当前位置:文档之家› 高一数学数系的扩充练习题

高一数学数系的扩充练习题

高一数学数系的扩充练习题
高一数学数系的扩充练习题

复数的基本概念

第1题复数2

2i 1+i ?? ???等于( ) A .4i B .4i - C .2i D .2i -

答案:C

第2题复数

21(1i)+等于( ) A .1

2 B .12- C .1i 2 D .1i 2-

答案:D

第3题若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数 ),则b =( )

A .2-

B .12-

C .12

D .2

答案:D

第4题复数

322i i +的虚部为______. 答案:45

复数的代数形式及运算

第1题. 22(1)i =+ .

答案:i -

第2题. i 是虚数单位,

510i 34i

-+=+ .(用i a b +的形式表示,a b ∈R ,) 答案:12i +

第3题. i 是虚数单位,238i 2i 3i 8i ++++= .(用i a b +的形式表示,a b ∈R ,)

答案:44i -

第4题. i 是虚数单位,

510i 34i

-+=+ .(用i a b +的形式表示,a b ∈R ,) 答案:12i +

第5题.化简224(1)

i i ++的结果是( ) A.2i + B.2i -+ C.2i - D.2i --

答案:C

第6题.设 是实数,且

1i 1i 2a +++是实数,则a =( ) A .12 B .1

C .32

D .2 答案:B

第7题.设复数z 满足12i i z +=,则z =( ) A .2i -+ B .2i -- C .2i - D .2i +

答案:C

第8题.复数43i 1+2i

+的实部是( ) A .—2 B .2 C .3 D .4

答案:B

第9题.在复平面内,复数12z i

=+对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D

第10题.已知复数11i z =-,121i z z =+ ,则复数2z = .

答案:i

第11题.复数i z a b a b =+∈R ,,,且0b ≠,若24z bz -是实数,则有序实数对()a b ,可以是 .(写出一个有序实数对即可) 答案:(或2a b =的任一组非零实数对()a b ,) 第12题.若

a 为实数,

=,则a 等于( )

A B . C . D .- 答案:B

第13题. i 是虚数单位,3

2i 1i

=-( ) A.1i + B. 1i -+ C.1i - D.1i -- 答案:C

第14题.若cos isin z θθ=+(i 为虚数单位),则使21z =-的θ值可能是( )

A .6π

B .4π

C .3π

D .2

π

答案:D

第15题.对于非零实数a b ,,以下四个命题都成立: ① 01≠+a a ; ② 2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =. 那么,对于非零复数a b ,,仍然成立的命题的所有序号是 . 答案:②④

第16题.已知a b ∈R ,,且i ,i 2++b a (i 是虚数单位)是实系数一元二次方程02=++q px x 的两个根,那么p q ,的值分别是( )

A.45p q =-=, B.43p q =-=, C.45p q ==, D.43p q ==, 答案:A

第17题.对于非零实数a b ,,以下四个命题都成立: ① 01≠+a

a ; ② 2222)(

b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =. 那么,对于非零复数a b ,,仍然成立的命题的所有序号是 . 答案:②④

第18题.已知a b ∈R ,,且i 3,i 2++b a (i 是虚数单位)是一个实系数一元二次方程的两个根,那么a b ,的值分别是( ) A.32a b =-=, B.32a b ==-, C.32a b =-=-, D.32a b ==, 答案:A

第19题.复数31i i 1i ++-的值是( ) A .0 B .1 C .—1 D .i 答案:A

高一数学解三角形练习题

必修五 第一章 解三角形 一、选择题 1.已知A ,B 两地的距离为10 km ,B ,C 两地的距离为20 km ,现测得∠ABC =120°,则A ,C 两地的距离为( ). A .10 km B .103km C .105km D .107km 2.在△ABC 中,若2 cos A a = 2 cos B b =2 cos C c ,则△ABC 是( ). A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形 3.三角形三边长为a ,b ,c ,且满足关系式(a +b +c )(a +b -c )=3ab ,则c 边的对角等于( ). A .15° B .45° C .60° D .120° 4.在△ABC 中,三个内角∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且a ∶b ∶c =1∶3∶2,则sin A ∶sin B ∶sin C =( ). A .3∶2∶1 B .2∶3∶1 C .1∶2∶3 D .1∶3∶2 5.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ). A .△A 1 B 1 C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形 C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形 D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形 6.在△ABC 中,a =23,b =22,∠B =45°,则∠A 为( ). A .30°或150° B .60° C .60°或120° D .30°

3.1.1数系的扩充和复数的概念(教学设计)

§3.1.1数系的扩充和复数的概念(教学设计) 教学目标: 知识与技能目标: 了解引进复数的必要性;理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部、复数相等)。理解虚数单位i 以及i 与实数的四则运算规律。 过程与方法目标: 通过问题情境,了解扩充数系的必要性,感受数系的扩充过程,体会引入虚数单位i 和复数形式的合理性,使学生对数的概念有一个初步的、完整的认识。 情感、态度与价值观目标: 通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。 教学重点: 复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用 教学难点: 虚数单位i 的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i 并同时规定了它的两条性质之后,自然地得出的.在规定i 的第二条性质时,原有的加、乘运算律仍然成立 教学过程: 一、创设情境、新课引入: 数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N 随着生产和科学的发展,数的概念也得到发展 为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q .显然N Q .如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z ,则有Z Q 、N Z .如果把整数看作分母为1的分数,那么有理数集实际上就是分数集 有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R .因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集 因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i ,叫做虚数单位.并由此产生的了复数 二、师生互动、新课讲解 1.虚数单位i : (1)它的平方等于-1,即 2 1i =-; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立. 2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i ! 3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =1 4.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示* 3. 复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫

高三数学考点-数系的扩充与复数的引入

5.5 数系的扩充与复数的引入 1.虚数单位为i ,规定:i 2=________,且实数与它进行四则运算时,原有的加法、乘法的________仍然成立. 2.复数的概念 形如:a +b i(a ,b ∈R )的数叫复数,其中a 叫做复数的______,b 叫做复数的__________. ①当________时,复数a +b i 为实数; ②当________时,复数a +b i 为虚数; ③当________且________时,复数a +b i 为纯虚数. 3.复数相等的充要条件 a + b i = c + d i(a ,b ,c ,d ∈R )? ____________,特别地,a +b i =0?____________. 4.复数z =a +b i(a ,b ∈R )与复平面上的点Z (a ,b )、平面向量OZ → 都可建立____________的关系(其中O 是坐标原点). 5.在复平面内,实轴上的点都表示____________;虚轴上的点除____________外都表示____________. 6.复数的模 向量OZ → 的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作________或||a +b i .即||z =||a +b i =r =________(r ≥0,r ∈R ). 7.共轭复数 一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为__________,复数z 的共轭复数记作________. 8.数系的扩充 数集扩充的过程是:自然数集(N )→____________→____________→____________→复数集(C ).数集的每一次扩充,都使得在原有数集中能实施的运算,在新的数集中仍能进行,并且解决了在原有数集中某种运算不可实施的矛盾. 9.复数的加、减、乘、除的运算法则 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 (1)z 1±z 2=____________________________; (2)z 1·z 2=____________________________; (3)z 1 z 2=____________________________ (z 2≠0). 10.复数加、减法的几何意义 以复数z 1,z 2分别对应的向量OZ 1→,OZ 2→为邻边作平行四边形OZ 1ZZ 2,对角线OZ 表示的向量OZ → 就是____________.z 1-z 2对应的向量是____________. 自查自纠 1.-1 运算律 2.实部 虚部 ①b =0 ②b ≠0 ③a =0 b ≠0 3.a =c 且b =d a =b =0 4.一一对应 5.实数 原点 纯虚数

数形结合思想在高中数学解题中的应用

第5讲 数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10) k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202

高一数学-解三角形综合练习题

必修五 解三角形 一、选择题 1. 在ABC ?中,若::1:2:3A B C ∠∠∠=,则::a b c 等于 ( ) A.1:2:3 B.3:2:1 C. D.2 2.在△ABC 中,222a b c bc =++ ,则A 等于 ( ) A .60° B .45° C .120° D .30° 3.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长 A. 1公里 B. sin10°公里 C. cos10°公里 D. cos20°公里 4.等腰三角形一腰上的高是3,这条高与底边的夹角为 60,则底边长= ( ) A .2 B .2 3 C .3 D .32 5.已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是 ( ) A .135<

高中数学数形结合

数形结合 实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。如等式()()x y -+-=21422 一、联想图形的交点 例1. 已知,则方程的实根个数为01<<=a a x x a |||log |() A. 1个 B. 2个 C. 3个 D. 1个或2个或3个 分析:判断方程的根的个数就是判断图象与的交点个数,画y a y x x a ==|||log |出两个函数图 象,易知两图象只有两个交点,故方程有2个实根,选(B )。 例2. 解不等式x x +>2 令,,则不等式的解,就是使的图象 y x y x x x y x 121222= +=+>=+ 在的上方的那段对应的横坐标, y x 2=如下图,不等式的解集为{|} x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。{|}x x -≤<22 练习:设定义域为R 函数?? ?=≠-=1 01 1lg )(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同 实数解的充要条件是( ) 0,0. 0,0. 0,0. 0,0.=≥=<<>>c ,设P :函数x c y =在R 上单调递减,Q :不等式12>++c x x 的解集为R ,如 果P 与Q 有且仅有一个正确,试求c 的范围。 因为不等式12>++c x x 的几何意义为:在数轴上求一点)(x P ,使P 到)2(),0(c B A 的距离之和的最小值大于1,而P 到AB 二点的最短距离为12>=c AB ,即2 1> c 而P :函数x c y =在R 上单调递减,即1

高中数学解三角形和平面向量

高中数学解三角形和平面向量试题 一、选择题: 1.在△ABC 中,若a = 2 ,23b =,0 30A = , 则B 等于( B ) A .60o B .60o 或 120o C .30o D .30o 或150o 2.△ABC 的内角A,B,C 的对边分别为a,b,c ,若c =2,b =6,B =120o ,则a 等于( D ) A .6 B .2 C .3 D .2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c, 且2=a ,A=45°,2=b 则sinB=( A ) A . 1 2 B .22 C . 3 2 D .1 4.ABC ?的三内角,,A B C 的对边边长分别为,,a b c ,若5 ,22 a b A B ==,则cos B =( B ) A . 53 B .54 C .55 D .5 6 5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( C ) A .0 90 B .0 60 C .0 120 D .0 150 6.在△ABC 中,角A,B,C 的对边分别为a,b,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为(D ) A. 6 π B. 3π C.6π或56 π D. 3π或23 π 7. 在△ABC 中, b a B A =--cos 1cos 1,则△AB C 一定是( A ) A. 等腰三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形 8.在ABC ?中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a=1, ABC S b ?=则,3等于( C ) A. 2 B. 3 C. 2 3 D. 2 9.已知锐角△ABC 的面积为33,BC=4,CA=3则角C 大小为( B ) A 、75° B 、60° C 、45° D 、30° 10.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A ) A. 3 400 米 B. 33400米 C. 2003米 D. 200米 11.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,现测得0 120ABC ∠=,则A,C 两地 的距离为( D )。 A. 10km B. 103km C. 105km D. 107km 12.已知M 是△ABC 的BC 边上的中点,若向量AB =a ,AC = b ,则向量AM 等于( C ) A . 21(a -b ) B .21(b -a ) C .21( a +b ) D .1 2 -(a +b ) 13.若 ,3) 1( )1, 1(B A -- ,5) (x C 共线,且 BC AB λ=则λ等于( B ) A 、1 B 、2 C 、3 D 、4 14.已知平面向量),2(),2,1(m -==,且∥,则32+=( C ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10) 15. 已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为 ( C ) A 、17 B 、18 C 、19 D 、20 16.(2,1),(3,),(2),a b x a b b x ==-⊥r r r r r 若向量若则的值为 ( B ) A .31-或 B.13-或 C .3 D . -1 17. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( B ) (A ) 6π (B )4π (C )3π (D )π12 5 183 =b , a 在 b 方向上的投影是2 3 ,则 b a ?是( B ) A 、3 B 、 29 C 、2 D 、2 1 19.若||1,||2,a b c a b ===+r r r r r ,且c a ⊥r r ,则向量a r 与b r 的夹角为( C ) (A )30° (B )60° (C )120° (D )150°

高中数学 选修1-2 7.数系的扩充和复数的概念

7.数系的扩充和复数的概念 教学目标 班级______姓名________ 1.了解虚数的定义及复数的概念. 2.掌握虚数与实数之间的关系. 教学过程 一、知识要点. 1.复数的概念: (1)复数定义:形如bi a +的数叫做复数,其中R b a ∈,,i 叫做虚数单位(12-=i ).a 叫做复数的实部,b 叫做复数的虚部. (2)复数表示方法:复数通常用字母z 表示,即bi a z +=. (3)复数集定义:全体复数所成的集合叫做复数集,常用大写字母C 表示. 2.复数的分类: (1)复数(bi a +,R b a ∈,) 实数(0=b ) 虚数(0≠b ) 纯虚数(0=a ) 非纯虚数(0≠a ) (2)数系的分类: 分数 有理数 实数 整数 复数 无理数 虚数 纯虚数 非纯虚数 3.复数相等的充要条件:设R d c b a ∈,,,,那么c a di c bi a =?+=+且d b =. 二、例题分析. 例1:请说出下列复数的实部和虚部,并判断它们是实数,虚数还是纯虚数. ①i 32+;②i 2 13+ -;③i +2;④π;⑤i 3-;⑥0.

例2:实数m 取什么值时,复数i m m z )1(1-++=是(1)实数;(2)虚数;(3)纯虚数. 练2:实数m 为何值时,复数i m m m m m z )32(1 )2(2-++-+= 是(1)实数;(2)虚数;(3)纯虚数. 例3:已知x 、y 均为实数,且满足i y y i x )3()12(---=+-,求x 与y . 练3:已知i x x x x x )32(1 622--=+--(R x ∈),求x 的值. 作业:已知i m m m z )1()1(2 -++=为纯虚数,求实数m 的值.

高中数学人教版选修2-2(理科) 第三章数系的扩充与复数的引入 3.1数系的扩充和复数的概念(包括3

高中数学人教版选修2-2(理科)第三章数系的扩充与复数的引入 3.1数系的扩充和复数的概念(包括3.1.1数系的扩充和复数的概念,3.1.2复数的几何意义)同步练 习(II)卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共8题;共16分) 1. (2分)设i是虚数单位,复数的虚部为() A . -i B . -1 C . i D . 1 2. (2分)若,其中、,是虚数单位,则 A . 0 B . 2 C . D . 5 3. (2分)已知tan(α+β)= ,tan(β﹣)= ,则的值为() A . B . C . D .

4. (2分) (2018高二上·嘉兴期中) 是边长为2的等边三角形,是边上的动点, 于,则的最小值是() A . 1 B . C . D . 5. (2分)已知复数,则z的虚部为() A . 1 B . -1 C . i D . -i 6. (2分)在复平面上,点对应的复数是,线段的中点对应的复数是,则点对应的复数是() A . B . C . D . 7. (2分)已知复数的实部为1,且,则复数的虚部是() A . B .

C . D . 8. (2分)(2016·商洛模拟) 在复平面内,复数对应的点的坐标为() A . (0,﹣1) B . (0,1) C . (,﹣) D . (,) 二、填空题 (共3题;共3分) 9. (1分) (2019高三上·大庆期中) 已知,i是虚数单位,若(1 i)(1 bi)=a,则的值为________. 10. (1分) (2019高二下·邗江月考) 设复数满足(为虚数单位),则复数在复平面内所表示的点位于第________象限. 11. (1分)已知=1+ni,其中n∈R,i是虚数单位,则n=________ 三、解答题 (共3题;共20分) 12. (10分) (2019高二下·舒兰月考) 已知复数,复数,其中是虚数单位,, 为实数. (1)若,为纯虚数,求; (2)若,求,的值. 13. (5分) (2018高二下·聊城期中) 设复数的共轭复数为,且,,复数对应复平面的向量,求的值和的取值范围.

高中数学必修5第一章解三角形全章教案整理

课题: §1.1.1正弦定理 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中, 角与边的等式关系。 从而在直角三角形ABC 中,sin sin sin a b c A B C == 思考:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则 sin sin a b A B =, C 同理可得 sin sin c b C B =, b a 从而sin sin a b A B =sin c C = A c B 从上面的研探过程,可得以下定理 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin a b A B =sin c C = [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin a b A B =sin c C =等价于sin sin a b A B =,sin sin c b C B =,sin a A =sin c C 从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b =。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 例1.在?ABC 中,已知045A =,075B =,40a =cm ,解三角形。 例2.在?ABC 中,已知20=a cm ,202b =cm ,045A =,解三角形。

高二数学 4.3数系的扩充(第一课时)

高二数学 4.3数系的扩充(第一课时) 【精品】 高二数学 4、3数系的扩充(第一课时)从容说课复数系的建立经历了一个漫长的过程、事实上,在德国数学家高斯首次引进“复数”这一名词,并把这类新数与坐标平面(他称之为复平面,后人也称之为高斯平面)内的点一一对应起来之前,欧洲的数学家们已对“虚数”及其几何意义进行了将近三百年的研究、“虚数”产生于解方程需要的实际背景应向学生交待,这是矛盾产生的结果,是数学内部发展的自身需要,也是其他科学发展的需要,揭示了数形结合思想在推动这一新的研究对象发生、形成和发展中所起的重要作用;同时要告诉学生,将一个数集进行扩张,还要解决原有的运算律是否保持这样一个基本问题、通过前几节的学习,学生已经知道在复数集内如何进行四则运算,原有的加、乘运算律仍然成立,并知道开方运算在复数集内总可以实施、作为复数知识的重要应用,应引导学生运用所学知识(共轭复数、加减法运算)证明“虚根成对定理”和一元二次方程的根与原数关系的推广真正的“韦达定理”,并向学生指明复数广阔的应用领域和发展前景,着重培养学生热爱科学、追求科学、献身科学的精神、第六课时课题 4、3 数系的扩充教学目标 一、教学知识点

1、复数集与实数集的关系,CRQZNN*、 2、实系数一元二次方程的根的问题及根与系数的关系、 二、能力训练要求 1、了解数系的建立发展的过程,学会尊重科学、 2、会运用求根公式及根与系数的关系解决有关问题、 三、德育渗透目标 1、培养学生的探索与创新精神,学会尊重他人的辛勤劳动、 2、培养学生的科学文化素养,提高自身的素质(包括数学素质),懂得数学与文化的关系、教学重点在复数集中解一元二次方程、教学难点复系数一元二次方程根的探索、教学方法探索建构法:在学生已经掌握复数的运算法则和实数一元二次方程的求解的基础上,逐步让学生主动建构出各数集之间的关系,探索出实系数一元二次方程在复数集中的求解公式、韦达定理,以及复系数一元二次方程的求解法、教学过程Ⅰ、复习导入[师]我们已经学习了哪几类数?[生]正整数、零、负整数、分数、无理数、虚数等等、[师]那么这些数集之间有什么关系呢?这些数又是在什么背景下产生的呢?这一节课我们来研究:数系的扩充(板书课题)、Ⅱ、讲授新课[师]数的概念是从实践中产生和发展起来的,早在人类社会初期,人们在狩猎、采集果实等劳动中由于计数的需要,就产生了

高三数学 数系的扩充单元测试 文 人教A版

新人教A 版数学高三单元测试27【数系的扩充】 本卷共100分,考试时间90分钟 一、选择题 (每小题4分,共40分) 1. 已知复数z 满足(1)z +=,则z 的共同复数z 的虚部是( ) A . B . C .D 2. 复数 21(1)1i i +-+的虚部是 ( ) A .52i - B .52- C .32i - D .32 - 3. 若2i -1i 21+=a +bi (a,b ∈R,i 是虚数单位),则a -b 等于 ( ) A .-7 B .-1 C .-51 D .-5 7 4. 若复数i m m m m z )65()43(2 2--+--=为纯虚数,则实数m 的值( ) A . 5 B .6 C. 1- D.4 5. 复数1i i -的共轭复数为 ( ) A .1122i -+ B .1122i + C .1122i -- D .1122i - 6. 1122 z z 2,3 4.z m i z i m =+=-复数若为实数,则实数的值为 A .8 3 B .32 C .83- D .32- 7. 定义运算 ,,a b ad bc c d =-,则符合条件,1201,1z i i i +=-+的复数Z 的共轭复数Z 对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8. 在复平面内,复数 21i + 对应的点与原点的距离是( ) A. 1 C.2 D.

9. 设i z +=1(i 是虚数单位),则在复平面内,22z z +对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10. 若122 ω=-+,则等于21ωω++=( ) A .1 B .0 C .3+ D .1- 二、填空题 (共4小题,每小题4分) 11. 已知复数(2)(z i i i =-为虚数单位),则z = . 12. 若复数z 满足2i z i i -+= ,则复数z 的模为 。 13. 复数i i z +=1在复平面上对应点的坐标为 14. 若z C ∈且221z i +-=,则12z i --的最大值是_______. 三、解答题 (共4小题,共44分,写出必要的解题步骤) 15. (本小题满分10分)已知复数i m m m z )4()43(2-+--=, 求实数m 的取值范围: (1)z 为实数;(2)z 为纯虚数;(3)z 在第三象限. 16. (本题满分10分) 已知复数i z += 31,||2z =2,221z z ?是虚部为正数的纯虚数。 (1)求221z z ?的模;(2)求复数2z 。 17. (本小题满分12分)已知复数i z 311+=,ααsin cos 32i z += ,求复数21z z z ?=实部的最值. 18. (本小题满分12分) 设1cos z x i =+,21sin z i x =+(x 为实数且[0,],2x i π∈是虚 数单位),求函数212()f x z z =-的值域。

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题 一、选择题 1.已知函数f (x )=???? ?3x ,x≤0,log 2 x ,x>0,下列结论正确的是( ) A .函数f (x )为奇函数 B .f (f (14))=1 9 C .函数f (x )的图象关于直线y =x 对称 D .函数f (x )在R 上是增函数 2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1) 3.函数f (x )=ln|x +cos x |的图象为( )

4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x ) x <0的解集为( ) A .(-2,0)∩(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞) D .(-2,0)∪(0,2) 5.实数x ,y 满足不等式组???? ?x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( ) A.215 5 B .21 C .20 D .25 6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,1 2) B .(1 2,1) C .(1,2) D .(2,+∞) 7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +y x +y 的最小值为( ) A.53 B .2 C.35 D.12 8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

数系的扩充和复数的概念优秀教学设计

数系的扩充和复数的概念 【教学目标】 1.在问题情境中了解数系的扩充过程,体会实际需求在数系扩充过程中的作用理解复数的基本概念 2.理解复数的基本概念以及复数相等的充要条件 3.了解复数的代数表示方法 【教学重难点】 重点:引进虚数单位i的必要性、对i的规定、复数的有关概念 难点:实数系扩充到复数系的过程的理解,复数概念的理解 【教学过程】 一、创设情景、提出问题 1:我们知道,对于实系数一元二次方程,没有实数根。我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?  2:类比引进,就可以解决方程在有理数集中无解的问题,怎么解决在实数集中无解的问题呢? 3:把实数和新引进的数i 像实数那样进行运算,并希望运算时有关的运算律仍成立,你得到什么样的数? 二、学生活动 1.复数的概念: (1)虚数单位:数__叫做虚数单位,具有下面的性质: ①_________ ②_____________________________________ (2)复数:形如__________叫做复数,常用字母___表示,全体复数构成的集合叫做______,常用字母___表示。 (3)复数的代数形式:_________,其中____叫做复数的实部,___叫做复数的虚部,复数的实部和虚部都是___数。 (4)对于复数a + bi(a,b∈R), 当且仅当_____时,它是实数; 当且仅当_____时,它是实数0;

当_______时,叫做虚数; 当_______时,叫做纯虚数; 2.学生分组讨论 (1)复数集C和实数集R之间有什么关系? (2)如何对复数a + bi(a,b∈R)进行分类? (3)复数集、实数集、虚数集、纯虚数集之间的关系,可以用韦恩图表示出来吗? 三、练习: 1.下列数中,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么? 2+2i,0.618,2i/7,0,5i+8,3-9i 2.判断下列命题是否正确: (1)若A.b为实数,则Z=a + bi为虚数 (2)若b为实数,则Z=bi必为纯虚数 (3)若a为实数,则Z= a一定不是虚数 四、归纳总结、提升拓展 【例1】实数m分别取什么值时,复数z=m+1+(m-1)i是(1)实数?(2)虚数?(3)纯虚数? 【练习】实数m分别取什么值时,复数z=M2+m-2+(M2-1)i是(1)实数?(2)虚数?(3)纯虚数? 两个复数相等,即两个复数相等的充要条件是它们的实部与虚部分别对应相等。也就是A + bi=c + di _______________________(A.B.C.d为实数) 由此容易出:a +bi=0 _______________________ 【例2】已知x +2y +(2x+6)i=3x-2 ,其中,x,y为实数,求x与y。 五、反馈训练、巩固落实 1.若x,y为实数,且 2x-2y+(x+y)i=x-2 i,求x与y。 2.若x为实数,且(2x2-3x-2)+(x2-5x+6)i=0,求x的值。

高三数学第一轮复习专题---数系的扩充与复数的引入

第五十三讲 数系的扩充与复数的引入 班级________ 姓名________ 考号________ 日期________ 得分________ 一?选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.) 1.(2010·山东)已知2a i i +=b+i(a,b∈R),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 解析:由2a i i +=b+i 得a+2i=bi-1,所以a=-1,b=2,所以a+b=1,故选B. 答案:B 2.(2010·江西)已知(x+i)(1-i) =y,则实数x,y 分别为( ) A.x=-1,y=1 B.x=-1,y=2 C.x=1,y=1 D.x=1,y=2 解析:由(x+i)(1-i)=y 得(x+1)+(1-x)i=y, 又因x,y 为实数,所以有1 ,10y x x =+??-=? 解得1 .2x y =??=? 答案:D 3.(2010·新课标全国)已知复数 z 是z 的共轭复数,则z·z =( ) 1 1 ..42.1.2 A B C D 解析:∵z====== ∴z =∴z?z =|z|2=1 4,

故选A. 答案:A 4.(2010·广东)若复数z 1=1+i,z 2=3-i,则z 1·z 2=( ) A.4+2i B.2+i C.2+2i D.3+i 解析:z 1?z 2=(1+i)(3-i)=3-i+3i-i 2 =4+2i. 答案:A 5.(2010·浙江)对任意复数z=x+yi(x,y∈R),i 为虚数单位,则下列结论正确的是 ( ) A.|z-z |=2y B.z 2=x 2+y 2 C.|z-z |≥2x D.|z|≤|x|+|y| 解析:|z|= =|x|+|y|,D 正确,易知A ?B ?C 错误. 答案:D 6.(2010·福建)对于复数a,b,c,d,若集合S={a,b,c,d}具有性质“对任意x,y∈S,必 有xy∈S”,则当2211a b c b =??=??=? 时,b+c+d 等于( ) A.1 B.-1 C.0 D.i 解析:根据集合元素的唯一性,知b=-1,由c 2=-1得c=±i,因对任意x,y∈S,必有xy∈S,所以当c=i 时,d=-i;当c=-i 时,d=i,所以b+c+d=-1. 答案:B 二?填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.) 7.(2010·北京)在复平面内,复数21i i -对应的点的坐标为________. 解析:22(1)1(1)(1) i i i i i i +=--+ =-1+i,故其对应的点的坐标是(-1,1). 答案:(-1,1)

高中数学数形结合思想在解题中的应用

高中数学数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2 =++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10)k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202 解,得;解,得()()I x II x 0220≤<-≤<

高中数学解三角形方法大全

解三角形的方法 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能 如图,在ABC ?中,已知a 、b 、A (1)若A 为钝角或直角,则当b a >时,ABC ?有唯一解;否则无解。 (2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <

相关主题
文本预览
相关文档 最新文档