当前位置:文档之家› 武汉大学2008数学分析试题和解答

武汉大学2008数学分析试题和解答

武汉大学2008数学分析试题和解答
武汉大学2008数学分析试题和解答

第1 页共2 页

数学分析第 1 页共 2 页

数学分析试卷及答案6套

数学分析-1样题(一) 一. (8分)用数列极限的N ε-定义证明1n n n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使2 lim (1)0x x x ax b →+∞ -+-=. 八. (14分)求函数32()2912f x x x x =-+在15[,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --. 数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a a =, 1()n n a a a n N +=+ ∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

数学分析专题研究试题及参考答案

数学分析专题研究试题及参考答案 一、填空题(每小题3分,共18分) 1.集合X 中的关系R 同时为反身的,对称的,传递的,则该关系R 为 . 2.设E 是非空数集,若存在实数β,满足1)E x ∈?,有β≥x ;2) ,则称β是数集E 的下确界。 3.函数)(x f y =在点0x 的某个邻域内有定义,若 存在,则称函数)(x f 在点 0x 可导。 4.若)(x f y =是对数函数,则)(x f 满足函数方程=)(xy f 。 5.若非零连续函数)(x f 满足方程)()()(y f x f y x f +=+,则函数)(x f 是 函数。 6.设函数)(x f 定义在区间),(b a 上,对于任意的),(,21b a x x ∈,)1,0(∈?α,有 成 立,则称)(x f 在),(b a 上为下凸函数。 二、单项选择题(每小题3分,共18分) 1.设f :Y X →,X A ??,则A ( )))((1 A f f - A. = B. ≠ C. ? D. ? 2.已知函数)(x f y =在区间),(b a 上可导,),(b a x ∈?,有1)(0<)(x ?' D. 前三个结论都不对 4.已知???∈∈=]2,1(2]1,0[1)(t t t f ,对于]2,0[∈x ,定义?=x t t f x F 0d )()(,则)(x F 在区 间[0,2]上( )。 A. 连续 B. 不连续 C. 可导 D. 前三个结论都不对 5.已知)(x f 是区间],[b a 上的严格下凸函数,则( )。

数据分析期末试题及答案

数据分析期末试题及答案 一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。(25分) 解: 1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系 上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。尝试多种模型后采用曲线估计,得出 表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系

上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。 上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系 。 x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(3 3 由图可知,他们之间呈正线性关系 所以可以采用如下的线性回归方法分析。

2.线性回归 先用强行进入的方式建立如下线性方程 设Y=β0+β1*(Xi1)+β2*Xi2+β3* X+εi i=1.2 (24) 3i 其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差 R值为0.952,大于0.8,表示两变量间有较强的线性关系。且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。 建立总体性的假设检验 提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零 得如下方差分析表 上表是方差分析SAS输出结果。由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1n n ∞ = C . 21(1)n n n ∞=-∑ D . 11(1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数 在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原函 数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 (0)1dx k kx +∞ >+? 收敛于1,则k =( ) A . 2π B .22π C . 2 D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+L L 收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<<

二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+?? L 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 . 65

数学分析试题及答案解析

2014---2015学年度第二学期 《数学分析2》A 试卷 学院班级学号(后两位)姓名 一. 1.若f 2.. . . 二. 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上() A.不连续 B.连续 C.可微 D.不能确定 2.若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则() A.()x f 在[]b a ,上一定不可积;

B.()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C.()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D.()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D.不确定 4. A.B.C.D.5.A.B.C.D.三.1.()()()n n n n n n n +++∞→ 211lim 2.()?dx x x 2cos sin ln 四.判断敛散性(每小题5分,共15分) 1.dx x x x ? ∞ +++-0 2 113

2.∑ ∞ =1 !n n n n 3.()n n n n n 21211 +-∑ ∞ = 五.判别在数集D 上的一致收敛性(每小题5分,共10分) 1.()()+∞∞-=== ,,2,1,sin D n n nx x f n 2. 求七.八.

2014---2015学年度第二学期 《数学分析2》B 卷?答案 学院班级学号(后两位)姓名 一、 二.三. 而n 分 2.解:令t x 2sin =得 ()dx x f x x ? -1=()() t d t f t t 222 2sin sin sin 1sin ? -----------------2分 =tdt t t t t t cos sin 2sin cos sin ? =?tdt t sin 2-----------------------------------4分

数学系第三学期数学分析期末考试题及答案

第三学期《数学分析》期末试题 一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 2、 =??),(00|) ,(y x x y x f ( ) A x y x f y y x x f x ?-?+?+→?),(),(lim 00000 ; B x y x x f x ??+→?) ,(lim 000; C x y x x f y y x x f x ??+-?+?+→?),(),(lim 00000 ; D x y x f y x x f x ?-?+→?) ,(),(lim 00000。 3、函数f (x,y )在(x 0,,y 0)可偏导,则( D ) A f (x,y )在(x 0,,y 0)可微 ; B f (x,y )在(x 0,,y 0)连续; C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ; D 以上全不对。 4、2 222 2) (),(y x y x y x y x f -+=的二重极限和二次极限各为( B ) A 、0,0,0; B 、不存在,0,0,; C 、0,不存在,0; D 、0,0,不存在。 5、设y x e z =,则=??+??y z y x z x ( A ) A 、0; B 、1; C 、-1; D 、2。 二、计算题(50分,每小题10分) 1、 证明函数?? ? ??=+≠++=0 00),(22222 2y x y x y x xy y x f 在(0,0)点连续且可偏导, 但它在该点不可微; 2、 设 ??'=-x x t x f x f dt d e x f 0) (),(,)(2 求ττ; 3、 设有隐函数,0 x y F z z ??= ???,其中F 的偏导数连续,求z x ??、z y ??; 4、 计算 (cos sin ) x C e ydx ydy -? ,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点 的光滑曲线; 5、 计算 zdS ∑ ??,其中∑为22 z x y =+在 1 4z ≤ 的部分; 三、验证或解答(满分24分,每小题8分)

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 学院 班级 学号(后两位) 姓名 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为 ()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????=dx x g dx x f dx x g x f ( ). 3. 若()? +∞ a dx x f 绝对收敛,()?+∞ a dx x g 条件收敛,则()()?+∞-a dx x g x f ][必 然条件收敛( ). 4. 若()? +∞ 1 dx x f 收敛,则必有级数()∑∞ =1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散于 正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ).

二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则( ) A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑ ∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B. 若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛;

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

07数学分析(一)试题A及答案

2007 ~2008 学年第一学期 《数学分析(一)》课程考试试卷(A 卷) (闭卷) 院(系) _经济学院___专业班级__________学号_________ 姓名__________ 考试日期: 2008-1-17 考试时间: 19:00—21:30 一. 填空题(每小题3分,共30分) 1. =?dx x x 2sin C x x x ++-|sin |ln cot . 2. 曲线233x x y +-=的拐点是 (1,2). 3. ) 11(tan )cos 1(lim 4 2 2 20 -+-→x x x e x x =___2__. 4. 设x x y 44cos sin +=,则)(n y )(+∈N n =)2 4cos(4 1 πn x n + -. 5. 设1)(2++=x x x f ,在[0,2]上用Lagrange 中值定理,则中值ξ=_1__. 6. Riemann 函数在每个有理点都间断,在每个无理点都连续. 7. 设,021k b b b <<<< 则n n k n n n b b b +++∞ → 21lim =k b . 8. 设2 211x x x y -+=, 则=dy dx x x x y )121( 4 -+. 9. 函数x x x u sin 1tan 1)(--+=当0→x 时的无穷小主部是x .

10. 设)(x f 在+ R 内可微且4)]()(2[lim ='++∞ →x f x f x ,则=+∞ →)(lim x f x 2 二. 举例说明下列命题是错误的(每小题3分,共15分. 需要简单说明) 1.非常值周期函数必有最小正周期. Direchlet 函数. 因为任意正有理数都是它的周期. 2.设函数)(x f 在区间I 上有间断点,则)(x f 在I 上不存在原函数. ????? =≠-=0,00 ,1cos 21sin 2)(22x x x x x x x f ,在x=0处间断,但在任何区间)0(I I ∈上有原函数?? ???=≠=0,00,1sin )(22 x x x x x F . 3. 设函数)(x f 在),0[+∞上有定义,且在),0(+∞内有0)(>'x f ,则对一切的0>x ,有)0()(f x f >. 只要在x=0处不右连续的函数即可说明. 4. 若()f x 在(,)a b 内可导,且()()f a f b =,则必存在(,)a b ξ∈,使得 ()0f ξ'=. 函数)10(,)(<≤=x x x f ,0)1(=f . 5. 若数列}{n x 满足:,,0N ?>?ε 当N n >时有ε<-+||1n n x x ,则} {n x 为基本数列. 发散数列n x n 1 21 1+ ++= ,},1][,1max{,01-=>?-εεN 取 :N n >?则 ε<+= -+1 1 ||1n x x n n .

2015武汉大学数学分析考研真题

2015武汉大学数学分析 一、(40分) 1、.) 1()1)(1()1()1)(1(lim 2111------+--→k k n n n x x x x x x x 2、.sin cos cos lim 20x bx ax m n x -→ 3、).11(lim 132 n -+∑=∞→n k n k 4、已知 2 110n a a n n +≤<+,证明数列{}n a 极限存在。 二、已知曲面0)))((,))(((11=------c z y b c z x a F ,且),(t s F 二阶偏导连续,梯度处处不为零,(1)证明,曲面的切平面必过一定点;(2)()y x z z ,=,证明 .02 22222=??? ? ?????-?????y x z y z x z 三、0>n a ,01lim 1n >=??? ? ??-+∞→λa a n n n ,证明,()∑∞=--111n n n a 收敛. 四、求?????????????? ??--??-∞→t t y x t dxdy y x e e e 00t lim 的极限,或证明它不存在。 五、(1)、求积分()??+ππ 00cos dxdy y x 的值,(2)、10<<α,求积分()d t t f ?1 α的上确界,其中)t (f 是连续函数, ().110 ≤?dt t f 六、已知()dt x tx f ?∞+=0 21cos t ,证明, (1)、()x f 在()∞+∞, -上一致收敛; (2)()0lim =∞→t f t (3)()x f 在()∞+∞, -上一致连续; (4)()0dt sin 0 ≤?∞ t t f ;

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=, 得 2 21ln(1)4 x x x x ≤-+≤,(x 充分小),

数学分析_各校考研试题及答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y ,v=x-y ,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值范围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感谢小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤? 证:因f(x)在[a,b]可导,则由拉格朗日中值定理,存在

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

武汉大学数学分析考试解答

武汉大学2004年攻读硕士学位研究生入学考试试题 科目名称:数学分析 科目代码:369 一、计算下列各题: 1. 2. 2212lim(...),(1)11()1lim()11(1)1n n n n n n a a a a n a a a a a a →∞→∞+++>-=-=---lim(sin 1sin ) 11lim 2sin()cos 2211lim 2sin cos 22(1) x x x x x x x x x x x x x →∞ →∞→∞+-+-++=++=++= 3. 4. 20 30 220sin()lim sin()lim (')313x x x t dt x x L Hospital x →→==?法则2 1 11 arctan 2arctan(21)arctan(21)244 k k k k k πππ∞ =∞ ==+--=-=∑∑ 5. 4812 4812323 3 1... ()59!13!1()...3!11!15! ()()sin ()4()()()24x x A B e e A x B x x A e e e e B A x B x π π πππππππππππππππππππ---+ +++= ++++-?-=??==?--+= ??!7! 6. " '2"22' 2(,)()(),()(,) (,)()()()() (,)()(23)()(1)()xy x xy y xy x y y xy F x y x yz f z dz f z F x y F x y z f z dz x xy xf xy x x F x y f x y f xy xy y f xy y y =-=-+-= +-+-??设:其中为可微函数,求

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

华中科技大学2004年《数学分析》试题

华中科技大学2004年《数学分析》试题 (试题由博士论坛之硕博之路版主hfg1964录入) 以下每题15分 1.设00x =,1 n n k k x a == ∑(1n ≥),n x b →(n →∞).求级数11 ()n n n n a x x ∞ -=+∑之和. 2.设(0)(1)f f =,''()2f x ≤(01x ≤≤).证明'()1f x ≤(01x <<).此估计式能否改进? 3.设(,)f x y 有处处连续的二阶偏导数,'(0,0)'(0,0)(0,0)0x y f f f ===.证明 (,)f x y 1 22 1112220 (1)[(,)2(,)(,)]t x f tx ty xyf tx ty y f tx ty dt = -++? . 4.设(,)f x y 在,0x y ≥上连续,在,0x y >内可微,存在唯一点00(,)x y ,使得00,0x y >, 0000'(,)'(,)0x y f x y f x y ==.设00(,)0f x y >,(,0)(0,)0f x f y ==(,0x y ≥), 2 2 lim (,)0x y f x y +→∞ =,证明00(,)f x y 是(,)f x y 在,0x y ≥上的最大值. 5.设处处有''()0f x >.证明:曲线()y f x =位于任一切线之上方,且与切线有唯一公共点. 6.求22 49L xdy ydx I x y -= +? ,L 是取反时针方向的单位圆周. 7.设()f 是连续正值函数, 2 2 2 2 2 2 2 222 2222 ()()()()x y z t x y t f x y z dxdydz F t x y f x y dxdy ++≤+≤++= ++??? ?? . 证明()F t (0t >)是严格单调减函数. 8.设级数0 1 n n a n ∞ =+∑ 收敛,证明 1 1n n n n n a a x dx n ∞∞ === +∑ ∑?. 9.设()f x 在[0,)∞上连续,其零点为01:0n n x x x x =<<<< ,()n x n →∞→∞.证明:积分0 ()f x dx ∞ ? 收敛?级数10 ()n n x x n f x dx +∞ =∑ ? 收敛. 10.设a b <,()n f x 在[,]a b 上连续,()0b n a f x dx ≥?(1,2,n = ),当n →∞时,()n f x 在[,] a b 上一致收敛于()f x .证明:至少存在一点0[,]x a b ∈,使得0()0f x ≥.

[考试必备]武汉大学数学分析考研试题集锦(1992,1994-2012年)

武汉大学数学分析1992 1.给定数列如下: }{n x 00>x ,?? ? ???+?=?+11)1(1k n n n x a x k k x ,",2,1,0=n (1)证明数列收敛。 }{n x (2)求出其极限值。 2.设函数定义在区间)(x f I 上,试对“函数在)(x f I 上不一致连续”的含义作一肯定语气的(即不用否定词的)叙述,并且证明:函数在区间x x ln ),0(+∞上不一致连续。 3.设函数在区间上严格递增且连续,)(x f ],0[a 0)0(=f ,为的反函数,试证明成立等式: 。 )(x g )(x f []x x g a x x f a f a d )(d )()(0 0∫ ∫?=4.给定级数∑+∞ =+01 n n n x 。 (1)求它的和函数。 )(x S (2)证明广义积分 x x S d )(10 ∫ 收敛,交写出它的值。 5.对于函数??? ????=+≠++=0,00,),(222 22 22y x y x y x y x y x f ,证明: (1)处处对),(y x f x ,对可导; y (2)偏导函数,有界; ),(y x f x ′),(y x f y ′(3)在点不可微。 ),(y x f )0,0((4)一阶偏导函数,中至少有一个在点不连续。 ),(y x f x ′),(y x f y ′)0,0(6.计算下列积分: (1)x x x x a b d ln 10 ?∫ ,其中为常数,b a ,b a <<0。 (2),其中为平面上由直线∫∫?D y y x e d d 2 D x y =及曲线31 x y =围成的有界闭区域。 武汉大学数学分析1994 1.设正无穷大数列(即对于任意正数}{n x M ,存在自然数,当时,成立), N N n >M x n >E 为的一切项组成的数集。试证必存在自然数}{n x p ,使得E x p inf =。 2.设函数在点的某空心邻域内有定义,对于任意以为极限且含于的数列 ,极限都存在(有限数)。 )(x f 0x 0 U 0x 0 U }{n x )(lim n n x f ∞ →(1)试证:相对于一切满足上述条件的数列来说,数列的极限是唯一确定的, 即如果和是任意两个以为极限且含于的数列,那么总有 }{n x )}({n x f }{n x }{n x ′0x 0 U )(lim )(lim n n n n x f x f ′=∞ →∞ →。 (2)记(1)中的唯一确定的极限为,试证:)}({n x f A A x f x x =→)(lim 0 。 3.设函数在点的邻域)(x f 0x I 内有定义,证明:导数)(0x f ′存在的充要条件是存在这样的函数,它在)(x g I 内有定义,在点连续,且使得在0x I 内成立等式:

数学分析试题及答案4

(十四) 《数学分析Ⅱ》考试题 一 填空(共15分,每题5分): 1 设=∈-=E R x x x E sup ,|][{则 1 , =E inf 0 ; 2 设 =--='→5 ) 5()(lim ,2)5(5 x f x f f x 则54; 3 设?? ?>++≤=0 , )1ln(,0, sin )(x b x x ax x f 在==a x 处可导,则0 1 , =b 0 。 二 计算下列极限:(共20分,每题5分) 1 n n n 1 )1 31211(lim ++++ ∞→ ; 解: 由于,n n n n 1 1)131211(1≤++++≤ 又,1lim =∞→n n n 故 。1)131211(lim 1 =++++∞→n n n 2 3 )(21lim n n n ++∞→; 解: 由stolz 定理, 3 )(21lim n n n ++∞→33)1()(lim --=∞→n n n n ) 1)1()(1(lim -+-+ -- =∞ →n n n n n n n n ) 1)1(2))(1(() 1(lim --+---+=∞→n n n n n n n n n .3 2)1)11(21 11lim 2=-- +- + =∞ →n n n n 3 a x a x a x --→sin sin lim ;

解: a x a x a x --→sin sin lim a x a x a x a x --+=→2sin 2cos 2lim .cos 2 2sin 2 cos lim a a x a x a x a x =--+=→ 4 x x x 10 ) 21(lim + →。 解: x x x 10 )21(lim +→.)21(lim 2 2 210e x x x =?? ??? ?+=→ 三 计算导数(共15分,每题5分): 1 );(),1ln(1)(22x f x x x x f '++-+= 求 解: 。 1 11 11 1 1221122)(2 2 2 22 2+-= +- +=++++ - +='x x x x x x x x x x x x f 2 解: 3 设。 求)100(2 ,2sin )23(y x x y -= 解: 由Leibniz 公式 )23()2(sin )23()2(sin )23()2(sin 2)98(2 1002)99(11002)100(0100)100(' '-+'-+-=x x C x x C x x C y 6)2sin(26)2sin(2100)23)(2sin(22 98982991002999922100100?+++?+-+=?πππx x x x x x x x x x 2sin 2297002cos 26002sin )23(298992100?-?--= 。 ]2cos 12002sin )22970812[(2298x x x x --= 四 (12分)设0>a ,}{n x 满足: ,00>x ,2,1,0),(211 =+= +n x a x x n n n ;sin cos 33 表示的函数的二阶导数求由方程???==t a y t a x , tan sin cos 3cos sin 3)cos ()sin (22 33t t t a t t a t a t a dx dy -=-=''=。t t a t t a t dx y d sin cos 3sec )cos (sec 223222='-=

相关主题
文本预览
相关文档 最新文档