来说,交流与直流信号都可以通过电阻。 电阻都有一定的阻值,它代表这个电阻对电流流动阻挡力的大小。电阻的单位是欧姆,用符号“Ω”表示。欧姆是这样定义的:当在一个电阻器的两端加上1伏特的电压时,如果在这个电阻器中有1安培的电流通过,则这个电阻器的阻值为1欧姆。出了欧姆外,电阻的单位还有千欧(KΩ,兆欧(MΩ)等。 电阻器的电气性能指标通常有标称阻值,误差与额定功率等。 它与其它元件一起构成一些功能电路,如RC电路等。 电阻是一个线性元件。说它是线性元件,是因为通过实验发现,在一定条件下,流经一个电阻的电流与电阻两端的电压成正比——即它是符合欧姆定律: I=U/R 常见的碳膜电阻或金属膜电阻器在温度恒定,且电压和电流值限制在额定条件之内时,可用线性电阻器来模拟。如果电压或电流值超过规定值,电阻器将因过热而不遵从欧姆定律,甚至还会被烧毁。线性电阻的工作电压与电流的关系如图1所示。电阻的种类很多,通常分为碳膜电阻,金属电阻,线绕电阻等:它又包含固定电阻与可变电阻,光敏电阻,压敏电阻,热敏电阻等。但不管电阻是什么种类,它都有一个基本的表示字母“R”。 电阻的单位用欧姆(Ω)表示。它包括?Ω(欧姆), KΩ(千欧), MΩ(兆欧)。其换算关系为: 1MΩ=1000KΩ, 1KΩ=1000Ω。 电阻的阻值标法通常有色环法,数字法。色环法在一般的的电阻上比较常见。由于手机电路中的电阻一般比较小,很少被标上阻值,即使有,一般也采用数字法,即: 101——表示100Ω的电阻; 102——表示1KΩ的电阻; 103——表示10KΩ的电阻; 104——表示100KΩ的电阻; 105——表示1MΩ的电阻; 106——

光电二极管的应用电路

1. Low noise light-sensitive preamplifier Used in receivers for spatial light transmission and optical remote control. A reverse bias is applied to the photodiode to improve frequency response. This circuit outputs an amplified signal from the FET drain, but signals can also be extracted from the source side for interface to the next stage circuit with low input resistance. KPDC0014ED 2. Low-level-light sensor head The whole circuit is housed in a metallic shield box to eliminate external EMI (electromagnetic interference). The photodiode window size should be as small as possible. Use of an optical fiber to guide the signal light into the shield box is also effective in collecting light. If dry batteries are used and housed in the same shield box to supply power to the operational amplifier, noise originating from the AC source can be eliminated and the S/N ratio will be further improved. KPDC0016ED 3. Light balance detection circuit The output voltage Vo of this circuit is zero if the amount of light entering the two photodiodes PD 1 and PD 2 is equal. The photoelectric sensitivity is determined by the feedback resistance. By placing two diodes D in reverse parallel with each other, Vo will be limited to about ±0.5 V (maximum) in an unbalanced state, so that the region around a balanced state can be detected with high sensitivity. Use of a quadrant photodiode allows two-dimensional optical axis alignment. KPDC0017EB 4. Luxmeter This is an illuminometer using a visual-compensated photodiode S7686 and an operational amplifier. A maximum of 5000 lx can be measured with a voltmeter having a 5 V range. It is necessary to use an operational amplifier which can operate from a single voltage supply with a low bias current. A standard lamp should be used to calibrate the illuminometer. If no standard lamp is available, an incandescent lamp of 100 W can be used for approximate calibrations. To make calibrations, first select the 1 mV/lx range in the figure at the right and short the wiper terminal of the 500 9 variable resistor VR and the output terminal of the operational amplifier. Adjust the distance between the photodiode and the incandescent lamp so that the voltmeter reads 0.38 V . At this point, illuminance on the S7686 photodiode surface is about 100 lx . Then open the shorted terminals and adjust VR so that the voltmeter reads 1.0 V . Calibration has now been completed. KPDC0018EC Vo R PD : High-speed PIN photodiodes (S5052, S2506-02, S5971, S5972, S5973, etc.) R L : Determined by sensitivity and time constant of Ct of photodiode R S : Determined by operation point of FET FET: 2SK152, 2SK192A, 2SK362, etc. Bold lines should be within guarded layout or on teflon terminals. A 1:AD549, etc. Rf : 10 G 9 Max. A 2 :OP07, etc. S : Low-leakage reed relay Cf :10 to 100 pF, polystyrene capacitor PD: S1226/S1336/S2386 series, etc. PD: S1226/S1336/S2386 series, etc.A : LF356, etc.D : ISS270A, etc. Vo=Rf × (Isc 2 - Isc 1) (V) (Vo < ±0.5 V) When the amount of light entering the two photodiodes is equal, the output voltage Vo will be zero. In unbalanced state, Vo will be ±0.3 to 0.5 V. This circuit can be used for light balance detection between two specific wavelengths using optical filters. IC : ICL7611, TLC271, etc.PD: S7686 (3.8 μA/100 lx) * Meter calibration potentiometer 1

光敏二极管实现讲解学习

光敏二极管实现

引言 目前,光敏电阻和光敏二级管用于亮度调节非常广泛,两者都很方便的运用在光强自动调节的领域,比如说,学校的路灯,街道的路灯,都可以用光敏传感器来实现智能光调节功能,非常方便,外面的电路用了光敏传感器的反向连接功能,如果是白天的时候,路灯的电压就会减小到零,如果是晚上的时候,路灯的电压就会升高到一定值,使路灯变亮,这样就使得马路边的路灯不受人工控制,实现全智能化。 我相信在未来不久,只要有灯的地方,光敏传感器调节亮度这方面的电路将得到很广泛的应用,我们晚上玩手机屏幕的时候,手机的亮度很刺眼,会严重伤害眼睛,这时我们也应用光自动调节亮度的原理来实现这一功能,当外界的亮度很暗的时候,手机屏幕可自动调节它的亮度,使它的亮度小到一定的范围,合适为止,还有电脑屏幕的显示屏也是一样,这样不仅节约电,而且对眼睛还有保护作用,这个领域现在已经应用很广泛。 总之,亮度自动调节电路这方面的应用已经很广泛,生活中这方面的应用无处不在,使其不断趋向智能化。

1 系统硬件设计总体框图 本文通过设计一个用光敏二极管进行亮度调节的电路,利用光敏二极管的反向PN 结来采集外部信号,电路可以实现用光敏二极管来控制灯的亮度,而且在数码管上显示它的亮度等级,通过做这个电路,让我更加熟悉光敏二极管的应用了解,本电路由五个部分组成,一是光敏二极管采集电路,二是运算放大器电路,三是电源部分电路、四是AD转换和数码管驱动模块、五是数码管显示电路,本设计框图如图1.1所示。 图1.1 总电路框图 2 各部分电路分析 2.1 光敏二极管采集电路 2.1.1 光敏二极管简介 光敏二极管也叫光电二极管,光敏二极管与半导体二极管在结构上是类似的,其管芯是一个具有光敏特征的PN结,具有单向导电性,因此工作时需加上反向电压。无光照时,有很小的饱和反向漏电流,即暗电流,此时光敏二极管截止。当受到光照时,饱和反向漏电流大大增加,形成光电流,它随入射光强度的变化而变化。当光线照射PN结时,可以使PN结中产生电子一空穴对,使少数载流子的密度增加。这些载流子在反向

含二极管问题

第I卷(选择题) 请点击修改第I卷的文字说明 评卷人得分 一、选择题 1.如图所示的电路中,电池的电动势为E,内阻为r,电路中的电阻R1、R2和R3的阻值都相同.在电键S处于闭合状态下,若将电键S1由位置1切换到位置2,则 A.电阻R2两端的电压变小 B.电池输出功率可能不变 C.电池输出功率变小 D.电池的效率变小 2.如图所示,电源电动势为E,内电阻为r。当滑动变阻器的触片P向上端滑动时,发现电压表V1、V2示数变化的绝对值分别为ΔU1和ΔU2,下列说法中正确的是 A.小灯泡L1、L2变亮,L3变暗 B.小灯泡L2变亮,L1、L3变暗 C.ΔU1<ΔU2 D.ΔU1>ΔU2 3.在如图所示的电路中,电键S1、S2、S3、S4均闭合,C是极板水平放置的平行板电容器,极板间悬浮着一个油滴P,断开哪一个电键后P会向下运动?() A、S1 B、S2 C、S3 D、S4 4.如图所示的电路中,灯泡A和灯泡B原来都是正常发光的,现在突然灯泡A比原来变暗了些,灯泡B比原来变亮了些,则电路中出现的故障可能是()

A .R 3断路 B .R 1短路 C .R 2断路 D .R 1、R 2同时短路 5.如图,在AB 间接入正弦交流电,AB 间电压,通过理想变压器和二极管D1、D2给阻值R=20Ω的纯电阻负载供电,已知D1,D2为相同的理想二极管(正向电阻为O,反向电阻无穷大),变压器原线圈n1=110匝,副线圈n2=20匝,Q 为副线圈正中央抽头。为保证安全,二极管的反向耐压值(加在二极管两端的反向电压高到一定值时,会将二极管击穿,使其失去单向导电能力)至少为U0,设电阻R 上消耗的热功率为P ,则有 A. B. C. D. 6.如图所示,理想变压器原副线圈匝数比为11∶5,现在原线圈AB 之间加上2202sin100u t π=(V)的正弦交流电,副线圈上接有一电阻25R =Ω,D 为理想二极管,C 为电容器,电阻与电容两支路可由一单刀双掷开关进行切换,则 A .开关拨到1时,电流表示数为5.6A B .开关拨到1时,电流表示数为4A C .开关拨到2时,二极管反向耐压值至少为1002V D .开关拨到2时,二极管反向耐压值至少为2002V 7.(2014高考真题)如图,一理想变压器原、副线圈的匝数分别为n 1、n 2。原线圈通过一理想电流表接正弦交流电源,一个二极管和阻值为R 的负载电阻串联后接到副线圈的两端;假设该二极管的正向电阻为零,反向电阻为无穷大;用交流电压表测得a 、b 端和c 、d 端的电压分别为U ab 和U cd ,则: A B ~ D C 1 2 R A

光电二极管的工作原理与应用

光电二极管的工作原理与应用 学生:李阳洋王煦何雪瑞黄艺格指导老师:陈永强 摘要:光电二极管是结型器件。当光照射在P-N结时,光子被吸收,产生电子-空穴对,电子和空穴在结区被结电场所收集,在外电路形成光电流。为了保证绝大部分响应波长的入射光能在结区吸收,这就要求空间电荷区有足够宽度,所以外电路加有足够的反偏电压。 关键词:光电二极管;光电流;暗电流;反偏电压;光功率 1、引言 随着科学技术的发展,在信号传输和存储等环节中,越来越多地应用光信号。采用光电子系统的突出优点是,抗干扰能力较强、传送信息量大、传输耗损小且工作可靠。光电二极管是光电子系统的电子器件。光电二极管(photodiode)是一种能够将光根据使用方式转换成电流或者电压信号的光探测器。常见的传统太阳能电池就是通过大面积的光电二极管来产生电能。 2、工作原理 光电二极管是将光信号转换成电流或电压信号的特殊二极管,它与常规二极管结构上基本相似,都具有一个PN结,但光电二极管在设计和制作时尽量使PN结的面积相对较大,以便接收入射光。其基本原理是当光照在二极管上时,被吸收的光能转换成电能。光电二极管工作在反向电压作用下,只通过微弱的电流(一般小于0.1微安),称为暗电流,有光照时,携带能量的光子进入PN结后,把能量传给共价键上的电子,使有些电子挣脱共价键,而产生电子-空穴对,称为光生载流子,因为光生载流子的数目是有限的,而光照前多子的数目远大于光生载流子的数目,所以光生载流子对多子的影响是很小的,但少子的数目少有比较大的影响,这就是为什么光电二极管是工作在反向电压下而不是正向电压下,于是在反向电压作用下被光生载流子影响而增加的少子参加漂流运动,在P区,光生电子扩散到PN结,如果P区厚度小于电子扩散长度,那么大部分光生电子将能穿过P区到达PN结,在N区也是相同的道理,也因此光电二极管在制作时,PN结的结深很浅,以促使少子的漂移。综上若光的强度越大,反向电流也就越大,这种特性称为光导电,而这种现象引起的电流称为光电流。总的来说光电二极管的工作是一个吸收的过程,它将光的变化转换成反向电流的变化,光照产生电流和暗电流的综合就是光电流,因此光电二极管的暗电流因尽量最小化来提器件对光的灵敏度,光的强度与光电流成正比,因而就可以把光信号转换成电信号。 图1基本工作原理

光电二极管检测电路的组成及工作原理

光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。 本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SPICE模拟程序,它会很形象地说明电路原理。以上两步是完成设计过程的开始。第三步也是最重要的一步(本文未作讨论)是制作实验模拟板。 1 光检测电路的基本组成和工作原理 设计一个精密的光检测电路最常用的方法 是将一个光电二极管跨接在一个CMOS输入 放大器的输入端和反馈环路的电阻之间。这种 方式的单电源电路示于图1中。 在该电路中,光电二极管工作于光致电压 (零偏置)方式。光电二极管上的入射光使之 产生的电流I SC从负极流至正极,如图中所示。由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻R F。输出电压会随着电阻R F两端的压降而变化。 图中的放大系统将电流转换为电压,即 V OUT = I SC×R F(1) 图1 单电源光电二极管检测电路 式(1)中,V OUT是运算放大器输出端的电压,单位为V;I SC是光电二极管产生的电流,单位为A;R F是放大器电路中的反馈电阻,单位为W 。图1中的C RF是电阻R F的寄生电容和电路板的分布电容,且具有一个单极点为1/(2p R F C RF)。 用SPICE可在一定频率范围内模拟从光到电压的转换关系。模拟中可选的变量是放大器的反馈元件R F。用这个模拟程序,激励信号源为I SC,输出端电压为V OUT。 此例中,R F的缺省值为1MW ,C RF为0.5pF。理想的光电二极管模型包括一个二极管和理想的电流源。给出这些值后,传输函数中的极点等于1/(2p R F C RF),即318.3kHz。改变R F 可在信号频响范围内改变极点。

二极管的电路符号及图片识别

一:二极管的分类 令狐采学 1、按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。 2、根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管、硅功率开关二极管、旋转二极管等。 3、按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。 1)整流二极管 将交流电源整流成为直流电流的二极管叫作整流二极管。 2)检波二极管 检波二极管是用于把迭加在高频载波上的低频信号检出来的器件,它具有较高的检波效率和良好的频率特性。

3)开关二极管在脉冲数字电路中,用于接通和关断电路的二极管叫开关二极管,它的特点是反向恢复时间短,能满足高频和超高频应用的需要。 4) 稳压二极管稳压二极管是由硅材料制成的面结合型晶体二极管,它是利用PN结反向击穿时的电压基本上不随电流的变化而变化的特点,来达到稳压的目的,因为它能在电路中起稳压作用,故称为、稳压二极管(简称稳压管)。 5)变容二极管变容二极管是利用 PN结的电容随外加偏压而变化这一特性制成的非线性电容元件,被广泛地用于参量放大器,电子调谐及倍频器等微波电路中。 6))瞬态电压抑制器TVS 一种固态二极管,专门用于ESD 保护。TVS 二极管是和被保护电路并联的,当瞬态电压超过电路的正常工作电压时,二极管发生雪崩,为瞬态电流提供通路,使内部电路免遭超额电压的击穿。

7)发光二极管 用磷化镓、磷砷化镓材料制成,体积小,正向驱动发光。工作电压低,工作电流小,发光均匀、寿命长、可发红、黄、绿单色光。 8)肖特基二极管 基本原理是:在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。肖特基与PN结的整流作用原理有根本性的差异。其耐压程度只有40V左右。其特长是:开关速度非常快:反向恢复时间trr特别地短。因此,能制作开关二极和低压大电流整流二极管。 二:二极管的特性 通过简单的实验说明二极管的正向特性和反向特性。 1. 正向特性。 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能

二极管在电路中的作用

2.晶体二极管在电路中常用“ D'加数字表示,女口:D5表示编号为5的二极管。 1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小; 而在反向电压作用下导通电阻极大或无穷大。正因为二极管具有上述特性,无绳电话机中常 把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。 电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004、隔离二 极管(如 1N4148、肖特基二极管(如BAT85、发光二极管、稳压二极管等。 2、识别方法:二极管的识别很简单,小功率二极管的N极(负极),在二极管外表大多采用 一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极,也有 采用符号标志为“ P'、“N'来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。 3、测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好 相反。 4、常用的1N4000系列二极管耐压比较如下: 型号1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 耐压(V)50 100 200 400 600 800 1000 电流(A)均为1 3. 稳压二极管在电路中的作用及工作原理 稳压二极管工作原理一种用于稳定电压的单结二极管。它的伏安特性,稳压二极管符号如图1 所示。结构同整流二极管。加在稳压二极管的反向电压增加到一定数值时,将可能有大量载流子隧穿伪结的位垒,形成大的反向电流,此时电压基本不变,称为隧道击穿。当反向电压比较高时,在位垒区内将可能产生大量载流子,受强电场作用形成大的反向电流,而电压亦基本不变,为雪崩击穿。因此,反向电压临近击穿电压时,反向电流迅速增加,而反向电压几乎不变。这个近似不变的电压称为齐纳电压(隧道击穿)或雪崩电压(雪崩击穿)。ab126 计算公式大 图1 稳压二极管伏安特性曲线 图2 等效电路理想模式838电子 图3 理

相关主题
文本预览
相关文档 最新文档