当前位置:文档之家› 维数定理与容斥原理

维数定理与容斥原理

维数定理与容斥原理
维数定理与容斥原理

维数定理与容斥原理

两个有限维子空间的和的维数定理:

dim(U1+U2)=dimU1+dimU2-dim(U1 ∩ U2)

两个有限集合元素个数的容斥原理:

card(U1∪U2)=cardU1+cardU2-card(U1 ∩ U2)

子空间的和类比于集合的并,那么维数定理和容斥原理形式上及其相似。为什么会有如此的巧合?

可以看到子空间的基底构成的集合在维数定理中扮演一个很重要的转换作用:选择U1 ∩ U2的基底并分别扩充到U1和U2的基底之后,设U1和U2的基底构成的集合分别为A1和A2,那么U1+U2, U1 ∩ U2的基底就分别对应A1∪A2和A1∩ A2。因此两个公式相似也就不足为奇。

那么是否可以把维数定理推广到多个子空间的情形呢?考虑三个子空间的情形,类比于三个集合的容斥原理

card(U1∪U2∪U3)=cardU1+cardU2+cardU3-card(U1 ∩ U2)-card(U2 ∩

U3)-card(U1 ∩ U3)+card(U1 ∩ U2∩ U3)

是否也有类似的三个子空间和的维数定理

dim(U1+U2+U3)=dimU1+dimU2+dimU3-dim(U1 ∩ U2)-dim(U2 ∩ U3)-dim(U1 ∩ U3)+dim(U1 ∩ U2∩ U3)

成立呢?

循着它们之间的类比关系,我们可以先选取U1 ∩ U2∩ U3的基底,然后分别扩充到U1 ∩ U2、U2 ∩ U3和U1 ∩ U3的基底,再接着分别在U1、U2、U3中扩充成U1、U2、U3各自的基底,这种类比关系似乎可以轻松延续。

沿着另一条路似乎也可以到达目的地:即通过将U1+U2+U3写成(U1+U2)+U3,并应用两个子空间的维数定理一步一步地证明三个子空间的情形。现在先看看这条路:

dim(U1+U2+U3)=dim(U1+U2)+dimU3-dim((U1+U2)∩

U3)=dimU1+dimU2+dimU3-dim(U1 ∩ U2)-dim((U1+U2)∩ U3)

如果类比容斥原理的式子能够成立,应该有

dim((U1+U2)∩ U3)=dim(U1 ∩ U3)+dim(U2 ∩ U3)-dim(U1 ∩ U2∩ U3)

会有这样的式子成立吗?考虑平面上两条坐标轴,和一条过原点但不与坐标轴重合的直线,这三个一维子空间任意两个的直和是整个二维空间,则

dim((U1+U2)∩ U3)=1,dim(U1 ∩ U3)+dim(U2 ∩ U3)-dim(U1 ∩ U2∩ U3)=0,

显然上面提出的三个子空间的维数猜想不成立。

为什么这时这种类比就不成功?我们先前的想法,先选取U1 ∩ U2∩ U3的基底,然后分别扩充到U1 ∩ U2、U2 ∩ U3和U1 ∩ U3的基底,再接着分别在U1、U2、U3中扩充成

U1、U2、U3各自的基底,为什么这时得到的这些向量就不是U1+U2+U3的基底了?

参见《Linear Algebra Done Right第一章注记和部分习题》注记中提到的问题,

V1,V2,…,Vn两两相交于{0},即基底的集合两两相交为空集并不能保证它们的和是直和,这个只有n=2时是个特例,因此只有两个子空间的维数定理,且可以与集合基数的容斥原理作类比,三个以上子空间的情况就变得更复杂。

但是,我们依然可以证明三个子空间和的维数不等式:

dim(U1+U2+U3) ≤dimU1+dimU2+dimU3-dim(U1 ∩

U2)-dim(U1∩U3)-dim(U2∩U3)+dim(U1∩U2∩U3)

可以从上面讨论过的两个方向达到证明,但这里只列举一个证明。

证明:首先证明U1∩U3+U2∩U3 是(U1+U2)∩ U3 的子空间,从而dim((U1+U2)∩ U3) ≥ dim(U1∩U3+U2∩U3)

设v∈U1∩U3+U2∩U3,则存在U1∩U3 中的元素u 和U2∩U3 中的元素w 使得

v=u+w

而u+w∈U1+U2且u+w∈U3,因此v=u+w∈(U1+U2)∩ U3

接下来就可以证明结论:

dim(U1+U2+U3)

= dimU1+dimU2+dimU3-dim(U1 ∩ U2)-dim((U1+U2)∩ U3)

≤ dimU1+dimU2+dimU3-dim(U1 ∩ U2)-dim(U1∩U3+U2∩U3)

= dimU1+dimU2+dimU3-dim(U1 ∩

U2)-dim(U1∩U3)-dim(U2∩U3)+dim(U1∩U2∩U3)

证毕。

容斥原理不仅可以用交集计算并集中元素的个数,还可以通过并集反过来计算交集的元素个数。例如:

card(U1 ∩ U2∩ U3)

=cardU1+cardU2+cardU3-card(U1∪U2)-card(U2∪U3)-card(U1∪U3)+card(U1∪U 2∪U3)

此公式和并集的容斥原理之间可以用余集的德-摩根定律进行转换。

那么有了三个子空间和的维数不等式,我们是否也可以转换出关于三个子空间交集维数的某个不等式呢?我们需要有可以与集合的余集相类比的子空间的关系。

如果你了解内积空间中子空间的正交补空间的概念,那么用正交补与有限集合的余集做类比应该是一个自然的想法。

一个子空间的正交补空间是垂直于U中所有向量的向量构成的子空间。容易证明,正交补满足如下性质:

1)

2)

3)

4)

证明:现只证明2)和3):对于2),因,故。同理有。因此。

另一方向,,因此,即,因此。故2)成立。

对于3),只需在2)中分别用U和V的正交补代替U和V,两边取正交补,再利用1)式即得证。

那么利用正交补(注意有限维向量空间都同构于某个内积空间)的性质,我们可以把上面的三个子空间的维数不等式翻转,得到它的对偶不等式。

可惜的是,即使是这样的不等式,也不具备一般性,当子空间个数增加到四个之后,这样的不等式也不一定成立了。

设想三维空间的三个坐标平面,外加一个过原点但不过任何坐标轴的平面,这四个平面两两相交于一条直线,但任意三个平面只相交于原点。因此,有:

dim(U1+U2+U3+U4)=3

dimU1+dimU2+dimU3+dimU4-dim(U1 ∩ U2)-dim(U2 ∩ U3)-dim(U1 ∩

U3)-dim(U1 ∩ U4)-dim(U2 ∩ U4)-dim(U3 ∩ U4)+dim(U1 ∩ U2∩ U3)+…=2

所以关于维数的容斥原理或”容斥不等式”不适用于多于三个的子空间。

7-7-5 容斥原理之最值问题.教师版

1. 了解容斥原理二量重叠和三量重叠的内容; 2. 掌握容斥原理的在组合计数等各个方面的应用. 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分, C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积. 包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进 来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题 A 类、 B 类与 C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下: 教学目标 知识要点 7-7-5.容斥原理之最值问题 1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数, 1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次, 多加了1次. 2.再排除:A B C A B B C A C ++---

小学奥数之容斥原理

五.容斥原理问题 1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( ) A 43,25 B 32,25 C32,15 D 43,11 解:根据容斥原理最小值68+43-100=11 最大值就是含铁的有43种 2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是 解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( ) A,5 B,6 C,7 D,8 解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。 分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25…① 由(2)知:a2+a23=(a3+ a23)×2……② 由(3)知:a12+a13+a123=a1-1……③ 由(4)知:a1=a2+a3……④ 再由②得a23=a2-a3×2……⑤ 再由③④得a12+a13+a123=a2+a3-1⑥ 然后将④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人数,可以求出它们的整数解: 当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2……⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。 然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。 故只解出第二题的学生人数a2=6人。 3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少? 答案:及格率至少为71%。 假设一共有100人考试 100-95=5 100-80=20 100-79=21 100-74=26 100-85=15 5+20+21+26+15=87(表示5题中有1题做错的最多人数)

完整版容斥原理习题加答案

1. 现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对的有( ) 【答案】B 【解析】直接代入公式为:50=31+40+4- A H B 得A H B=25,所以答案为B。 2. 某服装厂生产出来的一批衬衫大号和小号各占一半。其中25%是白色的, 75%是蓝色的。如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件?() A 、15 B 、 25 C 、35 D40 【答案】C 【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A H B,本题设小号和蓝色分别为两个事件A和B,小号占50%蓝色占75%直接代入公式

为:100=50+75+10- A H B,得:A H B=35 3. 某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,

【解析】本题画图按中路突破原则,先填充三集合公共部分数字 24,再推 其他部分数字: 根据每个区域含义应用公式得到: 总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数 =63+89+47— {(x+24)+(z+24)+(y+24)}+24+15 =199— { (x+z+y ) +24+24+24}+24+15 根据上述含义分析得到:x+z+y 只属于两集合数之和,也就是该题所讲的只 选择两种考试都参加的人数,所以 x+z+y 的值为46人;得本题答案为120. 4. 对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。 其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜 欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有 12人,则只喜欢看电影的有多少人( ) A.22 人 B.28 人 C.30 人 D.36 人 【答案】A 【解析】本题画图按中路突破原则,先填充三集合公共部分数字 12,再推 其他部分数字: 根据各区域含义及应用公式得到: 总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数 100= 58+38+52- {18+16+ (12+ x ) }+12+0,因为该题中,没有三种都不喜 欢的 人,所以三集合之外数为 0,解方程得到:x = 14。52= x+12+4+Y = 14+12+4+Y 得到Y = 22人。 不参加其中任何一种考试的都15人。问接受调查的学生共有多少人?( )

容斥原理的极值问题

容斥原理的极值问题文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

有关容斥原理的极值问题 所谓“极值问题”就是通常说的最大值,最小值的问题,题干中通常有“至少”,“至多”等题眼,解决这类问题通常有两种方法,一是极限思想,另一种就是逆向思维。 通过以下几个例题具体看一下: 1. 某社团共有46人,其中35人爱好戏剧,30人爱好体育,38人爱好写作,40人爱好收藏,至少有几个4个活动都参加 解析: 逆向思维,分别考虑不喜欢其中某项活动的人数是多少,由题意可知,分别为11,16,8,6,只有当这四项集合互相没有交集的时候,四项活动都喜欢的人数才最少,因此最少人数为46-11-16-8-6=5 2. 参加某部门招聘考试的共有120人,考试内容共有6道题。1至6道题分别有86人,88人,92人,76人,72人和70人答对,如果答对3道题或3道以上的人员能通过考试,那么至少有多少人能通过考试 解析(极限思想):要使通过的人最少,那么就是对1道,2道的人最多,并且应该是对2道的人最多(这样消耗的总题目数最多),假设都只对了2道,那120人总共对了240道,而现在对了86+88+92+76+72+70=484,比240多了244道,每个人还可以多4道(这样总人数最少),244/4=61。(逆向思维):先算出来1-6题每题错的人数120-86=34 120-88=32 120- 92=28 120-76=44 120-72=48 120-70=50 要使通过的人数最少,就是没通过的人数最多,让错的人都只错4道就错的人最多,总的错的题数为 34+32+28+44+48+50=236236/4=59120-59=61

2015国家公务员考试行测:数学运算-容斥原理和抽屉原理

【导读】国家公务员考试网为您提供:2015国家公务员考试行测:数学运算-容斥原理和抽屉原理,欢迎加入国家公务员考试QQ群:242808680。更多信息请关注安徽人事考试网https://www.doczj.com/doc/d85735018.html, 【推荐阅读】 2015国家公务员笔试辅导课程【面授+网校】 容斥原理和抽屉原理是国家公务员考试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。中公教育专家在此进行详细解读。 一、容斥原理 在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠 的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数 目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 1.容斥原理1——两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是 A类又是B类的部分重复计算了一次,所以要减去。如图所示: 公式:A∪B=A+B-A∩B 总数=两个圆内的-重合部分的 【例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、 数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一 门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 2.容斥原理2——三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现 两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1 次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩ C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到: 公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

国考行测暑期每日一练数学运算:容斥原理和抽屉原理精讲

2015国考行测暑期每日一练数学运算:容斥原理和抽屉原理精讲 容斥原理和抽屉原理是国家公务员测试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。中公教育专家在此进行详细解读。 一、容斥原理 在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 1.容斥原理1——两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如图所示: 公式:A∪B=A+B-A∩B 总数=两个圆内的-重合部分的 【例1】一次期末测试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 2.容斥原理2——三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C -A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到:公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

容斥原理之最值问题

1. 了解容斥原理二量重叠和三量重叠的内容; 2. 掌握容斥原理的在组合计数等各个方面的应用. 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分, C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积. 包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题 A 类、 B 类与 C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下: 教学目标 知识要点 7-7-5.容斥原理之最值问题 1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; A B A B +-1 A B

集合与容斥原理

第一讲集合与容斥原理 数学是一门非常迷人的学科,久远的历史,勃勃的生机使她发展成为一棵枝叶茂盛的参天大树,人们不禁要问:这根大树到底扎根于何处?为了回答这个问题,在19世纪末,德国数学家康托系统地描绘了一个能够为全部数学提供基础的通用数学框架,他创立的这个学科一直是我们数学发展的根植地,这个学科就叫做集合论。它的概念与方法已经有效地渗透到所有的现代数学。可以认为,数学的所有内容都是在“集合”中讨论、生长的。 集合是一种基本数学语言、一种基本数学工具。它不仅是高中数学的第一课,而且是整个数学的基础。对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。集合的划分反映了集合与子集之间的关系,这既是一类数学问题,也是数学中的解题策略——分类思想的基础,在近几年来的数学竞赛中经常出现,日益受到重视,本讲主要介绍有关的概念、结论以及处理集合、子集与划分问题的方法。 1.集合的概念 集合是一个不定义的概念,集合中的元素有三个特征: (1)确定性设A是一个给定的集合,a是某一具体对象,则a或者是A的元素,或者不是A的元素,两者必居其一,即a∈A与a?A仅有一种情况成立。 (2)互异性一个给定的集合中的元素是指互不相同的对象,即同一个集合中不应出现同一个元素. (3)无序性 2.集合的表示方法 主要有列举法、描述法、区间法、语言叙述法。常用数集如:R , ,应熟记。 N, Z Q 3.实数的子集与数轴上的点集之间的互相转换,有序实数对的集合与平面上的点集可以互相转换。对于方程、不等式的解集,要注意它们的几何意义。 4.子集、真子集及相等集 (1)A?? B A?B或A=B; (2)A?B?A?B且A≠B; (3)A=B?A?B且A?B。 5.一个n阶集合(即由个元素组成的集合)有n2个不同的子集,其中有n2-1个非空子集,也有n2-1个真子集。 6.集合的交、并、补运算 x∈} A B={A |且B x∈ x x∈} A B={A |或B x x∈ x?} A∈ {且A =| I x x 要掌握有关集合的几个运算律: (1)交换律A B=B A,A B=B A; (2)结合律A (B C)=(A B) C, A ( B C)=(A B) C;

容斥原理之最值问题

7-7-5.容斥原理之最值问题 教学目标 1.了解容斥原理二量重叠和三量重叠的内容; 2.掌握容斥原理的在组合计数等各个方面的应用. 知识要点 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A U B=A+B-A I B(其中符号“U”读作“并”,相当于中文“和”或者“或”的意思;符号“I”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A I B,即阴影面积.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A I B,即阴影面积. 1.先包含——A+B 重叠部分A I B计算了2次,多加了1次; 包含与排除原理告诉我们,要计算两个集合A、B的并集A U B的元素的个数,可分以下两步进行: 第一步:分别计算集合A、B的元素个数,然后加起来,即先求A+B(意思是把A、B的一切元素都“包含” 进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C=A I B(意思是“排除”了重复计算的元素个数).二、三量重叠问题 A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数-既是A类又是B类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数.用符号表示为:A U B U C=A+B+C-A I B-B I C-A I C+A I B I C.图示如下:

抽屉原理

网易新闻 微博 邮箱 闪电邮 相册 有道 手机邮 印像派 梦幻人生 更多博客博客首页 博客话题 热点专题 博客油菜地 找朋友 博客圈子 博客风格 手机博客 短信写博 邮件写博 博客复制摄影摄影展区 每日专题搜博文搜博客随便看看关注此博客选风格不再艰难搬家送Lomo卡片注册登录显示下一条| 关闭86012747lktd的博客andrsw@https://www.doczj.com/doc/d85735018.html, QQ:86012747 导航 首页日志相册音乐收藏博友关于我日志86012747 加博友关注他 最新日志 倒推法解题数的整除奇数、偶数质数、合数小学数学思维训练5-5.组合图小学数学思维训练5-6.公约数博主推荐 相关日志 随机阅读 7大细节破译男人是否来电?破解《黎明之前》口碑形成之谜收租婆的忧伤谁人知?禁看湖南卫视引发的大哭与大笑独家:超闪亮水晶配饰BlingBling惹人爱Selina剃头俞灏明植皮偶像明星也难做首页推荐 毛利:烂人完美标本游资为什么炒作农产品?美国人忙着捡便宜兽兽亮相车展遭围攻洗澡时发现婆婆是双性恋为何有些物种要变性更多>> 抽屉原理抽屉原理习题(初一) 抽屉原理习题默认分类2008-04-17 16:03:44 阅读217 评论0 字号:大中小订阅

简单 1.在一米长的线段上任意点六个点。试证明:这六个点中至少有两个点的距离不大于20厘米。 2.在今年入学的一年级新生中有370多人是在同一年出生的。请你证明:他们中至少有两个人是在同一天出生的。 3.夏令营有400个小朋友参加,问:在这些小朋友中, (1)至少有多少人在同一天过生日? (2)至少有多少人单独过生日? (3)至少有多少人不单独过生日? 4.学校举行开学典礼,要沿操场的400米跑道插40面彩旗。试证明:不管怎样插,至少有两面彩旗之间的距离不大于10米。 5.在100米的路段上植树,问:至少要植多少棵树,才能保证至少有两棵之间的距离小于10米? 6.在一付扑克牌中,最少要拿多少张,才能保证四种花色都有? 7.在一个口袋中有10个黑球、6个白球、4个红球。问:至少从中取出多少个球,才能保证其中有白球? 8.口袋中有三种颜色的筷子各10根,问: (1)至少取多少根才能保证三种颜色都取到? (2)至少取多少根才能保证有两双颜色不同的筷子? (3)至少取多少根才能保证有两双颜色相同的筷子? 9.据科学家测算,人类的头发每人不超过20万根。试证明:在一个人口超过20万的城市中,至少有两人的头发根数相同。 10.第四次人口普查表明,我国50岁以下的人口已经超过8亿。试证明:在我国至少有两人的出生时间相差不超过2秒钟。 11.证明:在任意的37人中,至少有四人的属相相同。

抽屉原理和容斥原理

I .抽屉原则 10个苹果放入9个抽屉中,无论怎么放,一定有一个抽屉里放了2个或更多个苹果.这 个简单的事实就是抽屉原则.由德国数学家狄利克雷首先提出来的.因此,又称为狄利克雷原则. 将苹果换成信、鸽子或鞋,把抽屉换成信筒、鸽笼或鞋盒,这个原则又叫做信筒原则、 鸽笼原则或鞋盒原则.抽屉原则是离散数学中的一个重要原则,把它推广到一般情形就得到下面几种形式: 原则一:把m 个元素分成n 类(m >n ),不论怎么分,至少有一类中有两个元素. 原则二:把m 个元素分成n 类(m >n ) (1)当n |m 时,至少有一类中含有至少 n m 个元素; (2)当n |m 时,至少有一类中含有至少[n m ]+1个元素. 其中n m 表示n 是m 的约数,n m 表示n 不是m 的约数,[ n m ]表示不超过n m 的最大整数. 原则三:把1221+-+++n m m m 个元素分成n 类,则存在一个k ,使得第k 类至 少有k m 个元素. 原则四:把无穷多个元素分成有限类,则至少有一类包含无穷多个元素. 以上这些命题用反证法极易得到证明,这里从略. 一般来说,适合应用抽屉原则解决的数学问题具有如下特征:新给的元素具有任意性. 如10个苹果放入9个抽屉,可以随意地一个抽屉放几个,也可以让抽屉空着. 问题的结论是存在性命题,题目中常含有“至少有……”、“一定有……”、“不少于……”、“存在……”、“必然有……”等词语,其结论只要存在,不必确定,即不需要知道第几个抽屉放多少个苹果. 对一个具体的可以应用抽屉原则解决的数学问题还应搞清三个问题: (1)什么是“苹果”? (2)什么是“抽屉”? (3)苹果、抽屉各多少? 用抽屉原则解题的本质是把所要讨论的问题利用抽屉原则缩小范围,使之在一个特定

容斥原理与鸽巢原理的应用

摘要 容斥原理和鸽巢原理作为组合数学中的基本内容,就原理本身而言简单易懂.然而,由于此二者分别在组合计数问题和存在性问题的应用中所展现出来的魅力,国内外学者在很多书籍、学术性论文中关于容斥原理和鸽巢原理的应用进行了探讨,并且关于此方面的研究已取得一系列的成果. 本文主要是以综述的方式从起源、理论和应用三方面对容斥原理和鸽巢原理进行了介绍和分类探讨. 首先介绍了容斥原理分别与加法理论、减法理论的区别与优势,并与实际问题相结合突出其优势所在.其次本文介绍了鸽巢原理的两种具体形式及其推论,并对鸽巢原理在数学理论研究、数学竞赛题目、解决实际生活中的问题等方面的应用进行介绍后,对鸽巢原理的应用中所常见的几种构造“鸽巢”的方法进行了分类谈论. 最后,针对鸽巢原理,我们给出针对新疆某区域关于旅游产品的实际应用实例,并提出了个人见解. 关键词:容斥原理,鸽巢原理,构造方法,鸽巢,鸽子

ABSTRACT As the basic content of combinatorial mathematics, the principle of tolerance and the theory of pigeon nest the principle itself is simple and understandable. However, due to the charm of the two applications in combinatorial counting and existential problems, scholars at home and abroad have probed into the application of the principle of tolerance and the pigeon nest in many books and academic papers, And the research on this aspect has made a series of achievements. In this paper, the author introduces and classifies the theory of tolerance and doctrine and the principle of pigeon nest in the way of summarization from the origin, theory and application. Firstly, the differences and advantages between the theory of tolerance and exclusion and the theory of addition and subtraction were introduced. and the actual problem with the combination of highlighting its advantages. Secondly, this paper introduces two concrete forms of pigeon nest principle and its inference, and introduces the application of pigeon nest principle in mathematics theory research, Maths contest problem, solving real life problems and so on. , several common methods of constructing pigeon nest in the application of pigeon nest principle are classified and discussed. Finally, according to the pigeon Nest principle, we give a practical example of the tourism products in a region of Xinjiang, and put forward personal opinions. KEY WORDS: inclusion-exclusion principle, pigeonhole principle, construction method, pigeonhole, pigeon

容斥原理之最值问题

教学目标 1. 了解容斥原理二量重叠和三量重叠的内容; 2. 掌握容斥原理的在组合计数等各个方面的应用. 知识要点 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算?求两个集合并集的元素的个数,不能简单地把 两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数, 用式子可表示成: AUB A B AI B (其中符号“ U ”读作“并”,相当于中文“和”或者“或”的意思; 符号“ I ”读作“交”,相当于中文“且”的意思. )则称这一公式为包含与排除原理,简称容斥原理?图示 AI B ,即阴影面积?图示 第一步:分别计算集合 A 、B 的元素个数,然后加起来,即先求 A B (意思是把A B 的一切元素都“包含” 进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去 C AI B (意思是“排除”了重复计算的元素个数 )? 、三量重叠问题 A 类、 B 类与 C 类元素个数的总和 A 类元素的个数 B 类元素个数 C 类元素个数 既是A 类又是B 类 的元素个数 既是B 类又是C 类的元素个数 既是A 类又是C 类的元素个数 同时是A 类、B 类、C 类的元 素个数.用符号表示为: AUBUC A B C AI B BI C AI C AI BI C .图示如下: 如下:A 表示小圆部分, B 表示大圆部分, C 表示大圆与小圆的公共部分,记为: 包含与排除原理告诉我们,要计算两个集合 A B 的并集AU B 的元素的个数,可分以下两步进行:

例题精讲 【例1】 “走美”主试委员会为三?八年级准备决赛试题。 每 个年级12道题,并且至少有8道题与其他各年 级都不同。如果每道题出现在不同年级,最多只能出现 3次。本届活动至少要准备 道决赛 试题。 【考点】容斥原理之最值问题 【难度】4星 【题型】填空 【关键词】走美杯,4年级,决赛,第9题 【解析】每个年级都有自己8道题目,然后可以三至五年级共用 4道题目,六到八年级共用 4道题目,总共有 8 6 4 2 56 (道)题目。 【答案】56题 【例2】 将1?13这13个数字分别填入如图所示的由四个大小相同的圆分割成的 个圆内的7个数相加,最后把四个圆的和相加,问:和最大是多少? 【考点】容斥原理之最值问题 【难度】4星 【题型】填空 【解析】越是中间,被重复计算的越多,最中心的区域被重复计算四次,将数字按从大到小依次填写于 被重复计算多的区格中,最大和为: 13 X 4+ (12+11 + 10+9 ) X 3+ 8+7+6+5 ) X 2+ 4+3+2+1 ) =240. 【答案】240 【例3】如图,5条同样长的线段拼成了一个五角星?如果每条线段上恰有 这个五角星上红色点最少有多少个 ? 目 tMlF 13个区域中,然后把每 1994个点被染成红色,那么在

重叠问题(容斥原理,包含与排除)

包含与排除 例题1,(1)五年级一班参加体育兴趣小组的有30人,参加文艺兴趣小组的有25人,两项活动都参加的有13人,全班每人至少参加一项活动。问这个班有多少人? (2)三年级一班参加合唱队的有40人,参加舞蹈队的有20人,既参加合唱队又参加舞蹈队的有14人。这两队都没有参加的有10人。请算一算,这个班共有多少人? 1,学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。这个文艺组一共有多少人? 2,某班在一次测验中有26人语文获优,有30人数学获优,其中语文、数学双优的有12人,另外还有8人语文、数学均未获优。这个班共有多少人? 3,第一小组的同学们都在做两道数学思考题,做对第一题的有15人,做对第二题的有10人,两题都做对的有7人,两题都做错的有2人。第一小组共有多少人? 例题2,(1)五年级一班有42人,参加体育兴趣小组的有30人,参加文艺兴趣小组的有25人,全班每人至少参加一项活动。问这个班两项活动都参加的有多少人? (2)一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。两样都会的有多少人?

(3)3,某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。问多少个同学两题都答得不对? 1,五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。其中语文成绩优秀的有65人,数学优秀的有87人。语文、数学都优秀的有多少人? 2,一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。问这两种棋都会下的有多少人? 3,学校开展课外活动,共有250人参加。其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。问这250名同学中,象棋组、乒乓球组都不参加的有多少人? 例题3,(1)四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人? (2)全班46名同学,仅会打乒乓球的有28人,会打乒乓球又会打羽毛球的有10人,不会打乒乓球又不会打羽毛球的有6人。仅会打羽毛球的有多少人? 1,40人都在做加试的两道题,并且至少做对了其中的一题。已知做对第一题的有30人,做对第二题的有21人。只做对第一题的有多少人?

2020年部编版小学奥数容斥原理之最值问题

小学奥数容斥原理之最值问题

1. 了解容斥原理二量重叠和三量重叠的内容; 2. 掌握容斥原理的在组合计数等各个方面的应用. 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积. 包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含” 进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题 A 类、 B 类与 C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下: 在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考. 知识要点 教学目标 7-7-5.容斥原理之最值问题 1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分A B 减去. 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数, 大圆表示C 的元素的个数. 1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.

人教版初中《抽屉原理和容斥原理》竞赛专题复习含答案

人教版初中《抽屉原理和容斥原理》竞赛专题复习含答案 抽屉原理和容斥原理 24.1 抽屉原理 24.1.1★在任意的61个人中,至少有6个人的属相相同. 解析 因为一共有12种属相,把它看作12个抽屉,61151612?? +=+=????,根据抽屉原理知, 至少有6个人的属相相同. 评注 抽屉原理又称鸽笼原理或狄里克雷原理.这一简单的思维方式在解题过程中却可以有很多颇具匠心的运用.抽屉原理常常结合几何、整除、数列和染色等问题出现.许多有关存在性的证明都可用它来解决. 抽屉原理1 如果把1n +件东西任意放入n 个抽屉,那么必定有一个抽屉里至少有两件东西. 抽屉原理2 如果把m 件东西任意放人n 个抽屉,那么必定有一个抽屉里至少有女件东西,这里 ,1,m m n n k m m n n ??? =? ??? +????? ?是的位不是的位当数时; 当数时. 其中[]x 表示不超过x 的最大整数 ,例如[]33=,[]4.94=,[]2.63-=-等等. 24.1.2★从2,4,6,…,30这15个偶数中任取9个数,证明:其中一定有两个数之和是34. 解析 把2,4,6,…,30这15个数分成如下8组(8个抽屉); (2)(4,30),(6,28),(8,26),(10,24),(12,22),(14,20),(16,18). 从2,4,6,…,30这15个数中任取9个数,即是从上面8组数中取出9个数.抽屉原理知,其中一定有两个数取自同一组,这两个数的和就是34. 24.1.3★★在1,2,3, …,100这100个正整数中任取11个数,证明其中一定有两个数的比值不超过 32 ; {}1,{2,3},{4,5,6},{7,8,9,10}, {11,12,…,16},{17,18,…,25}, {26,27,…,39},{40,41,…,60}. {61,62,…,91},{92,93,…,100}. 从1,2,…,100中任取11个数,即是从上面10组中任取11个数,由抽屉原理知,其中 一定有两个数取自同一组,这两个数的比值不超过 32 . 24.1.4★求证:任给五个整数,必能从中选出三个,使得它们的和能被3整除. 解析 任何数除以3所得余数只能是0、1、2,分别构造3个抽屉:{0}、{1}、{2}.(1)若这五个自然数除以3后所得余数分别分布在这3个抽屉中,从这三个抽屉中各取1个,其和必能被3整除.(2)若这5个余数分布在其中的两个抽屉中,根据抽屉原理,其中一个抽

高中数学抽屉原理容斥原理

高中数学抽屉原理容斥原理 在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。 “抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。 (一)抽屉原理的基本形式 定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一

个集合,其中至少有两个元素。 证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。 在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。 同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。 例题讲解 1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于 2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。 3.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。 4.已给一个由10个互不相等的两位十进制正整数组成的集合。求证:这个集合必有两个无公共元素的子集合,各子集合中各数之和相等。 5.在坐标平面上任取五个整点(该点的横纵坐标都取整数),证明:其中一定存在两个整点,它们的连线中点仍是整点。 6.在任意给出的100个整数中,都可以找出若干个数来(可以是一个数),它们的和可被100整除。 7.17名科学家中每两名科学家都和其他科学家通信,在他们通信时,只讨论三个题目,而且任意两名科学家通信时只讨论一个题目,证明:其中至少有三名科学家,他们相互通信时讨论的是同一个题目。

容斥原理之最值问题

教学目标 知识要点 A 表示小圆 包含与排除原理告诉我们 先包含 A 重叠部分 A AI C 表示大圆与小圆的公共部分,记为 C 表示大圆与小圆的公共部分,记为 在一些计数问题中,经常遇到有关集合元素个数的计算?求两个集合并集的元素的个数,不能简单地把 两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数 A B B C 2.掌握容斥原理的在组合计数等各个方面的应用 C AI B (意思是 排除”了重复计算的元素个数) 1. 了解容斥原理二量重叠和三量重叠的内容 2 ?再排除 来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去 二、三量重叠问题 部分,B 表示大圆部分 部分,B 表示大圆部分 读作交”相当于中文 1.先包含 图中小圆表示 A 的元素的个数,中圆表示 B 的元素的个数 7-7-5.容斥原理之最值问题 AI B ,即阴影面积 AI B ,即阴影面积?图示如下:A 表示小圆 B C AI B BI C AI C 重叠部分AI B 计算了 2次,多加了 1次 B 、BI C 、Cl A 重叠了 2次,多加了 1次 要计算两个集合 A B 的并集AUB 的元素的个数,可分以下两步进行 素个数.用符号表示为: AU B UC A B C AI B BI C AI C AI BI C .图示如下 第一步:分别计算集合 A B 的元素个数,然后加起来,即先求 A B (意思是把A B 的一切元素都 包含”进 的元素个数 既是B 类又是C 类的元素个数 既是A 类又是C 类的元素个数 同时是A 类、B 类、C 类的元 A 类、 B 类与 C 类元素个数的总和 A 类元素的个数 B 类元素个数 C 类元素个数 既是A 类又是B 类 用式子可表示成: AUB A B AI B (其中符号 U ”读作并”相当于中文 和”或者 或”的意思;符号 且”的意思.)则称这一公式为包含与排除原理,简称容斥原理?图示如下 一、两量重叠问题

相关主题
文本预览
相关文档 最新文档