当前位置:文档之家› 不完全归纳法—简单枚举法

不完全归纳法—简单枚举法

不完全归纳法—简单枚举法
不完全归纳法—简单枚举法

不完全归纳法——简单枚举法

不完全归纳法的概念

在没有考查全部个别情况的基础上就做出一般性结论的推理方法叫不完全归纳法。用不完全归纳法可以提出猜想,却不能断定猜想是否正确。

不完全归纳法,最常用的是简单枚举法。

在科学观察或日常生活中,当人们发现某类事物中的若干对象具有某种属性,而且没有观察到相反的事例时,由此就作出结论该类事物都具有某种属性,这就是简单枚举法,可用图式表示如下:

事物S1具有性质P,

事物S2具有性质P,

……………………

S1, S2, S3……都属于S类事物,

未发现Sn不具有性质P。

————————————

∴S类的所有事物都具有性质P。

一般说来,用简单枚举归纳法进行合理推导时必须满足以下三个条件:

归纳法是以个别和一般的辨证关系为基础的。特定的和个别的对象、属性和关系是具体丰富,只有反映出大量个别事物的共同性时,普遍的、一般的事物才是充实的。再者,,个别又是复杂的,不是千篇一律的,同类事物中各个不同事物的属性互有差异。事物S1, S2和S3可能分别具有Q,R,T,同时又都具有P,只有P才是它们的共同点,而Q,R,T在该类事物的属性中不具有普遍性。所以,只列举一两个具有某种属性的事例,就概括出该类事物都具有这种属性,这种经验结论通常是轻率的。因为有时被概括的属性,恰好是Q,R,T,它们不能被外推到该类事物中其他对象上。

前一个条件要求在归纳时枚举大量事例,这可以用两种方式实现:一种是在相似条件下使事物反复发生;另一种是在各种各样的条件下对事物进行考察。以第一种方法为依据的归纳结论常常是不能令人信服的,从第二种方法出发,则可以增加结论的可靠性。

这是显而易见的。从S1具有性质P和S2不具有性质P这种相互矛盾的事例中不可能做出归纳结论;在做出了一切S都具有性质P的结论后,如果发现有一个S n+1不具有性质P,这个结论就不能成立;只是在没有发现S不具有性质P的场合,才允许由S1,S3,S3具有性质P的事例得出所有S具有性质P的结论来。

简单枚举法没有穷尽一类对象中的所有事物,它从一类对象中某n个事物具有某种性质得出一般性结论,即推断出该类对象中的其他事物也具有这种性质。

例谈不完全归纳法在初中数学中的运用

例谈不完全归纳法在初中数学中的运用 郧西县城关镇城北中学 徐华进 不完全归纳法是指从一个或几个(但不是全部)特殊情况作一般性的结论的归纳推理。这种归纳法是用一定数量数值为基础,进行分析探究,从中找出规律,并将此规律推广应用到一般情况下的计算和证明.在初中数学教材中,经常会用这种方法进行定义、公式、法则、定理的推导.学生在学习中,若能正确运用不完全归纳法,可提高分析、解决问题能力,发现、探索问题的能力。下面略举几例说明它的运用; 一. 在推导法则、定理中的运用 1.利用不完全归纳法推导分式乘方的运算法则 根据乘方的意义和分式乘法法则,可得: ①222)(b a bb aa b a == ②bbb aaa b a =3)(=33b a ③7 7 7)(b a bbbbbbb aaaaaaa b a ==…… 由此可推出,当n 为正整数时,= n b a )( b a n b a b a b a 个 ···??=n n b n a n b a b bb a aa =???? 个个····(b ≠0) 即分式乘方要把分子、分母分別乘方 2.利用不完全归纳法推导凸多边形内角和定律 将教材的推导过程整理成下表:

通过引导学生填写上表内容,分析概括,总结归纳出多边形内角和定理:n 边形内角和等于1800 ×(n-2). 说明:本定理的推导,还可以在多边形内(或一边上)取任一点,分别连接多边形的顶点,也可仿照上述方法,得到同样的结论,可让学有余力的学生在课外去探讨。 二.在解题中的应用 1 . 从计算结果中探究规律 例 计算:⑴211- = 3 ⑵221111-=33 ⑶222111111-=333 ⑷222211111111-=3333 请根据上述规律写出下式的结果: 2 1 222....222211......11111个个n n -=______________. 分析:①从⑴至⑵式的左边可以看出:被开方数中被减数1的个数是减数2的二倍,其结果中3的个数是减数2的个数。 解: 2 1 222....222211......11111个个n n -= 3 333个n ? 说明:解此类题目关键是正确分析归纳出题中的结果数字与算式中数字之间的特殊关系,再从特殊推 广到一般. 2.从图形的特征中探究规律 例1 下列各三角形图案是由若干个五角星组成的,每条边(包括两个顶点)有n (n>1)五角星,每个图案中五角星的总数为s.按此规律推断:s 与n 的关系. ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ …… ★ ★ ★ ★ n=2,s=3 n=3 s=6 n=4,s=9 图(1) 图(2) 图(3 分析方法一:由于每条边上的五角星数包括了两个顶点,若每边按n 个计算,则重算了三角形三个顶点上的三个。故有s=3n-3. 分析方法二:由图可知,每个图案上的五角星总数,随着各边上五角星的增多而增多,且前面一个图案中五角星总数总比其后面一个图案中五角星总数少3,因此可猜想:s=b n +κ,根据图(1)、图(2)中的条件就能求出k ,b 的值,再验证是否满足图(3)的条件。 解:设s=b n +κ, 把n=2,s=3;n=3,s=6分别代入上式,得 ?? ?=+=+6 33 2b k b k 解得? ? ?=-=33 k b ∴s=3n-3 经检验:n=4,s=9也满足s=3n-3 所求s 与n 的关系为s=3n-3

高中数学不完全归纳法证明题

數學歸納法的迷思 數學歸納法可說是高中數學裡最令同學納悶的一部份了,數學歸納法學的不錯的同學,大概都能謹遵老師交待要寫出以下2步驟: 1、 步驟1:證明n=1時,敘述成立。(不一定從1開始) 2、 步驟2:假設n=k 時,敘述成立;證明n=k+1時,敘述也成立 由數學歸納法得證,n 為任意自然數時都成立。 完整寫出以上2步驟,並且遇到數學歸納法的證明題時,操作以上步驟,算是達到了學習數學歸納法的最基本要求。只是能操作數學歸納法的基本步驟,不一定代表了解數學歸納法的原理,因此容易造成誤用,而不知道錯在何處,或者是雖然做出了正確的証明,但終究對於這樣的証明方法存疑,先說存疑之處:「只知道n=k 和n=k+1成立,仍不知道後面幾項是否成立」、「用假設來證明很沒說服力,萬一假設不成立呢?」、「怎麼可以假設n=k 成立呢?」這是學習數學歸納法常會出現的疑問,所以再複習一下數學歸納法的基本原理,皮亞諾(G.Peano)在西元1889年提出的自然數的序數理論,包含5條公理: (1)1是一個自然數 (2)每一個自然數a 都有一個後繼元素 (3)1沒有生成元素 (4)如果a 與b 的後繼元素相等,則a=b (5)若一個由自然數所組成的集合S 包含1,並且當S 包含某一自然數a 時,它一定也含有a 的後繼元素,則S 就包含有全體自然數。 數學歸納法原理就是皮亞諾的第5條公理,無需證明。數學歸納法實際上是一種演繹方法,由於我們無法證明所有自然數均滿足於某一條件,所以我們用邏輯遞推的方式,先證明有一個起始值合於條件(步驟1),接下來證明所滿足的條件是可以遞推的,若n=k 成立?n=k+1成立(步驟2)。就以老師上課常講的以骨牌為例,假設我們有無限多顆骨牌,因為數量是無限多,所以我們無法實際操作,看到所有骨牌倒下,但是我們可以確認的兩件事就是第一顆骨牌會倒,以及若骨牌倒了,後一顆骨牌也必倒,這兩件事確定了,我們不必眼見所有骨牌倒下,也知道所有骨牌都會倒,這就是數學歸納法的原理。 同學在學習數學歸納法常見的錯誤上大致有以下二種: (一)忽略起始值與遞推過程的互相配合,以證明n n 22<,N n ∈為例: 1、 當1=n 時,1221<,成立 2、 設k n =時k k 22<成立;當1+=k n 時 1 2122)12(22)1(2222221--=--->++-?=+-+k k k k k k k k k k 01)2(>--=k k ?122)1(+<+k k ,由數學歸納法得証。 以上證明犯了很明顯的錯誤,就是01)2(>--=k k 的條件必須3≥k ,所以用k=1當起始值就與證明過程沒有配合,仔細再檢視一遍,4,3,2=n ,均不符合,

本文主要对数学归纳法的教学进行较为完整的研究

本文主要对数学归纳法的教学进行较为完整的研究。 数学归纳法是一种证明与正整数有关的命题的极为有效的科学方法。了解数学归纳法的发现和发展的历史,明确数学归纳法与归纳法的区别与联系,是教师教授和学生掌握数学归纳法的基础。对数学归纳法逻辑基础即原理的准确理解,是教师进行数学归纳法教学的前提,也是学生能否掌握这种证明方法的关键。 数学归纳法的教学首先是一种程序性教学。为了让学生能够正确应用数学归纳法,还要进行形式化教学。在形式化现象下的本质规律的教学,即内涵教学,则是数学归纳法教学的内在精髓。数学归纳法通过有限的程序,完成了验证无限的结论,它的灵魂就是递归思想。 归纳法是发现问题的一种有效方法。在数学归纳法的教学过程中,恰到好处地进行数学归纳法的教学,既可帮助学生区分这两种方法,又可引领学生了解发现问题的途径,可谓一举两得。培养学生“观察一归纳一猜想一证明”的链条式思维模式,开发学生的创造性思维能力,将会对未来数学的发展起到推波助澜的作用。数学归纳法的应用是数学归纳法教学中很重要的一个环节。数学归纳法可以用来证明与正整数有关的恒等式、不等式、整除性问题和几何问题等。 本文针对数学归纳法应用过程中,学生常见错误出现的心理因素进行了问卷调查。在应用数学归纳法证题时,导致学生犯错误的主要原因是对数学归纳法的原理没有真正理解;另一个原因是数学归纳法应用中的思维定势。要克服学生使用数学归纳法的心理障碍,一个有效的方法就是要了解数学归纳法应用的局限性。能运用非数学归纳法证明另外一些与正整数有关的命题,也是学生学习和使用数学归纳法时所要克服的心理依赖和必经过程。 1. 2数学归纳法的研究现状 对“数学归纳法”的研究国内己有不少论文,这些论文在某些具体方面作出了详尽的论述。例如,赵龙山在《有关数学归纳法教学中的逻辑问题》一文中,对数学归纳法的逻辑基础问题进行了论述和研究,形象地引入“递推机”,从而加深了对数学归纳法本质的理解,有助于学生更好地、合逻辑地运用数学归纳法证题,也有助于学生克服对于数学归纳法的模糊甚至是错误认识。文中还指出了数学归纳法与归纳法、完全归纳法是完全不同的证题方法,只是没有对一三者的内在关系进行系统详细地阐述。罗增儒在《关于数学归纳法的逻辑基础》一文中指出:历史上数学归纳法曾被称为“逐次归纳法”、“完全归纳法”,后来被称为“数学归纳法”,既区别于逻辑上的“完全归纳法”,又比“逐次归纳法”更能表明它论证的可靠性。在此文中还引述了一些学者的观点,就数学归纳法的本质进行了表述。 刘世泽在《数学归纳法的另外两种形式》一文中,介绍了除数学归纳法第I型和第II 型以外的另两种形式:跳跃归纳法和二元有限归纳法;朱孝建在《数学归纳法的构造》一文中,给出了数学归纳法的一个一般性定理,由此可推导出数学归纳法的各种常见形式,还可根据具体问题的需要构造出其它数学归纳法的形式,进一步开拓了数学归纳法的应用范围,从而对数学归纳法的本质有了一个较为全面深入地了解;李淑文、孙德菊在《累积数学归纳法》一文中,比较了数学归纳法的第一种形式和第二种形式,并就第二种形式,即累积数学归纳法作了举例说明。以上三篇论文都是针对数学归纳法的形式或构造的论述。 邵光华所作的论文《对中学“数学归纳法”教材教法的几点思考》,主要针对教材教法中对数学归纳法内容的安排和教学,提出了值得思考的五个具体问题,并简单地说明了数学归纳法和归纳法的区别。文中提到了不完全归纳法,但未作深入论述。唐以荣在《中学数学综合题解题规律讲义》中指出:“早在五十年代的苏联的教学法书籍中,己明确指出数学归纳法是演绎法的特殊形式;八十年代的中国中学数学课本和教学法书籍却没有做到这一点不能不令人遗憾。”①即使是现在的中学教材也还是没有改进这些。 齐智华在《“数学猜测”的教学构想与实践》一文中,介绍了“数学猜测”的教学纲目,

利用数学归纳法解题举例

利用数学归纳法解题举例 归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。 数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n )时成立,这是递推的基础;第二步是假设在n=k时命题成立, 再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或 n≥n 且n∈N)结论都正确”。由这两步可以看出,数学归纳法是由递推实现归纳0 的,属于完全归纳。 运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。 运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。 一、运用数学归纳法证明整除性问题 例1.当n∈N,求证:11n+1+122n-1能被133整除。 证明:(1)当n=1时,111+1+1212×1-1=133能被133整除。命题成立。 (2)假设n=k时,命题成立,即11k+1+122k-1能被133整除,当n=k+1时,

完全归纳法

完全归纳法 完全归纳推理,又称“完全归纳法”,它是以某类中每一对象(或子类)都具有或不具有某一属性为前提,推出以该类对象全部具有或不具有该属性为结论的归纳推理。 举例 ①太平洋已经被污染;大西洋已经被污染;印度洋已经被污染;北冰洋已经被污染;(太平洋、大西洋、印度洋、北冰洋是地球上的全部大洋)所以,地球上的所有大洋都已被污染。 ②张一不是有出息的;张二不是有出息的;张三不是有出息的;(张一、张二、张三是张老汉仅有的三个孩子)所以,张老汉的孩子都不是有出息的。 上述两例都是完全归纳推理。例①对地球上的所有大洋都逐一进行考察,发现它们都被污染了,由此推出地球上所有大洋都具有“已被污染”这一属性。例②对张老汉仅有的三个孩子都逐一进行考察,发现他们都不是有出息的,由此推出张老汉的孩子都不具有“有出息的”这一属性。 逻辑形式 完全归纳推理的逻辑形式可表示如下: S1是(或不是)P;S2是(或不是)P;S3是(或不是)P;……Sn是(或不是)P。(S1,S2,S3,……Sn是S类的全部对象)所以,所有的S都是(或不是)P. 上式中的S1、S2、S3、……Sn ,可以表示S类的个体对象,也可以表示S类的子类。前者,如例①和例②;后者,如下面的例③。③黄种人不是长生不老的,白种人不是长生不老的,黑种人不是长生不老的,棕种人不是长生不老的,(黄种人、白种人、黑种人、棕种人是地球上的全部人种)所以,地球上的所有人种都不是长生不老的。 完全归纳推理特点 完全归纳推理的前提无一遗漏地考察了一类事物的全部对象,断定了该类中每一对象都具有(或不具有)某种属性,结论断定的是整个这类事物具有(或不具有)该属性。也就是说,前提所断定的知识范围和结论所断定的知识范围完全相同。因此,前提与结论之间的联系是必然性的,只要前提真实,形式有效,结论必然真实。完全归纳推理是一种前提蕴涵结论的必然性推理。

不完全归纳推理

什么是不完全归纳推理 不完全归纳推理,又称“不完全归纳法”,它是以某类中的部分对象(分子或子类)具有或不具有某一属性为前提,推出以该类对象全部具有或不具有该属性为结论的归纳推理。 不完全归纳推理的特点 不完全归纳推理由于前提只考察了某类事物中的部分对象具有这种属性,而结论却断定该类事物的全部对象都具有这种属性,其结论所断定的范围显然超出了前提所断定的范围,所以,前提同结论之间的联系是或然的。也就是说,即使前提真实,推理形式正确,其结论也未必一定是真的。 不完全归纳推理的类型 不完全归纳推理分为两类,一是简单枚举法,一是科学归纳法。 一、简单枚举法 简单枚举归纳推理,又称“简单枚举法”,它是这样一种不完全归纳推理:它根据某类中的部分对象(分子或子类)具有或不具有某一属性,并且未遇反例之前提,推出该类对象全部具有或不具有该属性之结论。其形式如下: S1是(或不是)P; S2是(或不是)P; S3是(或不是)P; ……; Sn是(或不是)P. (S1,S2,S3,……,Sn是S类的部分对象,枚举中未遇反例) 所以,所有S都是(或不是)P. 上式中的S1,S2,S3,……,Sn.可以表示S类的个体对象,也可以表示S类的子类。 二、科学归纳法 科学归纳推理,又称“科学归纳法”,它是以科学分析为主要依据,由某类中部分对象与其属性之间所具有的因果联系,推出该类的全部对象都具有某种属性的归纳推理。其形式为: S1是P;

S2是P; S3是P; ……; Sn是P. (S1,S2,S3,……,Sn是S类的部分对象,它们与P之间有因果联系) 所以,所有S都是P. 所谓因果联系是指原因和结果之间的联系。原因和结果本是哲学中的一对范畴。它是对自然界和社会领域中普遍存在的一种必然联系的哲学概括和反映。所谓原因,就是引起某现象出现的现象;所谓结果,就是被某现象引起的现象。 例如,某甲未付货款在先,致使某乙未交货物。甲的行为就是乙未交货的原因,乙未交货就是甲未付款的结果。 不完全归纳法的作用 不完全归纳法的特点是结论所断定的范围超出了前提所断定的范围,结论的知识往往不只是前提已有知识的简单推广,而且还揭示出存在于无数现象之间的普遍规律性,给我们提供全新的知识,尤其是科学的普遍原理。人们要认识周围的事物,首先必须对事物的现象进行大量的观察和实验,然后根据观察和实验所确认的一系列个别事实,应用不完全归纳法由个别的知识概括成为一般的知识,从而达到对普遍规律性的认识。所以,不完全归纳法在探求新知识的过程中具有极为重要的意义。

不完全归纳法

6.3 数学归纳法 (第一课时) 一、教学目标: (一)知识目标: 了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (二)情感目标: 进一步培养严谨的科学思维品质,让学生初步认识有限与无限的辩证关系,感悟数学的理性精神,欣赏数学的美与理. (三)能力目标: 培养“大胆猜想,小心求证”的科学思维品质,培养发现问题与提出问题的数学意识,培养数学学习中的合作交流的能力,使学生初步掌握由归纳到猜想再到证明的数学思想方法. 二、教学重点 掌握数学归纳法证明题目的步骤,掌握数学归纳法的一些应用. 三、教学难点 应用数学归纳法第二个步骤中从k 到k+1的变化情况分析. 四、教学过程 (一)引入课题 将课前准备好的多米诺骨牌摆好并进行演示,观察其中出现的“多米诺现象”:推倒头一块骨牌,它会带倒第二块,再带倒第三块,……,直到所有骨牌全部倒下. 假设多米诺骨牌有无穷多块,在摆多米诺骨牌时,怎样才能保证所有的骨牌一块接一块地倒下? 学生:首先必须推倒第一块,接着是假如前面一块倒下,要保证它倒下时会撞倒下一块.这两个条件满足了,全部的骨牌都将倒下. 教师:生活中还有许多现象与“多米诺现象”类似,也都可以提出同样的问题并作出相同的回答,例如:在燃放鞭炮时怎样才能保证所有的鞭炮逐个地全部燃爆?在一列队伍中传达口令,怎样才能保证口令能从第一个士兵开始逐个传遍整个队伍? (二)传授新知: 教师:现在我们把骨牌想象为一系列无穷多个编了号的命题:123,,, ,P P P 假定我们能够证明最初的一个命题1P 正确(奠基);由每一个命题k P 的正确性都可以推出它的下一个命题1k P +的正确性(过渡).那么我们便证明了这一系列命题的正确性.请将这个过程与多米诺现象进行类比. 在数学中这种证明问题的方法称为数学归纳法.在数学中采用数学归纳法证明与自然数有关的命题时,有以下两个步骤: 第一步,证明1n =时命题成立; 第二步,证明:如果n k =时命题成立,那么1n k =+时命题也成立. 根据以上两步可以断定,命题对任何正整数n 都成立. 1.用数学归纳法证明:如果{}n a 是一个等差数列,那么1(1)n a a n d =+-对一切n N +∈都成立. 【证明】(1)当1n =时,左边=1a ,右边=110a d a +?=,等式成立;

(完整版)高考数学解题思想方法数学归纳法

五、数学归纳法 归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物 全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察 了一类事物的全部对象后归纳得出结论来。 数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有 着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n =1(或n )时 0成立,这是递推的基础;第二步是假设在n =k 时命题成立,再证明n =k +1时命题也成立, 这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命 题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可 以断定“对任何自然数(或n≥n 且n∈N)结论都正确”。由这两步可以看出,数学归纳法 0是由递推实现归纳的,属于完全归纳。 运用数学归纳法证明问题时,关键是n =k +1时命题成立的推证,此步证明要具有目标 意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐 步减小,最终实现目标完成解题。 运用数学归纳法,可以证明下列问题:与自然数n 有关的恒等式、代数不等式、三角不 等式、数列问题、几何问题、整除性问题等等。 Ⅰ、再现性题组: 1. 用数学归纳法证明(n +1)(n +2)…(n +n)=2·1·2…(2n -1) (n∈N),从“k 到 n k +1”,左端需乘的代数式为_____。 A. 2k +1 B. 2(2k +1) C. D. 211k k ++231 k k ++2. 用数学归纳法证明1+++…+1)时,由n =k (k>1)不等式成立,1213121n -推证n =k +1时,左边应增加的代数式的个数是_____。 A. 2 B. 2-1 C. 2 D. 2+1 k -1k k k 3. 某个命题与自然数n 有关,若n =k (k∈N)时该命题成立,那么可推得n =k +1时该 命题也成立。现已知当n =5时该命题不成立,那么可推得______。 (94年上海高考) A.当n =6时该命题不成立 B.当n =6时该命题成立 C.当n =4时该命题不成立 D.当n =4时该命题成立 4. 数列{a }中,已知a =1,当n≥2时a =a +2n -1,依次计算a 、a 、a 后, n 1n n -1234猜想a 的表达式是_____。 n A. 3n -2 B. n C. 3 D. 4n -3 2n -15. 用数学归纳法证明3+5 (n∈N)能被14整除,当n =k +1时对于式子3 42n +21n ++5应变形为_______________________。 412()k ++211()k ++6. 设k 棱柱有f(k)个对角面,则k +1棱柱对角面的个数为f(k+1)=f(k) +_________。

完全归纳推理和不完全归纳推理

完全归纳推理和不完全归纳推理 1.完全归纳推理 先看一个实例:当着天文学家对太阳系的大行星运行轨道进行考察的时候,他们发现:水星是沿着椭圆轨道绕太阳运行的,金星是沿着椭圆轨道绕太阳运行的,地球是沿着椭圆轨道绕太阳运行的,火星是沿着椭圆轨道绕太阳运行的,木星是沿着椭圆轨道绕太阳运行的,土星是沿着椭圆轨道绕太阳运行的,天王星是沿着椭圆轨道绕太阳运行的,海王星是沿着椭圆轨道绕太阳运行的,冥王星是沿着椭圆轨道绕太阳运行的,而水星、金星、地球、火星、土星、木星、天王星、海王星、冥王星是太阳系的全部大行星。由此,他们便得出如下结论:所有的太阳系大行星都是沿着椭圆轨道绕太阳运行的。这一结论,就是运用完全归纳推理得出的。 可见,完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,发现它们每一个都具有某种性质,因而得出结论说:该类事物都具有某种性质。 根据完全归纳推理的这一定义,它的逻辑形式可表示如下(S表示事物,P表示属性),S1--P S2--P …………… Sn--P (S1,S2……Sn是S类的所有分子) 所以,S--P 从公式可见,完全归纳推理在前提中考察的是某类事物的全部对象,而不是某一部分对象,因此,其结论所断定的范围并未超出前提所断定的范围。所以其结论是根据前提必然得出的,即其前提与结论的联系是必然的。就此而言,完全归纳推理具有演绎的性质。 由于完全归纳推理要求对某类事物的全部对象一一列举考察,所以,它的运用是有局限性的。如果某类事物的个别对象是无限的(如天体、原子)或者事实上是无法一一考察穷尽的(如工人,学生),它就不能适用了。这时就只能运用不完全归纳推理了。 2.不完全归纳推理 不完全归纳推理是这样一种归纳推理:根据对某类事物部分对象的考察,发现它们具有某种性质,因而得出结论说,该类事物都具有某种性质。 第一种情况。主要根据是:所碰到的某类事物的部分对象都具有某种性质,而没有发现相反的情况。比如 -《内经?针刺篇》记载了这样一个故事:有一个患头痛的樵夫上山砍柴,一次不慎碰破足趾,出了一点血,但头部不疼了。当时他没有引起注意。后来头疼复发,又偶然碰破原处,头疼又好了。这次引起了注意,以后头疼时,他就有意刺破该处,都有效应(这个樵夫碰的地方,即现在所称的"大敦穴")。 现在我们要问,为什么这个樵夫以后头疼时就想到要刺破足趾的原处呢?从故事里可见,这是因为他根据自己以往的各次个别经验作出了一个有关碰破足趾能治好头痛的一个一般性结论了。在这里,就其所运用的推理形式来说,就是一个不完全的归纳推理。具体过程是这样的: 第一次碰破足趾某处,头痛好了, 第二次碰破足趾某处,头痛好了, (没有出现相反的情况,即碰破足趾某处,而头痛不好。) 所以,凡碰破足趾某处,头痛都会好,

不完全归纳推理

不完全归纳推理,又称“不完全归纳法”,它是以某类中的部分对象(分子或子类)具有或不具有某一属性为前提,推出以该类对象全部具有或不具有该属性为结论的归纳推理。 不完全归纳推理由于前提只考察了某类事物中的部分对象具有这种属性,而结论却断定该类事物的全部对象都具有这种属性,其结论所断定的范围显然超出了前提所断定的范围,所以,前提同结论之间的联系是或然的。也就是说,即使前提真实,推理形式正确,其结论也未必一定是真的。 不完全归纳推理分为两类,一是简单枚举法,一是科学归纳法。 一、简单枚举法 简单枚举归纳推理,又称“简单枚举法”,它是这样一种不完全归纳推理:它根据某类中的部分对象(分子或子类)具有或不具有某一属性,并且未遇反例之前提,推出该类对象全部具有或不具有该属性之结论。其形式如下: 上式中的S1,S2,S3,……,Sn.可以表示S类的个体对象,也可以表示S类的子类。 二、科学归纳法 科学归纳推理,又称“科学归纳法”,它是以科学分析为主要依据,由某类中部分对象与其属性之间所具有的因果联系,推出该类的全部对象都具有某种属性的归纳推理。其形式为:

所谓因果联系是指原因和结果之间的联系。原因和结果本是哲学中的一对范畴。它是对自然界和社会领域中普遍存在的一种必然联系的哲学概括和反映。所谓原因,就是引起某现象出现的现象;所谓结果,就是被某现象引起的现象。 例如,某甲未付货款在先,致使某乙未交货物。甲的行为就是乙未交货的原因,乙未交货就是甲未付款的结果。 不完全归纳法的特点是结论所断定的范围超出了前提所断定的范围,结论的知识往往不只是前提已有知识的简单推广,而且还揭示出存在于无数现象之间的普遍规律性,给我们提供全新的知识,尤其是科学的普遍原理。人们要认识周围的事物,首先必须对事物的现象进行大量的观察和实验,然后根据观察和实验所确认的一系列个别事实,应用不完全归纳法由个别的知识概括成为一般的知识,从而达到对普遍规律性的认识。所以,不完全归纳法在探求新知识的过程中具有极为重要的意义。

高中数学复习归纳法讲解

高中数学复习归纳法讲解 高中数学复习归纳法讲解 数学归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一 类事物中的部分对象具有的共同性质,推断该类事物全体都具有的 性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推 理是在考察了一类事物的全部对象后归纳得出结论来。 数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础,第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这 是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广 到一般,实际上它使命题的正确性突破了有限,达到无限。这两个 步骤密切相关,缺一不可,完成了这两步,就可以断定对任何自然 数(或nn且nN)结论都正确。由这两步可以看出,数学归纳法是由 递推实现归纳的,属于完全归纳。 运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析 比较,以此确定和调控解题的'方向,使差异逐步减小,最终实现目 标完成解题。 运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。 常见数学归纳法及其证明方法 (一)第一数学归纳法 一般地,证明一个与正整数n有关的命题,有如下步骤 (1)证明当n取第一个值时命题成立,对于一般数列取值为1, 但也有特殊情况,

(2)假设当n=k(k[n的第一个值],k为自然数)时命题成立,证 明当n=k+1时命题也成立。 (二)第二数学归纳法 对于某个与自然数有关的命题, (1)验证n=n0时P(n)成立, (2)假设no 综合(1)(2)对一切自然数n(n0),命题P(n)都成立, (三)螺旋式数学归纳法 P(n),Q(n)为两个与自然数有关的命题, 假如(1)P(n0)成立, (2)假设P(k)(kn0)成立,能推出Q(k)成立,假设Q(k)成立,能推出P(k+1)成立,综合(1)(2),对于一切自然数n(n0),P(n),Q(n)都成立, (四)倒推数学归纳法(又名反向数学归纳法) (1)对于无穷多个自然数命题P(n)成立, (2)假设P(k+1)成立,并在此基础上推出P(k)成立, 综合(1)(2),对一切自然数n(n0),命题P(n)都成立, 总而言之:归纳法是由一系列有限的特殊事例得出一般结论的推理方法。归纳法分为完全归纳法和不完全归纳法完全归纳法:数学 归纳法就是一种不完全归纳法,在数学中有着重要的地位!

数学归纳法证题步骤与技巧实战篇

数学归纳法证题步骤与技巧 在数学问题中,有一类问题是与自然数有关的命题。自然数有无限多个,不可能就所有自然数—一加以验证,所以用完全归纳法是不可能的。但就部分自然数进行验证即用不完全归纳法得到的结论,又是不可靠的。这就需要寻求证明这一类命题的一种切实可行而又满足逻辑严谨性要求的新方法——数学归纳法。1.数学归纳法的范围 数学归纳法是以自然数的归纳公理做为它的理论基础的。因此,数学归纳法的适用范围仅限于与自然数有关的命题。它能帮助我们判断种种与自然数n有关的猜想的正确性。 2.数学归纳法两个步骤的关系 第一步是递推的基础,第二步是递推的根据,两个步骤缺一不可,有第一步无第二表,属于不完全归纳法,论断的普遍性是不可靠的;有第二步无第一步中,则第二步中的假设就失去了基础。只有把第一步结论与第二步结论联系在一起,才可以断定命题对所有的自然数n都成立。 3.第二数学归纳法 第二数学归纳法的证明步骤是: 证明当n=1时命题是正确的; ②k为任意自然数,假设n<k时命题都是正确的,如果我们能推出n=时命题也正确,就可以肯定该命题对一切自然数都正确。数学归纳法和第二归纳法是两个等价的归纳法,我们把数学归纳法也叫做第一归纳法。有些命题用第一归纳法证明不大方便,可以用第二归纳法证明。 4.数学归纳法的原理 数学归纳法证明的是与自然数有关的命题,它的依据是皮亚诺提出的自 然数的序数理论,就是通常所说的自然数的皮亚诺公理,内容是: (1)l是自然数。 (2)每个自然数a有一个确定的“直接后继”数a’,a也是自然数。 (2)a’≠1,即1不是任何自然数的“直接后继”数。 (4)由a’=b’,推得a=b,即每个自然数只能是另外的唯一自然的“直接后继” 数。 (5)任一自然数的集合,如果包含1,并且假设包含a,也一定包含a的“直接后继”数a’,则这个集合包含所有的自然数。皮亚诺公理中的(5)是数学归纳法的依据,又叫归纳公理数学归纳法的应用及举例。 2k+1k+2 因为由假设知4 +3能被13整除,13·42k+1也能被13整除,这就是说,当n=k +1时,f(k+l)能被13整除。根据(1)、(2),可知命题对任何n∈N都成立。下面按归纳步中归纳假设的形式向读者介绍数学归纳法的几种不同形式以及它们的应用。 (l)简单归纳法。即在归纳步中,归纳假设为“n=k时待证命题成立”。这是最

2.归纳法的分类并举例说明

二、归纳法的分类并举例说明 ⑴完全归纳法定义:是根据某类事物的每个分子都具有(或不具有)的某种属性,从而推出该类事物一般性结论的归纳方法。 特征:①前提考察了该类事物的全部分子,那么它的结论必然是真实的、可靠的;②完全归纳法的结论所断定的范围未超出前提的范围,因此他不是人们开拓新知识的理想方法。 运用规则:①前提确实考察了一类事物所包括的每一个体对象,不能遗漏;②每一个前提都必须是真实的,不能有一个例外。 作用:①通过完全归纳法能给人们提供新的概括性知识,使知识由局部、个别上升到全部、一般;②完全归纳法不仅是人们认识不可缺少的一种方法,同时也是一种重要的论证方法。人们经常在议论中引用某类事物的每一个个别事物的情况来论证、说明这一类事物所具有的共性或规律,这一过程就是完全归纳法的运用。 ⑵不完全归纳法定义:是根据某类事物的部分对象具有某种属性,而作出该类事物都具有某种属性的一般性结论的归纳法。我们日常在科学研究中所使用的归纳法就是不完全归纳法。分类:不完全归纳法主要有两种:①枚举归纳法:就是通过枚举已经考察过的对象都有某种属性,而无一相反,于是推及该类对象的全体。在这种方法里,前提是已被考察过的对象的属性,而结论则是属于关于同类全体对象的属性。枚举法不能提供一个确实的根据,因此,通过枚举法归纳的出的结论,只能作为一种猜想或假设,并不可靠。为了避免结论可能出现的误差,最重要的办法是尽可能多搜集大量证实这一结论的事实材料。事实材料越多,结论越可靠,或然性就越高。 ②科学归纳法:是根据某类事物不分对象与其属性之间的必然联系,而做出关于该类所有事物的一般性结论的不完全归纳方法。科学归纳法需要找到对象与属性之间的因果关系,而因果关系则是事物所固有的联系之一。事物之间的联系,有偶然的也有必然的。由于科学归纳法是基于前提的考察中分析了对象及属性间的因果必然联系,因此概括出的一般性质的结论具有必然性。只要前提正确无误,结论也必然是正确的。可见,结论的正确性,并不仅仅看所考察事实的多少,更重要的是要看人们所注意的是否是对象的本质属性和因果必然联系。科学与枚举的区别:从形式上看,科学归纳法与枚举归纳法都属于不完全归纳法,但它们的逻辑性质并不完全相同。其主要区别有以下几点:①根据不同。枚举归纳法是建立在经验知识的基础上,根据某属性在一类事物的部分对象中不断重复而未遇到相反的情况,从而作出一般结论;而科学归纳法是建立在理性知识的基础上,以分析事物之间的因果必然联系为根据,从而推出一般性结论。显然,前者的推论根据是不充分的,后者的推论根据是充分的。 ②结论的可靠程度不同。枚举归纳法的结论是或然的;而科学归纳法只要对事物与属性之间的必然联系的认识是真实的,这种推理的根据就是充分的,则结论是可靠的。③对前提要求的数量不同。拿枚举归纳法来说,被概括的事实的数量越多,就愈能提高结论的可靠性;但对科学归纳法来说,事实的数量不起重要作用。因为它是以认识规律性、因果联系为依据,为数不多的几个典型事实,有时甚至仅有一个,只要认识了事物的必然性、规律性,就可以使我们在归纳中得出可靠的一般性结论。

(13)经验归纳法

(13)经验归纳法 【知识精读】 1.通常我们把“从特殊到一般”的推理方法、研究问题的方法叫做归纳法。 通过有限的几个特例,观察其一般规律,得出结论,它是一种不完全的归纳法,也叫做经验归纳法。例如 ①由( -1)2=1 ,(-1 )3=-1 ,(-1 )4=1 ,……, 归纳出-1 的奇次幂是-1,而-1 的偶次幂是 1 。 ②由两位数从10 到99共90 个(9 ×10 ), 三位数从100 到999 共900个(9×102), 四位数有9×103=9000个(9×103), ………… 归纳出n 位数共有9×10n-1(个) ③由1+3=22,1+3+5=32,1+3+5+7=42…… 推断出从1开始的n个連续奇数的和等于n2等。 可以看出经验归纳法是获取新知识的重要手段,是知识攀缘前进的阶梯。 2.经验归纳法是通过少数特例的试验,发现规律,猜想结论,要使规律明朗化,必须进行足夠次数的试验。 由于观察产生的片面性,所猜想的结论,有可能是错误的,所以肯定或否定猜想的结论,都必须进行严格地证明。(到高中,大都是用数学归纳法证明) 【分类解析】 例1平面内n条直线,每两条直线都相交,问最多有几个交点? 解:两条直线只有一个交点, 1 2 第3条直线和前两条直线都相交,增加了2个交点,得1+2 3 第4条直线和前3条直线都相交,增加了3个交点,得1+2+3 第5条直线和前4条直线都相交,增加了4个交点,得1+2+3+4 ……… 第n条直线和前n-1条直线都相交,增加了n-1个交点 由此断定n 条直线两两相交,最多有交点1+2+3+……n-1(个), 这里n≥2,其和可表示为[1+(n+1)]× 21 + n ,即 2)1 (- n n 个交点。 例2.符号n!表示正整数从1到n的連乘积,读作n的阶乘。例如 5!=1×2×3×4×5。试比较3n与(n+1)!的大小(n 是正整数) 解:当n =1时,3n=3,(n+1)!=1×2=2 当n =2时,3n=9,(n+1)!=1×2×3=6 当n =3时,3n=27,(n+1)!=1×2×3×4=24 当n =4时,3n=81,(n+1)!=1×2×3×4×5=120 当n =5时,3n=243,(n+1)!=6!=720…… 猜想其结论是:当n=1,2,3时,3n>(n+1)!,当n>3时3n<(n+1)!。

(完整版)什么是总结归纳法

什么是总结归纳法 什么是总结归纳法 归纳法。 归纳论证是一种由个别到一般的论证方法。 它通过许多个别的事例或分论点,然后归纳出它们所共有的特性,从而得出一个一般性的结论。 归纳法可以先举事例再归纳结论,也可以先提出结论再举例加以证明。 前者即我们通常所说之归纳法,后者我们称为例证法。 例证法就是一种用个别、典型的具体事例实证明论点的论证方法。 归纳法是从个别性知识,引出一般性知识的推理,是由已知真的前提,引出可能真的结论。 它把特性或关系归结到基于对特殊的代表(token)的有限观察的类型;或公式表达基于对反复再现的现象的模式(pattern)的有限观察的规律。 例如,使用归纳法在如下特殊的命题中: 冰是冷的。 在击打球杆的时候弹子球移动。 推断出普遍的命题如: 所有冰都是冷的。 或:在太阳下没有冰。

对于所有动作,都有相同和相反的重做动作。 人们在归纳时往往加入自己的想法,而这恰恰帮助了人们的记忆。 物理学研究方法之一。 通过样本信息来推断总体信息的技术。 要做出正确的归纳,就要从总体中选出的样本,这个样本必须足够大而且具有代表性。 比如在我们买葡萄的时候就用了归纳法,我们往往先尝一尝,如果都很甜,就归纳出所有的葡萄都很甜的,就放心的买上一大串。 归纳推理也可称为归纳方法.完全归纳推理,也叫完全归纳法.不完全归纳推理,也叫不完全归纳法.归纳方法,还包括提高归纳前提对结论确证度的逻辑方法,即求因果五法,求概率方法,统计方法,收集和整理经验材料的方法等. 古典归纳法 古典归纳逻辑,是由培根创立,经穆勒发展的归纳理论.它主要研究完全归纳推理,不完全归纳推理(简单枚举归纳和科学归纳),求因果五法等. 亚里士多德探讨了归纳.他在谈到简单枚举归纳推理.他举例说,内行的舵手是最有效能的.所以,凡在自己专业上内行的人都是最有效能的. 古典归纳逻辑创始人是17世纪英国弗兰西斯培根,他

小学数学教学中不完全归纳法的运用

小学数学教学中不完全归纳法的运用 在小学数学教学过程中,培养学生的归纳推理能力,具有十分重要的意义。它是小学生在学习过程中将零碎的知识变成系统性知识的一种能力;也是个体自我完善、发展的有效手段之一。下面就“不完全归纳法”在教学中的运用,谈谈自己的认识。 所谓不完全归纳法是指根据一类中的部分对象具有某种属性,从而得出该类对象都具有某种属性的推理。虽然该种归纳法未必具有逻辑上的严密性,然而,它作为一种重要的数学思想方法,在数学教学、解题研究中有着广泛的运用。 《数学课程标准》指出:“学生的数学学习内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动”。在教学中,观察与实验是学生了解知识发现知识的重要手段;对知识的大胆猜测能使学生的学习目的更明确,激发学生的求知欲;对知识的验证,既能证明知识的真实性也能让学生体会到探索知识并获得成功的快乐;根据学生的探索与发现引导学生完成推理,这又是学生能在学习过程中将零碎的知识变成系统性的知识的重要手段。“观察、实验、猜测、验证”都是学生获得知识的有效手段,而推理即是学生在学习过程中将零碎的知识变成系统性知识的重要手段。“推理”本身又是一种相当严密的思维过程,它必须依赖正确的知识或理论作为基础。因此,在教学中只有孤立的“推理”教学是不现实的,它必须与其它教学手段有机地结合起来。而“观察、实验、猜测、验证”即为学生进行正确推理提供了知识的准备。因此,要更好地运用不完全归纳法进行教学就必须将“观察、实验、猜测、验证”与“推理”有机地结合起来。 “不完全归纳法”在实际教学中运用很广范,那么如何提高学生的推理能力,又如何更有效地运用不完全归纳法进行设计教学呢?下面以苏教版五年级上册“小数乘法”这一教学内容为例进行说明。 “小数乘法”(苏教版五年级上册第86页至第87页),这部分的教学内容的教学重点是让学生理解“积的小数位数是各因数的小数位数之和”。但在教学中直接教给学生算理,这样的教学方式学生学起来比校枯燥,学生理解也比较困难,教学效果不理想。因此我尝试以下方法: 一、调动学生观察,建立新旧知识的联系,并引出问题。 出示表格,观察该表中每组数据你有什么发现?。

高考数学()复习专题不完全归纳法

高考数学(2011)复习专题 --不完全归纳法 (一)知识归纳: 由事物的部分特殊事例猜想出事物的一般结论,这种方法人们称为“不完全归纳法”,用不完全归纳法得出的结论需要经过证明,因此全部过程可以小结为下面程序: ① 计算命题取特殊值时的结论; ② 对这些结果进行分析,探索数据的变化规律,并猜想命题的一般结论; ③ 证明所猜想的结论. (二)学习要点: 在中学数学内,“归纳—猜想—证明”的推理方法一般只局限于数列的内容,而且与正整数n 有关,其它内容中很少有要求,解决问题时要注意以下几点, ①计算特例时,不仅仅是简单的算数过程,有时要通过计算过程发现数据的变化规律; ②猜想必须准确,绝对不能猜错,否则将徒劳无功; ③如果猜想出来的结论与正整数n 有关,一般用数学归纳法证明. 【例1】已知数列{}n a 满足关系式∈≥+=>=--n a a a a a a a n n n ,2(12),0(1 1 1N +), (Ⅰ)用a 表法a 2,a 3,a 4; (Ⅱ)猜想a n 的表达式(用a 和n 表示),并证明你的结论. [解析](Ⅰ)

;7183141314212,31412112212,2334 2232a a a a a a a a a a a a a a a a a a a a a a +=+++? =+=+=+++? =+=+= (Ⅱ)( ,)12(12,)12(12111001a a a a a a a -+=-+==) 猜想, )12(1211a a a n n n -+=--下面用数学归纳法证明: 1°.当n=1时,∴-+==,)12(12001a a a a 当n=1结论正确; 2°.假设当n=k 时结论正确,即a a a k k k )12(121 1-+=--, ∴当n=k+1时 a a a a a a k k k k k k 1112)12(1212--++-+= += =,)12(1222121a a a a a k k k k -+=-?+-当n=k+1时结论也正确; 根据1°与2°命题对一切n ∈N*都正确. [评析]“归纳—猜想—证明”是解决数列的某些问题的一种重要方法,对于一些变换技巧比较高的问题,如果能通过这种方法解答成功,则解答过程比较其它方法更容易. 【例2】已知数列{}n a 满足:,232,1111-+?+==n n n a a a 计算a 2,a 3,a 4的值,由此归纳出a n 的公式,并证明你的结论. [解析]很容易算出a 2=5,a 3=16,a 4=44,但由此猜想出结论显然是非常困难的,下面作一些探索. ∵a 2=2 a 1+3×2°=2×1+3×2°, a 3=2(2×1+3×2°)+3×21=22×1+2×3×21, a 4=2(22×1+2×3×21)+3×22=23×1+3×3×22; 猜想a n =2n -1+(n -1)×3×2n -2=2n -2(3n -1); 用数学归纳法证明: 1°.当n=1时,a 1=2-1×=1,结论正确; 2°.假设n=k 时,a k =2k -2(3k -1)正确, ∴当n=k+1时,111123)13(2232---+?+-=?+=k k k k k k a a =)23(21+-k k

相关主题
文本预览
相关文档 最新文档