当前位置:文档之家› 勾股定理经典分类练习题

勾股定理经典分类练习题

勾股定理经典分类练习题
勾股定理经典分类练习题

勾股定理常考习题 勾股定理的直接应用:

1、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20 D :21

2、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :7

3.在平面直角坐标系中,已知点P 的坐标是(3,4),点Q 的坐标是(7,8),则线段PQ 的长为_____. 4、 若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积是_________. 5、直角三角形周长为12cm ,斜边长为5cm ,求直角三角形的面积是___________. 6、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。

7.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______. 8.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______,AB 边上的高CD =______. 9.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______. 10、若等腰三角形的腰长为10,底边长为12,则底边上的高为( )

A 、6

B 、7

C 、8

D 、9

11.若等腰三角形两边长分别为4和6,则底边上的高等于( ). (A)7 (B)7或41 (C)24 (D)24或7

12.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______.

13. 等边三角形的边长为2,它的面积是___________

14、若直角三角形的三边长分别是n+1,n+2,n+3,则n____________。 15.在数轴上画出表示10 及13的点.

16、如图∠B =∠ACD =90°, AD =13,CD =12, BC =3,则AB 的长是多少?

17.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( ). (A)4 (B)6 (C)8 (D)102

18.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长为_________.

18题图

19题图 20题图

19.如图,Rt △ABC 中,∠C =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积和为( ). (A)150cm 2 (B)200cm 2 (C)225cm 2 (D)无法计算

20.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形

的边长是______.

21.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,

水平放置的4个正方形的面积是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=______.

方程思想的应用:

1、 如图所示,已知△ABC 中,∠C=90°,∠A=60°,

求、、的值。

2.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长.

D

C

B A

3.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长.

4. 如图,在长方形ABCD 中,将?ABC 沿AC 对折至?AEC 位置,CE 与AD 交于点F 。 (1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长

5. 如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积

典型几何题

1.如图,Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,AD =20,求BC 的长.

2.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.

3.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2, CD =2,AD =3,求四边形ABCD 的面积.

4.已知:如图,△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC ,D 是垂足,求AD 的长.

5、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB , BC=6, AC=8, 求AB 、CD 的长

6.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四

等分点且CE =

CB 4

1

,求证:AF ⊥FE .

7.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点, AD =5,BE =102求AB 的长.

8. 如图,已知:在中,,

. 求:BC 的长.

D

C B A F

E

判定三角形是直角三角形:

1.满足下列条件的三角形中,不是直角三角形的是( )

A.三内角之比为1∶2∶3

B.三边长的平方之比为1∶2∶3

C.三边长之比为3∶4∶5

D.三内角之比为3∶4∶5 2、下列各组数中,能构成直角三角形的是( )

A :4,5,6

B :1,1,2

C :6,8,11

D :5,12,23 3. 以下列各组数为边长,能组成直角三角形的是( )

A 、8,15,17

B 、4,5,6

C 、5,8,10

D 、8,39,40

4. 已知2512-++-y x x 与25102

+-z z 互为相反数,试判断以x 、y 、z 为三边的三角形的形状。

5.已知△ABC 的三边分别为k 2-1,2k ,k 2+1(k >1),求证:△ABC 是直角三角形.

6.如图18-2-9所示,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1),B (2,4),△OAB 是直角三角形吗?借助于网格,证明你的结论.

7.已知△ABC 中,a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由.

8. 阅读下列解题过程:已知a 、b 、c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.

实际应用:

1.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m .

1题图 2题图 3题图

2.长为4 m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端

沿墙面升高了______m .

3.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯

宽2米,地毯每平方米30元,那么这块地毯需花多少元? 4.将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱 形水杯中,如右图所示,设筷子露在杯子外面的长度h cm ,则h 的取值范围是( ) A 、h ≤17cm B 、h ≥8cm

C 、15cm ≤h ≤16cm

D 、7cm ≤h ≤

16cm

5

如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN =30°,点A 处有一所中学,AP =160m 。假设拖拉机行驶时,周围100m 以内会受到噪音的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h ,那么学校受影响的时间为多少秒?

典型证明题:

1.已知:如图,△ABC 中,∠C =90°,D 为AB 的中点,E 、F 分别在AC 、BC 上,且DE ⊥DF .求证:AE 2+BF 2=EF 2.

2.如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与 △AC P ′重合,若AP=3,求PP ′的长。

3.如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿直线AD 翻折,点C 落在点C ’的位置,BC=4,求BC ’的长.

最短路径问题:

1.如图,一圆柱体的底面周长为20cm ,高AB为4cm ,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程.

2.如图,一圆柱高8cm ,底面半径2cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是 cm

3、小明要外出旅游,他带的行李箱长cm 40,宽cm 30,高cm 60,一把cm 70长的雨伞能 否装进这个行李箱?

其它题型 1、如图,是由四个大小完全相同的直角三角形拼合而成的,若图中大小正方形的面积分别为62.5和4,求直角三角形两直角边的长。

2、厂门的上方是一个半圆,一辆装满货物的卡车,宽为1.6m ,高为2.6m ,这辆卡车能否通过厂门(要求卡车的上端与门的距离不小于0.2m )?(图中单位:m )

3、一牧童在距小河的南岸4英里的A 处牧马,河水向正东流去,而他此时位于他家B 的西8英里北7英里处,他想把马牵到小河边区饮水,然后回家,他完成这件事所走的最短路程为多少英里?

A ?

B

? 2.3 2 A

B 小河

勾股定理典型分类练习题

勾股定理典型分类练习题 题型一:直接考查勾股定理 例1.在ABC ∠=?. C ?中,90 ⑴已知6 BC=.求AB的长 AC=,8 ⑵已知17 AC=,求BC的长 AB=,15 , 变式1:已知,△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明△ABC 是等腰三角形。 } 变式2:已知△ABC的三边a、b、c,且a+b=17,ab=60,c=13, △ABC是否是直角三角形 你能说明理由吗 题型二:利用勾股定理测量长度 ) 例1如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米 例2如图,水池中离岸边D点米的C处,直立长着一根芦苇,出水部分BC的长是米,把 芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.

| 题型三:勾股定理和逆定理并用 例3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1 那么 △DEF 是直角三角形吗为什么 ~ 题型四:旋转中的勾股定理的运用: 例4、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与 △ACP ′重合,若AP=3,求PP ′的长。 — 变式:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长. 分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形. * P A P C B

A B D E 10 15 题型五:翻折问题 例5:如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一 点,将矩形纸片沿 AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长. ! 变式:如图,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 好落在BC 边上的点F ,求CE 的长. ( 题型6:勾股定理在实际中的应用: 例6、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到 公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉 机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响, 已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少 % 变式:如图,铁路上A 、B 两点相距25km, C 、D 为两村庄,若DA=10km,CB=15km , * DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.求E 应建在距A 多远处 —

勾股定理及常见题型分类

勾股定理及常见题型分类 一、知识要点: 1、勾股定理 2、勾股定理证明方法及勾股树 3、勾股定理逆定理 4、勾股定理常见题型回顾 二、典型题 题型一:“勾股树”及其拓展类型求面积 1. 右图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( ) A.13 B.26 C.47 D.94 2.如图,直线l 上有三个正方形a,b,c,若a,c 的边长分别为6和8,求b 的面积。 3. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 4、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 S 3 S 2 S 1 甲 乙 图1

5、在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是 、 =_____________。 题型二:勾股定理与图形问题 1、已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 . 2.如图,求该四边形的面积 3.如图2,已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 . 4.某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由 . 5.如图是一块地,已知AD=8m ,CD=6m ,∠D=90°,AB=26m ,BC=24m ,求这块地的面积。 题型三:在直角三角形中,已知两边求第三边 A B C D E F G

勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1.勾股定理 内容: 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠=?, 则 ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 4.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若 ,时,以a ,b ,c 为三边的三角形是钝角三角形;若 ,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

勾股定理全章分类练习题及答案

勾股定理 测试1 勾股定理(一) 学习要求 掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长. 课堂学习检测 一、填空题 1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______. 2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边. (1)若a=5,b=12,则c=______; (2)若c=41,a=40,则b=______; (3)若∠A=30°,a=1,则c=______,b=______; (4)若∠A=45°,a=1,则b=______,c=______. 3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.

4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______. 二、选择题 6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ). (A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ). (A)4 (B)6 (C)8 (D)10 2 8.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ). (A)150cm2 (B)200cm2 (C)225cm2(D)无法计算 三、解答题

9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别 为a、b、c. (1)若a∶b=3∶4,c=75cm,求a、b; (2)若a∶c=15∶17,b=24,求△ABC的面积; (3)若c-a=4,b=16,求a、c; (4)若∠A=30°,c=24,求c边上的高h c; (5)若a、b、c为连续整数,求a+b+c. 综合、运用、诊断 一、选择题 10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).

(完整)勾股定理试题分类

(完整)勾股定理试题分类 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)勾股定理试题分类)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)勾股定理试题分类的全部内容。

《数学》八年级下册 第十七章 勾 股 定 理 【题型一】勾股定理的验证与证明 1.如图,每个小正方形的边长是1,图中三个正方形的面积分别是 S 1、S 2、S 3,则它们的面积关系是 ,直角△ABC 的三边的关系是 . 得出 S 1+S 2=S 3,从而得到:AB 2+BC 2=AC 2 . 2。如图,每个小正方形的边长是1,图中三个正方形的面积分别 是S 1、S 2、S 3,则它们的面积关系是 ,直角△ABC 的三边的关系是 . 参考答案:对于S 3显然用数方格的方法不合适,利用“相减法” 或“相 加法"用面积公式计算三个正方形面积,得出 S 1+S 2=S 3,从而得到:AB 2+BC 2=AC 2 。 3。如图,是由四个全等的Rt△拼成的图形,你能用它证明勾股定 理吗? 参考答案:由S 大正方形=4S Rt△+S 小正方形,得 c 2=4×ab+(b -a )2 ∴a 2+b 2=c 2 。 4.如图,是由四个全等的Rt△拼成的图形,你能用它证明勾股定 理吗? 参考答案:由S 大正方形=4S Rt△+S 小正方形,得 (a+b )2 =4×ab+c 2 ∴a 2+b 2=c 2 . 5.如图,已知∠A =∠B =90°且△AED≌△BCE ,A 、E 、B 在同一直线上。根据此图证明勾股定理. 1 21 2 B A B A a

勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是() A. CD、EF、GH B. AB、EF、GH C. AB、CD、GH D. AB、CD、EF

勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 ; 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗”

占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角 形。” ' “勾股定理一定是要用的,而且不动笔墨恐怕是不行的。”绣亚补充说。几位男孩子走进教室,画图、计算,不一会就得出了答案。同学们,你算 出来了吗 思路分析: 1)题意分析:本题考查勾股定理的应用 2)解题思路:本题关键是认真审题抓住问题的本质进行分析才能得出正确 的解答

勾股定理 分类练习题

勾股定理常考习题 勾股定理的直接应用: 1、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20 D :21 2、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为 ( ) A :3 B :4 C :5 D :7 3.在平面直角坐标系中,已知点P 的坐标是(3,4),点Q 的坐标是 (7,8),则线段PQ 的长为_____. 4、 若直角三角形两直角边的比是3:4,斜边长是20,求此 直角三角形的面积是_________. 5、直角三角形周长为12cm ,斜边长为5cm ,求直角三角形的面积是___________. 6、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。 7.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______. 8.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______,AB 边上的高CD =______. 9.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______. 10、若等腰三角形的腰长为10,底边长为12,则底边上的高为( ) A 、6 B 、7 C 、8 D 、9 11.若等腰三角形两边长分别为4和6,则底边上的高等于( ). (A)7 (B)7或41 (C)24 (D)24或7 12.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______. 13. 等边三角形的边长为2,它的面积是___________ 14、若直角三角形的三边长分别是n+1,n+2,n+3,则n____________。 15.在数轴上画出表示10-及13的点. 16、如图∠B =∠ACD =90°, AD =13,CD =12, BC =3,则AB 的长是多少? 17.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( ). (A)4 (B)6 (C)8 (D)102 18.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4, S 2=8,则AB 的长为_________. 18题图 19题图 20题图 19.如图,Rt △ABC 中,∠C =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积和为( ). (A)150cm 2 (B)200cm 2 (C)225cm 2 (D)无法计算 20.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形 的边长是______. 21.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3, 水平放置的4个正方形的面积是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=______. 方程思想的应用: 1、 如图所示,已知△ABC 中,∠C=90°,∠A=60°, , 求、、的值。 2.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长. 3.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长. 4. 如图,在长方形ABCD 中,将?ABC 沿AC 对折至?AEC 位置,CE 与AD 交于点F 。 (1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长 5. 如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积 典型几何题 1.如图,Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,AD =20,求BC 的长. 2.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长. 3.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2, CD =2,AD =3,求四边形ABCD 的面积. 4.已知:如图,△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC ,D 是垂足,求AD 的长. 5、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB , BC=6, AC=8, 求AB 、CD 的长 6.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE = CB 4 1 ,求证:AF ⊥FE . 7.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点, AD =5,BE =102求AB 的长.

勾股定理经典例题(含答案)

勾股定理经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32

=16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于 , 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

浙江地区2018中考数学试题分类汇编考点22勾股定理含解析

2018中考数学试题分类汇编:考点22 勾股定理 一.选择题(共7小题) 1.(2018?滨州)在直角三角形中,若勾为3,股为4,则弦为() A.5 B.6 C.7 D.8 【分析】直接根据勾股定理求解即可. 【解答】解:∵在直角三角形中,勾为3,股为4, ∴弦为=5. 故选:A. 2.(2018?枣庄)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为() A.B.C.D. 【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案. 【解答】解:过点F作FG⊥AB于点G, ∵∠ACB=90°,CD⊥AB, ∴∠CDA=90°, ∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°, ∵AF平分∠CAB, ∴∠CAF=∠FAD, ∴∠CFA=∠AED=∠CEF, ∴CE=CF, ∵AF平分∠CAB,∠ACF=∠AGF=90°, ∴FC=FG, ∵∠B=∠B,∠FGB=∠ACB=90°, ∴△BFG∽△BAC,

∴=, ∵AC=3,AB=5,∠ACB=90°, ∴BC=4, ∴=, ∵FC=FG, ∴=, 解得:FC=, 即CE的长为. 故选:A. 3.(2018?泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为() A.9 B.6 C.4 D.3 【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长. 【解答】解:由题意可知:中间小正方形的边长为:a﹣b, ∵每一个直角三角形的面积为: ab=×8=4, ∴4×ab+(a﹣b)2=25, ∴(a﹣b)2=25﹣16=9, ∴a﹣b=3, 故选:D.

勾股定理典型题型

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少 米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,. 已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到 D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如 图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=1.5,这是典型的利用勾 股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=AD 2 设水深AC= x 米,那么AD=AB=AC+CB=x +0.5 x 2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

勾股定理经典例题(含答案)A

勾股定理经典例题(含答案)A

经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 举一反三【变式1】如图,已知:,,于P. 求证:. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从 营地A点出发,沿北偏东60°方向走了到 达B点,然后再沿北偏西30°方向走了500m到达目的地C 点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?

(二)用勾股定理求最短问题 4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线. 举一反三 【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.

类型四:利用勾股定理作长为的线段 5、作长为、、的线段。 举一反三【变式】在数轴上表示的点。 类型五:逆命题与勾股定理逆定理 6、写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚. 2.原命题:对顶角相等 3.原命题:线段垂直平分线上的点,到这条线段两端距离相等. 4.原命题:角平分线上的点,到这个角的两边距离相等.7、如果ΔABC的三边分别为a、b、c,且满足

勾股定理经典例题(含答案)

勾股定理经典例题 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2 、如图,已知:在中,, ,. 求:BC的长. 1、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要() A、450a元 B、225a 元 C、150a元 D、300a元 举一反三【变式1】如图,已知: ,,于P. 求证:. 150° 20m 30m

【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B 点,然后再沿北偏西30°方向走了500m到达目的地C点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门? (二)用勾股定理求最短问题 4、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,

勾股定理试题分类

勾股定理试题分类 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

《数学》八年级下册第十七章 勾股定理 【题型一】勾股定理的验证与证明 1.如图,每个小正方形的边长是1,图中三个正方形的面积分别是S1、 S2、S3,则它们的面积关系是,直角△ABC的三边的关系是. 参考答案:用数方格的方法或用面积公式计算三个正方形面积,得出S1+S2=S3,从而得到:AB2+BC2=AC2. 2.如图,每个小正方形的边长是1,图中三个正方形的面积分别是S1、 S2、S3,则它们的面积关系是,直角△ABC的三边的关系是. 参考答案:对于S3显然用数方格的方法不合适,利用“相减法”或“相加法”用面积公式计算三个正方形面积,得出 S1+S2=S3,从而得到:AB2+BC2=AC2. 3.如图,是由四个全等的Rt△拼成的图形,你能用它证明勾股定理吗 参考答案:由S大正方形=4S Rt△+S小正方形,得 c2=4× 1 2 ab+(b-a)2 ∴a2+b2=c2. 4.如图,是由四个全等的Rt△拼成的图形,你能用它证明勾股定理吗 参考答案:由S大正方形=4S Rt△+S小正方形,得 (a+b)2=4× 1 2 ab+c2 ∴a2+b2=c2. 5.如图,已知∠A=∠B=90°且△AED≌△BCE,A、E、B在同一直线上.根据此图证明勾股定理. 参考答案:先证明△DCE是等腰直角三角形,再根据梯形面积为三个三角形面积之和得 1 2(a+b)2=2× 1 2 ab+ 1 2 c2, ∴a2+b2=c2. 6.如图,一个直立的火柴盒倒下来就可以证明勾股定理,请你根据图形,设计一种证明方法. 参考答案:方法类似第5题. 7.(2011温州)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1—1).图1—2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图1—2中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是 . 参考答案:10 3 8.(2010 湖北孝感)[问题情境 ] B A a 图2 图1 c b a

勾股定理经典例题(含答案)29050

经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长 是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长.

思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长, 进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中, . ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD

八年级数学上勾股定理经典例题分类练习

八年级数学上---勾股定理经典例题分类练习2 一、勾股定理的证明 根据图形,写出勾股定理的证明过程 最大的正方形E 的面积_______. 3、在直线l 上依次摆放着七个正方形(如上图2所示)。已知斜放置的三个正方形的面积分别 是1、2、3,正放置的四个正方形的面积依次是S S 12、、S S S S S S 341234、,则+++=______。 4、如上图3所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是()A 、S 1-S 2=+S 2=+S 3<=S 1 5、以某直角三角形三边分别作三个正方形,其中两个正方形的面积分别为25和12,则第三个正方形的面积为___________________. 6、如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 7、如图,∠B =∠D =90°,∠A =60°,AB =4,CD =2.求四边形ABCD 的面积. CD =3cm ,且∠ABC =90度,求四边形ABCD 的面积 11、三角形ABC 中,AB=5,AC=3,BC 边上的中线AD=2,求三角形ABC 的面积? 三、在直角三角形中,求相关量 1、如上图2,AB=BC=CD=DE=1,AB ⊥BC,AC ⊥CD,AD ⊥DE,则AE 的长为________ c A B b A E B

2、已知直角三角形的两边长为 3、2,则另一条边长的平方是_________ 3、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的__________. 4、在Rt △ABC 中,∠C=90° ①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。 5、一个直角三角形的三边长的平方和为200,则斜边长为___________; 6、斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是______________. 7、在Rt △ABC 中,∠C=90°,AB=10,AC=6,则BC 的长为___________ 四、勾股数的应用、利用勾股定理逆定理判断三角形的形状 1、下列各组数据中的三个数,可作为三边长构成直角三角形的是() ,5,,3,,12,,15,17 2、若线段a ,b ,c 组成直角三角形,则它们的比为( ) A 、2∶3∶4 B 、3∶4∶6 C 、5∶12∶13 D 、4∶6∶7 3、下面的三角形中:①△ABC 中,∠C=∠A -∠B ;②△ABC 中,∠A :∠B :∠C=1:2:3; ③△ABC 中,a :b :c=3:4:5;④△ABC 中,三边长分别为8,15,17. 其中是直角三角形的个数有().A .1个B .2个C .3个D .4个 4、已知2512-++-y x x 与25102+-z z 互为相反数,试判断以x 、y 、z 为三边的三角形的形状。 5、若△ABC 的三边长a,b,c 满足222a b c 20012a 16b 20c +++=++,试判断△ABC 的形状。 6、五根小木棒,其长度(单位:cm)分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是( ) 7、如上图,在平面直角坐标系中,点A 、B 的坐标分别为A(3,1),B(2,4),三角形OAB 是三角形。 8、将勾股数3,4,5扩大到原来的2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你写出另外两组基本勾股数:________,________. 9、远航号海天号轮船同时离开港口,各自沿一固定方向航行,远航号每小时航行16海里,海天号每小时航行12海里,他们离开港口一个半小时后相距30海里,如果知道远航沿东北方向航行,你知道海天沿哪个方向航行吗?

2016年勾股定理试题分类

一、基础题 1,分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组 A.2 B.3 C.4 D.5 2,已知△ABC 中,∠A =12∠B =13 ∠C ,则它的三条边之比为( ) A.1∶1∶2 B.1∶3∶2 C.1∶2∶3 D.1∶4∶1 3,已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( ) A.52 B.3 C.3+2 D.33 4,如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A.12米 B.13米 C.14米 D.15米 5.如图4,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( ) A .4 B .8 C .16 D .64 6.在Rt △ABC 中,∠C=90°, ①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt△ABC =________。 7、一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为 。 8、一个直角三角形的两边长分别为3cm 和4cm,则第三边的为 。 9、已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高. 求 ①AD 的长;②ΔABC 的面积. 11、一个三角形三条边的比为5∶12∶13,且周长为60c m ,求它的面积. 12、在△ABC 中,∠C=90°,AC=2.1 cm,BC=2.8 cm.(1)求这个三角形的斜边AB 的长和斜边上的高CD 的长.(2)求斜边被分成的两部分AD 和BD 的长.

(完整版)勾股定理典型练习题

新人教版八年级下册勾股定理全章知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 222()2S a b a ab b =+=++ 所以222 a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠=? , 则c = ,b ,a ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边。 ① 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形” 来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形; ② 若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b , c 为三边的三角形是锐角三角形; ③ 定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b , c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222 ,2,m n mn m n -+(,m n >m ,n 为正整数) c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

相关主题
文本预览
相关文档 最新文档