当前位置:文档之家› 热力学论文

热力学论文

热力学论文
热力学论文

尾气控制与净化

姓名:努尔孜娅古丽·赛迪尔丁

班级:11082601

学号:1108260111

(2012年12月)

﹡引言

21世纪的今天,汽车是人类不可缺少的交通工具,随着我国交通运输业的快速发展和消费水平的不断提高,机动车的数量每年以2%的速度迅猛增长,但使,汽车尾气却是大气的主要污染源。本文的目的在于帮助大家认清汽车尾气污染的危害性,增强人们的环保意识,唤起人们加快治理汽车尾气污染的步伐。机动车所排放的3种主要污染物分别为一氧化碳、碳氢化合物、氮级化物,其大气污染分担率分别达到71.5%,72.9%,3.8%,已上升为空气中污染物的主要来源;机动车尾气排放的颗粒物贡献率接近总10%。城市的大气污染已由原来的单纯煤烟型污染迅渐向煤烟和汽车尾气复合型污染转化,因而对人类、家畜、农业生态及自然生态有严重的潜在影响和危害。汽车排放的废气是一种流动分散污染源,它常常聚积在繁华地带和居民集居的地方。现代化城市高层建筑物鳞次栉比,使汽车排放的污染物不易稀释扩散,造成局部地区汽车排放物浓度过高。由于汽车排放物的排放高度在地面附近,处于人们呼吸区域,因此严重污染人类生活空间及呼吸层的同时,还容易形成臭氧层。例如一辆老式柴油车,一年就可以排放将近8t的空气污染物,在污染大气的同时还影响了人们的身体健康,已引起了各个国家的重视。

汽车尾气对环境及人体的危害

汽车尾气的主要污染物是:一氧化碳(CO)、氮氧化物(NOx)、碳氢化合物(HC)、铅(Pb)、苯并芘(BaP)等。它们对环境的污染主要表现为产生温室效应,破坏臭氧层,产生酸雨、黑雨等现象。对人体的危害主要表现为造成各种疾病,严重损害呼吸系统,并且具有很强的致癌性。

据有关专家研究的资料表明,汽车尾气成分非常复杂,有一百种以上,其主要污染物包括:一氧化碳(CO)、氮氧化物(NOx)、碳氢化合物(HC)、铅(Pb)、苯并芘(BaP)等,这些污染物不仅污染环境,对人体也有巨大危害。因为汽车中的CO与血液中的血红蛋白结合的速度比氧气快250倍,所以当人体吸入含有CO的气体时人体血液中的血红蛋白(Hb)便立即同CO结合,生成碳合血红蛋白(COHb),使这部分Hb不能与O2结合生成氧合血红蛋白(O2Hb),而失去输送O2的功能,就会导致人体的各部分组织缺氧,特别是人脑组织和心脏缺氧,所以,即使有微量的一氧化碳吸入,也可能给人造成可怕的缺氧性伤害。由于汽车尾气多排放在1.5米以下,因此儿童吸入的汽车尾气为成人的两倍!氮氧化物(NOx)的破坏力也很强。汽车排放的主要是NO,但NO在空气中很快被氧化成NO2。NO2是一种毒性很强的腐蚀剂,当空气中的NO2被吸入肺内,就会在肺泡内形成亚硝酸和硝酸,由于这两种酸具有较强的刺激作用,就会增加肺毛细血管的通透性,导致胸闷、咳嗽、气喘甚至肺气肿等症状的疾病。而碳氢化合物(HC),尽管目前人类还不清楚它对人体健康的直接危害,但HC和NOx在大气环境中受强烈太阳光紫外线照射后,会产生一种复杂的光化学反应,生成一种新的污染物——光化学烟雾。

汽车用的汽油中,通常加有四乙(基)铅或四甲(基)铅作抗爆剂,这些铅的70%随尾气排入大气。铅在废气中呈微粒状态,随风扩散。农村居民,一般从空气中吸入体内的铅量每天约为一微克;城市居民,尤其是街道两旁的居民会大大超过农村居民。铅进入人体后,主要分布于肝、肾、脾、胆、脑中,以肝、肾中的浓度最高。几周后,铅由以上组织转移到骨骼,以不溶性磷酸铅形式沉积下来。人体内约90%~95%的铅积存于骨骼中,只有少量铅存在于肝、脾等脏器中。骨中的铅一般较稳定,当食物中缺钙或有感染、外伤、饮酒、服用酸碱类药物而

破坏了酸碱平衡时,铅便由骨中转移到血液,引起铅中毒的症状。铅中毒的症状表现很广泛,如头晕、头痛、失眠、多梦、记忆力减退、乏力、食欲不振、上腹胀满、恶心、腹泻、便秘、贫血、周围神经炎等;重症中毒者有明显的肝脏损害,会出现黄疸、肝脏肿大、肝功能异常等症状。此外,长期慢性铅中毒者,心脏和肺将受到不同程度的损害,严重者智力下降,注意力不集中、甚至成为呆傻。据我们了解,若儿童铅中毒,不仅智商将降低,还会出现捣乱和过失行为。铅还具有高度的潜在制癌性,其潜伏期长达20-30年。而对于柴油机排出废气中所含的苯并芘等成分来说,它不但可破坏实验动物的肺组织、引起哮喘等危害,同时也具有致癌性。

不同浓度一氧化碳对人体的危害

2NO 浓度(1/10000) 人和生物的影响

0.5 3~12月, 患支气管炎部位有肺气肿出现

1.0 闻到臭味

2.5 连续7h 以上, 豆角、西红柿等植物叶子变白

5.0 刺激性臭味

10~15 眼、鼻、呼吸道受到刺激

50 引起咳嗽

80 3~5分钟 感到胸痛

100~150

0.5~1min 发生肺气肿超过造成死亡

不同浓度的二氧化碳的危害

﹡防治城市汽车尾气污染的对策

汽车尾气治理政府管制的对策:

我国在对汽车尾气污染进行管制时应该借鉴国外经验,尽快建立起以税收管制手段为主、其他市场激励型管制手段为辅,并以不断完善的命令控制型管制体CO 浓度(1/10000)

对人体的危害 10

慢性中毒但对健康者间题不大 30

4-6h 内中毒, 引起麻木或植物神经麻痹 100

头疼、恶心、强活动时呼吸困难 120

全身无力、梢神不振动、瘫痪、痉挛 200

数小时后神经机能低下 400

4h 后头痛晕眩,呼吸困难 1500 1h 后死亡

制作为保障的环境管制新模式,引导汽车消费者和制造商对政府管制做出积极反应,进而自发采取有利于保护大气环境的消费和生产行为。

充分发挥市场激励管制的灵活调节作用

完善国内税收管制体制,开征汽车尾气的矫正税。矫正性税收可通过将私人边际成本提高到与社会边际成本相一致的水平,迫使厂商提高产品的价格,进而缩减供给量,减少污染,以降低汽车尾气造成的负外部性。开征汽车尾气的矫正税还可以补偿受害者,因此应该以税收这一市场激励型管制手段为主。

调整我国税制结构,使税收种类向消费型转变。我国应借鉴欧洲国家的做法,以“鼓励消费,限制使用”为政策目标,适当调整汽车税费结构,降低生产阶段的税费比重,将购置税与消费税合并为消费税,并采用分级税率,以提高保有阶段的税费比重。完善税种,在汽车使用阶段实施燃油税。燃油税是国外在汽车保有及使用阶段的主要税种,目前美国的税率是50%,日本是20%,德国是28%,法国则是30%。各国政府征收燃油税最初目的是筹集修路资金和公平赋税,但在今天看来,燃油税为环保和解决汽车尾气污染的负外部性发挥着重要作用,现阶段在我国推行燃油税有很大意义。燃油税可以让少用油者少付税、多用者多收税,实现公平;借助车主省钱的主观动机使得污染排放量减少;使资源价格能够反映资源破坏和环境治理成本,实现可持续发展;由税务部门统一收取,并在中央和地方间得到合理分配,有利于开展环保工作。因此,应该尽快推出燃油税,并推广至社会全部汽车的消费者,将现有的费改为税,让税和燃油的使用直接挂钩。在具体操作上,不仅要随着不同时期防治污染技术与方法的不断更新提高,进而造成环境治理的边际成本的变化,随时调整税率,还应该随着地区环境条件、经济发展水平、人口密度状况等因素的差异作出调整,设计出差别税率。在燃油税基础上,为了突出保护大气环境,解决汽车消费的负外部性,在燃油税设计中进一步考虑征收控制机动车尾气污染的环境税,这也与目前西方发达国家征收燃油税的政策目标侧重于环境保护的趋势相一致。具体操作时,把大气环境污染税加人其中占燃油税的一定比例即可。在利用燃油税进行管制时,要注意各部门和各地区的合作管制。各地制定差别税这不仅指税务部门和环保部门要通力合作。而且要加强地方政府间的合作管制,因为汽车尾气造成的空气污染是无边界的。

弥补管制空缺,对汽车在报废和淘汰环节上进行管制。对于已报废的汽车,政府应该强行管制,规定不得再使用。对于当地淘汰而被转入异地使用的旧车要在排污标准的审查上严格把关,提高再次使用的税率,并且对再次使用要另外征税。

借鉴国外经验,适当引人其他的市场激励型管制措施。实施政府补贴。政府对能降低污染程度,使用环保型汽车的汽车使用者给予相应补贴;对能开发研制节能、环保型汽车的厂商给予补贴。引人排污权交易制度。任何厂商只要使其汽车尾气排放量低于标准均可向环保局申请获取排放削减信用。排放削减信用既可用于厂商之间的交易,也可以自身存储以备将来之用。推行上牌额定制。在特定地区或者特定时间内,限制汽车牌照的供给量,控制当地汽车使用量。

完善传统的命令—控制型管制

①完善国内的法律法规体系。完善汽车尾气排放的相关法律和法规,为汽车尾气的治理提供法律保障。同时要完善税收环境体系,用法律和法规来监督和约束有关部门的腐败和行政效率低下的问题。

②提高汽车尾气排放和检测标准,采用发达国家和地区的控制标准和技术。另一方面,要提高我国燃油的质量,使之符合尾气排放新法规的要求。

③强化政府对汽车尾气污染管制的观念,建立专门的管制机构进行专项管制。﹡汽车尾气的净化处理技术

由于汽车运行严重的分散性和流动性,因而也给净化处理技术带来一定的限制。除了开发在机内净化技术外,还要大力开发机外净化处理技术。这应从两个方面入手:一是控制技术,主要是提高燃油的燃烧率,安装防污染处理设备和采取开发新型发动机。在提高车用燃油质量,适时推进环保型机动车方面,根据目前一些研究机构的研究成果一致认为:机动车燃油的化学组分直接影响到机动车发动机的性能和机动车污染物排放。

二是行政管理手段,采取报废更新,淘汰旧车,开发新型的汽车(即无污染物排放的机动车),从控制燃料使用标准入手。

汽车燃油的改用

①采用无铅汽油,以代替有铅汽油,可减少汽油尾气毒性物质的排放量。

首先应抓汽车油的改用。以无铅汽油代替四乙基铅汽油。这种汽油是用甲荃树丁醚作渗合剂,它不仅不铅,而且汽车尾气排出的一氧化碳、氮氧化合物、碳氢化合物均会减少。

汽车发动机内部的调试,可减少尾气污染物的排放量。

①减少喷油提前角。减少喷油提前角,可降低发动机工作的最高温度(1500摄氏度),使NOx的生成量减少。

②改善喷油器的质量,控制燃烧条件(燃比、燃烧温度、燃烧时间),可使燃料燃烧完全,从而可减少CO、HC和煤烟。

③调整喷油泵的供油量,可降低发动机的功率,使雾化的燃料有足够的氧气进行完全燃烧,从而也可以减少CO、CH和煤烟的生成。

发动机外部尾气净化措施

即汽车尾气由原有毒气体,变成为无毒气体,再排放到大气中。从而可减少对大气环境的污染。

①采用催化剂:将CO氧化成CO2,HC氧化成CO2和H2O,NOx被还原成为N2等。采用的催化剂有氧化锰-氧化铜;氧化铬-氧化镍-氧化铜等金属氧化物和白金属(铂)等贵金属。它们都可以净化CO、HC。催化反应器设置在排气系统中排气歧管与消音器之间。

②水洗:通过水箱,使汽车尾气中的碳烟粒子经过水洗和过滤及蒸气的淋浴,可支队粘在碳粒上的有毒物质,使碳粒子胀大而给予去除。

发动机内部净化处理措施

①正曲轴箱通气系统的设计:把从汽缸窜入曲轴箱的气体(主要是未燃气体)再循环进入进气歧管,使其再次燃烧,改变了过去将其直接排入大气所造成的污染。

②排气再循环设计:发动机排气口用控制阀与进气歧管相连接,使排出的气体经过再次循环,以降低氮氧化物的排放量。

③蒸发排放控制系统的设计:将化油器浮子室中的汽油蒸发汽引入进气系统,而将油箱中的蒸发汽引入储存系统,可大大减少污染物的排放。

加强行政管理,减少和消除汽车尾气对大气环境的污染

①淘汰旧车,采取报废迎新。开发并采用多种燃料的新型汽车,这是今后汽车的发展方向。以氢为燃料的电池电动车、太阳能汽车、电动汽车、复式汽车、液化气汽车、甲醇汽车等。它们是低公害、前途最佳的新型汽车。同时,目前也

还可改装汽车发动机的汽车为柴油发动机汽车。虽然柴油发动机燃料费用高,但CO生成量少。如果对NOx、粉尘排放量作相对的限制的话,那么柴油发动机汽车也是未来最佳汽车。

②严格执行国家质量技术标准,控制燃油标准。

按国家规定,不合质量的燃油不能使用,市场上不准出售低劣的燃油。然而汽车不准作用含铅汽油这一禁令已下,但难以奏效。其主要原因是广大市民对这一政策了解不足,含铅的70号和不含铅的90号及90号以上汽油,每吨差价比较大,加之无有效措施和得力宣传。另外,个别城市周边的地区又没有实行含铅汽油的禁令。市场调查结果显示含铅汽油库存数量还比较大,加之,车辆运输的流动性,故使得禁令难以实施。因此,对“禁令‘的宣传力度和推行力度应大大加强,才能保证大气环境的洁净。

近几年来我国又陆续推出各种类型的尾气净化器,如ZDJDF系列的油烟净化器、汽车尾气排放净化器等。ZD-JDF系列油烟净化器的工作原理是经吸附、消散、碳化、解吸的废油经电极板下流至导油板自行排出,处理后的尾气输至油烟净化器出口管道上时,与高压静电场产生的臭氧03充分混合,在强氧化剂的作用下消除尾气中的异味,这到油烟净化除味的目的。汽车尾气排放净化器的工作原理是用催化剂来催分解污染物,通过催化剂的催化作用,汽车尾气中的碳氢和碳氧化合物等有毒有害气体和化合物被快速有效地分解成二氧化碳、氧气和水等无害物质。

现在我国机动车污染控制技术采取以下路线:先机内净化,后机外净化;先控制污染浓度,后控制污染总量;先控制CO,HC和碳烟,后控制NOX和颗粒物排放;

节油与减污相结合;控制油品质量。

﹡结语

机动车尾气的排放给城市环境带来严重污染,威胁人们的身体健康,控制机动车尾气污染对保护我们的生活环境、创造良好的生存空间,提高城市环境质量具有深远的现实意义。通过政府管制和尾气排放技术的革新来积极的控制尾气污染,可以产生良好效果。

为了保护自然环境和国家资源,防止汽车尾气对大气环境的污染而引起公害,保障人民生命安全与健康。国家特制定了环境质量标准,污染物排放标准、污染物控制标准等等。笔者认为:为了保证上述法规的实施,还可以从下面几个方面入手。

①实行车辆分流行驶:城市人口稠密区域,交通密度高,汽车尾气的排放在某一时间又比较集中,故会引起该地区域在某一时间内,大气污染的程度会急剧增加,造成危害人类的健康。这时可采取汽车分流行驶。一方面可解决交通堵塞、乘车难;另外还可使该局部区域大气环境污染程度有所减少,更好地贯彻大气环境质量标准的执行。

②开辟地铁,施行电力牵引行驶。尤其在大城市人口稠密的地区,开辟地下通道,同时可解决乘车难问题以及减少大气环境污染。

③今后现代化的城镇建设,还应考虑自身的循环、多功能的结构形式。合理设计城市居民的日常生活完全以步代车,汽车只用在城外,城内的风能、太阳能、循环水等的高效利用也能使人们在很大程度上摆脱污染和不可再生资源的浪

费。

④加强和提高人们对保护环境的意识-从自已做起,从家庭做起。

上述汽车尾气的排放是大气环境污染的一个重要组成部分。但是,个人与家庭的污染占大气环境污染源一定的比例。人们生活中制造的垃圾、废气、废水在人们享受便利的同时也使大气环境污染日益加剧,这是我们不可忽视的一部分。

最后,世界各大汽车公司和科研机构已投入大量的经费研究汽车排放控制技术,提出了许多新的思路与方法,如EGR、催化技术、清洁燃料和混合动力等,从不同角度来解决汽车的动力性、经济性和有害气体的排放问题,并取得了一定的成果,但还存在着许多问题。研究并掌握汽车排放控制的最新技术并加以应用,力求把有害气体排放降到较低的程度,并使燃料经济性适当提高,具有良好的发展前景。另外,也呼吁人们,保护环境要从自我做起,出行尽量旋转比较低碳的方式。

参考文献:

①蔡凤田、谢素华、王建昕,汽车排放污染物控制实用技术,人民交通出版社,1999年11月。

② J.H. 塞恩菲尔德著. 北京大学地球物理系、技术物理系译.空气污染—物理化学基础[M].北京: 科学出版社,1986:223-225。

③李兴虎,汽车排气污染与控制,机械工业出版社,1999年5月。

④蒋维相,空气污染气象学,南京大学出版社,2003年9月。

⑤惠营,马瑙。城市道路中机动车尾气排放分析。山东内燃机,2001,4:20-23。

⑥韩玉敏. 汽车排放控制系统[M].北京:化学工业出版社,2005。

⑦李彩凤.汽车排放及治理技术[J].科技情报开发与经济,2005(1):2872289.

工程热力学小论文

蒸汽压缩式制冷机 湖南城市学院1002302-10曹登祥 关键词:蒸汽压缩式制冷循环 摘要:蒸汽压缩式制冷系统由压缩机、冷凝器、膨胀阀、蒸发器组成,用管道将它们连接成一个密封系统。制冷剂液体在蒸发器内以低温与被冷却对象发生热交换,吸收被冷却对象的热量并气化,产生的低压蒸汽被压缩机吸入,经压缩后以高压排出。压缩机排出的高压气态制冷剂进冷凝器,被常温的冷却水或空气冷却,凝结成高压液体。高压液体流经膨胀阀时节流,变成低压低温的气液两相混合物,进入蒸发器,其中的液态制冷剂在蒸发器中蒸发制冷,产生的低压蒸汽再次被压缩机吸入。如此周而复始,不断循环。摘自百度文库 1.蒸汽压缩式制冷原理 单级蒸气压缩式制冷系统如下图所示。

它由压缩机、冷凝器、膨胀阀和蒸发器组成。其工作过程如下:制冷剂在蒸发压力下沸腾,蒸发温度低于被冷却物体或流体的温度。压缩机不断地抽吸蒸发器中产生的蒸气,并将它压缩到冷凝压力,然后送往冷凝器,在冷凝压力下等压冷却和冷凝成液体。制冷剂冷却和冷凝时放出的热量传给冷却介质(通常是水或空气)与冷凝压力相对应的冷凝温度一定要高于冷却介质的温度,冷凝后的液体通过膨胀阀或其它节流元件进入蒸发器。 当制冷剂通过膨胀阀时,压力从冷凝压力降到蒸发压力,部分液体气化,剩余液体的温度降至蒸发温度,于是离开膨胀阀的制冷剂变成温度为蒸发温度的两相混合物。混合物中的液体在蒸发器中蒸发,从被冷却物体中吸取它所需要的气化潜热。混合物中的蒸气通常称为闪发蒸气,在它被压缩机重新吸入之前几乎不再起吸热作用。

在整个循环过程中,压缩机起着压缩和输送制冷剂蒸气并造成蒸发器中低压力、冷凝器中高压力的作用,是整个系统的心脏;节流阀对制冷剂起节流降压作用并调节进入蒸发器的制冷剂流量;蒸发器是输出冷量的设备,制冷剂在蒸发器中吸收被冷却物体的热量,从而达到制取冷量的目的;冷凝器是输出热量的设备,从蒸发器中吸取的热量连同压缩机消耗的功所转化的热量的冷凝器中被冷却介质带走。根据热力学第二定律,压缩机所消耗的功(电能)起了补偿作用,使制冷剂不断从低温物体中吸热,并向高温物体放热,从而完整个制冷循环。 2.蒸汽压缩式制冷理论循环的热力计算 在进行制冷循环的热力计算之前,首先需要了解系统中各设备内功和热量的变化情况,然后再对循环的性能指标进行分析和计算。 根据热力学第一定律,如果忽略位能和动能的变化,稳定流动的能量方程可表示为 Q+P=qm(h2-h1)(1)

工程热力学小论文

麦克斯韦妖与信息熵 一、麦克斯韦妖的提出 1867年,麦克斯韦在致友人泰特的信中第一次提出了麦克斯韦妖的设想,1871年,麦克斯韦在《热二律局限性》一书中明确提到了麦克斯韦妖。这一个具有神话色彩的思想实验影响了物理学界一百多年,同时也推动了一些新理论的发展。 麦克斯韦的这一个理想实验可以用下面的一个物理模型来解释。一个绝热容器被一块绝热的隔板分割开来,左边的温度为T1,右边的温度为T2,并且假设T1>T2。在这一块绝热隔板上开一个小门,并由一个麦克斯韦妖把守,当他发现右边的容器中有一个速度较快(相对于左边容器平均速度而言)的气体分子接近门时,麦克斯韦妖便会把门打开,让这个气体分子进入左边的容器中去,紧接着便关上这扇门隔绝两边的分子交换,并且这样的工作无需对气体做功。同样的,如果发现左边的容器中由一个速度较慢的气体分子接近门时,麦克斯韦妖便会把门打开,让这个气体分子进入右边的容器中去。经过这样的操作之后,左边的气体分子平均速度会不断增加,而右边气体分子平均速度会不断减小,从宏观上来说,左边容器气体的温度会上升,而右边气体的温度会不断下降。而根据热力学第二定律的原理,热量不可能自发的从低温物体传递到高温物体,而对于麦克斯韦妖的假设,在没有任何外力功的情况下,热量便源源不断的有低温物体转移到了高温物体。从热力学第二定律的另一个角度来说,孤立系统的熵只能增大或不变而不能减小,对于麦克斯韦妖的假设来说,由容器和麦克斯韦妖组成的这样一个孤立系统的熵却是减小的。麦克斯韦妖的出现对热力学第二定律提出了极大的挑战,而后人们也不断的尝试去解决这一问题。 二、西拉德的解释 1922年,西拉德撰写了一篇名为《精灵的干预使热力学系统的熵减少》的论文,论文中分析了麦克斯韦妖对热力学系统干预的本质。在文章中西拉德指出,在对系统进行测量的时候,系统显示了一种记忆能力,如果测量过程本身没有熵的产生,那么这种测量一定会使系统发生熵减,这种由测量引起的熵减少由系统中的信息的增加所补偿。香农在1948年提出的信息论中给出了信息和熵之间的关系: 1ln n i i i I k p p ==?∑;其中k 是玻尔兹曼常量,p i 是几率,I 是信息熵。 公式将信息熵之间做了联系,在一个孤立系统当中,信息的增加就意味着上的减少,系统有序度增加,香农将其总结为信息是用来减少不确定的东西。 将思路回到之前所提到的思想实验当中,麦克斯韦妖在判断他是否应该开启隔板上的门时首先要做的就是观测靠近门的那一个分子的速度,例如麦克斯韦妖发现右边容器中有一个

热力学定律应用论文作业

热力学定律的应用 【摘要】本文主要是从热力学定律的本质为出发点,而后分别简要的介绍了三大热力学定律在各个学科领域内得到的广泛地应用。 【关键词】热力学定律、本质、应用 【Abstract】This article mainly from the nature of the second law of thermodynamics as a starting point, and then briefly introduces respectively the three laws of thermodynamics in various disciplines should be extensively 【Key words】second law of thermodynamics, nature ,application 【引言】 热力学定律是人们在生活实践,生产实践和科学实验的经验总结,它们既不涉及物质的微观结构,也不能用数学加以推导和证明。但它的正确性已被无数次的实验结果所证实。而且从热力学严格地导出的结论都是非常精确和可靠的。有关该定律的实质和应用是本文讨论的重点。热力学第一定律即能量守恒定律,利用它可解决各种变化过程中的能量守恒问题;热力学第二定律是有关热和功等能量形式相互转化的方向与限度的规律,进而推广到有关物质变化过程的方向与限度的普遍规律;而热力学第三定律的确立,可以由热性质计算物质在一定状态下的规定熵,实现了完全由热性质判断化学变化的方向。由于在生活实践中,自发过程的种类极多,热力学定律的应用非常广泛,诸如热能与机械能的传递和转换、流体扩散与混合、化学反应、燃烧、辐射、溶解、分离、生态等问题,本文将做相关介绍。 1. 热力学定律的实质 1.1、热力学第一定律的实质

工程热力学论文2

工 程 热 力 学 论 文 姓名: 学号:1011011014 序号:05

太阳能热发电热力分析 摘要:从热力学角度出发,研究了太阳能热气流在集热棚、烟囱及风力透平机组内的能 量转换过程,建立了无能量损失的理想热力过程,以及包含各种能量损失的实际热力过程模型.鉴于太阳能热气流发电站的大尺寸特征,采用了一维假设建立了集热棚内热气流的传热模型,采用龙格一库塔方法对温度方程进行数值求解.最后对一个100研级的太阳能热气流发电站进行了试算.其主要参数为集热棚直径3600m,烟囱高950m,设计功率1001,研.给出了该电站的风力透平轴功率随质量流量和太阳能吸收强度的变化规律,集热棚内的温升曲线,以及风力透平机的设计参数. 关键词:太阳能热发电;集热棚;热力分析;轴功率 现状综诉:太阳能是太阳内部连续不断的核聚变反应过程中所产生的能量。据测算,太 阳每秒照于地球上的能量相当于500万t煤。可以说,太阳能就是人类“用之不竭”的可再生能源。根据有关预测,21世纪的全球能源结构将发生重大变化,太阳能和其它可再生能源将替代石油和煤炭,逐渐成为世界能源的主角。到2050年,太阳能、风能和生物质能在各种一次能源构成中所占的比例将高达50%,远高于石油(0%或甚微)、天然气(13%)、煤(20%)、核能(10%),水电(5%)和其它(2%)。 太阳能热发电技术是具有较强竞争力的可再生能源发电技术。太阳能集热器把收集到的太阳辐射能发送至接收器产生热空气或热蒸汽,用传统的电力循环来产生电能,发电运行成本低,并可以与化石燃料形成混合发电系统。太阳能热发电无噪音,无污染,无需燃料,不受地域限制,规模大小灵活,故障率低,建站周期短,这些优势都是用其它能源发电所无法比拟的,对中国等太阳能资源丰富的国家来说是一个很大的机遇。 太阳能热发电技术综合性很强,涉及太阳能利用、储能、新型材料技术、高效汽轮机技术和自动控制系统等问题,不少发达国家已投人大量人力和物力。经过近40年的研究,太阳能热力发电装置的单机容量已从千瓦级发展到了兆瓦级,目前世界上已有几十座MW级的太阳能热电站投入运行。许多科学家纷纷预测,至2l世纪初中期,太阳能热发电的电价极有可能降到与化石能源电价相同的水平。我国学者潘垣等(2003)近年来致力于太阳能热气流技术的研究和推广,对我国太阳能资源分布状况、技术及经济性分析进行了广泛的调研,认为在本世纪,大规模太阳能热气流发电技术与核聚变发电技术,.是使我国从根本上摆脱能源资源“瓶颈”约束的两个重要途径。代彦军(2003)对宁夏地区发展太阳能热气流发电技术进行了理论探索。 原理简述: 本文利用理论及数值方法,对太阳能热气流发电技术的理想及实际热力过程进行分析,考虑了风力透平中的能量损失和烟囱流动损失对系统性能的影响。由于太阳能热气流发电系统具有超大几何尺寸,采用一维换热假设对系统内的传热过程进行建模,所建立的方程

大学物理热力学论文

大学物理热力学论文 Modified by JEEP on December 26th, 2020.

《大学物理》课程论文 热力学基础 摘要: 热力学第一定律即热现象在内的能量转换与守恒定律。热力学第二定律则是指明过程进行的方向与条件的另一基本定律。从理想的可逆过程入手,引进熵的概念后,就可以从熵的变化来说明实际过程的不可逆性。因此,在热力学中,熵是一个十分重要的概念。 关键词: 热力学第一定律卡诺循环热力学第二定律熵 引言 在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。 一.热力学第一定律 1.历史渊源与科学背景 北宋时刘昼明确指出“金性苞水,木性藏火,故炼金则水出,钻木而生火。”古希腊米利都学派的那拉克西曼德(Anaximander,约公元前611—547) 把火看成是与土、水、气并列的一种原素,它们都是由某种原始物质形成的世界四大主要元素。恩培多克勒(Empedocles,约公元前500—430)更明确提出四元素学说,认为万物都是水、火、土、气四元素在不同数量上不同比例的配合,与我国的五行说十分相似。但是人类对热的本质的认识却是很晚的事情。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,

并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些着名科学家所接受,成为十八世纪热力学占统治地位的理论。 2.热力学第一定律的建立过程 将能量守恒与转换定律应用于热效应就是热力学第一定律,但是能量守恒与转化定律仅是一种思想,它的发展应借助于数学。马克思讲过,一门科学只有达到了能成功地运用数学时,才算真正发展了。另外,数学还可给人以公理化方法,即选用少数概念和不证自明的命题作为公理,以此为出发点,层层推论,建成一个严密的体系。热力学也理应这样的发展起来。所以下一步应该建立热力学第一定律的数学表达式。第一定律描述功与热量之间的相互转化,功和热量都不是系统状态的函数,我们应该找到一个量纲也是能量的,与系统状态有关的函数(即态函数),把它与功和热量联系起来,由此说明功和热量转换的结果其总能量还是守恒的。 在力学中,外力对系统做功,引起系统整体运动状态的改变,使系统总机械能(包括动能和外力场中的势能)发生变化。系统状态确定了,总机械能也就确定了,所以总机械能是系统状态的函数。而在热学中,煤质对系统的作用使系统内部状态发生改变,它所改变的能量发生在系统内部。 内能是系统内部所有微观粒子(例如分子、原子等)的微观的无序运动能以及总的相互作用势能两者之和。内能是状态函数,处于平衡态系统的内能是确定的。内能与系统状态之间有一一对应的关系。 内能定理 从能量守恒原理知:系统吸热,内能应增加;外界对系统做功,内能也增加。若系统既吸热,外界又对系统做功,则内能增加应等于这两者之和。为了证明内能是态函数,也为了能对内能做出定量的定义,先考虑一种较为简单的情况——绝热过程,即系统既不吸热也不放热的过程。焦耳做了各种绝热过程的实验,其结果是:一切绝热过程中使水升高相同的温度所需要做的功都是相等的。这一实验事实说明,系统在从同一初态变为同一末态的绝热过程中,外界对系统做的功是一个恒量,这个恒量就被定

工程热力学论文

目录 太阳能热机发电 (2) 前言 (2) 一、太阳能发电类型 (2) 1.1. 太阳光发电(亦称太阳能光发电) (2) 1.2. 发电(亦称太阳能热发电) (2) 二、太阳能热机发电原理 (2) 2.1.能热机发电系统 (2) 三、热力学分析 (3) 四、前景展望 (9)

太阳能热机发电 前言 太阳能是一种干净的可再生的新能源,越来越受到人们的亲睐,在人们生活、工作中有广泛的作用,其中之一就是将太阳能转换为电能,太阳能电池就是利用太阳能工作的。而太阳能热电站的工作原理则是利用汇聚的太阳光,把水烧至沸腾变为水蒸气,然后用来发电。 一、太阳能发电类型 1.1.太阳光发电(亦称太阳能光发电) 太阳能光发电是将太阳能直接转变成电能的一种发电方式。它包括光伏发电、 光化学发电、光感应发电和光生物发电四种形式,在光化学发电中有电化学光伏电 池、光电解电池和光催化电池。 1.2.发电(亦称太阳能热发电) 太阳能热发电是先将太阳能转化为热能,再将热能转化成电能,它有两种转化方式。一种是将太阳热能直接转化成电能,如半导体或金属材料的温差发电,真空器件中的热电子和热电离子发电,碱金属热电转换,以及磁流体发电等。另一种方式是将太阳热能通过热机(如汽轮机)带动发电机发电,与常规热力发电类似,只不过是其热能不是来自燃料,而是来自太阳能。今天我们主要来看一下太阳能热能发电的第二种情况——通过热机发电。 二、太阳能热机发电原理 2.1.能热机发电系统 2.1.1.太阳能蒸发器太阳能真空管、联集箱、导管、控制阀、安全阀、保温箱体、冷却器; 热机(活塞式发动),主要包括发动机箱体、活塞、连杆、曲轴、进排气阀、控制凸轮、发电机等。 2.1.2.原理 太阳能集热器内装有介质,集热管吸收太阳辐射使介质蒸发,产生高温高压蒸汽,这种高温高压蒸汽

大学物理热力学论文[1]

《大学物理》课程论文 热力学基础 摘要: 热力学第一定律其实是包括热现象在内的能量转换与守恒定律。热力学第二定律则是指明过程进行的方向与条件的另一基本定律。热力学所研究的物质宏观性质,特别是气体的性质,经过气体动理论的分析,才能了解其基本性质。气体动理论,经过热力学的研究而得到验证。两者相互补充,不可偏废。人们同时发现,热力学过程包括自发过程和非自发过程,都有明显的单方向性,都是不可逆过程。但从理想的可逆过程入手,引进熵的概念后,就可以从熵的变化来说明实际过程的不可逆性。因此,在热力学中,熵是一个十分重要的概念。关键词: (1)热力学第一定律(2)卡诺循环(3)热力学第二定律(4)熵 正文: 在一般情况下,当系统状态变化时,作功与传递热量往往是同时存在的。如果有一个系统,外界对它传递的热量为Q,系统从内能为E1 的初始平衡状态改变到内能为E2的终末平衡状态,同时系统对外做功为A,那么,不论过程如何,总有: Q= E2—E1+A 上式就是热力学第一定律。意义是:外界对系统传递的热量,一部分

是系统的内能增加,另一部分是用于系统对外做功。不难看出,热力学第一定律气其实是包括热量在内的能量守恒定律。它还指出,作功必须有能量转换而来,很显然第一类永动机违反了热力学第一定律,所以它根本不可能造成的。 物质系统经历一系列的变化过程又回到初始状态,这样的周而复始的变化过程称为循环过程,或简称循环。经历一个循环,回到初始状态时,内能没有改变,这是循环过程的重要特征。卡诺循环就是在两个温度恒定的热源(一个高温热源,一个低温热源)之间工作的循环过程。在完成一个循环后,气体的内能回到原值不变。卡诺循环还有以下特征: ①要完成一次卡诺循环必须有高温和低温两个热源: ②卡诺循环的效率只与两个热源的温度有关,高温热源的温 度越高,低温热源的温度越低,卡诺循环效率越大,也就 是说当两热源的温度差越大,从高温热源所吸取的热量Q1 的利用价值越大。 ③卡诺循环的效率总是小于1的(除非T2 =0K)。 那么热机的效率能不能达到100%呢?如果不可能到达100%,最大可能效率又是多少呢?有关这些问题的研究就促进了热力学第二定律的建立。 第一类永动机失败后,人们就设想有没有这种热机:它只从一个热源吸取热量,并使之全部转变为功,它不需要冷源,也没有释放热量。这种热机叫做第二类永动机。经过无数的尝试证明,第二类永动

工程热力学论文

工程热力学课程论文 柴油机实际循环的传热分析 姓名:______________________________________ 班级:______________________________________ 教学号:____________________________________ 任课老师:__________________________________

目录 前言 一、柴油机实际循环的组成 (1) 二、实际循环的特点 (2) 三、实际循环理想化 (2) 四、传热的相关基础知识 (3) 五:柴油发动机的传热分析 (4) 六:参考文献 (7)

前言 在工程热力学中,我们将柴油机实际循环理想化为绝热压缩过程;定容加热过程;定压加热过程;绝热膨胀过程;定容放热过程。这样几个理想过程,而理想化的模型忽略了很大部分传热的能量损失问题,故在此讨论柴油机实际循环中的传热损失。 在研究传热损失之前,有必要了解一下了解了柴油机的各个实际循环过程。 一、柴油机实际循环的组成 柴油机有四冲程机与二冲程机二种, 一个工作循环都由进气、压缩、燃烧膨 胀、排气过程组成。如果一个工作循环 在活塞连续的四个行程中完成,称为四 冲程机;如果一个工作循环在活塞连续 的二个行程中完成,称为二冲程机。所 以本节的讨论对四、二冲程内燃机都适 用。下面以现代机械喷射四冲程柴油机 的p-V图为例,介绍其工作循环。 0-1为吸气过程:吸气过程中,由于 流动阻力,缸内气体压力略低于大气压 图9-1 四冲程柴油机示功图 力。 l-2为压缩过程:压缩早期,空气从气 缸壁吸热,q>0;压缩后期,空气向气缸壁放热,q<0。压缩过程的平均多变指数n=1.34~1.37。压缩终点空气温度约600℃~700℃,压力约3~5Mpa,超过柴油自燃点(335 ℃左右)。 2-3-4为燃烧过程:现代柴油机采用喷油泵和喷油器,将燃油在压缩冲程上止点前(2′点)喷进气缸,由于高压燃油(供油压力80~150MPa)经细小如针孔的喷孔挤出时受到强烈的摩擦、扰动以及气缸内压缩空气的阻力,被粉碎成雾状,细微的燃油被高温压缩空气加热而蒸发,与空气形成可燃混合气,当某处燃油达到自燃点燃烧,放出热量而引燃所有可燃混合气。燃油在上止点前喷入气缸到火苗出现的这段时间,称为“滞燃期”,滞燃期内积累的燃油量在活塞位于上止点附近的一瞬间燃烧放热,工质压力在一瞬间上升到6~8Mpa,使理想循环可以认为这部分热量是在定容下加入的;而火苗出现后喷入的燃油由于随喷随烧,此时活塞已向下止点方向运动,燃烧放热量使气缸

热力学与统计物理论文

负温度状态 姓名:王军帅学号:20105052010 化学化工学院应用化学专业 指导老师:胡付欣职称:教授 摘要:通过分析负温度概念的引入,从理论上证明负温的存在,并论证实验上负温度的实现,在进步分析了负温度系统特征的基础上,引入了种新的温度表示法,使之与人们的习惯致。 关键词:负温度;熵;能量;微观粒 Negative Temperature State Abstract:The concept of negative temperature was introduced Its existence was proved theoretically and its realization in experiment also discussed after analysis of the negative temperature system characteristic,one kind of new temperature express is used in order to consistent with the common express. Key words: negative temperature; entropy; energy; microparticle 引言 温度是热学中非常重要的一个物理量,可以说任何热力学量都与温度有关.描述物体冷热程度的物理量—开尔文温度—一般都是大于零的,由热力学第三定律可知“绝对零度是不可能达到的”,也就是说自然界的低温极限是绝对零度,即-273.16℃.以OK作为坐标原点,通常意义上的温度一般就在原点的右半轴上,其范围就是零到 值总为正。那么有没有负温度呢?左半轴是不是可以用负温度来对应呢?它表示的温度是不是更低呢?此时系统的热力学性质又将会怎么样呢?这些问题激起人们对温度的疑惑与兴趣. 1.负温度概念的引入 通常所说的温度与系统微观粒子的运动状态有关,随着温度的升高,粒子的能量也升高,粒子运动就会越激烈,无序度也会增加:在低温时,高能量粒子的数目总是少于低能量粒子的数目,所以随着温度的升高,高能量粒子数目逐渐增

工程热力学(1)

工程热力学 Engineering Thermodynamics
1
答 疑
时间:每周一晚19:30-20:30 地点:济阳楼312室 作业:每章讲解后交,请准备两个作业 本
2
1

蒸 汽 机 示 意 图
冷凝器 汽缸 锅炉 活塞 曲柄连杆
曲轴箱 泵
3
蒸汽动力循环装置系统简图
4
2

原子能蒸汽动力装置系统简图
载热质(重水、碱性金属蒸汽)
汽轮机 反 应 堆浓 缩 铀 ) 冷凝器 泵 泵 换 热 器
发电机
燃 气 轮 机 装 置 系 统 简 图
废 气
(
燃料泵 压 气 机 空 气 燃 料
冷却水
5
燃烧室
燃 气 轮 机
6
3

气缸
活塞
曲柄连杆机构
内 燃 机 的 工 作 原 理 图
7
地源热泵
8
4

各种热工装置的热力学共性内容归纳
装置名称 蒸汽动力装置 燃气轮机装置 内燃机装置 压缩制冷装置 工作物质 水蒸汽 燃 气 燃 气 热 源 冷 源 冷却水 大 大 大 气 气 气 功 对外输出功 对外输出功 对外输出功 消 耗 功
高 温 物 体 燃烧产物(自身) 燃烧产物(自身) 被冷却物体
制冷剂
9
热力学的发展
热力学是研究能量、能量转换以及与 能量转换有关的物性间相互关系的科学。 热力学(thermodynamics)一词的意 思是热(thermo)和动力(dynamics),既由热产 生动力,反映了热力学起源于对热机的研究。 从十八世纪末到十九世纪初开始, 随着蒸汽机在生产中的广泛使用,如何充分利 用热能来推动机器作工成为重要的研究课题。
10
5

物理化学论文,热力学

物理化学论文 系别: 专业: 姓名: 学号: 班级:

热力学定律论文 论文摘要:本论文就物理化学的热力学三大定律的具体内容展开思考、总结论述。同时,也就物理化学的热力学三大定律的生活、科技等方面的应用进行深入探讨。正文: 一、热力学第一定律: 热力学第一定律就是宏观体系的能量守恒与转化定律。“IUPAC”推荐使用‘热力学能’,从深层次告诫人们不要再去没完没了的去探求内能是系统内部的什么东西”,中国物理大师严济慈早在1966年就已指出这点。第一定律是1842年前后根据焦耳等人进行的“功”和“热”的转换实验发现的。它表明物质的运动在量的方面保持不变,在质的方面可以相互转化。但是,没有多久,人们就发现能量守恒定律与1824年卡诺定理之间存在“矛盾”。能量守恒定律说明了功可以全部转变为热:但卡诺定理却说热不能全部转变为功。1845年后的几年里,物理学证明能量守恒定律和卡诺定理都是正确的。那么问题出在哪呢?由此导致一门新的科学--热力学的出现。 自然界的一切物质都具有能量,能量有各种不同形式,能够从一种形式转化为另一种形式,在转化中,能量的总量不变。其数学描述为:Q=△E+W,其中的Q和W分别表示在状态变化过程中系统与外界交换的热量以及系统对外界所做的功,△E表示能量的增量。 一般来说,自然界实际发生的热力学过程,往往同时存在两种相互作用,即系统与外界之间既通过做功交换能量,又通过传热交换能量。热力学第一定律表明:当热力学系统由某一状态经过任意过程到达另一状态时,系统内能的增量等于在这个过程中外界对系统所作的功和系统所吸收的热量的总和。或者说:系统在任一过程中所吸收的热量等于系统内能的增量和系统对外界所作的功之和。热力学第一定律表达了内能、热量和功三者之间的数量关系,它适用于自然界中在平衡态之间发生的任何过程。在应用时,只要求初态和终态是平衡的,至于变化过程中所经历的各个状态,则并不要求是平衡态好或无限接近于平衡态。因为内能是状态函数,内能的增量只由初态和终态唯一确定,所以不管经历怎样的过程,只要初、终两态固定,那么在这些过程中系统内能的增量、外界对系统所作的功和系统所吸收的热量的之和必定都是相同的。热力学第一定律是能量转化和守恒定律在射击热现象的过程中的具体形式。因为它所说的状态是指系统的热力学状态,它所说的能量是指系统的内能。如果考察的是所有形式的能量(机械能、内能、电磁能等),热力学第一定律就推广为能量守恒定律。这个定律指出:自然界中各种不同形式的能量都能从一种形式转化为另一种形式,由一个系统传递给另一个系统,在转化和传递中总能量守恒。能量守恒定律是自然界中各种形态的运动相互转化时所遵从的普遍法则。自从它建立起来以后,直到今天,不但没有发现任何违反这一定律的事实,相反地,大量新的实践不断证明着这一定律的正确性,丰富着它所概括的内容。能量守恒定律的确立,是生产实践和科学实验长期发展的结果,在长期的实践中,人们很早以来就逐步形成了这样一个概念,即自然界的一切物质在运动和变化的过程中,存在着某种物理量,它在数量上始终保持恒定。能量守恒定律的实质,不仅在于说明了物质运动在量上的守恒,更重要的还在于它揭示了运动从一种形态向另一形态的质的转化,所以,只有当各

工程热力学小论文

工程热力学小论文Revised on November 25, 2020

工程热力学论文 学院_________________ 专业_________________ 姓名_________________ 学号_________________ 浅析电冰箱压缩制冷循环 一、前言 随着科学技术进步以及人们生活水平的提高,电冰箱已经成为日常生活中越来越不可或缺的必需品。 电冰箱的制冷循环系统是电冰箱的核心部分,其节能、环保等改进也主要围绕着制冷循环系统进行。因此,了解和熟知电冰箱制冷循环系统的过程和原理,是我们参与该领域并对其实施改进的重要基础。 目前最普遍的电冰箱的制冷循环方式是压缩制冷循环,本文将对压缩制冷循环过程进行简单的描述与分析。 二、电冰箱的压缩制冷循环过程 从低于环境温度的物体中吸取热量,并将其转移给环境介质的过程,称为制冷。 由于热量只能自动地从高温物体传给低温物体,因此实现制冷必须包括消耗能量(如电能,机械能等)的补偿过程。 借助制冷系统消耗电能,利用物态变化过程中的吸热(液态→气态),放热(气态→液态)物理过程,强制热量由低温物体转至高温物体从而达到制冷的目的。

除少数环保冰箱外,现在普通家用冰箱的制冷剂大多还是氟利昂(主要是二氯二氟甲烷),它储存在冰箱的专用容器中。由于氟利昂会破坏臭氧层,现在已经被逐渐淘汰,改用其他的制冷剂,但它们制冷的原理是一样的。 家用电冰箱制冷系统循环过程,压缩机将低温低压的制冷剂气体吸入气缸,经过压缩机压缩,变成高温高压的气态,并排到冷凝器内,在冷凝器内,高温高压的气体与温度较低的环境进行交换,温度降低并冷凝为液体;液体通过毛细管节流,降低压力后进入蒸发器,在蒸发器内吸热汽化,(未汽化的暂留在储液管里),汽化后被吸回压缩机,重新压缩。如此周而复始,不断循环,使柜内温度降低。 三、压缩制冷循环过程的分析 1.逆向卡诺循环 冰箱的制冷是一个热泵的原理,就是利用机械能,在冰箱保温的条件下,将热量从冰箱里面移出,这些热量在冰箱外面散去。而热泵的工作原理可以用逆卡诺循环来表示。 在一定的冷库温度及环境温度下工作的最简单的 制冷循环是逆向卡诺循环。工质先经绝热膨胀过程1-2 而降温至冷库温度T2,接着在定温吸热过程2-3从低 温物体系热,然后经绝热压缩过程3-4,工质的温度升 高至环境温度T1,接着在定温放热过程4-1向环境放 热,从而完成卡诺循环。 q2=T2(s3-s2) |q1|=T1(s4-s1) |0|=|q1|-q2 逆卡诺循环的制冷系数与工质的性质无关,只取决于冷源(即被冷却物体)的温度T2和热源(即环境介质)的温度T1;降低T1,提高T2,均可提高制冷系数。此外,由热力学第二定律还可

工程热物理前沿课程论文(DOC)

研究生“工程热物理前沿”论文 重庆大学动力工程学院 二O一四年一月

摘要 我国是世界上能源结构以煤为主的国家之一,也是世界上最大的煤炭消费国。随着经济的发展,能源问题成为社会与经济发展的一个长期制约因素。关系全局的主要能源问题有:能源需求增长迅速,供需矛盾尖锐;能源结构不合理,优质能源短缺;效率低下,浪费惊人;环境影响更加严重。面对时代的召唤,工程热物理等相关学科将承担起我国国民经济发展的能源与环境的重大需求,努力推进节能和科学用能已成为学科的指导思想和核心,而抓紧化石燃料的洁净技术、大力开发可再生能源和新能源技术则是工程热物理学科的发展战略重点。本文主要介绍了工程热物理学科在核能发电技术、太阳能发电技术、生物质气化技术、燃料电池技术等新能源领域,及循环流化床洁净高效燃烧技术方面取得的成绩及未来发展方向。 关键词:工程热物理,核能发电,太阳能发电,生物质气化技术,燃料电池,循环流化床

ABSTRACT China is not only one of the countries whose energy structure is coal-based, but also one of the world's largest coal consumers. With the development of economy, the energy issue is the social and economic development of a long-term relationship factors, the main energy problem has global demand is growing rapidly, energy sharp contradiction between supply and demand, The energy structure unreasonable, high-quality energy shortage, Low efficiency and waste astonishing, The environmental impact is more serious. Facing the call of The Times, engineering thermal physical related subject will assume the development of our national economy energy and environment of the great demand to promote energy conservation and science use has become disciplines guiding ideology and the core, to grasp fossil fuel clean technology, vigorously develop renewable energy and new energy technology is engineering thermal physical development of the discipline of strategic emphasis. This article mainly introduced the engineering thermal physical sciences in solar power generation technology, nuclear power technology, biomass gasification technology, fuel cell technology and other new energy field, and circulating fluidized bed clean efficient combustion technology's achievements and future development direction. Keywords:Engineering thermal physical, nuclear power, solar energy, biomass gasification, fuel cells, fluidized bed

论文对热力学定律的认识

1 题目:浅谈热力学定律 班级:11物理学本科班 姓名:徐春山 学号:110800048 指导老师:廖昱博

浅谈热力学定律 1 引言 热物理学是整个物理学理论的四大柱石之一,热力学是热学理论的一个重要组成部分,也就是热现象的宏观理论。热力学主要是从宏观角度出发按能量转化的观点来研究物质的热性质,热现象和热现象所服从的规律。它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。热力学是总结物质的宏观现象而得到的热学理论,不涉及物质的微观结构和微观粒子的相互作用,具有高度的可靠性和普遍性,无论是在热力学理论中或在热工技术中,都有重要的作用。 2 热力学第零定律 什么是温度?人们在日常生活中,凭自己的感觉就能判断一个物体是冷还是热。感到热就认为温度高一些,感到冷就认为温度低一些。当然这种感觉是不可靠的。于是人们就简单地建立起了有关温度的初步概念。温度是描述物体冷热程度的物理量。 在不受外界影响的情况下,只要A物体和B物体同时与C物体处于热平衡,即使A和B没有热接触,他们仍然处于热平衡状态,这种规律称为热平衡定律,也称为热力学第零定律。 热力学第零定律告诉我们,互为热平衡的物体之间必存在一个相同的特征——它们的温度是相同的。实验也证实,在外界条件不变的情况下把已经达到热平衡的系统中的各个部分相互分开,是绝不会改变每个部分本身的热平衡状态的. 3 热力学第一定律 热力学第一定律是能量守恒和转化定律在热力学上的具体表现,能量守恒与转换定律的发现与其他物理规律的发现最大不同之处在于它不是某一位科学家独立研究而提出的,而是由许多科学家在不同的研究领域分别发现的。 自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为- 2 -

浅谈工程热力学里的熵

工程热力学论文 题目:浅谈工程热力学里的熵 姓名:杨枫 学号:1122610312 专业:建筑环境与设备工程 导师:谭羽非 学院:市政环境工程学院 2013年12月24日

浅谈工程热力学中的熵 摘要:熵是工程热力学中重要的概念,它是对热力学第二定律的深化和补充,同时熵定律又是对基于热力学第二定律的熵的深化和扩展。熵也可以作为节能的标准,熵的理论在环境中的应用很广泛, 对于保护环境维持生态平衡具有重要意义。 关键词:熵的概念热力学第二定律熵增原理 正文:熵是物理学中一个非常重要的概念,最早由德国物理学家克劳修斯提出,后来玻尔兹曼又用统计的方法给出了熵的定义。我国据此译成热温之商,为了反映与热有关,加上火字旁,创造了新汉字熵。从1865 年提出熵到现今已经有150 多年的历史了,现在的熵已不局限于物理学中,在其它学科都有着广泛的应用,熵的概念有泛化的趋势。另一方面,就物理学中的熵仍有诸多争论的问题,可以说,没有哪一个物理概念像熵一样难以理解,应用广泛,同时又伴随着诸多未解之迷从。物理学角度来说,熵是物质分子紊乱程度的描述,紊乱程度越大,熵也 越大;从能量及其利用角度来说,熵是不可逆耗散程度的量度,不可逆能量耗散越多,熵变化越大。熵增加意味着有效作功能量的减少。在工程热力学中,熵是热力学第二定律的一个重要概念及参数。从热力学的角度,认为可以从以下几个方面来理解熵这个概念。 一.熵概念的提出 熵的概念由卡诺循环引出的。卡诺循环由两个可逆等温过程和两个可逆绝热过程组成。工质在两个恒温热源间循环,没有耗散损失。对微卡诺循环,以微元可逆热机为例,设有高温热源温度T1,低温热源温度T2,工质从高温热源吸热为DQ1,向低温热源放热为DQ2, 由G=1-DQ2/DQ1=1-T2/T1得 DQ2/ T2=DQ1/ T1 由于DQ2与DQ1符号相反,代入符号,有 DQ2/ T2+DQ1/ T1=0 对任意可逆循环,都可分割成无限多个微元卡诺循环, 则有RDQ/T=0 (1) 式(1)即克劳修斯积分式。式(1)表明任意工质经任意一个可逆循环后,微量DQ/T 沿整个循环的积分为零。状态参数的充要条件为该参数的微分一定是全微分,且全微分的循环积分为零。式(1)说明,DQ/T一定是某个参数的全微分。克劳修斯将这一参数定名为熵,以符号S表示, 于是dS=DQ/T (2) 熵是状态参数,工质经一微元过程,熵的变化等于初、终态任意一个可逆过程中与热源交换的热量和热源温度的比值。熵的变化只由初、终态参数确定,与中间所经历的途径无关。式(1)和(2)前提条件是可逆的,既在没有任何耗散的条件下,工质的温度和热源的温度才处处相等。 二.熵与热力学第二定律 实际工质的热力过程都是不可逆的,可逆过程只是将过程视为极端缓慢的情况下,工质内部及工质与周围环境能时刻处于平衡状态,这是一种理想化过程。现在来

工程热力学结课论文

工程热力学结课论文 题目我国能源利用现状与对策 姓名 学号 专业 指导教师 2010年 12月 20日

Our country's energy utilization status and countermeasures [Abstract] Since the middle of the 20th century global scope of energy consumption growth surged, among them, the developed countries of the world energy consumption per capita energy consumption of above 60%. Along with the rapid development of national economy, China has become the world's second-largest energy consumer, energy consumption accounts for about a world energy consumption of 11%. Meanwhile, the rapid economic development and the resource constraints of contradictions have become increasingly prominent, coal, oil, electricity, etc. Energy prices to surge ahead, local area still appear oil shortage. As energy prices generally rises, transportation, metallurgy, petrochemical, light industry, fishery, agriculture and so on many industries have suffered the influence of different level. Experts predict, according to current our country economy development speed and energy price level, in the next few years will be so slow economic growth rate 0.5 ~ 1 percent. Therefore, the rational development and utilization of energy has become China's current must face and urgent to solve important practical problems. [Keywords]energy use; The CO2 emissions, Adjust the industrial structure.

大学物理热力学论文

由麦克斯韦速率分布律推出平动动能分布律 摘要:麦克斯韦首先把统计学的方法引入分子动理论,首先从理论上导出了气体分子的速率分布率,现根据麦克斯韦速率分布函数,求出相应的气体分子平动动能分布律,并导出与麦克斯韦分布函数类似的一些性质,求出平动动能的最概然值及平均值。并比较相似点和不同点。 前言:麦克斯韦把统计方法引入了分子动理论,首先从理论上导出了气体分子的速分分布律。这是对于大量气体分子才有的统计规律。现做进一步研究,根据其成果麦克斯韦速率分布函数,导出相应的平动动能分布律,并导出与麦克斯韦分布函数类似的一些性质并求出平动动能的最概然值及平均值,并且由此验证其正确性。 方法:采用类比的方法,用同样的思维,在麦克斯韦速率分布函数的基础上, 作进一步研究,导出能反映平均动能在ε附近的单位动能区间内的分子数与总分子数的比的函数 )(εf 的表达式。并由此进一步推出与麦克斯韦分布函数相 对应的一些性质,并比较分析一些不同点。 麦克斯韦速率分布律 N d v dN v f = )( 这个函数称为气体分子的速率分布函数麦克斯韦进一步指出,在平衡态下,分子速率分布函数可以具体地写为 2 223 2 24)(v e kT m Ndv dN v f kT mv πππ-?? ? ??== 式中T 是气体系统的热力学温度,k 是玻耳兹曼常量,m 是单个分子的质量。式(8-30)称为麦克斯韦速率分布律。 图像如下

图1 麦克斯韦速率分布函数 图1画出了f (v )与v 的关系曲线,这条曲线称为速率分布曲线。由图可见,曲线从坐标原点出--发,随着速率的增大,分布函数迅速到达一极大值,然后很快减小,随速率延伸到无限大,分布函数逐渐趋于零。速率在从v 1到v 2之间的分子数比率?N /N ,等于曲线下从v 1到v 2之间的面积, 如图中阴影部分所示。显然,因为所有N 个分子的速率必然处于从0到 ∞之间,也就是在速率间隔从0到 ∞的范围内的分子数占分子总数的比率为1,即 1)(0 =?+∞ dv v f 这是分布函数f (v )必须满足的条件,称为归一化条件。 而 dv v f v v ?=?2 1 )(N N 表示在平衡态下,理想气体分子速率在v 1到v 2 区间的分子数占总分子数的比率。 而应用麦克斯韦速率分布函数可以求出气体分子三个重要的速率: (1)最概然速率p v ,f(v)的极大值所对应的速率 M RT M RT m kT v p 41 .1220 ≈= =

相关主题
文本预览
相关文档 最新文档