当前位置:文档之家› 铁氧化物阵列结构电极材料的制备、改性及储锂性能研究

铁氧化物阵列结构电极材料的制备、改性及储锂性能研究

锂电池几种正极材料的优缺点

锂电池几种正极材料的优缺点 锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价格的降低。对锂离子动力电池尤其如此。比如一块手机用的小型锂离子电池大约只需要5克左右的正极材料,而驱动一辆公共汽车用的锂离子动力电池可能需要高达500千克的正极材料。 衡量锂离子电池正极材料的好坏,大致可以从以下几个方面进行评估:(1)正极材料应有较高的氧化还原电位,从而使电池有较高的输出电压;(2)锂离子能够在正极材料中大量的可逆地嵌入和脱嵌,以使电池有高的容量;(3)在锂离子嵌入/脱嵌过程中,正极材料的结构应尽可能不发生变化或小发生变化,以保证电池良好的循环性能;(4)正极的氧化还原电位在锂离子的嵌入/脱嵌过程中变化应尽可能小,使电池的电压不会发生显著变化,以保证电池平稳地充电和放电;(5)正极材料应有较高的电导率,能使电池大电流地充电和放电;(6)正极不与电解质等发生化学反应;(7)锂离子在电极材料中应有较大的扩散系数,便于电池快速充电和放电;(8)价格便宜,对环境无污染。 锂离子电池正极材料一般都是锂的氧化物。研究得比较多的有LiCoO2,LiNiO2,LiMn2O4,LiFePO4和钒的氧化物等。导电聚合物正极材料也引起了人们的极大兴趣。 1、LiCoO2 在目前商业化的锂离子电池中基本上选用层状结构的LiCoO2作为正极材料。其理论容量为274mAh/g,实际容量为140mAh/g左右,也有报道实际容量已达155mAh/g。该正极材料的主要优点为:工作电压较高(平均工作电压为3.7V)、充放电电压平稳,适合大电流充放电,比能量高、循环性能好,电导率高,生产工艺简单、容易制备等。主要缺点为:价格昂贵,抗过充电性较差,循环性能有待进一步提高。 2、LiNiO2

隧道构造锰氧化物合成及应用汇总

隧道构造锰氧化物合成及应用 崔浩杰冯雄汉谭文峰刘凡* 华中农业大学资源与环境学院, 430070 E-mail: 1 摘要:隧道构造锰氧化物在比表面、离子交换性、稳定性及分子级的隧道空间等方面具有优异的性能,其在催化剂、锂锰二次电池正极材料及吸附剂等材料科学领域的应用研究越来越受到人们的关注。本文综述了国内外隧道构造锰氧化物合成及应用的研究进展。关键词:锰氧化物合成隧道构造 1 引言 隧道构造锰氧化物是由MnO6八面体单链、双链或宽链通过链内共棱,链间共角顶氧连接成网状(网孔即隧道),隧道沿垂直该平面方向延伸。根据MnO6 八面体链组合的不同,各种隧道结构可表示为1×n、2×n、3×n或m×n等,其中1、2、3、m和n分别表示单链、双链、三链和多链,隧道大小由其结构决定,其结构类型如图1。在MnO6八面体链中存在Mn、Mn 4+2+3+对Mn的同晶替代。隧道中存在各种阳离子和水分子,阳离子在平衡电荷、稳定矿物结构方面具有重要作用。大隧道构造锰氧化物具有较大的比表面积、较多的负电荷量、优异的离子交换性能、良好的稳定性及分子级的隧道空间。独特的结构和理化性质使其在催化剂、电池、吸附剂等材料科学领域有着广泛的应用前景[2-8][1]。 在过去的几十年里,人们已就各种隧道构造锰氧化物的合成方法、合成影响因素、化学组成、晶体构造及理化性质等进行了大量研究[9-13]。近年来,随着在材料科学领域应用研 [14-17]究的不断深入,隧道构造锰氧化物的合成、改性及其性质表征已特别受到人们的关注

为此,本文对这类锰氧化物的合成及应用研究进展作一简要综述。

a b c d e f 图 1 不同隧道氧化锰矿物的结构示意图(a)软锰矿,(b)拉锰矿,(c)六方锰矿, (d)锰钡矿族,(e)钡硬锰矿,(f)钙锰矿 2 隧道构造锰氧化物合成 2.1钙锰矿合成 钙锰矿(todorokite,OMS-1)又称钡镁锰矿,隧道大小为0.69nm╳0.69nm。已报道的钙锰矿合成方法主要途径是水钠锰矿(birnessite)→ 布塞尔矿(buserite→ 钙锰矿,为了能够从水钠锰矿合成制得钙锰矿,应使水钠锰矿的基面间距膨大至 1nm。某些大的阳离子如Ca、Ni、Mg等可使其生成层间距为1nm的布塞尔矿。Golden等在碱性介质中通O2氧化Mn(OH2制备了水钠锰矿,再进行Mg离子交换,最后经高压釜热液处理,首次人工合成出钙锰矿。经鉴定,其形貌特征与天然

吸附剂的应用研究现状和进展_杨国华

84 吸附剂的应用研究现状和进展 杨国华1,黄统琳1,姚忠亮3,刘明华1,2 (1.福州大学环境与资源学院,福建 福州 350108; 2.华南理工大学制浆造纸工程国家重点实验室,广东 广州510640; 3.福建师范大学福清分校生物与化学工程系,福建 福清350300) 摘 要:利用吸附法进行废水处理,具有适应范围广、处理效果好、可回收有用物料以及吸附剂可重复使用等优点,因此随着现有吸附剂性能的不断完善以及新型吸附剂的研制成功,吸附法在水处理中的应用前景将更加广阔。主要对活性炭、吸附树脂、改性淀粉类吸附剂、改性纤维素类吸附剂、改性木质素类吸附剂、改性壳聚糖类吸附剂以及其他可吸收污染物质的药剂、物料等吸附剂的应用研究现状和发展趋势进行综合概述。 关键词:吸附剂;吸附法;研究;综述 基金项目:中国博士后基金资助项目(20070410238)和中国博士后基金特别资助项目(200801239)。 吸附法是利用吸附剂吸附废水中某种或几种污染物,以便回收或去除它们,从而使废水得到净化的方法。利用吸附法进行物质分离已有漫长的历史,国内外的科研工作者在这方面作了大量的研究工作,目前吸附法已广泛应用于化工、环境保护、医药卫生和生物工程等领域。在化工和环境保护方面,吸附法主要用于净化废气、回收溶剂(特别适用于腐蚀性的氯化烃类化合物、反应性溶剂和低沸点溶剂)和脱除水中的微量污染物。后者的应用范围包括脱色、除臭味、脱除重金属、除去各种溶解性有机物和放射性元素等。在处理流程中,吸附法可作为离子交换、膜分离等方法的预处理,以去除有机物、胶体及余氯等,也可作为二级处理后的深度处理手段,以便保证回用水质量。利用吸附法进行水处理,具有适应范围广、处理效果好、可回收有用物料以及吸附剂可重复使用等优点,随着现有吸附剂性能的不断完善以及新型吸附剂的研制成功,吸附法在水处理中的应用前景将更加广阔。 吸附剂是决定高效能的吸附处理过程的关键因素,广义而言,一切固体都具有吸附能力,但是只有多孔物质或磨得极细的物质由于具有很大的表面积,才能作为吸附剂。工业吸附剂还必须满足下列要求: (1)吸附能力强; (2)吸附选择性好; (3)吸附平衡浓度低; (4)容易再生和再利用; (5)机械强度好; (6)化学性质稳定; (7)来源广; (8)价廉。 一般工业吸附剂很难同时满足这八个方面的要求,因此,在吸附处理过程中应根据不同的场合选用不同的吸附剂。目前,可用于水处理的吸附剂有活性炭、吸附树脂、改性淀粉类吸附剂、改性纤维素类吸附剂、改性木质素类吸附剂、改性壳聚糖类吸附剂以及其他可吸收污染物质的药剂、物料等[1] 。本文主要对上述吸附剂的应用研究现状和发展趋势进行综合概述。 1 活性炭 吸附剂中活性炭应用于水处理已有几十年的历史。60年代后有很大发展,国内外的科研工作者已在活性炭的研制以及应用研究方面作了大量的工作。制作活性炭的原料种类多、来源丰富,包括动植物 (如木材、锯木屑、木炭、谷壳、椰子壳、 2009年第6期 2009年6月 化学工程与装备 Chemical Engineering & Equipment

三元材料(锂钴锰镍复合氧化物)中微量元素测定

锂离子电池正极材料中微量元素测定 一、简介 锂离子电池的正极材料目前主要有钴酸锂、锰酸锂、镍酸锂、磷酸铁锂及锂钴锰镍复合氧化物,本方法适用以上材料中微量元素测定,以三元材料(锂钴锰镍复合氧化物)举例。 二、实验仪器与主要试剂 (1)电感耦合等离子体发射光谱仪ICAP-7200型(Thermo) (2)恒温电加热板 (3)盐酸(GR):35% v/v (4)元素标准溶液:100 ug /mL 二、标准溶液的配制 1.主元素:取Li、Ni、Mn标准溶液,加入5mL 35%盐酸后定容,得到主元素混标。 2.杂质元素:取相应标准溶液,加入5mL 35%盐酸后定容,得到杂质元素混标(5μg/mL),再取杂质元素混标,加入2mL 35%盐酸,稀释至相应浓度。 三、分析步骤 1.仪器工作条件

表(2)各元素测试波长 2. 试样溶液配制 2.1 称取0.2500g (精确至0.0001g)试样于50mL 容量瓶子中(耐高温),加1ml水润湿试样,加入5mL35%盐酸,并半旋紧样品瓶盖用于回流,置于90℃电热板上加热至样品完全溶解后,取下冷却后,定容至50mL用来测试杂质元素。 2.2 取1.00mL上述溶液于100mL 容量瓶中,加10mL 35%盐酸,用水稀释至刻度,摇匀,用来测试主元素。 3. 上机测试 3.1 分析参数设置:样品重复测试2 次 样品冲洗时间10S 3.2 等离子源设置:功率1150W 辅助气流量0.5 L/min 雾化器气体流量0.7 L/min 3.3 标准溶液浓度设置 3.4 按照表(2)的工作条件新建测试方法,先用标准溶液绘制工作曲线,然后测试试样溶液谱线强

锂离子电池正极材料的几种体系

锂离子电池正极材料的几种体系 主要包括:锂钴氧化物、锂镍氧化物、锂锰氧化物和聚阴离子正极材料系列。 1. 锂钴氧化物 锂钴氧化物是现阶段商品化锂离子电池中应用最成功、最广泛的正极材料。其在可逆性、放电容量、充放电效率和电压稳定方面是比较好的。LiCoO2属于α-NaFeO2型结构,它具有二维层状结构,适合锂离子的脱嵌,其理论容量为274mAh/g,但在实际应用中,由于结构稳定性的限制,最多只能把晶格中的一半Li+脱出,因此实际比容量约为140mAh/g 左右,其平均工作电压高达3.7V。因其容易制备,具有电化学性能高,循环性能好、性能稳定和充放电性能优良等优点,成为最早大规模商业化应用于锂离子电池的正极材料,目前商品化锂离子电池70%以上仍然采用钴酸锂作为其正极材料。LiCoO2一般采用高温固相法制备,该种方法工艺简单、容易操作、适宜于工业化生产,但是也存在着以下缺点:反应物难以混合均匀,需要较高的反应温度和较长的反应时间,能耗大,产物颗粒较大,形貌不规则,均匀性差,并且难以控制,从而导致电化学性能重现性差。为了克服固相反应的缺点,溶胶-凝胶法、水热法、共沉淀法、模板法等方法被用来制备LiCoO2,这些方法的优点是可以使Li+和Co2+之间充分接触,基本达到原子水平的混合,容易控制产物的粒径和组成。但是这类制备方法工序比较繁琐,工艺流程复杂,成本高,不适用于工业化生产。 2. 锂镍氧化物 镍酸锂(LiNiO2)为立方岩盐结构,与LiCoO2相同,但其价格比LiCoO2低。LiNiO2理论容量为276mAh/g,实际比容量为140~180mAh/g,工作电压范围为2.5V~4.2V,无过充或过放电的限制,具有高温稳定性好,自放电率低,无污染,是继LiCoO2之后研究得较多的层状化合物。但LiNiO2作为锂离子电池正极材料存在以下问题亟待研究解决。首先,LiNiO2制备困难,要求在富氧气氛下合成,工艺条件控制要求较高且易生成非计量化合物。LiNiO2合成技术的关键是将低价的镍完全转变为高价镍,高温虽然可以实现LiNiO2的高效合成,但由于温度超过600℃时合成过程中的Ni2O3易分解成NiO2,不利于LiNiO2的形成,所以必须选用苛刻的低温合成方法。此外,在制备三方晶系的LiNiO2过程中,容易生成立方晶系的LiNiO2,由于立方晶系的LiNiO2在非水电解质溶液中无活性,因此,工艺条件控制不当,极易导致LiNiO2材料的电化学性能不稳定或下降。其次,LiNiO2与LixCoO2一样,在充放电过程中,也会发生从三方晶系到单斜晶系的转变,导致容量衰减[69],与此同时,相变过程中排放的O2可能与电解液反应,此外,LiNiO2在高脱锂状态下的热稳定性也较差,,易于引发安全性问题。可喜的是,通过掺入少量Cu、Mg、Al、Ti、Co等金属元素,可使LiNiO2获得较高的放电平台和电化学循环稳定性。 3. 锂锰氧化物 我国锰资源储量丰富,而且锰无毒,污染小,因此层状结构的LiMnO2和尖晶石型的LiMn2O4都成为了正极材料研究的热点。锂锰氧化物主要有层状LiMnO2和尖晶石型LiMn2O4两类。LiMnO2属于正交晶系,岩盐结构,氧原子分布为扭变四方密堆结构,其空间点群为Pmnm,理论比容量达到286mAh/g,充放电范围为2.5~4.3V,是一种较

各类吸附剂的机理及其研究进展

各类吸附剂的机理及其研究进展 叶鑫 华东交通大学 摘要:吸附法作为一种重要的处理废水的方法已经得到广泛应用。本文介绍了近年来利用吸附法处理废水的研究进展。根据吸附机理将吸附剂吸附重金属的方法分为化学吸附和物理吸附两大类,并对其研究现状进行了介绍。介绍了活性炭、沸石、壳聚糖、膨润土、生物吸附剂处理废水的研究进展,同时对吸附法处理重金属废水的发展方向进行了展望。利用吸附法进行废水处理,具有适应范围广、处理效果好、可回收有用物料以及吸附剂可重复使用等优点,因此随着现有吸附剂性能的不断完善以及新型吸附剂的研制成功,吸附法在水处理中的应用前景将更加广阔。 关键词:吸附剂;吸附法;研究 吸附剂是指能有效地从气体或液体中吸附其中某些成分的固体物质。常用的吸附剂有以碳质为原料的各种活性炭吸附剂和金属、非金属氧化物类吸附剂。最具代表性的吸附剂是活性炭,吸附性能相当好,但是成本比较高,曾应用在松花江事件中用来吸附水体中的甲苯。吸附法是利用吸附剂吸附废水中某种或几种污染物,以便回收或去除它们,从而使废水得到净化的方法。 利用吸附法进行物质分离已有漫长的历史,国内外的科研工作者在这方面作了大量的研究工作,目前吸附法已广泛应用于化工、环境保护、医药卫生和生物工程等领域。 在化工和环境保护方面,吸附法主要用于净化废气、回收溶剂(特别适用于腐蚀性的氯化烃类化合物、反应性溶剂和低沸点溶剂)和脱除水中的微量污染物。后者的应用范围包括脱色、除臭味、脱除重金属、除去各种溶解性有机物和放射性元素等。 在处理流程中,吸附法可作为离子交换、膜分离等方法的预处理,以去除有机物、胶体及余氯等,也可作为二级处理后的深度处理手段,以便保证回用水质量。利用吸附法进行水处理,具有适应范围广、处理效果好、可回收有用物料以及吸附剂可重复使用等优点,随着现有吸附剂性能的不断完善以及新型吸附剂的研制成功,吸附法在水处理中的应用前景将更加广阔。吸附剂是决定高效能的吸附处理过程的关键因素,广义而言,一切固体都具有吸附能力,但是只有多孔物质或磨得极细的物质由于具有很大的表面积,才能作为吸附剂。工业吸附剂还必须满足下列要求:(1)吸附能力强;(2)吸附选择性好;(3)吸附平衡浓度低;(4)容易再生和再利用;(5)机械强度好;(6)化学性质稳定;(7)来源广;(8)价廉。一般工业吸附剂很难同时满足这八个方面的要求,因此,在吸附处理过程中应根据不同的场合选用不同的吸附剂。目前,可用于水处理的吸附剂有活性炭、吸附树脂、改性淀粉类吸附剂、改性纤维素类吸附剂、改性木质素类吸附剂、改性壳聚糖类吸附剂以及其他可吸收污染物质的药剂、物料等[1]。本文主要对上述吸附剂的应用研究现状和发展。 1 活性炭 吸附剂中活性炭应用于水处理已有几十年的历史。60年代后有很大发展,国内外的科研工作者已在活性炭的研制以及应用研究方面作了大量的工作。制作活性炭的原料种类多、来源丰富,包括动植物(如木材、锯木屑、木炭、谷壳、椰子壳、稻麦杆、坚果壳、脱脂牛骨、鱼骨等)、煤(泥煤、褐煤、沥青煤、无烟煤等)、石油副产物(石油残渣、石油焦等)、纸浆废物、合成树脂以及其他有机物(如废轮胎)[2]等。但是,活性炭因生产工艺、原料的不同,性能悬殊非常大,用途也不一样,目前工业上使用的活性炭有粒状和粉状两种,其中以粒状为主。与其他吸附剂相比,活性炭具有巨大的比表面积以及微

Birnessite型锰氧化物的合成研究进展

Birnessite型锰氧化物的合成研究进展 吴忠帅张向东*臧健荣欣 (辽宁大学化学科学与工程学院沈阳 110036) 摘要通过水热法、氧化还原沉淀法、溶胶-凝胶法、高温固相化学反应法、模板法等常见层状Birnessite锰氧化物的合成方法的介绍,阐述了二维层状锰氧化物的合成及反应产物控制,综述了Birnessite 锰氧化物在功能性材料研究方面的一些最新进展。 关键词层状水钠锰矿合成锰氧化物 Recent Progress on the Synthesis of Birnessite-type Manganese Oxide Wu Zhongshuai, Zhang Xiangdong*, Zang Jian, Rong Xin (College of Chemical Science and Engineering, Liaoning University, Shenyang 110036) Abstract This article reviewed the recent process on the synthesis and reaction conditions for the production of layered birnessite manganese oxide through six synthetic methods. The methods included hydrothermal method, redox precipitation method, sol-gel method, high temperature solid phase chemical method, templating reaction. The developing trends of birnessite-type manganese oxide to be used in the functional material were also discussed. Key words Layered, Birnessite, Synthesis, Manganese oxide Birnessite(以下简写Bir)型锰氧化物(亦称水钠锰矿,分子式Na4Mn14O27·9H2O[1]),在自然界中广泛存在于土壤及沉积物中,是一类二维层状[2]锰氧化物,层间距约0.7nm[1,3,4]。其片层由锰氧八面体MnO6共边或共角构成,层间由水分子、Na+(或其它金属离子)离子交互占据填充。层结构上每隔6个锰氧八面体MnO6就有一个空位,使得整个八面体层带负电荷,与嵌入层间的阳离子通过静电作用保持层状结构的稳定。 由于Bir型锰氧化物具有的特殊层状结构,决定了它有很多优异的物理和化学性质,如导电性、磁性、离子交换、催化、选择性吸附等。利用其结构和性质制备的材料在很多领域也有着重要的应用,如做为分子筛[5~9]、离子交换器[7,11]、高效催化剂[12,13]、磁性材料[14]、二次电池电极材料[15~17]、电化学[17~19]、选择性吸附剂[20~23]、纳米复合材料[24~26]和硫化处理剂[27]等。因此,相关研究引起了众多科学工作者的关注。 Bir型锰氧化物常见的合成方法有水热法[28~34]、氧化还原沉淀法[35~43]、溶胶-凝胶法[44,45]、高温固相化学反应法[46~48]、模板法[7,49~56]等。本文重点综述了Bir型锰氧化物的合成方法以及它们在功能性材料研究方面的一些最新进展。 1 水热法 水热法是液相反应的一种,一般在100~300℃间温和条件下完成反应。该方法应用于制备Bir,是将两种或两种以上的固体反应物,如氧化物、氢氧化物或Mn(NO3)2、MnSO4等无机锰盐溶解于水中,配成一定浓度的混合溶液,经搅拌后,转移到高压釜中,控制一定的水热温度和水热时间, 吴忠帅男,24岁,硕士生,现从事锰氧化物合成及应用研究。*联系人,E-mail: xdzhang@https://www.doczj.com/doc/d816030258.html, 辽宁省科技厅基金(20031028)沈阳市科技局基金(1022037-1-07)资助项目 2005-09-27收稿,2006-01-19接受

以二氧化锰为原料制备锰酸锂正极材料

毕业设计(论文)开题报告题目:以二氧化锰为原料制备锰酸锂正极材料 2011年3月1日

1.毕业设计(论文)综述(题目背景、研究意义及国内外相关研究情况) 1.1 研究背景及意义 近几年,随着全球能源的日益紧缺以及自然环境的不断恶化,能否尽快发展高性能的新型能源成为人们目前最为关心的话题之一。首先,当前的形势是石化能源材料在不断减少,价格在不断升高,现实要求我们必须找到替代能源。第二是污染问题,目前环境污染已相当严重,甚至危及到人的生命,这也要求我们必须找到清洁能源[1]。因此,开发一种廉价耐用安全的移动电源显然成为最为迫切的任务。而锂离子电池以其工作电压高、能量密度高、循环寿命长、自放电低、无记忆效应、无污染、安全性能好等独特的优势,经过短短十几年的迅速发展,已经取代了传统的铅酸电池和镍铬、镍氢电池,逐渐成为小型二次电池的主流[2]。 根据大量的工作结果表明,锂离子电池正极材料不仅影响电池的安全性,而且左右着电池的价格。市场上商品化的正极材料是钴酸锂,而我国的钴资源缺乏,主要依赖进口。锰酸锂作为一种电池正极材料,具有价格低廉、毒性低的优点,而且,其制备相对容易,耐过充安全性能好,且其在充电状态下的热分解温度比钴酸锂高200度,热稳定性非常好,被公认为最为适用的电极材料[3]。 作为一种具有巨大潜力的锂离子电池正极材料,锰酸锂已引起众多电池厂家的关注。改进锂离子电池正极材料锰酸锂的制备方法,对尽快推进以锂锰氧为正极材料的锂离子电池的产业化,大幅度降低锂离子电池成本,以适应动力电池发展的需要是十分必要的[4]。目前普遍研究的是用掺杂改性等方法来改善锰酸锂的性能,而用二氧化锰为原料的制备方法很少有人问津,所以我们现在需要研究的是以二氧化锰为原料制备具有较好电化学性能的锰酸锂。 1.2 国内外技术状况 从20世纪80年代中后期开展对尖晶石型锰酸锂的研究以来,围绕其制备、合成研究的文献和报道非常多。不同的制备方法对材料的性能影响各不相同,因此,探索性能卓越的电池正极材料的研究也就是寻找最佳合成方法的过程。目前合成锰酸锂的方法有很多种,可以分为固相合成法和液相合成法两大类别。 1.2.1 固相合成法 1.2.1.1 高温固相合成法 高温固相合成锰酸锂是最常用的制备方法。昆明理工大学材料与冶金工程学院姚耀春、戴永年等[5]人,采用高温固相合成法,以碳酸锂和二氧化锰为原料,按Li/Mn为1:2的摩尔比配料,混合均匀后,在950摄氏度下,恒温24小时,得到

吸附剂性能

吸附剂的吸湿性能评价 摘要 吸附剂的吸湿性能直接影响空调系统的运行情况。在现代建筑中,暖通空调系统是耗能大户。当今,资源和能源极度紧缺,改良传统的吸附剂,开发高效、高性能的复合吸附剂成为一大研究课题。 关键词:吸附剂除湿性能 在现代建筑中,暖通空调系统是耗能大户。除湿空调系统主要存在投资高、设备体积大和制冷功率低等问题。除湿空调技术的研究主要集中在除湿器种类、除湿器结构和除湿系统运行模式3个方面,而这些研究则依赖于除湿吸附剂种类和性能。因而,开发用于除湿空调系统的高效吸附剂,提高除湿空调系统制冷能力,减小设备体积,降低系统投资,已成为加速除湿空调商品化进程的关键。 在空气调节中,吸附剂类型包括固体吸附剂和液体除湿剂,下面将对其除湿性能作出具体评价。 1 固体吸附剂 常用的固体吸附剂可分为“极性吸附剂”和“非极性吸附剂”。极性吸附剂具有亲水性,主要有硅胶、多孔活性铝、沸石等铝硅酸盐类吸附剂。非极性吸附剂具有憎水性,主要有活性炭等。还有许多高分子材料对水蒸气具有良好的吸附性,通常称为“高分子胶”。 1.1 硅胶 硅胶是一种性能良好的除湿剂,但当其吸附大量水分后易破裂,且不耐高温,严重影响除湿效果。经专家研究,经金属离子掺杂改性,可以使硅胶BET比表面积、孔容、平均孔径明显增大,吸附性能明显增强。这是因为对于中孔结构,孔径越大,水蒸气分子的扩散阻力就越小,吸附速率就越快,同时大孔径也有利于吸附放出的热量扩散到环境中,从而有利于吸附过程的进行。 1.2 高分子胶 有机高分子吸湿材料是新型的功能高分子材料,它最初是由高吸水性树脂发展而产生的。它具有优异的吸湿、保湿性能,是一种经过化学与物理方法改性的水性树脂,以分子中的亲水基团来吸收水分。丙烯酸和丙烯酰胺的共聚物是一类用途广泛的多功能高分子化合物,因各自含羧酸基(-COOH)和酰胺基(-CONH)这样的强吸湿基团,多种亲水基的协同作用,使得吸湿性能优于其相应的均聚物和传统的无机吸湿材料硅胶和分子筛,添加的部分尿素起到“致孔剂”作用,使得材料表面出现孔洞,增加了有效吸湿比表面积,故被作为有机高分子吸湿材料的重要一类。 2 液体除湿剂 液体除湿剂对水蒸气有很强的吸湿能力,可当做单纯的物理过程。利用液体除湿剂除湿,是空气处理过程中常用的方法之一。在空气调节过程中,常用的液体除湿剂有溴化锂溶液、氯化锂溶液、氯化钙溶液、乙二醇、三甘醇等。

超级电容器氧化锰电极材料的研究

超级电容器氧化锰电极材料的研究 摘要:氧化锰资源广泛、价格低廉、环境友善、电化学性能良好,有着较好的应用前景,已成为优良的超级电容器电极材料.本文简要介绍了超级电容器氧化锰粉末电极和薄膜电极的特点和制备工艺,综述了合成氧化锰的各种制备技术及其取得的进展和存在的主要问题,并分析了通过掺杂和复合来提高氧化锰电极比容量和导电性的思路和解决方案. 关键词:超级电容器;氧化锰;电极材料;制备技术 1 引言 超级电容器(Supercapacitor)又称超大容量电容器(Ultracapacitor)或电化学电容器(Elec—trochemical Capacitor,EC),是一种介于传统电容器和电池之间的新型储能元件.与传统的电容器相比,超级电容器具有更高的比电容量,可存储的比电容量为传统电容器的十倍以上;与电池相比,具有更高的比功率,可瞬间释放特大电流,具有充电时间短、充电效率高、循环使用寿命长、无记忆效应以及基本无需维护等特点.它填补了传统电容器和电池这两类储能元件之间的空白,在移动通讯,信息技术、工业领域、消费电子、电动汽车、航空航天和国防科技等方面具有极其重要和广阔的应用前景,已成为世界各国研究的热点.各国纷纷制定近期目标和远景发展计划,将其列为重点战略研究对象.根据储能机理的不同,超级电容器可以分为双电层电容器和赝电容电容器.双电层电容器是利用电极和电解质之间形成的界面双电层电容来存储能量,其电极通常采用具有高比表面积的多孔炭材料;而赝电容,是指在电极表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,使其发生快速、可逆的化学吸附/脱附或氧化/还原反应,从而产生比双电层电容更高的比容量,其电极材料主要是金属氧化物和导电聚合物.金属氧化物基电容器目前研究最为成功的主要是氧化钌/n2804水溶液体系.但是,氧化钌价格昂贵,不易实现商品化,而且,其相应的电解质(硫酸)对环境不友好,对集流体的要求较高,从而限制了它的使用.不少研究者正在积极寻找用廉价的过渡金属氧化物及其他化合物材料来替代氧化钌,主要集中在对氧化镍、氧化钴和氧化锰等体系的研究上.其中氧化镍和氧化钴的比容量可达200—300 F/g,但是它们的电位窗口相对较窄(约0.5V),能量密度较低. 氧化锰则是另一种受到重视的过渡金属氧化物电极材料.氧化锰资源广泛、价格低廉、环境友善、具有多种氧化价态,广泛地应用于电池电极材料和氧化催化剂材料上.用于超级电容器的氧化锰电极材料已经取得了很大进展.研究者目前正在研究多种方法制备具有良好电容特性的超级电容器氧化锰电极.氧化锰用作超级电容器的电极主要归缱为两类,一类为制备氧化锰粉末电

锂离子电池电极材料综述(精)

锂离子电池电极材料综述 一、引言 从上世世纪70年代起锂离子电池的研究至第一个可充式锂-二硫化钼电池于1979年研究成功,再到1991年SONY公司首次推出商品化锂离子电池产品算起,锂离子电池的发展至今已有30多年的时间。锂离子电池是以Li+嵌入化合物为正负极的二次电池,实际上是一个锂离子浓差电池,正负极由两种不同的锂离子嵌入化合物组成。与其它蓄电池相比,锂离子电池具有开路电压高、循环寿命长、能量密度高、安全性能高、自放电率低、无记忆效应、对环境友好等优点。目前,锂离子电池已经被广泛应用于移动通讯、便携式笔记本电脑、摄像机、便携式仪器仪表等领域。随着这些电器的高能化,轻量化,对锂离子电池的需求也越来越迫切。同时被看作是未来电动汽车动力电源的重要候选者之一,并在空间技术、国防工业等大功率电源方面展示出广阔的应用前景 二、工作原理 锂离子电池通常正极采用锂化合物,负极采用锂-碳层间化合物。电介质为锂盐的有机电解液。充电时,Li+从正极脱嵌经过电解质嵌入负极,正极处于贫锂态,同时电子的补偿从外电路供给到碳负极,保证负极的电荷平衡。放电时, Li+从负极脱嵌经过电解质嵌入正极,正极处于富锂态。在正常充放电过程中, Li+在层状结构的碳材料和层状结构的金属氧化物的层间嵌入和脱出,一般只引起层面间距变化,不破坏晶体结构。 三、电极材料 (1)电极材料的性能要求 简单来说,电池主要包括正极、负极、电解质与隔膜四个部分。正极材料通常是一种嵌入化合物,在外电场作用下化合物中的锂可逆的嵌入和嵌出;负极材料一般是层状结构的碳材料。 锂离子电池正极材料在改善电池容量方而起着非常重要的作用。理想的正极材料应具备以下品质:点位高、比能量大、电池充放

锂离子电池正极材料镍钴锰酸锂的研究进展

锂离子电池正极材料镍钴锰酸锂的研究进展 杨杰10070134 摘要:对镍钴锰酸锂的制备方法(如高温固相合成法、溶胶一凝胶法、共沉淀法)进行了重点论述,并讨论了相应的电化学性能、结构特征和目前存在的问题。并对层状镍钴锰酸锂正极材料的发展进行了展望。关键词:锂离子电池;正极材料;理论容量;层状镍钴锰酸锂Progress in Research of Layered LiNi1/3 Co1/3 Mn1/3 O2 Cathode Material fjDr Lithium—ion Batteries Abstract:The preparation methods of layered LiNi1/3Co1/3Mn1/3 O2 calhode, such as high一tempemture solidrection method,sol-gel method,co—precipitation metllod and etc,was reviewed in this paper.The related electmchemical properties,stmcturecharacteristics and existing problems were discussed as well.The development of the layered“Ni1/3 Co1/3 Mn1/3 O2 cathode material was forecasted. Key words:lithium-ion battery;cathode material;theoretical capacity; layeredNi1/3 Co1/3 Mn1/3 O2 层状LiNi1/3Co1/3Mn1/3O2作为一种新型的锂离子电池正极材料,其理论容量高达278 mAh/g。LiNi1/3Co1/3Mn1/3O2具有a-NaFeO2型层状结构,Ni为+2价,co为+3价,Mn为+4价,少量的Ni3+和Mn3+。充电时,Mn4+不变价,Ni2+变为Ni4+,C03+变为c04+。LiNi1/3Co1/3Mn1/3O2集中了LiCoO2,LiNiO2,LiMnO2三种材料各自的优点,成本比LiNi0.8Co0.2O2稍低,电性能比LiNi1/2Mn1/2O2好。 由于存在三元协同效应,其综合性能优于任何一单组合化合物。本文着重对最近层状LiNi1/3Co1/3Mn1/3O2的制备方法以及电化学性能进行了综述。

钴酸锂、锰酸锂、磷酸铁锂材料性能分析

钴酸锂锰酸锂磷酸铁锂材料性能对比分析 1、钴酸锂(LiCoO2) 在目前商业化的锂离子电池中基本上选用层状结构的LiCoO2作为正极材料。其理论容量为274mAh/g,实际容量为140mAh/g左右,也有报道实际容量已达155mAh/g。该正极材料的主要优点为:工作电压较高(平均工作电压为3.7V)、充放电电压平稳,适合大电流充放电,比能量高、循环性能好,电导率高,生产工艺简单、容易制备等。主要缺点为:价格昂贵,抗过充电性较差,循环性能有待进一步提高。 2、锰酸锂(LiMn2O4) 用于锂离子电池正极材料的LiMn2O4具有尖晶石结构。其理论容量为148 mAh/g,实际容量为90~120mAh/g。工作电压范围为3~4V。该正极材料的主要优点为:锰资源丰富、价格便宜,安全性高,比较容易制备。缺点是理论容量不高;材料在电解质中会缓慢溶解,即与电解质的相容性不太好;在深度充放电的过程中,材料容易发生晶格崎变,造成电池容量迅速衰减,特别是在较高温度下使用时更是如此。 为了克服以上缺点,近年新发展起来了一种层状结构的三价锰氧化物LiMnO2。该正极材料的理论容量为286mAh/g,实际容量为已达200mAh/g左右。工作电压范围为3~4.5V。虽然与尖晶石结构的LiMn2O4相比,LiMnO2在理论容量和实际容量两个方面都有较大幅度的提高,但仍然存在充放电过程中结构不稳定性问题。在充放电过程中晶体结构在层状结构与尖晶石结构之间反复变化,从而引起电极体积的反复膨胀和收缩,导致电池循环性能变坏。而且LiMnO2也存在较高工作温度下的溶解问题。解决这些问题的办法是对LiMnO2进行掺杂和表面修饰。目前已经取得可喜进展。 3、磷酸铁锂(LiFePO4) 近年来研究的热门锂离子电池正极材料。其理论容量为170 mAh/g,在没有掺杂改性时其实际容量已高达110 mAh/g。LiFePO4具有高稳定性、更安全可靠、更环保并且价格低廉。LiFePO4的主要缺点是理论容量不高,室温电导率低。基于以上原因,LiFePO4在大型锂离子电池方面有非常好的应用前景。

锂电池电极材料综述(精)

锂电池正极材料综述 1、引言 锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价格的降低。对锂离子动力电池尤其如此。 衡量锂离子电池正极材料的好坏,大致可以从以下几个方面进行评估:(1)正极材料应有较高的氧化还原电位,从而使电池有较高的输出电压;(2)锂离子能够在正极材料中大量的可逆地嵌入和脱嵌,以使电池有高的容量;(3)在锂离子嵌入/脱嵌过程中,正极材料的结构应尽可能不发生变化或小发生变化,以保证电池良好的循环性能;(4)正极的氧化还原电位在锂离子的嵌入/脱嵌过程中变化应尽可能小,使电池的电压不会发生显著变化,以保证电池平稳地充电和放电;(5)正极材料应有较高的电导率,能使电池大电流地充电和放电;(6)正极不与电解质等发生化学反应;(7)锂离子在电极材料中应有较大的扩散系数,便于电池快速充电和放电;(8)价格便宜,对环境无污染。 目前已批量应用于锂电池的正极材料主要有钴酸锂、镍酸锂、锰酸锂、钴镍锰酸锂(三元材料)以及磷酸铁锂。 2、正极材料介绍 2.1 LiCoO2 钴酸锂:研究始于1980 年,20 世纪90 年代开始进入市场。它属于α-NaFeO2型层状岩盐结构,结构比较稳定,是一种非常成熟的正极材料产品,目前占据锂电池正极材料市场的主导地位。其理论容量为274mAh/g,实际容量为140mAh/g左右,也有报道实际容量已达155mAh/g。该正极材料的主要优点为:工作电压较高(平均工作电压为3.7V)、充放电电压平稳,适合大电流充放电,比能量高、循环性能好,电导率高,生产工艺简单、容易制备等。主要缺点为:价格昂贵,抗过充电性较差,循环性能有待进一步提高。而且钴有放射性,不利于环保,因此发展受到限制。 2.2 LiNiO2

锂离子电池三元镍钴锰正极材料研究现状综述

三元系锂电池正极材料研究现状 摘要:综述了近年来锂离子电池层状Li-Ni-Co-Mn-O正极材料的研究进展,重点介绍了正极材料LiNi l/3Co l/3Mn l/3O其合成方法电化学性能以及掺杂、包覆改性等方面的研究结果。 三元系正极材料的结果: LiMn x Co y Ni1-x-y O2具有α-2NaFeO2层状结构。Li原子占据3a位置,Ni、Mn、Co随机占据3b位置,氧原子占据6c位置。其过渡金属层由Ni、Mn、Co 组成,每个过渡金属原子由6 个氧原子包围形成MO6 八面体结构,而锂离子嵌入过渡金属原子与氧形成的(MnxCo yNi1-x-y) O2层之间。在层状锂离子电池正极材料中均有Li+与过渡金属离子发生位错的趋势,特别是以结构组成中有Ni2+存在时这种位错更为突出。抑制或消除过渡金属离子在锂层中的位错现象是制备理想α-2NaFeO2结构层状正极材料的关键,在LiMn x Co y Ni1-x-y O2结构中, Ni2+的半径( rNi2+=0.069nm)与Li+的( rLi+=0.076nm)半径接近,因此晶体结构会发生位错,即过渡金属层中的镍原子占据锂原3a的位置,锂原子则进驻3b位置。在Li+层中,Ni2+的浓度越大,则Li+在层状结构中脱嵌越困难,电化学性能越差。而相对于LiNiO2及LiNi x Co1-x-y O2 ,LiMn x Co y Ni1-x-y O2中这种位错由于Ni 含量的降低而显著减少。同时由于Ni2 + 的半径( rNi2 + =0. 069nm) 大于Co3+ ( rCo3+ = 0. 0545nm) 和Mn4 + ( rMn4 + =0. 053nm) ,LiMnxCo yNi1 - x - yO2 的晶格常数有所增加。 由于充分综合镍酸锂的高比容量、钴酸锂良好的循环性能和锰酸

相关主题
文本预览
相关文档 最新文档