当前位置:文档之家› BCH-2型变压器纵差动保护整定与计算说明书4

BCH-2型变压器纵差动保护整定与计算说明书4

BCH-2型变压器纵差动保护整定与计算说明书4
BCH-2型变压器纵差动保护整定与计算说明书4

BCH-2型变压器纵差动保护

整定与计算

前言

本次毕业设计是有关于变压器的保护整定计算,紧密贴合电气专业的课程主要重点难点,更深入细化地将变压器保护的知识加以巩固,并且融合了其他课程的基础知识,涉及到正序、负序、零序网络的建立、在最大及最小运行方式下短路电流的计算以及对BCH-2型变压器纵差保护继电器的征订及计算,全面整合了相关专业知识,锻炼了我们实际操作能力,为我们以后在实际设计工作奠定了良好的基础

目录

前言 (1)

一、任务书 (3)

二、设计说明 (5)

(一)短路电流计算 (5)

(二)单相接地短路电流计算 (6)

(三)三相短路电流计算 (9)

(四)两相短路电流计算 (12)

(五)两相接地短路电流计算 (13)

三、基本侧的选择 (17)

四、差动保护的整定计算 (17)

总结 (21)

差动保护的单相接线图 (22)

变压器保护的整定计算与配置任务书

一、系统图:(见附图) 二、元件参数:

发电机:50MW kV U e 5.10= 8.0c o s =? 124.0"

=d X 25MW kV U e 5.10= 8.0c o s =? 13.0"=d X

变压器:31.5MV A 121(1±2×2.5%)/10.5 5.10%=k U )(11/110d y Y n --? 63MV A 121(1±2×2.5%)/10.5 5.10%=k U )(11/110d y Y n --? 31.5MV A 121(1±2×2.5%)/38.5(1±2×2.5%)/10.5

%k U 高—中17.5 高—低10.5 中—低6.5 1112--yd Y n 40MV A 110(1±2×2.5%)/11 5.10%=k U 11/0--?Y 线路:km l 601= km x /4.01Ω= 103x x =

km l 502= km x /4.01Ω= 103x x = 双回运行105x x =(每一根)

三、系统运行方式

最大方式:A 厂、B 厂发电机、变压器全部投入,双回线运行。

最小方式1:A 厂停一台25MW 发电机和31.5MV A 变压器,双回线运行。 最小方式2:B 厂停一台25MW 发电机,单回线运行。

最小方式3:A 厂停一台50MW 发电机和63MV A 变压器,双回线运行。

四、设计任务

1、毕业设计说明书

2、短路计算结果表

3、BCH —2型单相原理接线图

五、设计步骤

1、计算元件参数标幺值

2、计算短路电流

3、确定变压器基本侧

4、整定计算差动保护

六、参考资料

1、《电力系统继电保护》

2、《电力工程设计手册》(2)

3、《电力系统继电保护整定计算》(崔家佩)

设 计 说 明

一、短路电流计算:

1、系统等值网络:

(1)元件标幺值计算: 发电机:50MW :

*

"

d X =0.124×1984.08.050100

= 2448.08

.050100

153.0*2=?

=X 25MW : *

"

d X =0.13×416.08.025100

= 512.08

.025100

16.0*2=?=X 变压器:31.5MV A : 3333.05.31100

1005.10*=?=

X 63MV A : 1667.063100

1005.10*=?=X 40MV A : 2625.040100

1005.10*=?=X 31.5MV A : 75.10)5.65.105.17(21

%1=-+=K U

75.6)5.105.65.17(21

%2=-+=K U

25.0)5.175.65.10(2

1

%3-=-+=K U

3413.05.3110010075.10*1=?=X

2143.05.3110010075.6*2=?=X

0079.05

.3110010025.0*3-=?-=X

输电线:单回:1815.0115

100

604.02

*1=??=X 5445.01815.033*1*0=?==X X

双回:1512.0115100

504.02

*1=??=

X

756.01512.055*1*0=?==X X

(2)系统等值网络

0.1512

正序网络

0.756

零序网络

第二节 单相接地短路电流计算

〈1〉 最大方式:

正序 负序 零序 072.0)1(=∑X 0627

.0)2(=∑X 0627.0)0(=∑X 658.051

)

0()2()1()0()2()1(=++=

==∑∑∑X X X I I I f f f

162.912

1

0952.02958.02958.0658.05)1('=?+?=f I

631.812

1

0852.0237.0237.0658.05)2('=?+?=f I

631.812

1

0852.0237.0237.0658.05)

2('=?+?=f I

外部短路:1d :424.65)0(')2(')1(')(=++=f f f a f I I I I 内部短路:1d :974.115658.0533)1()(=?==f a f I I 〈2〉最小方式1:

正序 负序 零序

0733.0)1(=∑X 634.00)2(=∑X 0634.0)0(=∑X 975.941

)

0()2()1()0()2()1(=++=

==∑∑∑X X X I I I f f f

461.830952

.00733.00733

.0975.94)1('=+?

=f I

204.730852

.02482.02482

.0975.94)2('=+?

=f I

204.730852

.02482.02482

.0975.94)

2('=+?=f I

外部短路:1d :87.211)0(')2(')1(')(=++=f f f a f I I I I 内部短路:2d :925.9143)1()(==f a f I I 〈3〉最小方式2:

正序 负序 零序 0758.0)1(=∑X 0668

.0)2(=∑X 0668.0)0(=∑X 755.741

)

0()2()1()0()2()1(=++=

==∑∑∑X X X I I I f f f

755.712

1

103.02958.02958.07755.4)1('=?+?=f I

7154.12

1

0929.0237.0237.07755.4)2('=?+?=f I

7154.12

1

0929.0237.0237.07755.4)

2('=?+?=f I

外部短路:1d :063.25)0(')2(')1(')(=++=f f f a f I I I I 内部短路:1d :265.3143)1()(==f a f I I

〈4〉最小方式3:

正序 负序 零序 0747.0)1(=∑X 0645

.0)2(=∑X 0645.0)0(=∑X 091.941

)

0()2()1()0()2()1(=++=

==∑∑∑X X X I I I f f f

271.912

1

0952.03478.03478.09091.4)1('=?+?=f I

8572.12

1

0852.02649.02649.09091.4)2('=?+?=f I

8572.12

1

0852.02649.02649.09091.4)

2('=?+?=f I

外部短路:1d :415.65)0(')2(')1(')(=++=f f f a f I I I I 内部短路:1d :273.7149091.433)1()(=?==f a f I I

第三节 三相短路电流计算:

〈1〉最大方式

1

d 2

外部短路:1d 短路:6372.12

1

1387.01667.011=?+=

I

2d 短路:6540.12

1

1667.01356.012=?+=I

内部短路:1d 短路:649.101356

.0//)1387.01667.0(1

1=+=

I

2d 短路: 518.101387

.0//)1356.01667.0(1

2=+=I

〈2〉最小方式1

d 2

1

外部短路:1d 短路:8474.1208

.03333.01

1=+=

I

2d 短路:13265.23333

.01356.01

2=+=

I 内部短路:1d 短路:2220.91356.0//)208.03333.0(1

1=+=

I

2d 短路:940.6208

.0//)3333.01356.0(1

2=+=I

〈3〉最小方式2

d 2

1

外部短路:1d 短路:6372.12

1

1387.01667.011=?+=

I

2d 短路:6202.12

1

1667.01419.012=?+=

I 内部短路:1d 短路:3216.101419

.0//)1387.01667.0(1

1=+=

I

2d 短路:4502.101387

.0//)1419.01667.0(1

2=+=I

〈4〉最小方式

3

1

d 2

外部短路:1d 短路:6372.12

1

1387.01667.011=?+=

I

2d 短路:3072.12

1

1667.02158.012=?+=

I 内部短路:1d 短路:9083.72158

.0//)1387.01667.0(1

1=+=

I

2d 短路:8242.91387

.0//)2158.01667.0(1

2=+=

I

〈4〉最小方式3:外部短路: 1d 短路:4179.16372.12

3

21

=?=)

(I 2d 短路:1321.13072.12

3

22

=?=)

(I

内部短路: 1d 短路:8488.69083.72

3

21

=?=)

(I 2d 短路:5080.88242.92

3

22

=?=)

(I 第四节 两相短路电流计算:

21x x = 2

3

)

3()2(I I = 〈1〉最大方式:外部短路: 1d 短路:4182.16376.12

3

21

=?=)

(I 2d 短路:4324.16540.12

3

22

=?=)

(I

内部短路: 1d 短路:2223.9649.102

3

21

=?=)(I 2d 短路:1089.9518.102

3

22

=?=)(I 〈2〉最小方式1:外部短路: 1d 短路:5999.18474.12

3

21

=?=)(I 2d 短路:8469.113265.22

3

22

=?=)(I

内部短路: 1d 短路:9865.72220.92

3

21

=?=)(I 2d 短路:0102.6940.62

3

22

=?=)(I

〈3〉最小方式2:外部短路: 1d 短路:4179.16372.12

3

21

=?=)

(I 2d 短路:4031.16202.12

3

22

=?=)

(I

内部短路: 1d 短路:9388.83216.102

3

21

=?=)

(I 2d 短路:0501.94502.102

3

22

=?=)

(I

第五节 两相接地短路电流计算:

〈1〉最大方式:

0676.709629

.009394.009629

.009394.009394.01

)1(j j j j j j I f -=+?+

=

?

5775.309629

.009394.009629

.00676.7)2(j j j j j I f =+?

=?

4901.309629

.009394.009394

.00676.7)0(j j j j j I f =+?

=?

5503

.02

1

3053.01357.01357.05775.3'

)2(j j I f =?+?

=?

0082.13333

.01354.01354

.04901.3'

)0(j j I f =+?

=?

外部短路:1d :'

)0('

)2('

)1(2)(f f f b f I I a I a I ????

++=

=10240/·090/0871.1-+0120/1·090/5503.0+090/0082.1 =0138/908.1

908.1)()(==c f b f I I

0871.13053.01357.0211357.00676.7'

)

1(j j I f -=+??

-=?

内部短路:1d :)0()2()1(2

)(f f f b f I I a I a I ?

???

++=

=10240/·090/0676.7-+0120/1·090/5775.3+090/4901.3 =04.150/6017.10

6017.10)()(==c f b f I I

〈2〉最小方式1:

2738.609629

.01084.009629

.01084.01084.01

)1(j j j j j j I f -=+?+

=

?

9513.209629

.01084.009629

.02738.6)2(j j j j j I f =+?

=?

3225.309629

.01084.01084

.02738.6)0(j j j j j I f =+?=?

5912

.05413

.01356.01356

.09513.2'

)2(j j I f =+?

=?

9598.03333

.01354.01354

.03225.3'

)0(j j I f =+?

=?

外部短路: '

)0('

)2('

)1(2)(f f f b f I I a I a I ????

++=

=10240/·090/2568.1-+0120/1·090/5912.0+090/9598.0 =01.141/0572.2

0572.2)()(==c f b f I I

内部短路: )0()2(12)(f f f b f I I a I a I ?

?

?

?

++=)(

=10240/·090/2738.6-+0120/1·090/9513.2+090/3225.3 =0148/4162.9

2568

.15413

.01356.01356

.02738.6'

)

1(j j I f -=+?-=?

4162.9)()(==c f b f I I

〈3〉最小方式2:

8783.609714

.009688.009714

.009688.009688.01

)1(j j j j j j I f -=+?+

=

?

4438.309714

.009688.009714

.08783.6)2(j j j j j I f =+?

=?

4345.309714

.009688.009688

.08783.6)0(j j j j j I f =+?=?

5462

.02

1

3054.01419.01419.04438.3'

)2(j j I f =?+?

=?

0010.13333

.01371.01371

.04345.3'

)0(j j I f =+?

=?

外部短路: '

)0('

)2('

)1(2)(f f f b f I I a I a I ????

++=

=10240/·090/0910.1-+0120/1·090/5462.0+090/001.1 =0138/9057.1

9057.1)()(==c f b f I I

内部短路: )0()2()1(2)(f f f b f I I a I a I ?

?

?

?

++=

=10240/·090/8783.6-+0120/1·090/4438.3+090/4345.3 =0150/3175.10

3175.10)()(==c f b f I I

〈4〉最小方式3:

5232.509629

.01264.009629

.01264.01264.01

)1(j j j j j j I f -=+?+

=

?

0910

.12

1

3054.01419.01419.08783.6'

)

1(j j I f -=?+?-=?

3882.209629

.01264.009629

.05232.5)2(j j I f =+?

=?

1350.309629

.01264.01264

.05232.5)

0(j j I f =+?=?

4944

.02

1

2158.03054.02158.03882.2'

)2(j j I f =?+?

=?

9057.03333

.01354.01354

.01350.3'

)0(j j I f =+?

=?

外部短路: '

)0('

)2('

)1(2)(f f f b f I I a I a I ????

++= =0139/8775.1

8775.1)()(==c f b f I I

内部短路: )0()2()1(2)(f f f b f I I a I a I ?

?

?

?

++= =05.145/3100.8

3100.8)()(==c f b f I I

6、短路电流计算结果表

1434

.121

2158.03054.02158.05232.5'

)

1(j j I f -=?+?-=?

三、基本侧的选择:

由上表可见,110kV 的二次额定电流大于11kV 侧的二次额定电流,故应选110kV 侧为基本侧。

四、差动保护的整定计算:

1、由短路电流计算结果比较可得:

最大外部短路电流为三相外部短路时2d 点的短路电流:

7.1070115

310013265.2max =??

=d I A (最小方式1)

最小内部短路电流为最小方式1时在2d 点发生的两相短路时的短路电流:

5.330475

.1031000102.6min =??

=d I A

2、确定保护的动作电流

〈1〉躲开变压器投入,切除外部短路后及电压恢复时的励磁涌流:

94.272110

3403.1=??

=≥e k dz I K I A

〈2〉躲开电流互感器二次回路断线时变压器的最大负荷:

94.272110

3403.1=??

==e rel dz I K I A

〈3〉躲开变压器外部短路时的最大不平衡电流:

)(3.1'

""'bp bp bp bp k dz I I I I K I ++=≥

=1.3(ph wc tx fzq f U f K K ?+?+)max ?d I

k K 为可靠系数,取1.3

'

bp

I 电流互感器的误差引起的不平衡电流 "

bp

I 变压器电压分接头改变引起的不平衡电流 "'

bp

I 平衡线圈不能对变压器Ⅰ与Ⅱ侧电流差值进行完全补偿引起的不平衡电流 fzq K 非同期分量引起的误差,取1 tx K 电流互感器的同型系数

当电流互感器型号相同且处于同一情况下,5.0=tx K 当电流互感器型号不同时,1=tx K

wc f 电流互感器容许最大相对误差,取0.1

ph f ? 继电器整定匝数与计算匝数不等而引起的相对误差

z

ph js ph z ph js ph ph W W W W f ????+-=

?

∴≥dz I 1.3(ph wc tx fzq f U f K K ?+?+)max ?d I =1.3(1×1×0.1+0.05+0.05)×1070.7

=278.38A

因此

∴dz I =278.38A

3、确定继电器基本侧线圈匝数及各线圈接法

〈1〉基本侧继电器动作电流

64.48

.2003467

.338.2781=?=

=

?????jb

e jb

ez bh dz js jb dz I I I I A

〈2〉基本侧线圈匝数(差动线圈匝数)

93.1264

.460

0==?=

=??j dz z cd g I W W W 匝 取13=??z jb g W 匝

〈3〉确定基本侧线圈接入匝数

12113+=+==????z cd z ph z jb g W W W 继电

62.413

60

60===

??z cd jb dz W I A 保护

2.2773467

.38

.20062.42=?

==??????jb

e jb e jb

j dz jb bh dz I I I I A

〈4〉确定非基本侧平衡线圈及工作线圈匝数

82.3127493

.23467

.31322=-?

=-=???????z cd fj

e jb e z jb g js fj ph W I I W W 匝

确定

3=??z Ⅱph W 匝

〈5〉计算由实用线圈与计算匝数不等引起的相对误差

049.012

82.33

82.3=+-=

?ph f <0.05

∴动

〈6〉灵敏度:

变压器保护定值整定

变压器定值整定说明 注:根据具体保护装置不同,可能产品与说明书有不符之处,以实际产品为主。 差动保护 (1)、平衡系数的计算 1 2 3 4 5 侧的二次电流。如果按上述的基准电流计算的平衡系数大于4,那么要更换基准电流I b,直到平衡系数满足 0.1

I n 为变压器的二次额定电流, K rel 为可靠系数,K rel =1.3—1.5; f i(n)为电流互感器在额定电流下的比值误差。f i(n)=±0.03(10P ),f i(n)=±0.01(5P ) ΔU 为变压器分接头调节引起的误差(相对额定电压); Δm 为TA 和TAA 变比未完全匹配产生的误差,Δm 一般取0.05。 一般情况下可取: I op.0=(0.2—0.5)I n 。 (3) I res.0(4) a I Δm 2=0.05; b 、 式中的符号与三圈变压器一样。 最大制动系数为: K res.max =res unb.max rel I I K Ires 为差动的制动电流,它与差动保护原理、制动回路的接线方式有关,对对于两圈变压器I res = I s.max 。 比率制动系数:

K= res.max res.0res.max op.0res.max /I I -1/I I -K 一般取K=0.5。 (5)、灵敏度的计算 在系统最小运行方式下,计算变压器出口金属性短路的最小短路电流I s.min ,同时计算相应的制动电流I res ;在动作特性曲线上查出相应的动作电流I op ;则灵敏系数K sen 为: K sen = op I I 要求K sen ≥(6)(7 式中:I K I e (81、低电压的整定和灵敏度系数校验 躲过电动机自起动时的电压整定: 当低电压继电器由变压器低压侧电压互感器供电时, U op=(0.5~0.6)U n 当低电压继电器由变压器高压侧电压互感器供电时, U op=0.7U n 灵敏系数校验

变压器差动保护的整定_运行和动作后的判断和处理

311、有机锗(-羧乙基锗-Ge132)治疗老年智力障碍 安徽黄山市人民医院报道,治疗对象随机分成甲乙丙三组,使用小剂量、大剂量均有提高SOD作用。上海二医大药理组和上海铁道医学院药理组的动物实验提示,有机锗可提高老年小鼠对三臂等长Y型迷宫的空间分辨学习记忆能力。用慢性悬吊应激法致学习、记忆功能障碍的动物模型观察结果均表明,有机锗能提高慢性应激负荷与正常小鼠的学习与记忆能力。 312、用于皮肤护品 有机锗在含量低于1%浓度下,对皮肤无刺激作用,由于它稳定性的特点(将试剂每天3小时置于阳光下,12个月未发生分解,置于50℃环境中,观察3个月,未发生变化)对化妆品是很重要的。有机锗用于美容或化妆品可以制成不同的剂型,如乳剂、软膏、水剂、粉剂等,用含有0.5%有机锗纳盐对32-60岁有皮肤色素沉着的妇女实验,结果表明试测者皮肤变得光滑、丰润,小皱纹消失,色素及班点改善,有机锗配成霜、液加入必要的配料。涂手及面部,皮肤变得光滑而未产生过敏及其它副作用。 3.3、有机锗用于肿瘤治疗 临床研究较多的是螺旋锗治疗晚期肿瘤,但对前列腺癌、恶性黑色素瘤、晚期非何杰金氏淋巴瘤病人治疗无明显效果。日本报道,有机锗Ge-132对胰腺瓢柔毁、肺癌、胃癌及多发性骨髓瘤治疗取得一定疗效,但对喉癌疗效不佳。 4、锗的毒性 有人做过Ge-132的药代动力学实验,发现无积蓄现象;毒理实验证明毒性低;不引起畸形及生长发育障碍;急性及亚急性、慢性毒性试验,未见毒性反应;致畸试验、繁殖试验未见对胎仔生长发育有不良影响;皮肤刺激试验未见炎症、红肿及角化等异常现象。 Ge-132的各种试验都是在鼠类等小动物身上做的,它们与人类还有很大差别,在动物身上做的短期观察不等于人长期大量服用的后果,需要进一步观察服用锗化合物的迟发毒副作用,因大多数锗中毒都发生在服锗三个月至半年之后。大量吸入金属锗及氧化锗后,可引起肺部病理变化,吸入氧化锗可导致肾脏损害。日本已有几十人因服无机锗保健或营养而中毒,招致肾、血液、消化、神经系统等损害以至八人死亡。无机锗有毒,有机锗(包括Ge-132)也有毒性。三乙基锗有一定的毒性,螺锗对肝、肾、造血系统有明显毒性,Ge-132、Ge-201、CEG等有机锗服用常用剂量也会引起恶心呕吐,腹泻,心脏损伤(心肌疲劳、冠状动脉供血不足、室性早博、房室传导阻滞),长期或大量应用时,会导致肝,肾损害及震颤,干扰磷钙代谢,在日本及英国都有食物补充锗引起中毒死亡的正式报告,既使是更符合生理形式的氨基酸锗,用量过大也会使动物腹泻,活动减少,在骨中有积蓄作用。 因此,英国、德国卫生部门提醒人们注意锗的中毒,并对锗产品采取了一定的限制措施,我国卫生部也转发了世界卫生组织“药品情况”对锗的意见,美国学术组织则大声呼吁,将锗制品从市场上清除出去。 有机锗对生物体有着许多作用,由于它的药理作用,医疗效应,锗在我国目前尚作为保健促进剂,发挥辅助效能,人们对锗的研究在许多方面是未知数。如何能更好地利用锗为人民健康服务,使有机锗化合物研究和开发成为人类生物效应调节剂及体内调节平衡元素。这是尚待研究的问题,也是我们要努力的。 变压器差动保护的整定、运行和动作后的判断和处理 福建省上京矿务局供电所 蒋先进 电力变压器是厂矿供电系统中重要的电气设备之一,必须严格按照规程要求、合理配置各种保护装置,以及变压器的下列各种故障异常情况进行可靠的保持。 1、绕组及其出线的相间短路故障; 2、绕组的匝间短路故障; 3、外部相同短路引起的过电流; 4、中性点直接接地电力网中,外部接地短路引起的变压器过电流及中性过电压; 5、过负荷; 6、油面过低; 本文重点介绍变压器的差动保护鉴定、运行注意 34 科技交流 学会月刊1998年第11期

变压器后备保护讲解

高低后备保护定义: 高后备保护和低后备保护是相对变压器而言的,变压器高压侧的后备保护称为高后备,变压器低压侧的后备保护称为低后备。 高后备是指在110kV线路断路器拒动的情况下,由变压器高压侧断路器通过保护装置来断开故障电流,即作为110kV线路的后备保护;低后备是指在10kV线路断路器拒动的情况下,由变压器低压侧断路器通过保护装置来断开故障电流,即作为10kV线路的后备保护。高低后备保护种类: 变压器相间短路的后备保护有:过电流保护、低压启动的过电流保护、复合电压启动的过电流保护及负序过电流保护等。 变压器接地短路的后备保护有:零序电流保护、零序电压保护(零序电压保护只有在中性点失去、系统中没有零序电流的情况下才能够动作,不需要与其他元件的接地保护相配合)。后备保护用于在主保护故障拒动情况下,保护变压器。一般包含: (1)高压侧复合电压启动的过电流保护; (2)低压侧复合电压启动的过电流保护; (3)防御外部接地短路的零序电流、零序电压保护; (4)防止对称过负荷的过负荷保护; (5)和高压侧母线相联的保护:高压侧母线差动保护、断路器失灵保护; (6)和低压侧母线相联的相关保护:低压侧母线差动保护等。 低后备的作用:变压器低压母线、变压器低压线圈的保护以及低压出线的后备(远后备)保护。 高低后备保护范围: 问题一:高后备保护自高压侧CT以下的部分,作为主变差动保护的后备保护,同时也是中压侧及低压侧的总的后备保护;中后备保护作为中压侧出线的后备保护;低后备同中后备。高后备分有带方向和不带方向两种情况。不带方向的保护范围是:各侧母线及出线,包括主变本体,带方向的是指向母线(或指向主变)。 问题二:母线桥穿墙套管故障,应该属于主变差动保护范围,应该差动保护动作,如果差动保护没有跳开开关才轮到高后备保护动作,低后备保护是不会动作的,低后备只能保护低压侧CT以外的,不能保护以里的,不能倒过来保护主变方向。 问题三:高后备保护是一个总称,包括相间故障的复压方向过流保护和接地故障的零序方向过流保护、间隙保护等。 双绕组变压器当高后备投入的话,投低后备意义就不大。因为低后备保护动作后变压器处于空载状态,变压器运行已经失去价值。所以投入高后备不投低后备直接将变压器高压侧开关断开,以防止故障电流对变压器的损害。 相间短路后备保护方向设置: (1)三侧有电源的三绕组升压变压器,相间故障后备保护为了满足选择性要求,在高压侧或中压侧要加功率方向元件,其方向可指向该侧母线。方向元件的设置,有利于加速跳开小电源侧的断路器,避免小系统影响大系统。 (2)高压及中压侧有电源或三侧均有电源的三绕组降压变压器和联络变压器,相间故障后备保护为了满足选择性要求,在高压或中压侧要加功率方向元件,其方向宜指向变压器。(3)反应相间故障的功率方向继电器,通常由两只功率方向继电器构成,接入功率方向继电器的电流和电压应按90接线的要求。为了消除三相短路时功率方向继电器的死区,功率方向继电器的电压回路可由另一侧电压互感器供电。 高低后备保护出口:

变压器差动保护整定计算

变压器差动保护整定计算 1. 比率差动 装置中的平衡系数的计算 1).计算变压器各侧一次额定电流: n n n U S I 113= 式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。 2).计算变压器各侧二次额定电流: LH n n n I I 12= 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。 3).计算变压器各侧平衡系数: b n n PH K I I K ?= -2min 2,其中)4,min(min 2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。

平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。装置为了保证精度,所能接受的最小系数ph K 为,因此差动保护各侧电流平衡系数调整范围最大可达16倍。 差动各侧电流相位差的补偿 变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。电流互感器各侧的极性都以母线侧为极性端。 变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。对于Yo/Δ-11的接线,其校正方法如下: Yo 侧: )0('I I I A A ? ??-= )0(' I I I B B ? ? ? -= )0('I I I C C ? ??-= Δ侧: 3/ )('c a a I I I ? ??-=

变压器说明书

配电变压器安装使用说明书 三相树脂绝缘干式电力变压器 适用范围 二、 环氧树脂浇注干式变压器的特点 (2) 三、 使用条件 (2) 四、 产品主要规格型号 (2) 五、 产品结构概述及主要技术原理 (3) 六、产品主要技术参 数 ...................................... . (6) 七、运输和起吊 ......................................... .... (10) 丿八、 ............................................ 验收、保管和储存 .. (11) 沈阳 安装使用说明书 殳备制造有限公司 目 录

九、产品安装 ............................................. ?. (12) 十、现场交接试验 ....................................... .. (13) 十~、变压器试运行15 十二、变压器的维护 (18) 十三、安全注意事项......................................................... . (18) 一、适用范围 本说明书适用于我公司生产的额定容量20000kVA及以下,电压等级为35kV及以下无 励磁和有载调压环氧树脂浇注薄绝缘干式变压器的装卸、运输、仓储保管、安装、使用及维护。 二、环氧树脂浇注干式变压器的特点 环氧树脂浇注干式变压器具有低损耗、低局放、防爆、难燃、环保无污染、免维护、抗短路能力强等特点。 三、使用条件 1. 环境温度不高于40 °C,海拔高度不超过1000m若环境温度高于40 °C或海拔超过1000m时,应按GB6450的有关规定作适当的定额调整。 2.外壳防护等级有IP20、IP23等型式。The protection degree of enclosure is IP20 、IP23. 3.冷却方式有空气自冷(AN和强迫风冷两种。对空气自冷(AN和强迫风冷(AF)的变压器,均需保证变压器的安装环境具有良好的通风能力,当变压器安装在地下室或其他通风能力差

变压器纵差动保护动作电流的整定原则是什么

变压器纵差动保护动作电流的整定原则是什么? .(1)大于变压器的最大负荷电流; (2)躲过区外短路时的最大不平衡电流; (3)躲过变压器的励磁涌流。 39.什么是自动重合闸?电力系统为什么要采用自动重合 闸? 答:自动重合闸装置是将因故障跳开后的断路器按需要自动投入的一种自动装置。电力系统运行经验表明,架空线路绝大多数的故障都是瞬时性的,永久性故障一般不到10%。因此,在由继电保护动作切除短路故障之 后,电弧将瞬间熄灭,绝大多数情况下短路处的绝缘可以自动恢复。因此,自动将断路器重合,不仅提高了供电的安全性,减少了停电损失,而且还提高了电力系统的暂态稳定水平,增大了高压线路的送电容量。所以,架空线路要采用自动重合闸装置。 什么是主保护、后备保护、辅助保护? 答:主保护是指能满足系统稳定和安全要求,以最快速度有选择地切除被保护设备和线路故障的保护。 后备保护是指当主保护或断路器拒动时,起后备作用的保护。后备保 护又分为近后备和远后备两种:(1)近后备保护是当主保护拒动时, 由本线路或设备的另一套保护来切除故障以实现的后备保护(2)远后 备保护是当主保护或断路器拒动时,由前一级线路或设备的保护来切 除故障以实现的后备保护. 辅助保护是为弥补主保护和后备保护性能的不足,或当主保护及后备 保护退出运行时而增设的简单保护。 、何谓主保护、后备保护?何谓近后备保护、远后备保护?(8分) 答:所谓主保护是指能以较短时限切除被保护线路(或元件)全长上的故障的保护装置。(2分) 考虑到主保护或断路器可能拒动而配置的保护,称为后备保护。(2分) 当电气元件的主保护拒动时,由本元件的另一套保护起后备作用,称为近后备。(2分)

变压器微机差动保护的整定计算

变压器微机差动保护的整定计算 作者:程秀娟 (扬子石油化工设计公司南京210048) 摘要:本文首先对变压器差动保护误动的原因作了初步分析,然后介绍了三段折线式比率制动特性的变压器差动保护的基本原理,并对各种参数的整定值设置进行了详细论述。 关键词:变压器差动保护三折线参数整定 1 前言 电力变压器是电力系统中十分重要的供电设备,它出现故障将对供电可靠性和系统的正常运行带来严重的影响。纵联差动保护是大容量变压器的主保护之一,然而,相对于线路保护和发电机保护来说,变压器保护的正确动作率显得较低,据各大电网的不完全统计,正确动作率尚不足70%。究其原因,就在于变压器结构及其内部独特的电磁关系。要提高变压器差动保护的动作正确率,首先必须找出误动的原因,从而在整定计算时充分考虑这些因素,才能有效地避免误动的出现。 2 变压器差动保护误动原因分析 2.1 空载投入时误动 变压器空载投入时瞬间的励磁电流可能很大,其值可达额定电流的10倍以上,该电流称为励磁涌流。其产生的根本原因是铁心中磁通在合闸瞬间不能突变,在合闸瞬间产生了非周期性分量磁通。 励磁涌流波形特征是:含有很大成分的非周期分量;含有大量的谐波分量,并以二次谐波为主;出现间断。励磁涌流的影响因素有:电源电压值和合闸初相角;合闸前铁芯磁通值和剩磁方向;系统等值阻抗值和相角;变压器绕组的接线方式和中心点接地方式;铁芯材质的磁化特性、磁滞特性等,铁芯结构型式、工艺组装水平。 为防止变压器空投时保护误动,其差动保护通常利用二次谐波作制动。原理是通过计算差动电流中的二次谐波电流分量来判断是否发生励磁涌流。当出现励磁涌流时应有:Id2 > K I d1。其中,Id1、Id2分别为差动电流中的基波和二次谐波电流的幅值;K为二次谐波制动比。但是,由于变压器磁特性的变化,某些工况下励磁涌流的二次谐波含量低,容易导致误动;而大容量变压器、远距离输电的发展,使得内部故障时暂态电流可能产生较大二次谐波,容易导致拒动。这时,就必须选用其它制动方式,如偶次谐波电流制动、判断电流间断角识别励磁涌流、半波叠加制动等。 2.2 区外短路时误动

ING-6024变压器后备保护装置技术及使用说明书

ING-6024 变压器后备保护装置技术及使用说明书

1. 概述 ING-6024变压器后备保护装置(以下简称装置),主要适应于6KV-220KV变压器的后备保护和测控。 主要功能 保护功能: a) 速断保护 b) III段复合电压闭锁过流保护 c) 过负荷保护 d) 零序电流保护 e) 过电压保护 f) 低电压保护 g) PT断线告警 h) 控制回路断线告警 遥测功能: 三相电流、三相电压、三线电压、频率,功率、功率因数、零序电流、零序电压 遥控功能: 断路器分合闸,装置信号复归,保护软压板投退 遥信功能: 8路遥信开入量

其它: 网络对时和手动对时功能 全隔离RS-485通讯接口,国际标准ModBUS-RTU通讯协议 2.技术数据 AC输入电流 额定5A:15A连续;短时250A 1秒 极限动态范围:625A持续1周波(正弦波) 功耗:5A 时0.16V A,15A时1.15V A 额定1A:3A连续;短时100A 1秒 极限动态范围:250A 持续1周波(正弦波) 功耗:1A 时0.06V A,3A时1.18V A 输出接点 符合IEC 255-0-20:1974,采用简单评估法 5A持续 30A接通符合IEEC C37.90:1989 100A持续1秒 启动/返回时间:<5ms 分断能力(L/R = 40ms): 24V 0.75A 10,000次 48V 0.50A 10,000次 125V 0.30A 10,000次

250V 0.20A 10,000次 循环能力(L/R = 40ms): 24V 0.75A 每秒2.5次 48V 0.50A 每秒2.5次 125V 0.30A 每秒2.5次 250V 0.20A 每秒2.5次 光隔输入 在额定控制电压下,每个光隔输入的电流为5mA。 额定电源 110伏:88 - 132Vdc或88 – 121Vac 220伏: 176 - 264Vdc或176 - 242Vac 额定5.5瓦, 最大8.5瓦 例行绝缘 试验电流输入端:500Vac 60秒不小于10M 电源、光隔输入及输出接点:500Vac 60秒不小于10M 带CE标志的装置进行下列IEC255-5:1977绝缘测试; 模拟输入:500Vac 60秒不小于10M 电源、光隔输入及输出接点:500Vac 60秒不小于10M 工作温度-10℃~+55℃(+14°F~+131°F)。 老化从室温到+75℃(+167℉)每次48小时以上。一共二十(20)次温度循环。 装置重量 2.5kg(5磅8盎司)。

变压器差动保护计算要领

变压器比率制动纵差保护 整定计算步骤及要领 1.计算制动电流启动值 正常运行中变压器负荷电流通常在额定电流I e 以下,不平衡I bp 电流很小, 无需比率制动,差动动作电流I cd 为恒定,不随制动电流的增大而增大。 所以制动电流启动值:I Zd qd =(0.8~1.0)I e /n L 式中:n L -电流互感器变比 制动电流启动值也就是一折线的拐点电流值。 2.计算差动保护启动电流值 差动保护启动电流(门槛值)现场一般取:I cd qd =(0.4~0.7)I e /n L 如果有条件,最好在现场实测变压器的不平衡电流I bph ,作为差动启动电流 整定计算的依据。 3.计算差动保护速断电流值 差动速断电流值:I cd sd =(6~8)I e /n L 4.计算比率制动系数 比率制动系数K zd 与变压器外部三相最大短路电流、制动电流启动值相关, 与差动电流启动值、速断值相关。 计算比率制动系数:K zd = e I .max )3(I e I 23.0.max )3(I 5.40--外外 5.计算制动电流 制动电流:I Zd =(I cd sd - I cd qd )/ K zd +I Zd qd 举 例 一、已知参数: 主变容量=10000KVA ;额定电压=35/10.5KV ;

计算变压器一次侧额定电流=35 310000?=165(A ); 一次侧CT 变比=300/5、CT 二次额定电流=60 165=2.75(A ) 主变阻抗电压百分比=7.33% 通过短路电流计算已知主变外部三相最大短路电流=2095(A ) 二、计算定值 1.计算制动电流启动定值:I Zd qd =1.0I e /n L =60 165=2.75(A ) 2.计算差动启动电流定值:I cd qd =0.7I 2e =0.7×2.75=1.925 取I cd qd =2.0 3.计算差动速断电流定值:I cd sd =8I e /n L =60 1658?= 22(A ) 4. 计算比率制动系数:K zd =e max )3(e .max )3(I .I I 23.0I 5.40--外外 =165 209516523.02095I 5.40-?-? =0.468 取K zd =0.5 5.计算制动电流:I Zd =(I cd sd - I cd qd )/ K zd +I Zd qd =(22-2)/0.5+2.75 =42.75A 取I Zd =43A 说明:本计算公式中的代表符号与说明书不一致,在使用时应注意。

WBZ-500H变压器保护装置技术说明书

国电南自
Q/GDNZ.J.09.44-2002
WBZ-500H 微机变压器保护装置
技术说明书 使用说明书
国电南京自动化股份有限公司
GUODIAN NANJING AUTOMATION CO. LTD

WBZ-500H 系列 微机变压器保护装置
技术说明书 使用说明书
V 2.5
国电南京自动化股份有限公司
2002 年 12 月
*本说明书可能会被修改,请注意最新版本资料 *国电南自技术部监制

第一部分 技术说明书

目次
1 装置概述
1
2 技术参数
2
2.1 工作环境
2
2.2 额定参数
2
2.3 主要技术指标
2
2.4 保护动作精度
3
2.5 绝缘性能
3
2.6 抗电磁干扰
4
3 硬件说明
5
3.1 概述
5
3.2 机箱结构
5
3.3 AC 交流输入模件
6
3.4 AD 转换模件
6
3.5 主 CPU 模件
6
3.6 出口跳闸模件
6
3.7 信号模件
6
3.8 打印管理模件
7
3.9 显示模件
7
4 保护原理
8
4.1 启动算法
8
4.2 差动保护
8
4.3 后备保护
11

4.4 非电量保护
17
4.5 分差保护
17
4.6 短引线保护
17
5 整定值的计算及整定
18
5.1 定值清单
18
5.2 变压器各侧的额定电流 TA 二次电流 Ie
18
5.3 差动保护
18
5.4 分差保护
18
5.5 短引线保护
18
5.6 分差保护
21
5.6 短引线保护
22

983变压器说明书.

NEP983 数字式变压器测控保护装置 说明书 国电南京自动化股份有限公司 2003年3月

NEP983 数字式变压器测控保护装置 说明书 编写:于剑东 审核:陈雪峰 批准:郭效军 版本号:Ver 3.0

国电南京自动化股份有限公司 二00三年三月

目次 1 装置概述 (1) 2 主要技术指标 (2) 3 功能介绍 (3) 4装置出口配置 (4) 5原理 (4) 6 操作说明 (7) 6.1 键盘排列及显示 (7) 6.2 键的功能 (7) 6.3 液晶显示及键盘操作说明 (7) 7 订货须知 (10) 附图一装置面板布置图 (11) 附图二装置电原理图 (13) 附图三装置出口原理图 (14) 附图四装置背板端子图 (17) 附图五装置安装尺寸图 (18)

·装置概述· 1 装置概述 NEP983数字式变压器测控保护装置是在消化吸收国内外先进经验的基础上专门为发电厂、变电站开发(可与各类综合自动化配套)的产品。该类产品可将变压器的测量、保护、操作回路集成在一个机箱内,结构小巧,可在恶劣的工业环境下(如高温、低温、震动、有害气体、灰尘、强电磁干扰等)长期可靠地运行。产品可集中组屏组柜运行,也可按功能就地安装在开关柜上,并具有远传、记忆各种操作或故障信息等功能,同时亦提供独立的中央信号空接点。 特点: ●采用Motorola高性能32位单片机。 ●采用一对一的方式,调试、安装及维护均非常便利。 ●人机界面友好,液晶中文显示。显示信息丰富、直观、各种操作亦非常方便。 ●完善的自我诊断功能,不需人为干预,故障可定位到某集成块。 ●最近100条事件记录(记录事件时间和类型)、10条事故记录(包含故障前360毫秒,故障后600毫秒,记录事故时间、类型、定值、控制字、交流量幅值及采样点)及200条遥信变位信息(记录遥信变位时间和类型),方便分析。 ●集保护、遥测、遥信、遥控四项功能于一体,可按功能就地安装,同时亦可提供独立的中央信号空接点。 ●高测量精度: I、U精度:0.2级 P、Q、Cosφ精度:0.5级(特殊要求精度可达到0.2级) ●高抗干扰性能,能满足: GB/T 14598.10-1996 快速瞬变干扰试验Ⅳ级 GB/T 14598.13-1998 脉冲群干扰试验Ⅲ级 GB/T 14598.14-1998 静电放电干扰试验Ⅲ级 功能:速断、定(或反)时限过流保护;过电压保护;低电压保护;定(或反)时限零序电流保护;零序电压保护;过负荷保护;本体保护;手动(遥控)跳合闸以及两瓦特表或三瓦特表法测量有功、无功、功率因素、电度量及各种开关量变位信息等功能。 通信:本装置具有422或485及CAN通讯网络可供选择,通信协议请见NEP980通信协议说明书。

变压器纵差动保护动作电流的整定原则

变压器纵差动保护动作电流的整定原则差动保护初始动作电流的整定原则,是按躲过正常工况下的最大不平衡电流来整定;拐点电流的整定原则,应使差动保护能躲过区外较小故障电流及外部故障切除后的暂态过程中产生的最大不平衡电流。比率制动系数的整定原则,是使被保护设备出口短路时产生的最大不平衡电流在制动特性的边界线之下。 为确保变压器差动保护的动作灵敏、可靠,其动作特性的整定值(除BCH型之外)如下: Idz0=(0.4,0.5)IN, Izd0=(0.6,0.7)IN, Kz=0.4,0.5 式中,Idz0为差动保护的初始动作电流;I,zd0为拐点电流;Kz =tgα点电流等于零的;IN为额定电流(TA二次值)。 电流速断保护限时电流速断保护定时限过电流保护的特点 速断保护是一种短路保护,为了使速断保护动作具有选择性,一般电力系统中速断保护其实都带有一定的时限,这就是限时速断,离负荷越近的开关保护时限设置得越短,末端的开关时限可以设置为零,这就成速断保护,这样就能保证在短路故障发生时近故障点的开关先跳闸,避免越级跳闸。定时限过流保护的目的是保护回路不过载,与限时速断保护的区别在于整定的电流相对较小,而时限相对较长。这三种保护因为用途的不同,不能说各有什么优缺点,并且往往限时速断和定时限过流保护是结合使用的。 瞬时电流速断保护与限时电流速断保护的区别就是,瞬时是没有带时限的,动作值达到整定值就瞬时出口跳闸,不经过任何延时。而限时电流速断是带有延时的,动作值达到整定值后经过一定的延时才启动出口跳闸;

瞬时电流速断保护与限时电流速断保护的区别,限时电流速断保护与过电流保护有什么不同, 瞬时电流速断和限时电流速断除了时间上的区别外就是他们在整定的大小和范围的不同,瞬时速断保护的范围比限时的要小,整定动作值要比限时速断的要大。 过电流保护和限时电流速断的区别? 电流速断,限时电流速断和过电流保护都是反映电流升高而动作的保护装置。 区别:速断是按躲开某一点的最大短路电流来整定,限时速断是按照躲开下一级相邻元件电流速断保护的动作电流来整定,而过流保护是按躲开最大负荷电流来整定的。 由于电流速断不能保护线路的全长,限时电流速断又不能作为相邻元件的后备保护,因此保证迅速而又有选择的切除故障,常将三者组合使用,构成三段电流保护。 过电流保护的整定值为什么要考虑继电器的返回系数,而电流速断保护则不需要考虑, 这是综合考虑保护的灵敏性和可靠性的结果。为了保证保护的灵敏性,动作的整定值 应当尽量小,但是过电流的动作值与额定运行电流相差不大,这样有可能造成保护误动作,从而降低了供电的可靠性。所以我们为过电流保护加了时限,过电流必须要持续一定的时间才会动作,如果在时限内电流降到返回值以下,那么保护就复归不用动作了,从而在不降低灵敏性的情况下增加了可靠性。而电流速断本身动作电流比较大,且没有时间的限制,只要电流一超过速断的整定值,马上动作跳闸,所以不需要设置返回值。 何谓线路过电流保护,瞬时电流速断保护?和它们的区别, 两种保护的基本原理是相同的。

变压器后备保护

继电保护装置按它所起的作用分为主保护、后备保护和辅助保护。主保护:是被保护电气元件的主要保护,当被保护电气元件发生故障时,能以无时限(不包括继是保护装置本身的因有动作时间,一般为0.03到0.12秒),或带一定时限切除故障。例如电流速断保护,限时电流速断保护、瓦斯保护均属于主保护。为了实现继电保护的选择性,某些主保护往往不能保护被保护元件的全部。例如变压器的速断保护,只能保护变压器一次侧储备,不保护变压器二次侧储备。后备保护:后备保护是被保护元件的后备保护,叫近后备保护。在主保护范围内发生故障时,主保护和后备保护同时起动,当主保护动作切除故障点后,由于短路电流消失,后备保护既行返回。当主保护由于某种原因拒绝动作时,后面的保护延时动作,切除故障点,起到了主保护的后备。当后备保护作为下一级元件(或叫相邻元件)主保护的后备保护时,叫远后备保护。例如配电变压器低压出线发生故障时,变压器的后备保护也起动,低压出线保护动作切除故障嘛后,变压器的后备保护返回,当低压出线保护拒绝动作时,变压器后备保护按预先整定的时间动作,切除变压器高压侧的断路器。远后备保护动作后,使停电范围增大,往往造成越级跳闸。后备保护能保护被保护电气元件的全部。一套后备保护既是近后备保护,又是远后备保护。后备保护一般带时限的过电流保护组成,其灵敏度,当作为后备保护时,应满足继电保护规程的要求。当作为远后备时,可适当降低灵敏度。辅助保护:辅助保护是起某些辅助作用,例如切除主保护死区内的故障保护,或在某些[wiki]设备[/w i k i]上加速主保护工作的保护。变压器应装设的保护有哪些? 答:(1)瓦斯保护:反映变压器油箱内部的各种故障和油面降低。并作用于各侧跳闸(重瓦斯)和发信号(轻瓦斯)。

dmp300型微机变压器差动保护测控装置说明书(1)

一、简介 1.概述 DMP300型微机变压器差动保护测控装置,适用于110KV及以下电压等级的三圈变或两圈变,具有开入采集、脉冲电度量采集、遥控输出、通讯功能。其中DMP321适用于三圈变,DMP322适用于两圈变。 保护功能:a)差电流速断保护 b)二次谐波制动的比率差动保护 c)CT断线识别和闭锁功能 d)过负荷告警 e)过载启动风冷 f)过载闭锁有载调压 遥信量采集:a)本体轻、重瓦斯信号 有载轻、重瓦斯信号 压力释放信号 变压器超温告警 b)主变一侧开关的弹簧未储能、压力异常闭锁、报警 c)从主变一侧开关操作箱中采集开关跳、合位,手跳、手合开关量 脉冲电量:一路有功脉冲电度、一路无功脉冲电度 遥控:遥控主变一侧开关 2.特点: 1)差动保护中各侧电流平衡补偿由软件完成,中低压侧电流不平衡系数均以高压侧为基准。变压器各侧CT二次电流相位也由软件自动校正,即变压器各侧CT二次回路可接成丫型(也可选择常规接线),这样简化了CT二次接线,增加了可靠性。 1)变压器保护的差动保护与后备保护完全独立,各侧后备也完全独立,独立 的工作电源、CPU实现真正意义上的主、后备保护,极大地提高了主变保护的可靠性。 2)通过菜单可直接查看主变各侧电流值的大小、相位关系,差电流大小,方 便用户调试与主变投运。

3)选用高性能、高可靠性的80C196单片机,高度集成的PSD可编程外围芯 片;宽温军用、工业级芯片;高精度阻容元件;进口密封继电器。 4)抗干扰、抗震动的结构设计 全封闭金属单元机箱,箱内插板间加装隔离金属屏蔽板;高可靠性的进口接插件,加装固定挡条。 5)独到的多重抗干扰设计 单元装置采取了隔离、软硬件滤波、看门狗电路、智能诊断各种开放闭锁控制,ALL IN ONE的主板电路设计原则,新型结构设计等多种抗干扰措施,取得了良好的效果。 6)体积小、模块化,既可安装于开关柜,构成分散式系统,又可集中组屏。 7)大屏幕液晶汉字显示运行参数、菜单,具有极好的人机界面,操作简单、 直观、易学、易用。 8)所有保护功能均可根据需要直接投退,操作简单。 9)软件实现交流通道的模拟量精度调整,取消了传统的采保通道的误差补偿 电位器,不但简化了硬件,更方便了现场调试、校验,还提高了精度。 10)独到的远动试验菜单功能。装置中设有“远动试验”菜单,通过菜单按钮进 行远动信息传输试验,如“差动速断动作”、“高压侧CT断线告警”等,无需试验接点真正闭合,可在线试验,方便了远动调试。 11)多层次的PASSWORD:运行人员口令、保护人员口令、远动人员口令。 12)事件记录分类记录32条故障信息,32条预告信息,8条自检信息,并具掉 电保持功能。

NSS低压变压器保护说明书V

NS 913 低压变压器保护测控装置 说明书 V1.1 南京南自科技发展有限公司 2003年12月 *本说明书可能会被修改,请注意最新版本资料

目录 1.概述 (1) 2.主要技术参数 (3) 3.保护功能 (6) 4.测量、控制以及事件记录功能 (8) 5.硬件结构说明 (9) 6.使用操作说明 (11) 7.装置参数一览 (13)

1 概述 NS 913S低压变压器保护测控装置适用于低压变压器的保护、测量及控制。可以在开关柜就地安装,也可以集中组屏安装。 1.1 装置主要特点 ?高速的DSP处理器 采用高性能DSP芯片,提供了高速的数据处理能力,保证了高性能实时算法的实现,提高了装置的可靠性和整体性能。 ?快速、高精度采样 采用快速14位高精度采样芯片,并采用频率自动跟踪技术,保证了很高的保护和测量计算精度。 ?强大的通讯功能 采用CAN网作为主通讯接口,传输速率可达1Mb/s,系统响应速度快。 ?可靠的操作箱功能 独立的跳、合闸启动和保持回路设计。 ?高可靠的电磁兼容设计 标准背插式工业机箱,电路板采用表面贴装技术以及多层板工艺,选用快速瞬变电压抑制器件,使装置具有很强的电磁兼容能力。 1.2 保护功能配置 ?相间过流保护 ◆速断保护 ◆定时限过流保护 ◆反时限过流保护 ◆过负荷保护 ?高压侧零序过流保护

?低压侧零序过流保护 1.3 数据采集功能 ?实时采集电流、电压、有功、无功、功率因数、频率 ?8路遥信量 1.4 事件记录及故障录波 ?保护动作记录 ?告警事件记录 ?遥信变位记录 ?操作命令记录 1.5 控制功能 ?就地/远方分闸、合闸控制 ?远方定值修改 ?远方保护投/退 1.6 操作箱功能 ?跳位、合位指示 ?可靠的自保持及防跳设计 1.7 通信功能 ?CAN总线 ?RS-485总线

变压器的纵差动保护原理及整定方法

热电厂主变压器的纵差动保护原理及整定方法 浙江旺能环保股份有限公司 作者:周玉彩 一、构成变压器纵差动保护的基本原则 我们以双绕组变压器为例来说明实现纵差动保护的原理,如图1所示。由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差动保护的正确工作,就必须适当选择两侧电流互感器的变比,使得在正常运行和外部故障时,两个二次电流相等,亦即在正常运行和外部故障时,差动回路的电流等于零。例如在图1中,应使 图 '2I =''2I = 。 同的。这个区别是由于线路的纵差动保护可以直接比较两侧电流的幅值和相位,而变压器的纵差动保护则必须考虑变压器变比的影响。 二、变压器纵差动保护的特点 变压器的纵差动保护同样需要躲开流过差动回路中的不平衡电流,而且由于差动回路中不平衡电流对于变压器纵差动保护的影响很大,因此我们应该对其不平衡电流产生的原因和消除的方法进行认真的研究,现分别讨论如下: 1、由变压器励磁涌流LY I 所产生的不平衡电流 变压器的励磁电流仅流经变压器的某一侧,因此,通过电流互感器反应到差动回路中不能平衡,在正常运行和外部故障的情况下,励磁电流较小,影响不是很大。但是当变压器空载投入和外部故障切除后电压恢复时,由于电磁感应的影响,可能出现数值很大的励磁电流(又称为励磁涌流)。励磁涌流有时可能达到额定电流的6~8倍,这就相当于变压器内部故障时的短路电流。因此必须想办法解决。为了消除励磁涌流的影响,首先应分析励磁涌流有哪些特点。经分析得出,励磁涌流具有以下特点: (1) 包含有很大成分的非周期分量,往往使涌流偏向于时间轴的一侧 ; (2) 包含有大量的高次谐波,而以二次谐波为主; (3) 波形之间出现间断,在一个周期中间断角为ɑ。 根据以上特点,在变压器纵差动保护中,防止励磁涌流影响的方法有: (1) 采用具有速饱和铁心的差动继电器; ?1′′ n ?1′

变压器差动保护的功能及定值计算

差动保护的功能及定值计算 1 微机变压器差动保护功能 1.1比率制动式差动保护 比率制动式差动保护作为变压器的主保护,能反映变压器内部相间短路故障,高压侧单相接地短路及匝间层间短路故障。当突变量大于0.25倍差动定值时投入,动作判据为; {Icd≥Icdset 当Izd≤Izdset时, Icd≥Icdset+K1(Izd-Izdset) 当Izd〉Izdset时, 电流方向以实际的功率方向为准。其中Icd为差电流: Icdset为差动保护整定计算值; Icdset为差动保护门槛计算值; Izd为保护制动电流 K1为比率制动系数(0.4~0.7)可选; H为变压器35kV侧流进差动保护实际电流; L为变压器10kV侧流进差动保护实际电流; 1. 2二次谐波闭锁功能 变压器投入时,励磁涌值为变压器额定电流的5~8倍,励磁涌中含有63%比率的二次谐波电流Im2。微机差动保护设置了二次谐波闭锁差动保护功能,来防止变压器空载投入时励磁涌流导致差动保护误动作。二次谐波制动功能的判据如下: Icd2≥K2Icd 式中,Icd为差动电流的基波分量; Icd2为差动电流中的二次谐波分量; K2为二次谐波制动系数(0.1~0.4)可选; 1.3差动速断保护 当变压器内部发生严重短路时,短路电流很大,由于铁芯饱和输出电压波形将发生畸变,为提高保护的可靠性和动作速度,差速断保护不受二次谐波闭锁条件限制直接动作,此功能由软件控制投入或退出。 1.4差流过大告警 动作判据为: Icd≥Icdset/2 式中,Icd为任一相的差动电流; Icdset为差动保护最小定值; 任一相差动电流大于差动电流定值一半时,运行超过3S后,发出差流过大告警信号。此功能由软件控制投入或退出。 1.5电流互感器二次回路断线监视功能 微机差动保护与传统常规差动保护在接线不同之处是: 为了判断电流互感器TA二次断线,差保高压侧TA必须接成星形接线,保护装置给出以下判据为: | a+ b+ c|>0.5A时,保护会发出断线警告信号,并由微机软件控制是否闭锁差动保护。此项功能均由自适应的门槛值控制,无需整定定值。 1.6变压器高压侧相位差与平衡补偿 Y,d——11组双绕组变压器,Y侧电流相位需要校正相位,常规接线高压侧TA的二次侧接成d型接线,而微机差动保护具有软件校正功能,只要投入Y/d功能即可,就校正了相位,相当于把二次接成了d型接线,TA二次输出线电流。 1.7变压器低压侧电流平衡系数 差保接线,变压器低压侧TA与高压侧TA二次电流平衡补偿,常规差保接线靠适当选择变压器两侧TA变比来实现,而微机差动保护是靠软件功能来完成,以高压侧二次电流为基

变压器后备保护及过负荷保护

变压器后备保护及过负荷保护 一、变压器相间短路的后备保护 变压器相间短路的后备保护,反应变压器区外故障引起的变压器过电流,并作为变压器差动保护或电流速断保护和气体保护的后备保护。作为后备保护,其动作时限与相邻元件后备保护配合,按阶梯原则整定;其灵敏度按近后备和远后备两种情况校验。 根据变压器容量及短路电流水平,常用的变压器相间短路的后备保护有过电流保护、低电压起动的过电流保护、复合电压起动的过电流保护、负序过电流保护、阻抗保护等。 1、过电流保护 变压器过电流保护与线路定时限过电流保护原理相同,装设在变压器电源侧,由电流元件和时间元件构成,保护动作后切除变压器。电流元件的动作电流按躲过变压器可能出现的最大负荷电流整定。 2.低电压起动的过电流保护 低电压起动的过电流保护由电流元件、电压元件、时间元件等构成,变压器低电压起动的过电流保护原理框图如图4-9所示。电流元件接在变压器电源侧电流互感器TA二次侧,分别反应三相电流增大时动作;电压元件接在降压变压器低压侧母线电压互感器TV二次侧线电压,分别反应三相线电压降低时动作。当同时有电流元件和电压元件动作时,经过与门Y起动时间电路T1,延日跳开变压器两侧断路器1QP和2QF。

低电压起动的过电流保护,是在定时限过电流保护的基础上增加了低电压起动条件。由于采用了低电压元件,可以保证最大负荷时保护不动作,电流元件动作电流整定可以按照躲过变压器额定电流,显然数值比定时限过电流保护的动作电流小,因此提高了保护的灵敏度。低电压元件动作电压整定,按照躲过正常运行母线可能出现的最低工作电压,并在外部故障切除后电动机自起动过程中必须返回。 需要指出的是,如果一次主接线采用母线分段接线,作为变压器相间短路的后备保护,应该带有两段时限,以较短时限跳开分段断路器,缩小故障影响范围;以较长时限跳开变压器各侧断路器。 3.复合电压起动的过电流保护 如果将图4-9所示保护的三个低电压元件,改为负序电压元件和单个低电压元件,可构成复合电压起动的过电流保护。复合电压起动的过电流保护与低电压起动的过电流保护比较,可以简化保护接线,并提高不对称短路时保护的灵敏度。 二、变压器接地(零序)保护

相关主题
文本预览
相关文档 最新文档