当前位置:文档之家› 长距离点对点(PtP)WiFi无线系统传输方案设计

长距离点对点(PtP)WiFi无线系统传输方案设计

长距离点对点(PtP)WiFi无线系统传输方案设计
长距离点对点(PtP)WiFi无线系统传输方案设计

33Km点对点(PtP)WiFi无线系统传输测试报告V2

壹、测试目的

测试33Km远距离WiFi无线传输的真实流量与天线调整技术的精进练习,并同时测试1W与50mw传输能力比较。

现场测试人员:阿树、阿南。远程调整测试人员:jmj10101。

貳、测试地点与测试距离

台湾苗栗县通霄镇 台湾台中县台中港南端,总距离33.29Km。2008年11月16日

參、测试环境

台湾苗栗县通霄镇高度: 约海拔72公尺

台湾台中县台中港南端高度: 约海拔70公尺

肆、测试硬设备

伍、测试软件

陸、测试系统无线设备规画

--台湾台中县台中港南端— NB1 192.168.1.33

Device: M500AG

System Mode: Bridge

IP: 192.168.1.2

Interface: RF1

Operation Mode: AC (Client)

ESSID: pczonetest --台湾苗栗县通霄镇— PC1 192.168.1.20

Device: M600AG

System Mode: Bridge

IP: 192.168.1.1

Interface: RF1 (RF2 Disable)

Operation Mode: AP

ESSID: pczonetest

柒、 33Km 无线系统透过Ixchariot 测试Throughput 状况

Test 1 Item

M500AG--AC M600AG-AP

测 试 说 明

1.Limit Rate 54Mbps

54Mbps

1.无线讯号处于-65 ~ -87dB m ,不同频道会有不同讯号值,天线对准度仍有90%左右。

2.AC 端RX Link Rat e=11/24/36/48Mbps ,表示无线讯号会有飘浮状况。

3.反应在Throughput 的结果也不理想。

2.Max RF Distance 350

350 3.RX Link Rate 11/24/36/48Mbps 48-54Mbps 4.TX Link Rate 48-54Mbps 48-54Mbps 5.Noise Level -80~ -97dBm -90 ~ -101dBm 6.Link Quality 8-30 17-23 7.Signal Level (RSSI) -65 ~ -87dBm

-72 ~ -78dBm

Throughput (Mbps) Average 11.936 / Minimum 9.385 / Maximum12.594

实际流量需再加上VNC 与MSN 流量,约13Mbps

Summary - untitled1.tst

Console version 5.40 Console build level

011

Console product type IxChariot

Filename untitled1.tst

Run start time2008年11月16日, 05:31:28

Run end time2008年11月16日, 05:41:25

Elapsed time00:09:57

How the test ended Ran to completion

Number of pairs 1

Run Options

End type Run for a fixed duration Duration00:10:00

Reporting type Real-time Automatically poll endpoints Yes

Polling interval (minutes) 1

Stop run upon initialization failure Yes

Connect timeout during test (minutes)0

Stop test after this many running pairs fail 1

Collect endpoint CPU utilization No

Validate data upon receipt No

Test Setup (Console to Endpoint 1)

Test Setup (Endpoint 1 to Endpoint 2)

Test Execution (Endpoint 1 to Endpoint 2)

Throughput

Group/ Pair Average (Mbps) Minimum (Mbps) Maximum (Mbps) Throughput 95% Confidence Interval Measured Time (secs) Relative Precision All Pairs11.936 9.385 12.594

Pair 1 11.937 9.385 12.594 0.098 596.486 0.819 Totals: 11.936 9.385 12.594

Transaction Rate

Group/ Pair Transaction Rate

Average

Transaction Rate

Minimum

Transaction Rate

Maximum

Transaction Rate 95% Confidence

Interval

Measured Time

(secs)

Relative

Precision

All Pairs0.149 0.117 0.157

Pair 1 0.149 0.117 0.157 0.001 596.486 0.819 Totals: 0.149 0.117 0.157

Response Time

Group/ Pair Response Time

Average

Response Time

Minimum

Response Time

Maximum

Response Time 95% Confidence

Interval

Measured Time

(secs)

Relative

Precision

All Pairs 6.702 6.352 8.524

Pair 1 6.702 6.352 8.524 0.055 596.486 0.819 Totals: 6.702 6.352 8.524

Endpoint Configuration

Group/ Pair E1 Operating System E1 Version E1 Build Level E1 Product Type E2 Operating System E2 Version E2 Build Level E2 Product Type All Pairs

Pair 1 Windows XP (32-bit) 5.1 8149 Retail Windows XP (32-bit) 5.1 8149 Retail

Raw Data Totals

Group/ Pair Number of Timing Records Transaction Count Bytes Sent by E1 Bytes Received by E1 Measured Time (secs) Relative Precision

All Pairs89 89 890,000,000 89

Pair 1 89 89 890,000,000 89 596.486 0.819 Totals: 89 89 890,000,000 89

5. 总结测试统计

测试记录Average

(Mbps) Minimum

(Mbps)

Maximum

(Mbps)

System

Throughput

Limit Rate Max RF

Distance

AC RX

Link Rate

AP/AC TX

Link Rate

Noise Level

AC/AP dBm

Link Quality

AC/AP

Signal

Level dBm

Test AC AP 11.936 9.385 12.594 13 54 Mbps 350 11/24/36/48Mbps 48-54Mbps -80~ -97 /

-90 ~ -101 8-30 / 17-23 -65 ~ -87 /

-72 ~ -78

测试总结

1.此次测试重点修改为:

A.天线由水平架法(垂直极化)改为垂直架法(水平极化): 初步判断’确有影响。

B.台中港的点(AC)天线高度架高(上次判断有被前方建筑物挡到讯号): 初步判断’确有影响。

C.调整Limit Rtae = 54Mbps (不限于在36Mbps): 初步判断’影响不明确。

2.此次增加1W=1000mW的产品测试比对,测试结果证实,无线射频功率大,并不能在远距离提升流量,无线讯号优化才是重点,既使RF Output Power: 50mW,仍能达到远距离高频宽传输。(PS:上次400mW产品测试,流量约27Kbps)

Ps:昨天测试时,传输总流量一度高达15.3Mbp s,但持续时间不足于以Chariot测试,若天线再对准3%(RSSI再好2dBm)就可稳定达到15Mbps的流量。测试迅雷Download速度,透过33Km Internet PtP无线系统传输状况

33Km WiFi PtP Internet Throughput: 1.15MB/s ( 1.15 MB/s * 8 = 9.2 Mbps )

捌、50mW VS 1000mW = 1W 测试比较

1.测试完成后,在天线保持原来状况下(水平极化),AP换成Argtek产品WLAN 11g Router module (1W) with High Powe r

2.设定画面如下:

3.以迅雷测试下载速度

33Km WiFi PtP Internet Throughput: 12.92KB/s ( 12.92 KB/s * 8 = 103.36 Kbps )

常用无线通信协议

常用无线通信协议 目前使用较广泛的近距无线通信技术有蓝牙(Bluetooth),无线局域网802.11(Wi-Fi)和红外线数据传输(IrDA).此外,还有一些具有发展潜力的近距无线技术标准,分别是ZigBee,超宽频,短距通信,WiMedia,GPS,DECT,无线1394和专用无线系统等。 蓝牙(Bluetooth)技术 蓝牙是一种支持设备短距离通信的无线电技术。它是一种无线数据与语音通信的开放性全球规范,它以低成本的短距离无线连接为基础,可为固定的或移动的终端设备提供廉价的接入服务。蓝牙技术的实质内容是为固定设备或移动设备之间的通信环境建立通用的近距无线接口,将通信技术与计算机技术进一步结合起来,使各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信或操作。其传输频段为全球公众通用的2.4GHzISM频段,提供1Mbps的传输速率和10m 的传输距离。 优势:⑴全性高。蓝牙设备在通信时,工作的频率是不停地同步变化的,也就是跳频通信。双方的信息很难被抓获,防止被破解或恶意插入欺骗信息。⑵于使用。蓝牙技术是一项即时技术,不要求固定的基础设施,且易于安装和设置。 不足:⑴通信速度不高。蓝牙设备的通信速度较慢,有很多的应用需求不能得到满足。⑵传输距离短。蓝牙规范最初为近距离通信而设计,所以他的通信距离比较短,一般不超过10m。 Wi-Fi(无线高保真)技术 无线宽带是Wi-Fi的俗称。所谓Wi-Fi就是IEEE 802.11b的别称,它是一种短程无线传输技术,能够在数百英尺范围内支持互联网接入的无线电信号。Wi-Fi速率最高可达11Mb/s,电波的覆盖范围可达200m左右。 优势:⑴覆盖广。其无线电波的覆盖范围广,穿透力强。可以方便地为整栋大楼提供无线的宽带互联网的接入。⑵速度高。Wi-Fi技术的传输速度非常快,通信速度可达300Mb/s,能满足用户接入互联网,浏览和下载各类信息的要求。 不足:安全性不好。由于Wi-Fi设备在通信中没有使用跳频等技术,虽然使用了加密协议,但还是存在被破解的隐患。 IrDA(红外线数据协会)技术 IrDA是一种利用红外线进行点对点通信的技术,是第一个实现无线个人局域网(PAN)的技术。 IrDA 的主要优点是无需申请频率的使用权,因而红外通信成本低廉。并且还具有移动通信所需的体积小、功耗低、连接方便、简单易用的特点。此外,红外线发射角度较小,传输上安全性高。IrDA的不足在于它是一种视距传输,两个相互通信的设备之间必须对准,中间不能被其它物体阻隔,因而该技术只能用于 2 台(非多台)设备之间的连接。 优势:⑴无需申请频率的使用权,因此红外线通信成本低廉。⑵移动通信所需的体积小、功耗低、连接方便、简单易用。⑶外线发射角度较小,传输上安全性高。 不足:IrDA是一种视距传输,两个相互通信的设备之间必须对准,中间不能被其它物体阻隔,因而只用于两台设备之间连接。ZigBee(紫蜂)技术 ZigBee使用2.4 GHz 波段,采用跳频技术。它的基本速率是250kb/s,当降低到28kb/s 时,传输范围可扩大到134m,并获得更高的可靠性。另外,它可与254个节点联网。 优势:⑴功耗低。在低耗电待机模式下,两节普通5号干电池可使用6个月以上。⑵成本低。因ZigBee数据传输速率低,协议简单,所以成本很低。⑶网络容量大。每个ZigBee网络最多可支持255个设备。⑷作频段灵活。使用的频段分别为2.4GHz、868MHz(欧)及915MHz(美),均为免执照频段。 不足:⑴数据传输速率低。只有10kb/s~250kb/s,专注于低传输应用。⑵有效范围小。有效覆盖范围为10~75m之间,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭或办公室环境。 UWB(超宽带)技术 UWB(Ultra Wideband)是一种无线载波通信技术,利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。UWB 有可能在10 m 范围内,支持高达110 Mb/s的数据传输率,不需要压缩数据,可以快速、简单、经济地完成视频数据处理。 特点:⑴系统复杂度低,发射信号功率谱密度低,对信道衰落不敏感,载货能力低。⑵定位精度高,相容性好,速度高。⑶成本低,功耗低,可穿透障碍物。近距离无线传输 NFC(近距离无线传输)技术 NFC采用了双向的识别和连接。在20cm 距离内工作于13.56MHz 频率范围。NFC现已发展成无线连接技术。它能快速自动地建立无线网络,为蜂窝设备、蓝牙设备、Wi-Fi 设备提供一个“虚拟连接”,使电子设备可以在短距离范围进行通讯。 特点:NFC的短距离交互大大简化了整个认证识别过程,使电子设备间互相访问更直接、更安全和更清楚,不用再听到各种电子杂音。NFC 通过在单一设备上组合所有的身份识别应用和服务,帮助解决记忆多个密码的麻烦,同时也保证了数据的安全保护。此外NFC 还可以将其它类型无线通讯(如Wi-Fi 和蓝牙)“加速”,实现更快和更远距离的数据传输。

厂区数字无线视频传输设备技术方案

厂区网络视频监控系统技术方案 第一章 概述 在高新技术数字化发展的今天, 多媒体、数字化、全方位 是工厂对电视监控系统的新要求,也是充分发挥监控系统的作用,实现 向科技要警力 的途径。通过对工厂四周围墙、宿舍、财务室等重点区域进行严密的二十四小时监控,不仅能在第一时间对诸如盗窃、抢劫等事件做出快速反应,还能提供事件发生前后一定时间内的查证资料;同时采用监控远程传输技术实现领导对监控的远程浏览,为工厂的管理工作提供更有效的管理手段,大大减轻员工不安定的压力,提高管理的效率和质量。 在工厂安装监控系统,通过厂内车间的摄像机,不仅可以看到工厂内主要出入口情况,及时发现犯罪分子,并可打开录像机进行录象,以作为证据,对那些有不良企图的人们也起到一定的威慑作用。在工厂及生活区周界安装摄像机,可以观察整个厂及生活区周边情况,发生报警时,可以在极短时间内,迅速看报警路段情况,以保护工厂生活区的安全。本文着重讲厂区无线监控监控系统。 第二章总体设计方案 系统功能特点说明 该网络视频监控系统无论在设计上、还是在结构上、或者是在应用上,均体现了现代网络视频监控的特点与特色,其具体内容如下:

实用性强 根据用户需求,系统充分考虑了现场的实际应用情况,监控前端均采用数字无线视频传输设备,内部采用数字无线编码处理,可连接常规的监控摄像机(球机/枪机等模拟的输入源均可,设备可以将模拟信号进行数字化处理,并采用数字无线设备发送出去),采用无线的传输方式,将大大提高现场布局的灵活性与快捷性,避免了大型机械设备对传统监控线路的碾压问题,同时是监控点与接收点之间相对是直线传递,避免了绕线施工的问题。由于采用了数字的无线视频传输设备,可以有效的抗击现场电磁环境的干扰问题。另外可以根据现场需求灵活的变换位置,而不需要花很大的成本即可完成 可靠性原则 系统的安全可靠运行是整个系统建设的基础。为了确保整个系统能够稳定工作,系统采用的硬件设备均为市场上的主流产品 达到行业入网的技术标准。并从系统结构、技术措施、系统管理、厂商技术支持及维修能力等方面着手,确保系统运行的可靠性和稳定性,达到最大的平均无故障时间。 先进性原则

5G无线通信网络中关键技术及发展趋势

5G无线通信网络中关键技术及发展趋势 【摘要】第五代移动通信(5G)已成为全球通信领域研发的热点。随着5G通信技术的不断完善,也必将给人们带更好的通信网络体验。因此,需对5G主要关键技术及其发展趋势做进一步探讨。 【关键词】5G 无线通信网络技术趋势 随着4G进入规模商用阶段,面向2020年及未来的第五代移动通信(5G)已成为全球研发的热点。5G时代无线通信也将会进一步的完善,从稳定性、传输速度等方面向有线通信看齐,甚至会超越有线通信。分析归纳5G主要关键技术,对其发展趋势的进一步探讨,对于5G通信技术的不断完善有着积极的意义。 一、5G无线通信技术的特点 (1)大幅提高了数据的传输速率。在5G技术中,通过技术创新,其数据传输的速度可以高达每秒几十GB。以 28GHz…波段为例,4G技术无线传输速率是75Mbps,而5G 技术无线传输速度已经可达到1Gbps,并且有高于2Mb/s的非对称数据传输能力。(2)兼容性更强。5G技术涉及到Wi-Fi、NFC以及BLUETOOTH等的无线技术,并且包含是集多种无线通信技术的全通信系统,其对其他技术和设备的兼容性

更强,在网络支付的时代,对手机支付的安全性也有了很大的提升。(3)低功耗。无线网络通信技术在应用过程,应用程度的持续运行需要较多的小任务来支持,比如电子邮件程序,为了保证电子邮件能够实时更新,会向服务器发持续发送请求。在5G技术中,会对浪费电量的应用进行快速、自动的审核,对无用应用发出的请求进行阻止,从而减少对电量的浪费,延长电池的使用寿命。 二、5G无线通信关键技术 1、大规模天线阵列技术。5G无线通信采用大规模天线阵列,从而实现在当前多天线技术的基础上,通过天线数量的增加,达到对数十个独立空间数据流的支持,对多用户系统的频谱效率大幅提升,也为5G系统速率需求和容量需求提供了支持。在大规模天线阵列对5G通信技术中信道测量与反馈、天线阵列设计、参考信号设计、低成本实现等关键问题的解决提供了技术支持。 2、超密集组网技术。为了实现无线通信频率资源的利用效率,超密集组网技术可以提高基站部署密度,从而对频率复用效率实现巨大提升。但在此技术的应用方面,因部署成本、站址资源、频率干扰等因素影响,超密集组网技术在无线通信网络局部热点区域应用,可以达到通信容量百倍级的提高。在超密集组网技术的研发过程中,其重点研究方向应体现小区虚拟化技术、干扰管理与抑制、回传与接回联合设计等方面,从而更好促进超密集

风光互补无线远程视频监控系统方案

风光互补供电 无线远程视频监控系统 设 计 方 案 编制:深圳市鑫日科科技有限公司 日期:二O一三年八月 目录 一、前言................................................................................................................................................ 二、应用特点............................................................................................................................................ 2.1 太阳能发电子系统 2.2 数据无线传输子系统 2.3 其他子系统 2.3 系统相关应用案例图片 三、项目需求.......................................................................................................................................... 四、无线视频传输方案设计 .................................................................................................................... 4.1 无线传输方案概述 4.2 无线传输方案设计 4.3 无线传输设备介绍 五、风光互补发电系统方案设计 ............................................................................................................ 5.1 风光互补独立供电系统(监控类)示意图 5.2 设计思路 5.3 安装地对自然资源要求 5.4 设备选型方案 六、前端监控设备介绍 ............................................................................................................................ 七、远程视频同步方案介绍 ................................................................................ 错误!未定义书签。 八、方案预算............................................................................................................................................ 一、前言

常用无线网络通信技术解析

常用无线网络通信技术解析 发表时间:2017-10-19T10:33:32.157Z 来源:《基层建设》2017年第17期作者:陶庆东 [导读] 摘要:随着我国信息技术不断发展,促进了无线网络通信技术的不断进步,出现了GPS检测、挖掘机器人设计等相关技术,在实际应用过程中,发挥了至关重要的作用,因此本文主要探讨了常用无线网络通信技术,旨在为相关工作者提供借鉴。 广东省电信工程有限公司广东东莞 523000 摘要:随着我国信息技术不断发展,促进了无线网络通信技术的不断进步,出现了GPS检测、挖掘机器人设计等相关技术,在实际应用过程中,发挥了至关重要的作用,因此本文主要探讨了常用无线网络通信技术,旨在为相关工作者提供借鉴。 关键词:无线网络;通信技术;分析 无线网络随着局域网的发展而不断发展,无线网络不需要进行布线,就可以实现信息传输,为人们的通信提供了较大的便利。无线网络不仅具有质量高的优点,同时还可以降低通信成本,所以在许多的领域中,都可以应用无线网络通信,以此提高各领域的工作效率,充分发挥无限网络的的应用优势。目前我国无线网络通信技术有很多种,与人们的生活也息息相关,所以应常用网线网络技术的深入的分析,以此不断提高无线网络通信技术水平。 1 无线广域网 无线广域网不仅可以实现与私人网络进行无线连接,同时还可以与遥远的观众进行无限连接。在无限广域网中,常使用的通信技术,主要有以下几种,GPS、GSM、以及3G,下面就针对这三种技术进行探讨。 1.1 GPS GPS是一项重要的定位技术,其主要基础为子午仪卫星导航系统,它可以在海陆空进行三维导航,同时还具有较强的定位能力,美国在1994年全面建成。GPS系统主要由GPS卫星星座、地面监控系统以及GPS信号接收机三部分组成,GPS系统的卫星共有24颗,它们在轨道平面上均匀分布,其主要负责两方面工作,其一是对卫星进行监控,其二计算卫星星历;对于GPS用户设备主要由两部分组成,一部分为GPS信号接收机硬件,另一部分为GPS信号接收机处理软件。GPS在工作过程中,通常利用GPS信号接收机,对GPS卫星信号进行接收,并对信号进行相应的处理,进行确定相关的信息,包括用户位置以及速度等等,以此实现GPS定位以及导航的目的。GPS系统具有一定的特点,包括操作简便、高效率以及多功能等,最初,在军事领域中应用GPS,随着GPS系统的不断发展,GPS应用范围越来越广,在民用领域中应用力度逐渐加大,特别是在工程测量中,可以实现全天候的准确监测,大大提高了工程测量的精度,促进工程测量的行业的不断发展。 1.2 GSM GSM是全球移动通信系统的简称,是蜂窝系统之一。GSM发展的较为迅速,在欧洲和亚洲,已经将GSM作为标准,目前在世界上许多的国家,都建立的GSM系统,这主要是因为GSM系统具有一定的优势,如稳定性强、通话质量高、以及网络容量等等,这主要是因为GSM系统在工作中,可以实现多组通话在同一射频进行,GSM系统一般主要有包括三个频段,即1800MHZ、900MHz以及1900MHz。 1.3 GPRS GPRS是指通用分组无线业务,它是一种新的分组传输技术,在应用过程中,GPRS具有较多的优点,包括广域的无线IP连接、接口传输速率块等等。在GPRS系统运行过程中,通过分组交换技术,一方面可以实现多个无线信号共一个移动用户使用,另一方面可以实现一个无线信道共多个移动用户使用。信道资源会在移动用户进行无数据传输过程中让出来,这样可以实现无线频带资源利用率的提升。 2 无线局域网 无线局域网主要指的网络传输主要通过无线媒介,包括无线电波以及红外线等。对于无线局域网通信技术覆盖范围,一般情况下,在半径100m左右,目前IEEE制订的无线局域网标准,主要采用的是IEEE802.11系列标准,对于网络的物理层,作出的主要规定,同时还规定了媒质访问控制层。该系列的标准有很多种,包括IEEE802.11、IEEE802.11a、IEEE802.11b等等,对此进行简单的介绍。 2.1 IEEE802.11 对于无线局域网络,最早的网络规定为IEEE802.11,2.4GHZ的ISM工作频段是其工作的主要频段,物理层主要采用技术主要有两项,即红外线技术、跳频扩频技术等等,主要能够解决两项问题,一种为办公室局域网问题,另一种为校园网络用户终端无线接入问题。IEEE802.11数据传输速率可以达到2Mbps,随着我国网络技术的发展,IEEE802.11也得到了研究和发展,陆续推出了IEEE802.11b和IEEE802.11a,其中陆续推出了IEEE802.11b的数据传输速率可以达到11Mbps,IEEE802.11a的数据传输速率可以达到54Mbps,以此满足不断发展的高带宽带网络应用的需要、 2.2 IEEE802.11b 在现实生活使用中,我们可以将IEEE802.11b称作为Wi-Fi,2.4GHz频带是IEEE802.11b工作主要的频带之一,物理层主要由支持两个速率,即5.5Mbps和11Mbps,IEEE802.11b传输速率会受许多因素的影响,包括环境干扰和传输距离等,传输速率可以进行相应的切换。直接序列扩频DSSS技术是IEEE802.11b主要采用的技术。对于IEEE802.11b,可以将其工作模式可以分为两种,一种为点对点模式,另一种为基本模式,其中点对点模式是指两个无线网卡计算机之间的相互通信;基本模式还包括两种通信方式,一种为无线网络的扩充的时的通信方式,另一种指的是有线网络并存时的通信方式。 2.3IEEE802.11a 在美国,IEEE802.11a主要有三个频段范围,即5.15-5.25GHz、5.725-5.825GHz,物理层和传输层的速率可以达到54Mbps和 25Mbps,正交频分复用的独特扩频技术是IEEE802.11a主要采用的技术,通过该技术,可以实现传输范围的扩大,同时对于数据加密,可以达到152位的WEP。 3 无线个域网 在网络架构的底层,设置无线个域网WPAN,一般点对点的短距离连接使用无线个域网。对于无线个域网,使用的通信技术包括红外、蓝牙以及UWB等等,对此下面进行详细的介绍和分析。 3.1 蓝牙 蓝牙作为一种短距离无线通信技术,主要应用小范围的无线连接。蓝牙技术的传输速率为1Mbps,有效的通信范围在10m-100m范围,2.4GHz频段是蓝牙运行的频段,传输速率可以通过GFSK调制技术来实现,同时通过FHSS扩频技术还可以将信道分成若个的时隙,

无线传输视频监控解决方案

大连海创 大连海创高科信息技术有限公司 Dalian Hitro Hi-tech Information Technology Co.,LTD 无线传输视频监控系 统解决方案 二〇一一年六月二十一日 地址:大连市高新园区七贤岭爱贤街10号大连设计城6层 电话:7 传真:0411– 网址:https://www.doczj.com/doc/d84195976.html,

大连海创高科信息技术有限公司成立于2006年,是一家高科技民营企业,主要从事无线通信技术与产品的研究、开发、生产与销售,为客户提供基于无线宽带接入技术、无线自动控制技术、无线采集技术的一体化解决方案和产品。在立足自主创新、自主开发的基础上与国外知名无线通信企业进行强强合作,并将公司开发设计中心直接设立在美国硅谷,以保证公司的技术和产品更好的与国际接轨。公司相继推出拥有完全自主知识产权和技术特点的无线宽带网桥、无线AP、无线MESH、无线集中管理系统、无线智能接入终端、WIAC、WSN、Wi-FiCamera以及软交换平台等相关产品,成为国内无线通信领域的重要生产企业之一

1. AP2108 AP 2108M 企业级室内无线MESH 概述 HITRO公司的AP 2108M是一款高性能的室内型无线Mesh设备,它支持一片独立的802.11a/b/g卡,不仅可以作为Mesh设备,还可以单独作为一台AP或Bridge设备使用。作为HITRO公司系列无线产品之一,它可以与HITRO公司其他的产品(如HITRO WBA系列产品,POLAR,SOLAR系列产品等)紧密配合,为用户提供完整的优化的有线无线混合解决方案。 ●智能组网和恢复功能。AP 2108M设备在完成出厂设置后,在安装时设备可以根据现场情况自动完成组网,设备运行过程中如果出现单个Meshap发生故障,其他的设备可以自动调整网络,不影响系统运行。 ●自动路由功能。在无线Mesh AP网络中,每个设备都有多个传输路径可用,网络可以根据每个节点的通信负载情况动态地分配通信路由,从而有效地避免了节点的通信拥塞。 ●宽带传输功能。无线通信的物理特性决定了通信传输的距离越短就越容易获得高带宽,AP 2108M设备由于选择低功率多个短跳来传输数据,节点之间的无线信号干扰也较小,因此获得了更高的网络带宽。

G无线通信网络蜂窝结构体系和关键技术

5G 无线通信系统:前景和挑战 5G 无线通信网络 蜂窝结构体系和关键技术 演讲人:蓝之远 小组成员:蓝之远、孔胜、黄栋、刘威阳、 刘冰、徐迪、徐明月、赵晓通 2014年10月

目录

一、摘要 第4代无线通信系统已经部署或即将被部署在许多国家。然而,随着无线移动设备和服务爆炸式的发展,它们仍然面临着甚至4G不能调解的一些挑战,例如,频谱危机和高能耗。无线系统设计人员面临着不断增长的高数据率和移动性要求的需求的新的无线应用。因此,已经开始研究第五代无线系统,预计将在2020年部署。在本文中,我们提出一个潜在的蜂窝体系结构,分室内场景和室外场景,并讨论5G无线通信系统各种有前途的技术,比如,大规模MIMO,节能高效通信,认知无线电网络和可见光通信。还讨论了未来面对这些潜在的技术的挑战。 二、介绍 创新和有效的利用信息和通信技术(ICT)已在提高世界经济中变得越来越重要。无线通信网络在全球ICT战略中可能是最关键的因素,是许多其他工业的支柱。它是世界上发展最快、最具活力的行业之一。欧洲移动天文台报道称:移动通信业在2010年有总计1740亿欧元收入。一举超过了航空工业和制药业。无线技术的发展大大提高了人们的沟通能力、在商业活动和社交活动中的生活。 无线移动通信显着的成就反映技术更新快速步调。从第2代移动通信系统(2G)在1991年的初次露面到3G系统在2001年首次着手进行,无线移动系统从一个单纯的电话系统已经变换成一个能传输丰富多媒体内容的网络。4G无线系统设计满足高级国际移动通信(IMT-A)的需求,利用IP协议提供所有服务。在4G系统,采用一种高级无线电接口,是利用正交频分复用(OFDM),多输入多输出(MIMO)和链路适配(或自适应)技术。4G无线网络可以支持在低速移动中1 Gb/s速率,例如漫游/本地无线接入;在高速移动中最高100Mb/s,例如移动接入。长期演进(LTE)和它的延伸,先进的长期演进系统,作用可实现的4G系统,最近已部署或很快将在全球部署。 然而,订制移动宽带系统的用户数量每年都在以引人关注的增加。越来越多的人渴望更快的移动互联网接入服务,时尚的手机,总的来说,与他人或获取信息的即时通信。当今更强大的智能手机和便携式电脑越来越受欢迎,它追求先进的多媒体功能。这导致了无线移动设备和服务的爆发。EMO指出,从2006年以来移动宽带每年以92%的速度增长。它已被无线世界研究论坛的预测(WWRF)到2017年时有7万亿无线设备服务于7亿人口;换句话说,连接网络的无线设备将达到世界人口的1000倍。随着越来越多的设备无线上网,很多研究需要面临解决的挑战。 最关键性的挑战之一是物理上为蜂窝通信分配的射频(RF)频谱十分稀缺。蜂窝频率使用超高频段的手机,通常范围从几百MHz到几GHz。这些频谱大量被使用,使运营商获得更多的频谱很困难。另一个挑战是,先进的无线技术的部署是以高能耗为代价。在无线通信系统中的能量消耗的增加会间接的导致二氧化碳排放增加,目前被认为是对环境的一大威胁。此外,它已被报道,蜂窝运营商基站(BSS)的能耗占他们的电费账单70%。事实上,节能高效的通信不在4G无线系统的初始条件之一,但它是后一阶段的问题。其他挑战,例如,平均频谱效率,高速率和高移动性,无缝覆盖,不同的服务质量(QoS)要求,和分散的用户体验(不同的无线设备/接口和异构网络不兼容性),仅举几例。 所有上述问题给蜂窝服务供应商施加更多压力,他们正面临着不断增加更高的数据传输速率,更大的网络容量,更高的频谱效率,更高的能源效率,高流动性的新的无线应用所需

无线通信的发展历程

无线通信系统的发展历程与趋势 现代无线通信系统中最重要的两项基础是多址接入(Multiple Access)和双工(Multiplexing)。从1G到4G的无线通信系统演进史基本上就是在这两项技术上进行不断改进。 多址接入技术为不同的用户同时接入无线通信网提供了可能性。给出了三种最典型的多址接入技术:FDMA、TDMA和CDMA的比较。 双工技术为用户同时接收和发送数据提供了可能性。两种最典型的双工技术:FDD模式和TDD模式。 中国无线通信科技发展史和未来走向范文 当今,全球无线通信产业的两个突出特点体现在:一是公众移动通信保持增长态势,一些国家和地区增势强劲,但存在发展不均衡的现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。 1 无线通信技术的发展历程 随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段:第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短

波频及电子管技术,至该阶段末期才出现150MHZ VHF单工汽车公用移动电话系统MTS。 第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。 第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。 第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行。 第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。 2 第一代无线通信系统 采用频分多址(Frequency Division Multiple Access)技术组建的模拟蜂窝网也被称为第一代(First Generation,下称1G)无线通信系统。这些系统中,话务是主要的通信方式。由于采用模拟调制,这些

无线视频传输技术的发展

无线视频传输技术的发展 随着移动通信业务的增加,无线通信已获得非常广泛的应用。无线网络除了提供语音服务之外,还提供多媒体、高速数据和视频图像业务。无线通信环境(无线信道、移动终端等)以及移动多媒体应用业务的特点对视频图像的视频图像编码与传输技术已成为当今信息科学与技术的前沿课题。 1 无线视频传输技术面临的挑战 数字视频信号具有如下特点: ·数据量大 例如,移动可视电话一般采用QCIF分辨率的图像,它有176X144=25344像开绿灯。如果每个像素由24位来表示,一帧图像的数据量依达 594kbit。考虑到实时视频图像传输要求的帧频(电视信号每秒25帧),数据传输速率将达到14.5Mbps! ·实时性要求高 人眼对视频信号的基本要求是,延迟小,实时性好。而普通的数据通信对实时性的要求依比较低,因此相对普通数据通信而言,视频通信要求更好的实时性。 无线环境则具有如下特点: ·无线信道资源有限 由于无线信道环境恶劣,有效的带宽资源十分有限。实现大数据量的视频信号的传输,尤其在面向大众的无线可视应用中,无线信道的资源尤其紧张。 ·无线网络是一个时变的网络 无线信道的物理特点决定了无线网络是一个时变的网络。 ·无线视频的Qos保障 在移动通信中,用户的移动造成无线视频的Qos保障十分复杂。 由此可以看出,视频信号对传输的需要和无线环境的特点存在尖锐的矛盾,因此无线视频传输面临着巨大的挑战。一般来说,无线视频传输系统的研究设计目标如表1所示。 表1 无线视频传输系统的主要性能指标和设计目标

事实上,表1中许多性能指标是相互制约的。例如,视频图像压缩比的提高会增加编码算法的复杂度,因此会影响算法的实时实现,并且可能降低视频的恢复质量。 2 视频压缩编码技术 视频信息的数据量十分惊人,要在带宽有限的无线网络上传送,必须经过压缩编码。目前国际上存在两大标准化组织——ITU-T和MPEG——专门研究视频编码方法,负责制公平统一的标准,方便各种视频产品间的互通性。这些协议集中了学术界最优秀的成果。 除各种基于国际标准的编码技术外,还有许多新技术的发展十分引人注目。 2.1 基于协议的视频压缩编码技术 国际电信联盟(ITU-T)已经制定的视频编码标准包括H.261(1990年)、H.263(199 5年)、H.263+(1998年),2000年 11月份将通过H.263++的最终文本。H.26X系列标准是专门用于低比特率视频通信的视频编码标准,具有较高的压缩比,因此特别适合于无线视频传输的需要。它们采用的基本技术包括:DCT变换、运动补偿、量化、熵编码等。H.263+和H.263++中更增加考虑了较为恶劣的无线环境,设计了多种增强码流鲁棒性的方法,定义了分线编码的语法规则。 MPEG制定的视频编码标准有MPEG-1(1990年)、MPEG-2(1994年)、MPEG-4(完善中)。其中MPEG-1、MPEG-2基本已经定稿,使用的基本技术和H.26X相同。MPEG-1、MPEG-2的特点在于针对的应用主要是数字存储媒体,码率高,它们并不适于无线视频传输。人们熟知的VCD、DVD是MPEG-1、MPEG-2的典型应用。随后,MPEG组织注意到了低比特率应用潜在的巨大市场,开始和ITU-T进行竞争。在 MPEG-4的制定中,不仅考虑了高比特率应用,还特别包含了适于无线传输的低比特率应用。MPEG-4标准的最大特点是基于视频对象的编码方法。 无线通信终端是多种多样的,其所处的网络结构、规模也是互异的。视频码流的精细可分级性(Fine Granularity Scalability)适应了传输环境的多样性。 编码协议并不提供完全齐备的解决方案。一般来说,协议内容主要包括码流的语法结构、技术路线、解码方法等,而并未严格规定其中一些关键算法,如运动估计算法、码率控制算法等。运动估计算法在第3部分有较为详细的介绍。码率控制方案在第4部分有较为详细的介绍。 2.2 其他视频压缩编码技术

无线通信技术及5G关键技术介绍

姓名:张健康学号:02121222 姓名:王晨阳学号:02121202 姓名:王李宁学号:02121209

[摘要] (2) 1.引言 (3) 2.无线通信技术概念 (3) 2.1 3G即将成为过去 (3) 2.2 4G 是现在 (4) 2.3 5G是未来 (5) 2.4各国研究进展 (6) 3.5G性能指标 (7) 4.5G关键技术 (8) 4.1 新型多天线技术 (8) 4.2 高频段的使用 (9) 4.3 同时同频全双工 (9) 4.4终端直通技术(D2D) (9) 4.5 密集网络 (9) 4.6新型网络架构 (10) 5.结束语 (10) 中国--机遇与竞争并存 (11) 参考文献: (11) [摘要] 第五代通信系统是面向2020年以后人类信息社会需求的无线移动通信系

统,它是一个多业务技术融合的网络,通过技术的演进和创新,满足未来广泛的数据、连接的各种业务不断发展的需要,提升用户体验。本文首先介绍5G的概念,然后阐述了5G的性能指标,重点对5G的关键技术进行论述,这些关键技术包括新型多天线技术、微波段的使用、同时同频全双工、设备间直接通信技术、自组织网络。 [关键词] 5G;无线通信;关键技术;移动通信技术 1.引言 4G网络部署正在如火如荼地进行时,关于5G的研究也拉开了序幕。2012年,由欧盟出资2700亿欧元支持的5G研究项目METIS(Mobile and Wireless Communications Enablers for the2020Information Society)[1]正式启动,项目分为八个组分别对场景需求、空口技术、多天线技术、网络架构、频谱分析、仿真及测试平台等方面进行深入研究;英国政府联合多家企业,创立5G创新中心,致力于未来用户需求、5G网络关键性能指标、核心技术的研究与评估验证;韩国由韩国科技部、ICT和未来计划部共同推动成立了韩国“5G Forum”,专门推动其国内5G进展;中国,工业和信息化部、发改委和科技部共同成立IMT-2020推进组,作为5G工作的平台,旨在推动国内自主研发的5G技术成为国际标准。可见,对于5G的研究,许多国家或组织都在积极地进行中,未来5G技术将使人们的通信生活发展到一个全新的阶段。 2.无线通信技术概念 GSM是第一代的无线通信技术 为模拟技术,采用的是频分多址方 式,频谱的利用效率非常低下。GSM 诞生之初的目的为使用数字技术取 代模拟技术,提高语音通话的质量, 提高频谱利用效率,降低组网成本。 GSM可以说是迄今为止最为成功的 无线通信技术,可以实现全球漫游。 GSM主要解决的是语音通话问题,而 随着对移动数据的要求提高,提出了 第三代移动通信技术(3G)。 2.1 3G即将成为过去

2.4G无线视频传输方案

2.4G无线视频传输方案 一、方案概述 低分辨率视频传输应用,针对QVGA(320*240)分辨率以下的低速率无线视频传输。主要应用在可视门铃,婴儿室内监视以及小尺寸显示屏短距离无线视频传输。特点是射频部分开发简单,软件实现很快,而设计者可将精力放在上层应用的开发。 二、方案原理 1. 方案由视频采集发送端和视频接收端组成。 2. 视频发送端采用ARM7控制器,获取摄像头(320*240,QVGA)采集到的视频数据,进行视频压缩,然后控制UM2455收发芯片将数据发送出去。 3. 视频接收端采用ARM7控制器,将UM2455接收到的数据解压缩,视频解码,送到LCD 屏上。 4. 目前成功案例:可视门铃,婴儿室内监控。 三、方案图示 [attachment=321] 四,方案特点 1. 解决家庭烦恼,预防紧急事情,并对身体无辐射危害。 2. 性能:功耗小,最高速率达625Kbps,传输距离200-300米,2-3秒传送一幅图片。 3. 带天线射频模块,开发简单,体积小,产品外观可小巧精致,易受客户青睐 4. 接收端可做成USB端口连接电脑。方便携带,电池供电,无需数据线。 5. 可开发一对多产品,价格便宜,可双向通讯,方便增加产品附加功能,以及防丢器附加产品 五,方案设计 2.4G RF芯片UM2455 是UBEC推出的ZigBee芯片Cost down版本,UM2455采用直接序列展频技术(DSSS)来避免2.4GHz ISM频带上日益严重的电波与噪声干扰,更具有 CSMA/CA防碰撞机制进一步提高通讯稳定性。UM2455具有AES128加密功能。为客户提供一个稳定、高性能、简易设计、低价的RF解决方案。为避免客户RF开发能力不足的担忧,UBEC 推出UM2455相关RF模块,客户可专心处理协议,大量缩短开发时间。可提供UM2455相关产品如下: 1,UM2455 QFN封装芯片 2,100米距离QFN UM2455射频模块 3,100米距离COB UM2455射频模块 4,500米距离QFN UM2455射频模块 2.4G无线视频传输方案 2.4G无线视频传输方案 一、方案概述 低分辨率视频传输应用,针对QVGA(320*240)分辨率以下的低速率无线视频传输。主要应用在可视门铃,婴儿室内监视以及小尺寸显示屏短距离无线视频传输。特点是射频部分开发简单,软件实现很快,而设计者可将精力放在上层应用的开发。 二、方案原理 1. 方案由视频采集发送端和视频接收端组成。

最新 5G无线通信网络物理层关键技术要点-精品

5G无线通信网络物理层关键技术要点 摘要:21世纪已经是一个信息社会,各个行业对信息的需求量已经越来越大。国与国之间也不断展开信息之间的较量,而信息的传播速度以及质量离不开无线通信技术的发展。第五代无线通信技术对各国的实质性发展都起到一定的作用。本文将会对5G无线通信网络物理层关键技术,即毫米波通信技术以及大规模MIMO技术进行一定的研究。关键词:5G无线通信;物理层技术;毫米波通信技术;大规模MIMO技术中图分类号:TN929.5 文献标识码:A 文章编号:1007-9416(2017)05-0030-01 无线通信技术的发展一直影响着人们的生活,从最初的模拟调制通信技术到数字调制通信技术,再到2G、3G 移动通信时代,直到今天的4G移动通信,无线通信技术一直不断发生着重大的变革。 1 毫米波通信技术通信技术的发展离不开对频谱资源的利用,目前对频谱资源的利用主要集中在300MHz到3GHz的?l段,对毫米波的利用非常有限,毫米波中包含大量的频谱资源。对毫米波中的频段资源进行利用也是5G无线通信技术的重要内容。其中,对毫米波的研究内容主要包括:路径损耗、建筑物穿透损耗以及雨衰等。 1.1 路径损耗发射功率的敷设扩散以及信道对传输的影响作用是导致路径损耗的主要原因。这也是无线通信技术中不可避免的问题,遇到干扰、噪声以及其他信号的影响都会造成一定程度的损耗情况,除此之外,信号的自身情况也会造成一定的损耗。研究表明,频率越高,损耗越严重,这就意味着相对于其他波段,毫米波的损耗情况更严重,这也是毫米波研究过程中的一个困难。在实际中,在高频段通过使用大规模的接受发射天线,可以对能量进行一定的聚集,获得较好的增益情况,进而改善毫米波损耗过大的情况。 1.2 建筑物穿透损耗在对通信技术进行研究时,发现当信号通过建筑物时,会发生一定的损耗,并且这种损耗跟频率有关,通常低频段的信号可以在穿透建筑物时,保留较好的信号强度。毫米波在这方面的损耗要更大些。这就意味着使用毫米波进行信号传输时,很可能由于信号损耗过大导致失真,不过目前随着无线网络的不断普及,可以在室内的有效范围之内使用WIFI增加信号强度,保证信号质量。 1.3 雨衰 对传播特性的研究也是毫米波研究的重要内容,其中雨衰作为一个重要因素不得不提。雨衰能够对无线系统的传播路径长度进行影响,进而使信号的可靠性下降,这样就会对高频段的微波链路造成一定的限制。随着雨量的增大,对毫米波系统的干扰效果会越来越明显。其中雨滴的作用还会使信号发生散射,使信号的质量严重下降。 2 大规模MIMO技术作为5G无线通信网络物理层的另外一个关键技术,大规模MIMO技术对于无线通信技术的发展具有重要的作用。对该技术的研究主要会通过对大规模MIMO技术的简单介绍,该技术的信道状态信息的获取方式以及大规模MIMO在高频段的应用进行。 2.1 大规模MIMO简介不同于传统的MIMO技术,大规模的MIMO技术可以降低硬件的复杂程度、提高信息处理效率以及降低能量损耗,同时还可以降低租赁成本。随着互联网技术以及云计算大数据技术的不断发展,传统的MIMO技术已经面临淘汰的边缘。当前对信息的需求量以及信息的处理效率都有了明显的提升。基于大规模MIMO的几大优势如:提高系统容量、降低成本以及增强抗干扰能力,对该项技术的研究已经成为5G无线通信技术的重要工作。 2.2 信道状态信息的获取大规模MIMO技术尽管具备一定的优势,但在研究过程

最新无线通信技术基础知识(1)

无线通信技术 1.传输介质 传输介质是连接通信设备,为通信设备之间提供信息传输的物理通道;是信息传输的实际载体。有线通信与无线通信中的信号传输,都是电磁波在不同介质中的传播过程,在这一过程中对电磁波频谱的使用从根本上决定了通信过程的信息传输能力。 传输介质可以分为三大类:①有线通信,②无线通信,③光纤通信。 对于不同的传输介质,适宜使用不同的频率。具体情况可见下表。 不同传输媒介可提供不同的通信的带宽。带宽即是可供使用的频谱宽度,高带宽传输介质可以承载较高的比特率。 2无线信道简介 信道又指“通路”,两点之间用于收发的单向或双向通路。可分为有线、无线两大类。

无线信道相对于有线信道通信质量差很多。有限信道典型的信噪比约为46dB,(信号电平比噪声电平高4万倍)。无限信道信噪比波动通常不超过2dB,同时有多重因素会导致信号衰落(骤然降低)。引起衰落的因素有环境有关。 2.1无线信道的传播机制 无线信道基本传播机制如下: ①直射:即无线信号在自由空间中的传播; ②反射:当电磁波遇到比波长大得多的物体时,发生反射,反射一般在地球表面,建筑物、墙壁表面发生; ③绕射:当接收机和发射机之间的无线路径被尖锐的物体边缘阻挡时发生绕射; ④散射:当无线路径中存在小于波长的物体并且单位体积内这种障碍物体的数量较多的时候发生散射。散射发生在粗糙表面、小物体或其它不规则物体上,一般树叶、灯柱等会引起散射。 2.2无线信道的指标 (1)传播损耗:包括以下三类。 ①路径损耗:电波弥散特性造成,反映在公里量级空间距离内,接收信号电平的衰减(也称为大尺度衰落); ②阴影衰落:即慢衰落,是接收信号的场强在长时间内的缓慢变化,一般由于电波在传播路径上遇到由于障碍物的电磁场阴影区所引起的; ③多径衰落:即快衰落,是接收信号场强在整个波长内迅速的随机变化,一般主要由于多径效应引起的。 (2)传播时延:包括传播时延的平均值、传播时延的最大值和传播时延的统计特性等; (3)时延扩展:信号通过不同的路径沿不同的方向到达接收端会引起时延扩展,时延扩展是对信道色散效应的描述; (4)多普勒扩展:是一种由于多普勒频移现象引起的衰落过程的频率扩散,又称时间选择性衰落,是对信道时变效应的描述; (5)干扰:包括干扰的性质以及干扰的强度。 2.3无线信道模型 无线信道模型一般可分为室内传播模型和室外传播模型,后者又可以分为宏蜂窝模型和微蜂窝模型。 (1)室内传播模型:室内传播模型的主要特点是覆盖范围小、环境变动较大、不受气候影响,但受建筑材料影响大。典型模型包括:对数距离路径损耗模型、Ericsson多重断点模型等; (2)室外宏蜂窝模型:当基站天线架设较高、覆盖范围较大时所使用的一类模型。实际使用中一般是几种宏蜂窝模型结合使用来完成网络规划; (3)室外微蜂窝模型:当基站天线的架设高度在3~6m时,多使用室外微蜂窝模型;其描述的损耗可分为视距损耗与非视距损耗。

相关主题
文本预览
相关文档 最新文档