当前位置:文档之家› 半导体、电子设备:三环集团及长盈精密和顺络电子将享受红利

半导体、电子设备:三环集团及长盈精密和顺络电子将享受红利

第一章 电力半导体器件(基础教育)

电力电子变流技术试题汇总 (第一章 电力半导体器件) 一、填空题 1.晶闸管是三端器件,三个引出电极分别是,阳极、门极和__阴__极。 2.晶闸管额定通态平均电流I VEAR 是在规定条件下定义的,是晶闸管允许连续通过__工频__正弦半波电流的最大平均值。 3.处于阻断状态的晶闸管,只有在阳极承受正向电压,且__门极加上正向电压 _时,才能使其开通。 4.晶闸管额定通态平均电流I VEAR 是在规定条件下定义的,条件要求环境温度为_+400__。 5.对同一只晶闸管,断态不重复电压U DSM 与转折电压U BO 数值大小上有U DSM __小于_U BO 。 6..对同一只晶闸管,维持电流I H 与擎住电流I L 在数值大小上有I L _≈(2~4)_I H 。 7..晶闸管反向重复峰值电压等于反向不重复峰值电压的_90%___。 8.普通逆阻型晶闸管的管芯是一种大功率__四__层结构的半导体元件。 9.可关断晶闸管(GTO )的电流关断增益βoff 的定义式为min off G A I I -= β。 10.晶闸管门极触发刚从断态转入通态即移去触发信号,能维持通态所需要的最小阳极电流,称为____擎住电流 I L __。 11..晶闸管的额定电压为断态重复峰值电压U DRm 和反向重复峰值电压U RRm 中较_小__的规化值。 12.普通晶闸管的额定电流用通态平均电流值标定,双向晶闸管的额定电流用__有效值_标定。 13.普通晶闸管属于__半控型_器件,在整流电路中,门极的触发信号控制晶闸管的开通,晶闸管的关断由交流电源电压实现。 14.IGBT 的功率模块由IGBT 和_快速二极管_芯片集成而成。 15.对于同一个晶闸管,其维持电流I H _ 小于_擎住电流I L 。 16.2.可用于斩波和高频逆变电路,关断时间为数十微秒的晶闸管派生器件是__快速晶闸管____。 17.功率集成电路PIC 分为二大类,一类是高压集成电路,另一类是__智能功率集成电

半导体物理学基础知识_图文(精)

1半导体中的电子状态 1.2半导体中电子状态和能带 1.3半导体中电子的运动有效质量 1半导体中E与K的关系 2半导体中电子的平均速度 3半导体中电子的加速度 1.4半导体的导电机构空穴 1硅和锗的导带结构 对于硅,由公式讨论后可得: I.磁感应沿【1 1 1】方向,当改变B(磁感应强度)时,只能观察到一个吸收峰 II.磁感应沿【1 1 0】方向,有两个吸收峰 III.磁感应沿【1 0 0】方向,有两个吸收峰 IV磁感应沿任意方向时,有三个吸收峰 2硅和锗的价带结构 重空穴比轻空穴有较强的各向异性。 2半导体中杂质和缺陷能级 缺陷分为点缺陷,线缺陷,面缺陷(层错等 1.替位式杂质间隙式杂质

2.施主杂质:能级为E(D,被施主杂质束缚的电子的能量状态比导带底E(C低ΔE(D,施主能级位于离导带底近的禁带中。 3. 受主杂质:能级为E(A,被受主杂质束缚的电子的能量状态比价带E(V高ΔE(A,受主能级位于离价带顶近的禁带中。 4.杂质的补偿作用 5.深能级杂质: ⑴非3,5族杂质在硅,锗的禁带中产生的施主能级距离导带底较远,离价带顶也较远,称为深能级。 ⑵这些深能级杂质能产生多次电离。 6.点缺陷:弗仑克耳缺陷:间隙原子和空位成对出现。 肖特基缺陷:只在晶体内部形成空位而无间隙原子。 空位表现出受主作用,间隙原子表现出施主作用。 3半导体中载流子的分布统计 电子从价带跃迁到导带,称为本征激发。 一、状态密度 状态密度g(E是在能带中能量E附近每单位间隔内的量子态数。 首先要知道量子态,每个量子态智能容纳一个电子。 导带底附近单位能量间隔内的量子态数目,随电子的能量按抛物线关系增大,即电子能量越高,状态密度越大。 二、费米能级和载流子的统计分布

电子技术基础1.4(半导体器件)

场效应管是利用电场效应来控制电流的一种半导体器件,它的输出电流决定于输入电压的大小,基本上不需要信号源提供电流,所以输入电阻高,且温度稳定性好。 绝缘栅型场效应管 MOS管增强型NMOS管耗尽型NMOS管增强型PMOS管耗尽型PMOS管 1.4 绝缘栅场效应管(IGFET)

1. G 栅极D 漏极 S 源极B 衬极 SiO 2 P 型硅衬底耗尽层 N + N + 栅极和其它电极之间是绝缘的,故称绝缘栅场效应管。 MOS Metal oxide semiconductor 1.4.1 N 沟道增强型绝缘栅场效应管(NMOS)电路符号 D G S

G D S B P N + N + 2. 工作原理 (1) U GS 对导电沟道的控制作用(U DS =0V) 当U GS ≥U GS(th)时,出现N 型导电沟道。 耗尽层 开启电压:U GS(th) U GS N 型沟道 U GS 值越大沟道电阻越小。

G D S B P N + N + (2) U DS 对导电沟道的影响(U GS >U GS(th)) U GS U DD R D U DS 值小,U GD >U GS(th),沟道倾斜不明显,沟道电阻近似不变,I D 随U DS 线性增加。 I D U GD =U GS -U DS 当U DS 值增加使得U GD =U GS(th),沟道出现预夹断。U DS =U GS -U GS(th) 随着U DS 增加,U GD

1 234 U GS V 2 4 6I D /mA 3. 特性曲线 输出特性曲线:I D =f (U DS ) U GS =常数 转移特性曲线:I D =f (U GS ) U DS =常数 U GS =5V 6V 4V 3V 2V U DS =10V 恒流区 U GS(th) U DS /V 5 10 151 234 I D /mA 可变电阻区 截止区 U GD =U GS(th) 2 GS D DO GS(th)1U I I U ?? =- ? ??? I DO 是U GS =2U GS(th)时的I D 值 I DO U GD >U GS(th) U GD

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

吉大《半导体光电子学》期末复习纲要

第一章: 基本概念与名词解释 1、光子学说的几个基本概念:相格、光子简并度等; 2、微观粒子的四个统计分布规律:麦克斯韦速率分布率、波耳兹曼分布率、费米分布率、玻色分布率; 3、原子、分子的微观结构,固体的能带; 4、热辐射和黑体辐射的几个概念:热辐射、朗伯体、视见函数、普朗克公式; 5、简述辐射跃迁的三种过程:自发辐射、受激吸收、受激辐射; 6、谱线加宽的类型及定义:均匀加宽、非均匀加宽、碰撞加宽;

第二章: 基本概念与名词解释 1、一般概念:激发态能级寿命、亚稳态能级、粒子数反转、 负温度、激活介质、增益饱和; 2、三能级系统、四能级系统的粒子数反转的形成过程; 3、关于介质中的烧孔效应、气体激光器中的烧孔效应的论述。理论推导与证明 1、粒子数密度的差值(式2-1-17,2-1-22); 2、均匀加宽与非均匀加宽的小信号增益系数(式2-2-14,2-2-15); 3、均匀加宽与非均匀加宽情况下的大信号反转粒子数密度、烧孔面积(式2-3-3,2-3-7); 4、均匀加宽与非均匀加宽情况下的大信号增益系数(式2-3-10,2-3-17);

第三章: 基本概念与名词解释 1、激光的几个特性:包括时间相干性、空间相干性、相干时间、相干长度、相干面积、相干体积、光子简并度; 2、有关谐振腔的基本概念:谐振腔、稳定腔、不稳定腔、介稳腔; 3、激光振荡的几个现象和过程:纵模、横模、模的竞争、空间 烧孔、兰姆凹陷、频率牵引、高斯光束、激光器最佳透过率。 理论推导与证明 1、普通光源相干时间与相干面积(式3-1-5,3-1-12); 2、激光产生的阈值条件(式3-3-11); 3、粒子数密度的差值的阈值(式3-3-18); 4、均匀加宽情况单模激光器的输出功率与最佳透过率(式3-6-9) 5、非均匀加宽情况单模激光器的输出功率(式3-6-18)。

(完整版)半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k

半导体物理知识点梳理

半导体物理考点归纳 一· 1.金刚石 1) 结构特点: a. 由同类原子组成的复式晶格。其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成 b. 属面心晶系,具立方对称性,共价键结合四面体。 c. 配位数为4,较低,较稳定。(配位数:最近邻原子数) d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。 2) 代表性半导体:IV 族的C ,Si ,Ge 等元素半导体大多属于这种结构。 2.闪锌矿 1) 结构特点: a. 共价性占优势,立方对称性; b. 晶胞结构类似于金刚石结构,但为双原子复式晶格; c. 属共价键晶体,但有不同的离子性。 2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。 3.电子共有化运动: 原子结合为晶体时,轨道交叠。外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。 4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性函数, 5.布里渊区: 禁带出现在k=n/2a 处,即在布里渊区边界上; 允带出现在以下几个区: 第一布里渊区:-1/2a

半导体光电子学-试题

1 光电子器件按功能分为哪几类,每类大致包括哪些器件? 2 (1)光的基本属性是__波粒二象性___,光的粒子性典型现象有_光的反射____、__折射____以及______等。光波动性的典型体现有______、______、______等。 (2)两束光相互干涉的条件______、______、_______,最典型的干涉装置有_____、______。两束光干涉相消的条件______。 3 激光器的基本结构包括哪些,其中激光产生的充分条件和必要条件分别是什么?(激光工作介质激励源谐振腔)p63p71 4 简述激光的特点以及激光产生的条件。 方向性单色性相干性亮度大 受激辐射:首要条件,也是必要条件,但还不是充分条件。 工作物质必须具有亚稳态能级 粒子数反转谐振腔增益大于损耗 5 试简述为什么二能级系统不能产生激光。 P69 6 试以一个三能级原子系统为例,说明激光产生的基本原理。 P70 7 光纤的基本结构是什么,光纤传输光的基本原理是什么?P126 射线理论认为,光在光纤中传播主要是依据全反射原理。光线垂直光线端面射入,并与光纤轴心线重合时,光线沿轴心线向前传播。 光的波长必须在一定范围内才能实现传输,光纤中常用的波长有850纳米,1320纳米及1550纳米三个波段。 根据传输方式不同光纤分为多模光纤及单模光纤。多模光纤的直径为50/62.5μ

m,而单模光纤的直径为8.5μm 8 什么是光调制过程,其大体上可分为哪几类,激光外调制的种类包括哪些?P147 9 什么是内光电效应和外光电效应,内光电效应和外光电效应代表器件分别有哪些,是每种效应各举一例说明之。P200 外部光电效应:金属表面通过吸收入射光子流的能量从而释放电子,形成光生电流(真空光电二极管,光电倍增管)内部光电效应:通过吸收入射光子产生自由电荷载流子,例如PN结光电二极管,PIN光电二极管,雪崩光电二极管 10 光电探测技术的物理效应有哪些? P198 11 试论述光敏电阻器件中,光照强度与光电导率变化的关系。 12 试论述液晶的特点,以及液晶显示器的工作原理。 P257利用液晶的电光效应来工作在两块透明电极基板间夹持液晶状 态,当液晶厚度小于数百微米时,界面附近的液晶分子发生取向并保持有序性,当电极基板上施加受控的电场方向后就产生一系列电光效应,液晶分子的规则取向随即相应改变。液晶分子的规则取向形态有平行取向、垂直取向、倾斜取向三种,液晶分子的取向改变,即发生了折射率的异向性,从而产生光散射效应、旋光效应,双折射效应等光学反应。这就是LCD图像电子显示器最基本的成像原理

电力半导体器件及其应用

第8章电力半导体器件及其应用 一、基本要求 1. 了解晶闸管的基本构造、工作原理、特性曲线和主要参数; 2. 掌握单相可控整流电路的可控原理,能够计算在电阻性负载和电感性负载时的输出电压、输出电流以及各元件所通过的平均电流和承受的最大正、反向电压; 3. 了解单结晶体管及其触发电路的作用原理; 4. 了解晶闸管的保护措施; 二、阅读指导 1.晶闸管 晶体闸流管是应用最为广泛的电力半导体器件。阳极加正向电压和控制极加正触发脉冲信号,这是晶闸管导通的必要条件,阳极电流应大于维持电流是晶闸管导通的充分条件。导通之后,控制极就失去控制作用。在晶闸管导通时,若减小阳极电压或阳极电流小于维持电流,晶闸管自动关断。读者在学习过程中必需了解晶闸管的导通和关断的条件。此外,还要了解正向转折电压U BO、反向击穿电压U BR(或称为反向转折电压)、正向重复峰值电压U FRM 及反向重复峰值电压U RRM的意义,并了解晶闸管的型号。 2. 可控整流电路 学习可控整流电路时,读者最好对照第4章中由二极管所组成的不可控整流电路来分析比较电路结构、电压和电流的波形、整流电压平均值和交流电压有效值之间的大小关系以及元件所承受最高反向电压等问题。特别应该注意,在可控整流电路中,晶闸管在交流电压的正半周并不一定全导通,因此晶闸管和二极管不一样,还有承受最高正向电压的问题。 难点是可控整流电路接电感性负载的情况,以及续流二极管的作用。为什么整流电压会出现负值?为什么接了续流二极管(注意其正、负极,不能接反)后,晶闸管在电源电压u2过零时能及时关断?读者应认真阅读教材并仔细思考。 单相桥式半控整流是一种较常用的电路,和二极管桥式整流电路类似,分析其工作原理时,也要分别找出在交流电压的正半周负半周时电流的通路,哪个管导通,哪个截止。 3. 单结晶体管触发电路 对单结晶体管,必须了解单结晶体管的发射极E与第一基极B1之间导通和恢复截止的条件。当发射极E和第一基极B1之间加的电压U E等于峰点电压U P时,单结晶体管导通。导通后,发射极电压U E降低,当U E低于谷点电压U V时,单结晶体管的E、B1间恢复截止。 教材图8-13是典型的晶闸管可控整流电路,其中采用单结晶体管触发电路,主电路是单相桥式半控整流电路。对这个电路,读者要了解三个作用,即稳压管的削波作用,变压器的同步作用和电位器R P的移相作用。要看懂教材图8-14所示的四个波形。 4. 晶闸管的保护 要了解晶闸管可控整流电路中,应用最为广泛快速熔断器的过电流保护和阻容吸收的过

半导体物理知识

半导体物理知识整理

————————————————————————————————作者:————————————————————————————————日期:

基础知识 1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电机理(两种载流子参与导电)与金属有何不同? 导体:能带中一定有不满带 半导体:T=0K,能带中只有满带和空带;T>0K,能带中有不满带 禁带宽度较小,一般小于2eV 绝缘体:能带中只有满带和空带 禁带宽度较大,一般大于2eV 在外场的作用下,满带电子不导电,不满带电子可以导电 总有不满带的晶体就是导体,总是没有不满带的晶体就是绝缘体 半导体不时最容易导电的物质,而是导电性最容易发生改变的物质,用很方便的方法,就可以显著调节半导体的导电特性 金属中的电子,只能在导带上传输,而半导体中的载流子:电子和空穴,却能在两个通道:价带和导带上分别传输信息 2.什么是空穴?它有哪些基本特征?以硅为例,对照能带结构和价键结构图理解空穴概念。 当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e和具有正有效质量|m n* | 、速度为v(k’)的粒子的情况一样,这样假想的粒子称为空穴 3.半导体材料的一般特性。 电阻率介于导体与绝缘体之间 对温度、光照、电场、磁场、湿度等敏感(温度升高使半导体导电能力增强,电阻率下降;适当波长的光照可以改变半导体的导电能力) 性质与掺杂密切相关(微量杂质含量可以显著改变半导体的导电能力) 4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?什么情况下费米分布函数可以转化为玻耳兹曼函数。为什么通常情况下,半导体中载流子分布都可以

半导体物理与器件基础知识

9金属半导体与半导体异质结 一、肖特基势垒二极管 欧姆接触:通过金属-半导体的接触实现的连接。接触电阻很低。 金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。之间形成势垒为肖特基势垒。 在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。 影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。附图: 电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。 肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。2.开关特性肖特基二极管更好。应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。 二、金属-半导体的欧姆接触 附金属分别与N型p型半导体接触的能带示意图 三、异质结:两种不同的半导体形成一个结 小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。 2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。 10双极型晶体管 双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。 一、工作原理 附npn型和pnp型的结构图 发射区掺杂浓度最高,集电区掺杂浓度最低 附常规npn截面图 造成实际结构复杂的原因是:1.各端点引线要做在表面上,为了降低半导体的电阻,必须要有重掺杂的N+型掩埋层。2.一片半导体材料上要做很多的双极型晶体管,各自必须隔离,应为不是所有的集电极都是同一个电位。 通常情况下,BE结是正偏的,BC结是反偏的。称为正向有源。附图: 由于发射结正偏,电子就从发射区越过发射结注入到基区。BC结反偏,所以在BC结边界,理想情况下少子电子浓度为零。 附基区中电子浓度示意图: 电子浓度梯度表明,从发射区注入的电子会越过基区扩散到BC结的空间电荷区,

半导体光电子学-考点

半导体光电子学 一、1.声子:晶格振动的能量量子,假想粒子,与晶格振动相联系,不能独立存在。 光子:传递电磁相互作用的规范粒子,无静止质量,具有能量和动量,能够独立存在。 2.量子阱:两种禁带宽度不同的但晶格匹配的单晶半导体薄膜以极薄的厚度交替生长,使得宽带隙材料中的电子和空穴进入两边窄带隙半导体材料的能带中,好像落入陷阱,这种限制电子和空穴的特殊能带结构被形象地称为量子阱。 超晶格:当量子阱结构中单晶薄层的厚度可与德布罗意波长或波尔半径相比拟时,由于量子尺寸效应,量子阱之间会发生很强耦合效应。 3.光子晶体:是指具有光子带隙特性的周期性电介质结构的人造晶体。 纳米线:一种具有在横向上被限制在100纳米以下,纵向无限制的一维结构材料。 4.施主杂质:半导体中掺杂的杂质能够提供电子载流子的特性。 受主杂质:半导体中掺杂的杂质能提供空穴载流子的特性。 杂质能级:半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产生附加的杂质能级。 5.激子复合:所谓激子是指处于束缚态的电子和空穴,激子复合的能量将以光的形式 释放。 俄歇复合:电子和空穴复合后将能量传递给另一个电子或空穴的现象。有 CHCC(复合后的能量给导带的电子并使其激发到导带更高能态)和 CHHS(复合后的能量给价带的空穴并使其激发到自旋-轨道裂带上)过 程。 二、采用能带图和文字描述导体,半导体和绝缘体的异同。 导体:价带全满,导带部分填充 半导体:价带全满,导带全空,但是禁带宽度较窄,电子易于激发到导带中去。 绝缘体:价带全满,导带全空,禁带宽度较大 三、光波导结构的实例,并进一步说明光波导在光电器件中的工作原理。 光波导主要有平面波导和条形波导,而条形波导又有增益波导,折射率波导,分布反馈波导实例: 如折射率波导:有源区和两侧限制区的折射率不同,有源区两侧解理面构成反射镜,在有源区电子受激发射出的光子由于有源区和限制区折射率的不同构成全反射,将光场限制在有源区内,光子只能在两侧解理面来回反射,激发出更多的光子,并在输出方向上传播。 四、双异质结未加偏压和加偏压的能带图 双异质结在激光器中的作用: (1)pn结处于正向电压时,异质结势垒降低,n区电子能够越过势垒和隧穿势垒而注入窄

模拟电子技术基础-第1章 常用半导体器件题解

第一章 常用半导体器件 自 测 题 一、判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)在N 型半导体中如果掺入足够量的三价元素,可将其改型为P 型半导体。( ) (2)因为N 型半导体的多子是自由电子,所以它带负电。( ) (3)PN 结在无光照、无外加电压时,结电流为零。( ) (4)处于放大状态的晶体管,集电极电流是多子漂移运动形成的。 ( ) (5)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其R G S 大的特点。( ) (6)若耗尽型N 沟道MOS 管的U G S 大于零,则其输入电阻会明显变小。( ) 解:(1)√ (2)× (3)√ (4)× (5)√ (6)× 二、选择正确答案填入空内。 (1)PN 结加正向电压时,空间电荷区将 。 A. 变窄 B. 基本不变 C. 变宽 (2)设二极管的端电压为U ,则二极管的电流方程是 。 A. I S e U B. T U U I e S C. )1e (S -T U U I (3)稳压管的稳压区是其工作在 。 A. 正向导通 B.反向截止 C.反向击穿 (4)当晶体管工作在放大区时,发射结电压和集电结电压应为 。 A. 前者反偏、后者也反偏 B. 前者正偏、后者反偏 C. 前者正偏、后者也正偏 (5)U G S =0V 时,能够工作在恒流区的场效应管有 。 A. 结型管 B. 增强型MOS 管 C. 耗尽型MOS 管 解:(1)A (2)C (3)C (4)B (5)A C

三、写出图T1.3所示各电路的输出电压值,设二极管导通电压U D=0.7V。 图T1.3 解:U O1≈1.3V,U O2=0,U O3≈-1.3V,U O4≈2V,U O5≈1.3V, U O6≈-2V。 四、已知稳压管的稳压值U Z=6V,稳定电流的最小值I Z mi n=5mA。求图T1.4所示电路中U O1和U O2各为多少伏。 图T1.4 解:U O1=6V,U O2=5V。

电子技术各章知识点

电子技术复习 CH14半导体器件 1.本征半导体、N型半导体、P半导体的基本概念;PN的单 向导电特性;温度和参杂浓度对多子和少子的影响。 2.二极管的基本参数(死区电压、导通电压)及相关应用, 学会判断二极管在电路中的工作状态(导通、截止)。掌握含二极管电路的分析方法。 3.了解稳压管的工作原理,基本稳压管稳压电路的分析。(两 稳压管串联、并联) 4.半导体三极管工作状态的特点(放大、饱和、截止)。 5.半导体三极管的管脚的判定 CH15基本放大电路 1.放大电路(共射)的分析方法(直流通路法、微变等效电 路法) 2.静态工作点稳定电路(分压式偏置电路)的结构、特点和分 析方法(静态、动态) 3.射极输出器的特点,电路分析。 4.差分放大电路的输入信号(共模、差模、比较),共模抑制 比的概念(理想共模抑制比=?) CH16集成运算放大器 1.运放的理想化条件 2.运放在线性区和非线性区的分析方法

3. 运放线性应用电路的分析(比例运算[同相(电压跟随器)、反相(反相器)]、反相加法运算、减法运算) CH17电子电路中的反馈 1. 反馈的基本概念 2. 负反馈类型的判断方法(会判断正、负反馈;电压、电流反馈;串联、并联反馈) 3. 负反馈对放大器性能的影响(影响类别?闭环放大倍数? AF A A f += 1) 4. 自激振荡起振的条件、振荡建立条件、稳振条件? 5. 典型RC 两种类型电路的电路分析。 CH18直流稳压电源 1. 直流稳压电源的组成及各部分的作用 u 1- + 2. 单相半波、全波(桥式整流)电路的构成和工作原理,二极管的选择依据(计算,见例题和作业题),桥式的输出波形受二极管的影响

半导体器件(附答案)

第一章、半导体器件(附答案) 一、选择题 1.PN 结加正向电压时,空间电荷区将 ________ A. 变窄 B. 基本不变 C. 变宽 2.设二极管的端电压为 u ,则二极管的电流方程是 ________ A. B. C. 3.稳压管的稳压是其工作在 ________ A. 正向导通 B. 反向截止 C. 反向击穿区 4.V U GS 0=时,能够工作在恒流区的场效应管有 ________ A. 结型场效应管 B. 增强型 MOS 管 C. 耗尽型 MOS 管 5.对PN 结增加反向电压时,参与导电的是 ________ A. 多数载流子 B. 少数载流子 C. 既有多数载流子又有少数载流子 6.当温度增加时,本征半导体中的自由电子和空穴的数量 _____ A. 增加 B. 减少 C. 不变 7.用万用表的 R × 100 Ω档和 R × 1K Ω档分别测量一个正常二极管的正向电阻,两次测量 结果 ______ A. 相同 B. 第一次测量植比第二次大 C. 第一次测量植比第二次小 8.面接触型二极管适用于 ____ A. 高频检波电路 B. 工频整流电路 | 9.下列型号的二极管中可用于检波电路的锗二极管是: ____ A. 2CZ11 B. 2CP10 C. 2CW11 10.当温度为20℃时测得某二极管的在路电压为V U D 7.0=。若其他参数不变,当温度上 升到40℃,则D U 的大小将 ____ A. 等于 B. 大于 C. 小于 11.当两个稳压值不同的稳压二极管用不同的方式串联起来,可组成的稳压值有 _____ A. 两种 B. 三种 C. 四种 12.在图中,稳压管1W V 和2W V 的稳压值分别为6V 和7V ,且工作在稳压状态,由此可知输 出电压O U 为 _____ A. 6V B. 7V C. 0V D. 1V

电力电子半导体器件GTO

电力电子半导体器件(GTO) 第六章可关断晶闸管(GTO)特点:是SCR的一种派生器件;具有SCR的全部优点,耐压高、 电流大、耐浪涌能力强,造价便宜;为全控型器件,工作频率 高,控制功率小,线路简单,使用方便。§6.1 GTO结构及工作原理Gate Turn-off Thyristor——GTO 一、结构:四层PNPN结构,三端器件; 特点: ①α1< α212P1N1P2管不灵敏, N1P2N2管灵敏。 ②α1+ α2略大于1;器件 工作于临界饱和状态, 使关断成为可能。 ③多元集成结构,由数 百个小GTO元 元元 元并联形成。由于GTO的多元结构,开通和关断过程与SCR不同,同时GTO 元的特性又不同于整个GTO器件的特性,多元集成使GTO的开关 过程产生了一系列新的问题。 二、GTO开通原理:

与SCR一样,由正反馈控制过程来实现。 其中: 开通条件:α1+ α2 > 1 定义:α1+ α2 = 1时,对应的阳极电流为临界导通电流。 ——擎住电流由于α1、α2随射极电流增大而上升,当阳极电流未达到擎住电流时,α1+ α2<1,此时去掉门极电流IG,阳极电流也会消 失,管子不能维持导通。 注意: ①GTO多元集成结构,各GTO元特 性存在差异,开通过程中个别GTO 元的损坏,将引起整个GTO损坏。 要求GTO制作工艺严格,GTO元特要求GTO制作工艺严格,GTO元特 性一致性好。 ②dv/dt、Tj、光照等因素会引起GTO误触发,应用中加以防止。 ③驱动电路正向门极触发电流脉冲上升沿越陡,GTO元阳极电 流滞后时间越短,可加速GTO元阳极导电面积扩展,缩短开通 时间。三、GTO关断原理:如图关断等效电路 关断过程分为三个阶段: 存储时间阶段:ts下降阶段:

半导体光电子学期末复习纲要(精)

《半导体光电子学》期末复习纲要 一、基本概念与名词解释: 第一章: 1、光子学说的几个基本概念:相格、光子简并度等; 2、微观粒子的四个统计分布规律:麦克斯韦速率分布率、波耳兹曼分布率、费米分布率、玻色分布率; 3、热辐射和黑体辐射的几个概念:热辐射、朗伯体、视见函数、普朗克公式; 4、简述辐射跃迁的三种过程:自发辐射、受激吸收、受激辐射; 5、谱线加宽的类型及定义:均匀加宽、非均匀加宽、碰撞加宽。 第二章: 1、一般概念:激发态能级寿命、亚稳态能级、粒子数反转、负温度、激活介质、增益饱和;2、三能级系统、四能级系统的粒子数反转的形成过程; 3、关于介质中的烧孔效应、气体激光器中的烧孔效应的论述。 第三章: 1、激光的几个特性:包括时间相干性、空间相干性、相干时间、相干长度、相干体积、光子简并度; 2、有关谐振腔的基本概念:谐振腔、稳定腔、不稳定腔、介稳腔; 3、激光振荡的几个现象和过程:模的竞争、空间烧孔、兰姆凹陷、频率牵引、高斯光束、激光器最佳透过率。 第四章: 1、光波导的几个基本概念:平板波导、矩形波导、光纤、导模、辐射模、阶跃型光纤、渐变型光纤、子午线、子午面、斜光线、吸收损耗、散射损耗、弯曲损耗、材料色散、波导色散、模间色散。 第五章: 1、有关光吸收的几个基本概念:本征吸收、晶格振动吸收、自由载流子吸收、激子吸收、杂质吸收; 2、光探测的一些基本效应:光电效应、光热效应、外光电效应、光电导效应、光电导驰豫、逸出功、电子亲和势、光伏效应、热释电效应、测辐射热计效应、温差电效应、帕尔帖效应、塞贝克效应、汤姆逊效应。 二、理论推导与证明: 第二章: 1、粒子数密度的差值(式2-1-17,2-1-22); 2、均匀加宽与非均匀加宽的小信号增益系数(式2-2-14,2-2-15); 3、均匀加宽与非均匀加宽情况下的大信号反转粒子数密度、烧孔面积(式2-3-3,2-3-7); 4、均匀加宽与非均匀加宽情况下的大信号增益系数(式2-3-10,2-3-17);

半导体物理知识点及重点习题总结讲课稿

半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量

有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k 关系决定。 1.4本征半导体 既无杂质有无缺陷的理想半导体材料。 1.4空穴 空穴是为处理价带电子导电问题而引进的概念。设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。它引起的假想电流正好等于价带中的电子电流。 1.4空穴是如何引入的,其导电的实质是什么? 答: 空穴是为处理价带电子导电问题而引进的概念。设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。 这样引入的空穴,其产生的电流正好等于能带中其它电子的电流。所以空穴导电的实质是能带中其它电子的导电作用,而事实上这种粒子是不存在的。 1.5 半导体的回旋共振现象是怎样发生的(以n 型半导体为例) 答案: 首先将半导体置于匀强磁场中。一般n 型半导体中大多数导带电子位于导带底附近,对于特定的能谷而言,这些电子的有效质量相近,所以无论这些电子的热运动速度如何,它们在磁场作用下做回旋运动的频率近似相等。当用电磁波辐照该半导体时,如若频率与电子的回旋运动频率相等,则半导体对电磁波的吸收非常显著,通过调节电磁波的频率可观测到共振吸收峰。这就是回旋共振的机理。 1.5 简要说明回旋共振现象是如何发生的。 半导体样品置于均匀恒定磁场,晶体中电子在磁场作用下运动 运动轨迹为螺旋线,圆周半径为r , 回旋频率为 sin v B f qv B f qvB qv B θθ⊥=-?==r r r r r 与夹角c ω2 *2* * ,// / /c n n c n v r a v r m v r qv B m qBr v qB m ωω⊥⊥⊥⊥⊥==?=?=?=向心加速度

半导体物理基础知识

半导体物理基础知识 一、半导体导电特性 电子线路中的关键器件如二极管、三极管、场效应管、集成电路等都是由半导体材料制成的,要分析上述器件的工作原理,必须对半导体材料的导电特性应有所了解。 1、 什么是半导体 物质如按导电性能分可分为 (1) 导体: 电阻率ρ很小; (2) 绝缘体:电阻率ρ很大; (3) 半导体:电阻率ρ不大不小,10-3~109 Ω?cm 。 常见的有:硅(Si )、锗(Ge )、砷化镓(GaAs )等。 2、 半导体独特的导电特性 (1) 受温度(T )的影响大;T ↑→ρ↓,热稳定性差,但也可做热敏元件 (2) 受光照的影响大; (3) 掺杂对导电性能影响大。 例:室温,纯净的硅,ρ= 2*103Ω?cm ,如掺百万分之一(10-6 )的磷(P ),纯度还有 99.9999%(6个9),则ρ= 4*10-3 Ω?cm 。 二、本征半导体 1、 什么是本征半导体:纯净的(9个9以上),晶格整齐无缺陷的单晶半导体。 2、 本征半导体晶格结构 (1) 半导体原子结构 惯性核 价电子 (2)晶格结构 p3 图1-1-2 体。

3、 本征激发 (1) 当T=0K (绝对零度)时,所有价电子都束缚在共价键中,不能成为自由 电子,晶体相当绝缘体。 (2) 当T>0K 或光照时,部分价电子获得额外能量,摆脱共价键束缚变为自由 电子,并在共价键中留下一个缺少负电荷的空位(空穴)。这过程就叫本征激发。 (a ) 本征激发时,自由电子和空穴是成对出现,叫自由电子空穴对; (b ) 空穴是带正电的,因为原子是电中性的; (c ) 空穴可以运动:邻近共价键中的价电子填补空穴。 (d ) 温度越高,产生的自由电子空穴对就越多。 4、 载流子: 可以运动的带电粒子。 半导体中自由电子和空穴都是载流子。 5、 复合: 自由电子填补空穴。 自由电子和空穴成对消失。自由电子和空穴浓度越大,复合的几率就越大。 6、 热平衡载流子浓度i n 热平衡:在一定温度下,自由电子空穴对的产生与复合达到了动态平衡(单位时间有多少自由电子空穴对产生出来同时也有同等数量的自由电子空穴对复合掉)就叫热平衡。这时自由电子空穴对的浓度(单位体积粒子数)即热平衡热平衡载流子浓度i n 保持不变。 3 2 2go E KT i n AT e -= 当温度T ↑时,i n ↑↑ 常温下,i n 是很小的。例:硅在室温T=300K 时,1031.510i n cm -=?。而硅的原子密

半导体物理基础知识

半导体物理基础知识 1.1导体,绝缘体和半导体 自然界的各种物质就其导电性能来说、可以分为导体、绝缘体和半导体三大类。 导体具有良好的导电特性,常温下,其内部存在着大量的自由电子,它们在外电场的作用下做定向运动形成较大的电流。因而导体的电阻率很小,只有金属一般为导体,如铜、铝、银等,它们的电阻率一般在10–4欧姆·厘米以下。 绝缘体几乎不导电,如橡胶、陶瓷、塑料等。在这类材料中,几乎没有自由电子,即使受外电场作用也不会形成电流,所以,绝缘体的电阻率很大,它们的电阻率在109欧姆·厘米以上。 半导体的导电能力介于导体和绝缘体之间,如硅、锗、硒等,它们的电阻率通常在之间。半导体之所以得到广泛应用,是因为它的导电能力受掺杂、温度和光照的影响十分显著。如纯净的半导体单晶硅在室温下电阻率约为,若按百万分之一的比例掺入少量杂质(如磷)后,其电阻率急剧下降为,几乎降低了一百万倍。半导体具有这种性能的根本原因在于半导体原子结构的特殊性。它具有如下的主要特征。 (l)杂质影响半导体导电性能在室温下,半导体的电阻率在10–4~109欧姆·厘米之间。而且,加入微量杂质能显著改变半导体的导电能力。掺入的杂质量不同时,可使半导体的电阻率在很大的范围内发生变化。另外,在同一种材料中掺入不同类型的杂质,可以得到不同导电类型的材料。 (2)温度影响半导体材料导电性能温度能显著改变半导体的导电性能。在一般的情况下,半导体的导电能力随温度升高而迅速增加,也就是说,半导体的电阻率具有负温度系数。而金属的电阻率具有正温度系数,且随温度的变化很慢。 (3)有两种载流子参加导电在半导体中,参与导电的载流子有两种。一种是为大家所熟悉的电子,另一种则是带正电的载流子,称为空穴。而且同一种半导体材料,既可以形成以电子为主的导电,也可以形成以空穴为主的导电。在金属中则仅靠电子导电,而在电解质中,靠正离子和负离子同时导电。 (4)其它外界条件对导电性能的影响半导体的导电能力还会随光照而发生变化。例如一层淀积在绝缘基板上的硫化镉薄膜,其暗电阻约为数十兆欧,当受光照后,其电阻可下降到数十千欧。这种现象称为光电导效应。此外,半导体的导电能力还会随电场、磁场、压力和环境的作用而变化,具有其它特性和效应。 物体的导电能力,一般用材料电阻率的大小来衡量。电阻率越大,说明这种材料的导电能力越弱。表1-1给出以电阻率来区分导体,绝缘体和半导体的大致范围。

相关主题
文本预览
相关文档 最新文档