当前位置:文档之家› CL11电容

CL11电容

CL11电容
CL11电容

■采用标准?

GB6349-86(IEC384-11)

■结构

介质:聚酯膜。

电极:铝箔。

封装:阻燃环氧树脂(UL94 V-0)。

■典型应用

直流及低脉冲场合。

如:低频滤波、隔直流及旁路等。

不推荐使用在交流、滤波、振荡及高频场合。■特点

体积很小,重量轻;

高可靠性。

■技术参数

气候条件-40--+85℃

额定电压

vdc 100V、250V、400V、630V、1000V

容量范围0.001μF-0.47μF 容量偏差±5%? ±10%

耐电压 2.0UR (5S)

绝缘电阻或时间常数≤0.1μF ≥30000MΩ

>0.1μF ≥10000S (MΩ.μ

F)

损耗角正切≤0.01? 1kHz???? 20℃

稳态湿热温度:40±2℃

湿度:93%RH

持续时间:21天

无可见损伤,标志清晰

电容量:△C/C≤5%

损耗角正切(1KHz):增加

≤0.005

绝缘电阻IR:≥额定值的50%

+85℃,1000h

■ 电压代码释义 ■ 交流和直流电压的对应关系

■ 交流耐压与频率的关系曲线

100VDC/63VAC 250VDC/160VAC

400VDC/200VAC 630VDC/220VAC

代码 1H 1J 2A 2E 2G 2H 2J 3A 电压V 50

63

100

250

400

500

630

1000

直流电压

100VDC 250VDC

400VDC 630VDC 1000V

交流电压

63VAC 160VAC 200VAC 220VAC 250VAC

■特性曲线图

?

容量与温度特性曲线

容量与频率特性曲线

绝缘电阻与温度特性曲线■电容器规格尺寸表

CL11(PEI)

产品规格

产品编码外形尺寸(mm)

容量 F Wmax T max H max P±1.0

50VDC/100VDC

102 0.001 PEI102J(K)

10604110 6.0 3.5 10.5 3.5

122 0.0012PEI122J(K)

10604110 6.0 3.5 10.5 3.5

152 0.0015PEI152J(K)

10604110 6.0 3.5 10.5 3.5

182 0.0018PEI182J(K)

10604110 6.0 3.5 10.5 3.5

222 0.0022PEI222J(K)

10604110 6.0 3.5 10.5 3.5

272 0.0027PEI272J(K)

10604110 6.0 3.5 10.5 3.5

332 0.0033PEI332J(K)

10604110 6.0 3.5 10.5 3.5

392 0.0039PEI392J(K)

10604110 6.0 3.5 10.5 3.5

472 0.0047PEI472J(K)

10604110 6.0 3.5 10.5 3.5

562 0.0056PEI562J(K)

10604110 6.0 3.5 10.5 3.5

682 0.0068PEI682J(K)

10604120 6.0 4.0 11.5 5.0

822 0.0082PEI822J(K)

10704120 6.5 4.0 11.5 5.0

103 0.01 PEI103J(K)

10704120 6.5 4.0 11.5 5.0

123 0.012 PEI123J(K)

10704120 6.5 4.0 11.5 5.0

153 0.015 PEI153J(K)

10804120 7.3 4.0 12.0 5.0

183 0.018 PEI183J(K)

10804120 7.5 4.0 12.0 5.0

223 0.022 PEI223J(K)

10805120 8.0 4.5 12.0 5.0

273 0.027 PEI273J(K)

10805120 8.0 5.0 12.0 5.0 0.033

333 11005120 9.5 5.0 12.0 5.0

393 0.039 PEI393J(K)

11005120 9.5 5.0 12.0 5.0

473 0.047 PEI473J(K)

11005120 9.5 5.0 12.0 5.0

563 0.056 PEI563J(K)

11006130 10.0 5.5 12.5 7.5

683 0.068 PEI683J(K)

11006130 10.0 5.5 12.5 7.5

823 0.082 PEI823J(K)

11107130 11.0 6.5 12.5 7.5

104 0.1 PEI104J(K)

11207150 11.5 6.5 14.5 7.5

124 0.12 PEI124J(K)

11307170 12.5 7.0 16.5 8.0

154 0.15 PEI154J(K)

11307170 12.5 7.0 16.5 8.0

184 0.18 PEI184J(K)

11308170 13.0 7.5 16.5 8.0

224 0.22 PEI224J(K)

11408180 14.0 8.0 17.5 9.0

334 0.33 PEI334J(K)

11609200 16.0 8.5 19.5 10.1

394 0.39 PEI394J(K)

11610220 16.0 10.0 21.5 10.0

474 0.47 PEI474J(K)

11610220 16.0 10.0 21.5 10.0

250V

102 0.001 PEI102J(K)

20704110 6.5 4.0 11.0 3.5

122 0.0012PEI122J(K)

20704110 6.5 4.0 11.0 3.5

152 0.0015PEI152J(K)

20704110 6.5 4.0 11.0 3.5

182 0.0018PEI182J(K)

20704110 6.5 4.0 11.0 3.5 0.0022

222 20704110 6.5 4.0 11.0 3.5

272 0.0027PEI272J(K)

20704110 6.5 4.0 11.0 3.5

332 0.0033PEI332J(K)

20704110 6.5 4.0 11.0 3.5

392 0.0039PEI392J(K)

20704110 6.5 4.0 11.0 3.5

472 0.0047PEI472J(K)

20704110 6.5 4.0 11.0 3.5

562 0.0056PEI562J(K)

20704110 7.0 4.0 11.0 5.0

682 0.0068PEI682J(K)

20704110 7.0 4.0 11.0 5.0

822 0.0082PEI822J(K)

20804130 8.0 4.0 13.0 5.0

103 0.01 PEI103J(K)

20804130 8.0 4.0 13.0 5.0

123 0.012 PEI123J(K)

20905140 8.5 5.0 13.5 5.0

153 0.015 PEI153J(K)

20905140 8.5 5.0 13.5 5.0

183 0.018 PEI183J(K)

20906140 9.0 5.7 14.0 5.0

223 0.022 PEI223J(K)

20906140 9.0 6.0 14.0 6.5

273 0.027 PEI273J(K)

21006150 10.0 6.0 15.0 6.5

333 0.033 PEI333J(K)

21007150 10.0 6.5 15.0 6.5

393 0.039 PEI393J(K)

21207160 11.5 7.0 15.5 6.5

473 0.047 PEI473J(K)

21309180 12.5 8.5 17.5 6.5

563 0.056 PEI563J(K)

21409210 14.0 8.5 21.0 7.5

683 0.068 PEI683J(K)

21409210 14.0 8.5 21.0 7.5

823 0.082 PEI823J(K)

21610220 16.0 9.5 22.0 8.5

104 0.1 PEI104J(K)

21710220 16.5 9.5 22.0 8.5

124 0.12 PEI124J(K)

21711220 17.0 11 22 9.0

154 0.15 PEI154J(K)

21711220 17.0 11.0 22.0 10.5

400V

102 0.001 PEI102J(K)

40704120 7.0 4.0 12.0 4.0

122 0.0012PEI122J(K)

40704120 7.0 4.0 12.0 4.0

152 0.0015PEI152J(K)

40804130 7.5 4.0 12.5 4.0

182 0.0018PEI182J(K)

40805130 7.5 5.0 12.5 4.0

222 0.0022PEI222J(K)

40805130 7.5 5.0 12.5 4.0

272 0.0027PEI272J(K)

40805140 8.0 5.0 13.5 6.0

332 0.0033PEI332J(K)

40805140 8.0 5.0 13.5 6.0

393 0.0039PEI392J(K)

40906140 9.0 6.0 14.0 6.0

472 0.0047PEI472J(K)

40906140 9.0 6.0 14.0 6.0

562 0.0056PEI562J(K)

41006140 9.5 6.0 14.0 6.0

682 0.0068PEI682J(K)

41006140 9.5 6.0 14.0 6.0

822 0.0082PEI822J(K)

41107150 10.5 6.5 15.0 7.0

103 0.01 PEI103J(K)

41107150 10.5 6.5 15.0 7.0

123 0.012 PEI123J(K)

41208160 12.0 8.0 15.5 7.0

153 0.015 PEI153J(K)

41208160 12.0 8.0 15.5 7.0

183 0.018 PEI183J(K)

41209190 12.0 8.5 18.5 7.0

223 0.022 PEI223J(K)

41209190 12.0 8.5 18.5 7.0

273 0.027 PEI273J(K)

41409210 13.5 8.5 21.0 9.0

333 0.033 PEI333J(K)

41409210 13.5 8.5 21.0 9.0

393 0.039 PEI393J(K)

41610220 15.5 9.5 22.0 9.0

473 0.047 PEI473J(K)

41610220 15.5 9.5 22.0 9.0

563 0.056 PEI563J(K)

41812240 17.5 11.5 23.5 9.0

683 0.068 PEI683J(K)

41812240 17.5 11.5 23.5 9.0

823 0.082 PEI823J(K)

41911250 19.0 11.0 24.5 12

104 0.1 PEI104J(K)

41911250 19.0 12.0 24.5 12

630V

102 0.001 PEI102J(K)

60805130 7.5 4.5 12.5 5.0

122 0.0012PEI122J(K)

60805130 7.5 4.5 12.5 5.0

152 0.0015PEI152J(K)

60805130 7.5 4.5 12.5 5.0

182 0.0018PEI182J(K)

60805130 7.5 4.5 12.5 5.0

222 0.0022PEI222J(K)

60905130 8.5 5.0 13.0 5.0

272 0.0027PEI272J(K)

60905140 9.0 5.0 13.5 5.0

332 0.0033PEI332J(K)

60905140 9.0 5.0 13.5 5.0

392 0.0039PEI392J(K)

60905140 9.0 5.0 13.5 5.0

472 0.0047PEI472J(K)

61006140 10.0 5.5 14.0 7.0

562 0.0056PEI562J(K)

61006150 10.0 6.0 15.0 7.0

682 0.0068PEI682J(K)

61106150 11.0 6.0 15.0 7.0

822 0.0082PEI822J(K)

61107150 11.0 6.5 15.0 7.0

103 0.01 PEI103J(K)

61108160 11.0 7.5 15.5 7.0

123 0.012 PEI123J(K)

61108160 11.0 7.5 15.5 7.0

153 0.015 PEI153J(K)

61408180 13.5 8.0 18.0 9.0

183 0.018 PEI183J(K)

61408180 13.5 8.0 18.0 9.0

223 0.022 PEI223J(K)

61509190 14.5 8.5 18.5 9.0

273 0.027 PEI273J(K)

61509190 14.5 8.5 18.5 9.0

333 0.033 PEI333J(K)

61509190 15.0 9.0 19.0 9.5

393 0.039 PEI393J(K)

61509190 15.0 9.0 19.0 9.5

473 0.047 PEI473J(K)

61509190 15.0 9.0 19.0 9.5

1000V

102 0.001 PEI102J(K)

A0604120 5.5 3.5 11.5 4.0

122 0.0012PEI122J(K)

A0604120 5.5 3.5 11.5 4.0

152 0.0015PEI152J(K)

A0604120 5.5 3.5 11.5 4.0

182 0.0018PEI182J(K)

A0604120 5.5 3.5 11.5 4.0

说明:

以上规格仅供参考;具体以承认书为准;使用时涉及到和极限参数有

222 0.0022PEI222J(K)A0604120 6.0 3.5 11.5 4.0 272 0.0027PEI272J(K)A0604130 7.0 4.0 12.5 5.0 332 0.0033PEI332J(K)A0704130 7.0 4.0 12.5 5.0 392 0.0039PEI392J(K)A0806140 8.0 5.5 13.5 5.5 472 0.0047PEI472J(K)A0806140 8.0 5.5 13.5 5.5 562 0.0056PEI562J(K)A0806150 8.0 6.0 14.5 5.5 682 0.0068PEI682J(K)A09006150 9.0 5.5 14.5 5.5 822

0.0082PEI822J(K)A0906150 9.0 5.5 15.0 5.5 103

0.01

PEI103J(K)A1208190

11.5 7.5 18.5

7.5

电容器参数大全

电容器 电容器通常简称其为电容,用字母C表示。电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。定义2:电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。 相关公式 电容器的电势能计算公式:E=CU^2/2=QU/2 多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn 三电容器串联C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3) 标称电容量和允许偏差 标称电容量是标志在电容器上的电容量。在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是:1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 容量大的电容其容量值在电容上直接标明,如10 μF/16V 容量小的电容其容量值在电容上用字母表示或数字表示 字母表示法:1m=1000 μF 1P2= 1n=1000PF 数字表示法:三位数字的表示法也称电容量的数码表示法。三位数字的前两位数字为标称容量的有效数宇,第三位数宇表示有效数字后面零的个数,它们的单位都是pF。如:102表示标称容量为1000pF。221表示标称容量为220pF。224表示标称容量为22x10(4)pF。 在这种表示法中有一个特殊情况,就是当第三位数字用"9"表示时,是用有效数宇乘上10的-1次方来表示容量大小。如:229表示标称容量为22x(10-1)pF=。 允许误差±1% ±2% ±5% ±10% ±15% ±20% 如:一瓷片电容为104J表示容量为μF、误差为±5%。 电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。常用的电容器其精度等级和电阻器的表示方法相同。用字母表示:D——005级——±%;F——01级——±1%;G——02级——±2%;J——I级——±5%;K——II级——±10%;M——III级——±20%。 精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%) 一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。

电容值识别

电容器的单位以F,uF,mF,nF,pF表示。它们之间的关系是:1F=1000mF=1000000uF,1F=1000nF=1000000pF。 国际电工委员会规定表示法为:m代表1/1000,u代表1/1000000,n代表1/1000000000,p代表1/1000000000000。 一电容器容量表示法: 用二位数字表示有效数字,再用一个字母表示数值的量级。如:1p2表示1.2pF,220n 表示0.22uF,3u3表示3.3uF,2m2表示2200uF。 另一种表示法,是用三位数字表示电容量,最后用一个字母表示误差。三位数字中的前两位表示有效值,第三位表示10的n次方,n一般为1—8。特殊情况是:当n=9时,不表示10的9次方,而表示为10的-1次方。 例如: "102"表示10*100=1000pF "223"表示22*1000=22000pF=0.022uF "474"表示47*10000=0.47uF "159"表示15*0.1=1.5pF 二电容器误差表示法: 有效数字后面的字母表示误差值,由于制造电容的材料不同,误差范围也不相同,有的误差甚大。误差值与字母的对应关系如下表所示: 国外电容器容量误差与字母代号对照表 字母D F G J K M N P S Z 误差%±0.5±1±2±5±10±20±30(+100,-20)(+50,-20)(+80,-20) 例如:102K,表示该电容容量为1000pF(±10%)。 三电容器耐压表示法: 电容器耐压的标注也有两种常见方法,一种是把耐压值直接印在电容器上,另一种是采用一个数字和一个字母组合而成。数字表示10的幂指数,字母表示数值,单位是V(伏)。 字母A B C D E F G H J K Z 耐压值 1.0 1.25 1.6 2.0 2.5 3.15 4.0 5.0 6.38.09.0 例如: 1J代表 6.3*10=63V

贴片铝电解电容封装尺寸定义

43 Features ? 3 ~ 16φ, 85℃, 2,000 hours assured ? C hip type large capacitance capacitors ? D esigned for surface mounting on high density PC board. ? R oHS Compliance DIAGRAM OF DIMENSIONS Fig. 1 LEAD SPACING AND DIAMETER Unit: mm φD L A B C W P ± 0.2 Fig. No. 3 5.3 ± 0.2 3.3 3.3 1.5 0.45 ~ 0.75 0.8 1 4 5.3 ± 0.2 4.3 4.3 2.0 0.5 ~ 0.8 1.0 1 5 5.3 ± 0.2 5.3 5.3 2.3 0.5 ~ 0.8 1.5 1 6.3 5.3 ± 0.2 6.6 6.6 2.7 0.5 ~ 0.8 2.0 1 6.3 7.7 ± 0.3 6.6 6.6 2.7 0.5 ~ 0.8 2.0 1 8 10 ± 0.5 8.4 8.4 3.0 0.7 ~ 1.1 3.1 1 Fig. 2 8 10.3 ± 0.5 8.4 8.4 3.0 0.7 ~ 1.1 3.1 1 10 10 ± 0.5 10.4 10.4 3.3 0.7 ~ 1.1 4.7 1 10 10.3 ± 0.5 10.4 10.4 3.3 0.7 ~ 1.1 4.7 1 12.5 13.5 ± 0.5 13.0 13.0 4.8 1.1 ~ 1.4 4.4 2 12.5 16 ± 0.5 13.0 13.0 4.8 1.1 ~ 1.4 4.4 2 16 16.5 ± 0.5 17.0 17.0 5.8 1.1 ~ 1.4 6.4 2

影响电容器性能的因素

二氧化锰微结构对二氧化锰电极电化学性能的影响 1、二氧化锰超级电容器充放电原理 综合文献报道,二氧化锰超级电容器主要储能机理是法拉第储存,而不是静电储存。是在电极表面的二维或准二维法拉第反应存储电荷。一种是在电极材料表面阳离子的快速吸附/脱附;另一种是阳离子在材料内部的插入/脱出。 2、二氧化锰微结构分类 综合文献报道根据二氧化锰晶体结构可分为3类:1D channels, 2D layers, and 3D interconnected tunnels. The 1D 包括pyrolusite, ramsdellite, cryptomelane, Ni-doped todorokite (Ni-todorokite), and OMS-5. The 2D 包括birnessite The 3D包括spinel 3、影响因素 影响二氧化锰电极的电化学性能的主要方面有:比表面积、离子电导率、电子电导率以及物质的稳定性,综合起来就是为氧化锰的晶体结构。报道文献很多,结果也有很多种,因为不同的制备方法得到的二氧化锰不同,其影响因素没有可比性,也没有统一标准。 影响电化学性能的方面很多,很多都是综合影响。根据晶体结构不同晶型的二氧化锰存储机理是不同的。 在1D结构中,由于具有不同大小的隧道,有吸附/脱附也有插入/脱出。当发生的是吸附/脱附时,比表面和离子电导率占据的影响很大,因为比表面直接影响其表面的活性位,以及材料的润湿能力。当发生插入/脱出时,主要影响因素是离子电导率,比表面积可能会是电化学性能的限制影响。发生插入/脱出过程的电化学性能要比发生吸附/脱附过程的要好。对于1D,有大的孔道一般就有好的电化学性能,除了孔道中已被其他物质占据。 在2D和3D结构中,一般发生的均是插入/脱出过程。电导率大的一般电化学性能较好。比表面不是决定性作用。 综合考虑,离子电导率是主要影响因素,比表面是一个补偿、限制作用。当比表面相当时,电导率高的电化学性能好;当电导率很高时,而比表面很小,这也会影响电化学性能,因为比表面小的会影响电解质对材料的润湿能力以及电解质进入材料。当电导率稍低时,比表面大对电化学性能有一种补偿作用。 针对倪师兄的论文中提高电化学性能好是由于比表面大的原因。根据很多文献报道,比表面起决定作用时,一般是在静电储存电容器中,而所有报道中二氧化锰电容器都不是静电储存,而是法拉第反应储存。根据文献报道我们制备的λ-MnO2是属于3D结构,发生的插入/脱出过程,主要影响因素应该是离子电导

电容值E系标称方法

本节首先介绍常用的E 系列标称方法,然后介绍电阻、电容器、电感器、二极管的分类、性能和识别方法,以及简单的实用电路。 一、E 系列标称方法 厂家生产的电阻器,并不是包含任何阻值,就像人民币,只有1、2、5三种规格一样。 电阻器、电容器标称值系列通常采用E 系列。E 系列是一种由几何级数构成的数列。源自Electricity 的第一个字母,它是以6√10 =1.5 、12√10=1.2 、24√10=1.1 为公比的几何级数,分别称为E6系列、E12系列和E24系列。E6系列适用于允差±20%的电阻、电容器数值,E12系列适用于允差±10%的电阻、电容器数值,E24系列适用于允差±5%的电阻和电容器数值。 图1.6.1给出了E 系列标称值选取的示意图。可以看出,E24系列是在大于等于1,小于10的范围内,按照几何级数,确定了24个值。E12系列则是在相同的范围内,确定了12个值。E6系列则是在相同的范围内,确定了6个值。这种选取方法,一方面保证了厂家在生产时,仅需要提供有限的种类,另一方面,也可以满足绝大多数用户的需求。比如,E24系列中,电阻值允差为±5%,则4.7和5.1之间,如图所示,不存在空白区域,也就是说,尽管仅提供4.7、5.1Ω,47、51Ω,470、510Ω等阻值,用户仍然可以通过电阻筛选,选择出自己需要的阻值。 表1.6.1给出了E 系列标称值。 表1.6.1 E 系列标称值 目前,电阻器一般采用E24系列,电容器则采用E12系列或者E6系列。有些电位器也采用E 系列,但是,目前见到的电位器,多数采用1、2、5系列,也就是说,其标称值分别是1k 、2k 、5k ,10k 、20k 、50k ,100k 、200k 、500k 等。 二、电阻器 E6 图1.6.1 E 系列标称值选取示意图 E12 E24

电容的特性

电容的特性: 电容器是一种能储存电荷的容器.它是由两片靠得较近的金属片,中间再隔以绝缘物质而组成的.按绝缘材料不同,可制成各种各样的电容器.如:云母.瓷介.纸介,电解电容器等.在构造上,又分为固定电容器和可变电容器.电容器对直流电阻力无穷大,即电容器具有隔直流作用.电容器对交流电的阻力受交流电频率影响,即相同容量的电容器对不同频率的交流电呈现不同的容抗.为什么会出现这些现象呢?这是因为电容器是依靠它的充放电功能来工作的,如图1,电源开关s未合上时.电容器的两片金属板和其它普通金属板—样是不带电的。当开关S合上时,如图2所示,电容器正极板上的自由电子便被电源所吸引,并推送到负极板上面。由于电容器两极板之间隔有绝缘材料,所以从正极板跑过来的自由电子便在负极板上面堆积起来.正极板便因电子减少而带上正电,负极板便因电子逐渐增加而带上负电。电容器两个极板之间便有了电位差,当这个电位差与电源电压相等时,电容器的充电就停上了.此时若将电源切断,电容器仍能保持充电电压。对已充电的电容器,如果我们用导线将两个极板连接起来,由于两极板间存在的电位差,电子便会通过导线,回到正极板上,直至两极板间的电位差为零.电容器又恢复到不带电的中性状态,导线中也就没电流了.电容器的放电过程如图3所示.加在电容器两个极板上的交流电频率高,电容器的充放电次数增多;充放电电流也就增强;也就是说.电容器对于频率高的交流电的阻碍作用就减小,即容抗小,反之电容器对频率低的交流电产生的容抗大.对于同一频率的交流电电.电容器的容量越大,容抗就越小,容量越小,容抗就越大. 第2讲:电容器的参数与分类 在电子产品中,电容器是必不可少的电子器件,它在电子设备中充当整流器的平滑滤波、电源的退耦、交流信号的旁路、交直流电路的交流耦合等。由于电容器的类型和结构种类比较多,因此,我们不仅需要了解各类电容器的性能指针和一般特性,而且还必须了解在给定用途下各种组件的优缺点,以及机械或环境的限制条件等。这里将对电容器的主要参数及其应用做简单说明。 1. 标称电容量(C R )。电容器产品标出的电容量值。云母和陶瓷介质电容器的电容量较低(大约在5000pF 以下);纸、塑料和一些陶瓷介质形式的电容器居中(大约在0.005uF~1.0uF );通常电解电容器的容量较大。这是一个粗略的分类法。 2. 类别温度范围。电容器设计所确定的能连续工作的环境温度范围。该范围取决于它相应类别的温度极限值,如上限类别温度、下限类别温度、额定温度(可以连续施加额定电压的最高环境温度)等。 3. 额定电压(U R )。在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直流电压或最大交流电压的有效值或脉冲电压的峰值。电容器应用在高电压场和时,必须注意电晕的影响。电晕是由于在介质/ 电极层之间存在空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿。在交流或脉动条件下,电晕特别容易发生。对于所有的电容器,在使用中应保证直流电压与交流峰值电压之和不得超过电容器的额定电压。 4. 损耗角正切(tg )。在规定频率的正弦电压下,电容器的损耗功率除以电容器的无功功率为损耗角正切。在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路如附图所示。对于电子设备来说,要求R S 愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角要小。 5. 电容器的温度特性。通常是以20 ℃基准温度的电容量与有关温度的电容量

去耦电容的选择、容值计算和布局布线

去耦电容的容值计算和布局布线 有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播, 和将噪声引导到地。 去耦电容的容值计算 去耦的初衷是:不论I C对电流波动的规定和要求如何都要使电压限值维持在规定的允许误差范围之内。 使用表达式: C⊿U=I⊿t 由此可计算出一个I C所要求的去耦电容的电容量C。 ⊿U是实际电源总线电压所允许的降低,单位为V。 I是以A(安培)为单位的最大要求电流; ⊿t是这个要求所维持的时间。 x i l i n x公司推荐的去耦电容容值计算方法: 推荐使用远大于1/m乘以等效开路电容的电容值。 此处m是在I C的电源插针上所允许的电源总线电压变化的最大百分数,一般I C 的数据手册都会给出具体的参数值。 等效开路电容定义为: C=P/(f U^2) 式中: P——I C所耗散的总瓦数; U——I C的最大D C供电电压; f——I C的时钟频率。

一旦决定了等效开关电容,再用远大于1/m的值与它相乘来找出I C所要求的总去耦电容值。然后还要把结果再与连接到相同电源总线电源插针的总数相 除,最后求得安装在每个连接到电源总线的所有电源插针附近的电容值。 去耦电容选择不同容值组合的原因: 在去耦电容的设计上,通常采用几个不同容值(通常相差二到三个数量级,如0.1u F与10u F),基本的出发点是分散串联谐振以获得一个较宽频率范 围内的较低阻抗。 电容谐振频率的解释: 由于焊盘和引脚的原因,每个电容都存在等效串联电感(E S L),因此自身会形成一个串联谐振电路,L C串联谐振电路存在一个谐振频率,随着电力的频 率不同,电容的特性也随之变化,在工作频率低于谐振频率时,电容总体呈容性,在工作频率高于谐振频率时,电容总体呈感性,此时去耦电容就失去了去耦的效 果,如下图所示。因此,要提高串联谐振频率,就要尽可能降低电容的等效串联电感。 电容的容值选择一般取决于电容的谐振频率。 不同封装的电容有不同的谐振频率,下表列出了不同容值不同封装的电容的谐振频率:

常用贴片钽电容规格及封装

贴片钽电容规格和封装 一、贴片钽电容简述 贴片钽电容(以下简称钽电容)作为电解电容器中的一类。广泛应用于各类电子产品,特别是一些高密度组装,内部空间体积小产品,如手机、便携式打印机。钽电容是一种用金属钽(Ta)作为阳极材料而制成的,按阳极结构的不同可分为箔式和钽烧粉结式两种。在钽粉烧结式钽电容中,又因工作电解质不同,分为固体电解质钽电容(SolidTantalum)和非固体电解质钽电容。其中,固体钽电解电容器用量最大。钽电容由于使用金属钽做介质,不需要像普通电解电容那样使用电解液。另外,钽电容不需像普通电解电容那样使用镀了铝膜的电容纸烧制,所以本身几乎没有电感,但同时也限制了它的容量。 Taj系列贴片钽电容是AVX公司生产的一种贴片封装的钽电解电容,是电子市场上最常见的一种型号。 优点: 体积小由于钽电容采用了颗粒很细的钽粉,而且钽氧化膜的介电常数ε比铝氧化膜的介电常数高,因此钽电容的单位体积内的电容量大。 使用温度范围宽,耐高温由于钽电容内部没有电解液,很适合在高温下工作。一般钽电解电容器都能在-50℃~100℃的温度下正常工作,虽然铝电解也能在这个范围内工作,但电性能远远不如钽电容。 寿命长、绝缘电阻高、漏电流小。钽电容中钽氧化膜介质不仅耐腐蚀,而且长时间工作能保持良好的性能容量误差小等效串联电阻小(ESR),高频性能好 缺点:耐电压不够高电流小价格高

贴片钽电容封装

AVX常规系列(TAJ)贴片钽电容:容量和额定电压(字母表示封装大小)

AVX 贴片钽电容标识 二、钽电容技术规格和选型(以VISHAY 和AVX 为例说明) (一)VISHAY 1、型号表示方法 293D107X9010D2W ①②③④⑤⑥⑦ ①表示系列,VISHAY 有293D 和593D 两个系列,293D 表示普通钽电容,593D 表示的是低阻抗钽电容,直流电阻小于1欧,一般在100毫欧到500毫欧之间。 T 50 年份 Year 年份代码 Year 2000 M 2001 N 2002 P 2003 R 2004 S 2005 T 2006 U 2007 Y

变频器专用电容器作用性能分析

变频器中整流滤波电解电容器的作用 电解电容器作为变频器/逆变器的整流滤波电容器,一般认为:电解电容器的最主要的参数是额定电压、电容量,通常采用电解电容器作为整流滤波电容器,这种思想是受常规电子技术的单相整流电路的影响。在三相整流电路中,每个电源周期共有6个波头,如采用电容器滤波,则每个波头仅1/3的时间是整流器导通向输出供电,剩下的2/3的时间,输出功率就只能靠电容器提供,这个时间约为电源周期的1/9,即2.22mS。以输出功率为30kW的变频器,滤波电容器通常采用3300μF/400V电解电容器两串两并。 在这种负载条件下的整流输出的平均值电流约为50A。在整流器不工作的 2.2mS的时间内,滤波电容器由于放电造成的电压下降为33~35V,是600V 整流输出平均电压的0.055,如考虑电解电容器的等效串联电阻约为68mΩ, 50A纹波电流下的ESR电压降将达到3.5V,这时的纹波电压幅值将超过6%,约为没有电容器滤波时的一半,表明整流输出滤波电容器实际上不是用来滤波的,而是用来吸收来自整流器和逆变器的纹波电流。 变频器主流母线中的纹波电流的产生主要有两个方面:工频整流滤波的纹波电流,举例来说对于3相380V直接整流来说,每千瓦输出大约需要滤波电容器流过6A以上的纹波电流,对于一个30千瓦的变频器,滤波电容器需要滤掉90A甚至更高的纹波电流,当然这个纹波电流可与通过在整流器与滤波电容器之间接一个电抗器来大大减小。但是产生纹波电流的另一个源(逆变器产生的纹波电流)却绝对不能采用串入电抗器解决;产生纹波电流的另一个原因就是逆变器工作时产生的输出频率下的纹波电流和开关频率下的纹波电流,逆变器输出频率的纹波电流以逆变器驱动感应电动机为例,要产生很高幅值的开关频率下的纹波电流,第二种纹波电流是所有变频器/逆变器无法自身消除掉的,只能利用滤波电容器来吸收,如变频器驱动30kW的感应电机时,变频器的直流母线上至少要产生60A的纹波电流!这个滤波电流将在滤波电容器的ESR中产生明显的功率损耗。由于成本的限制,直到现在,没有一个变频器生产厂家将滤波用铝电解电容器的纹波电流限制在电解电容器的额定纹波电流以下,因此对于需要较长的应用寿命应用领域下的变频器/逆变器采用电解电容器作为滤波电容器将不得不定期更换滤波电容器,而在不能定期更换滤波电容器的场合

常用电容器主要参数与特点

常用电容器主要参数与特点 1、标称电容量和允许偏差 标称电容量是标志在电容器上的电容量。 电解电容器的容值,取决于在交流电压下工作时所呈现的阻抗。因此容值,也就是交流电容值,随着工作频率、电压以及测量方法的变化而变化。在标准JISC 5102 规定:铝电解电容的电容量的测量条件是在频率为 120Hz,最大交 流电压为(Voltage Root Mean Square,通常指交流电压的有效值),DC bias (直流偏压直流偏置直流偏移直流偏磁)电压为~的条件下进行。可以断言,铝电解电容器的容量随频率的增加而减小。 电容器中存储的能量 E = CV^2/2 电容器的线性充电量 I = C (dV/dt) 电容的总阻抗(欧姆) Z = √ [ RS^2 + (XC – XL)^2 ] 容性电抗(欧姆) XC = 1/(2πfC)

电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。 精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%) 一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。 2、额定电压 在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压有效值,一般直接标注在电容器外壳上,如果工作电压超过电容器的耐压,电容器击穿,造成不可修复的永久损坏。 3、绝缘电阻 直流电压加在电容上,并产生漏电电流,两者之比称为绝缘电阻。 当电容较小时,主要取决于电容的表面状态,容量〉时,主要取决于介质的性能,绝缘电阻越大越好。 电容的时间常数:为恰当的评价大容量电容的绝缘情况而引入了时间常数,他等于电容的绝缘电阻与容量的乘积。 4、损耗 电容在电场作用下,在单位时间内因发热所消耗的能量叫做损耗。各类电容都规定了其在某频率范围内的损耗允许值,电容的损耗主要由介质损耗,电导损耗和电容所有金属部分的电阻所引起的。

常用元器件封装尺寸大小

封装形式图片国际统一简称 LDCC LGA LQFP PDIP TO5 TO52 TO71 TO71 TO78 PGA Plastic PIN Grid Array 封装形式图片国际统一简称 TSOP Thin Small OUtline Package QFP Quad Flat Package PQFP 100L QFP Quad Flat Package SOT143 SOT220 Thin Shrink Qutline Package uBGA

PLCC LQFP LQFP 100L TO8 TO92 TO93 T099 EBGA 680L QFP Quad Flat Packa ge TQFP 100L Micro Ball Grid Array uBGA Micro Ball Grid Array PCDIP ZIP Zig-Zag Inline Pa cka SOT223 SOT223 SOT23 SOT23/SOT323 SOT25/SOT353

SBGA LBGA 160L PBGA 217L Plastic Ball Grid Array SBGA 192L TSBGA 680L CLCC SC-705L SDIP SIP Single Inline Package SOT26/SOT363 FBGA FDIP SOJ SOP EIAJ TYPE II 14L SSOP 16L SSOP SOJ 32L Flat Pack HSOP28

SO Small Outline Package CNR CPGA Ceramic Pin Outline Package DIP Dual Inline Package DIP-tab DUAL Inline Packag e with Metal Heatsink BQFP 132 C-Bend Lead ITO220 ITO3P TO220 TO247 TO264 TO3 JLCC LCC TO263/TO268 SO DIMM Small Outline Dual In-line Memory

(完整word版)电解电容封装规格表

康富松电解电容全系列封装规格: 产品名称:康富松电解电容ME系列 型式:导针型 特性:耐高温,标准品,通过无铅认证 使用温度范围:-40 ~ +105℃(6.3 ~ 400V) -25 ~ +105℃(450V) 额定工作电压范围:6.3 ~ 450V 电容量允许偏差:±20%(M) (at 20℃,120Hz) 漏电流:0.03CV or 4μA 寿命(H):2000 产品名称:康富松电解电容RC系列 型式:导针型 特性:耐高温,低阻抗,通过无铅认证 使用温度范围:-55 ~ +105℃(6.3 ~ 100V) -40 ~ +105℃(160 ~ 400V) -25 ~ +105℃(450V) 额定工作电压范围:6.3 ~ 450V 电容量允许偏差:±20%(M) (at 20℃,120Hz) 漏电流:0.03CV or 4μA 寿命(H):3000~5000 产品名称:康富松电解电容RD系列 型式:导针型 特性:耐高温,通过无铅认证 使用温度范围:-55 ~ +105℃(6.3 ~ 100V) -40 ~ +105℃(160 ~ 400V) -25 ~ +105℃(450V) 额定工作电压范围:6.3 ~ 450V 电容量允许偏差:±20%(M) (at 20℃,120Hz) 漏电流:0.03CV or 4μA 寿命(H):2000~8000 产品名称:康富松电解电容RG系列 型式:导针型 特性:耐高温,低阻抗,长寿命,通过无铅认证 使用温度范围:-40 ~ +105℃ 额定工作电压范围:6.3 ~ 50V 电容量允许偏差:±20%(M) (at 20℃,120Hz) 漏电流:0.01CV or 3μA 寿命(H):4000~10000

电容的主要性能指标

电容的主要性能指标 标称容量和允许误差:电容器储存电荷的能力,常用的单位是F、uF、pF。电容器上标有的电容数是电容器的标称容量。电容器的标称容量和它的实际容量会有误差。常用固定电容允许误差的等级见表2。常用固定电容的标称容量系列见表3。一般,电容器上都直接写出其容量,也有用数字来标志容量的,通常在容量 小于10000pF的时候,用pF做单位,大于10000pF的时候,用uF做单位。为了简便起见,大于100pF而小于1uF的电容常常不注单位。没有小数点的,它的单位是pF,有小数点的,它的单位是uF。如有的电容上标有“332”(3300pF)三位有效数字,左起两位给出电容量的第一、二位数字,而第三位数字则表示在后加0的个数,单位是pF。 额定工作电压:在规定的工作温度范围内,电容长期可靠地工作,它能承受的最大直流电压,就是电容的耐压,也叫做电容的直流工作电压。如果在交流电路中,要注意所加的交流电压最大值不能超过电容的直流工作电压值。常用的固定电容工作电压有 6.3V、10V、16V、25V、50V、63V、100V、2500V、400V、500V、630V、1000V。 表2常用固定电容允许误差的等 允许误差±2%±5%±10%±20%(+20%-30%) (+50%-20%) (+100%-10%) 级别02 ⅠⅡⅢⅣⅤⅥ 表3常用固定电容的标称容量系列 电容类别允许误差容量范围标称容量系列 纸介电容、金属化纸介 电容、纸膜复合介质电容、低频(有极性)有机薄膜介质电容5% ±10% ±20% 100pF-1uF 1.01.52.23.34.76.8 1uF-100uF 1246810152030 506080100

最新常用电容值

常用电容值

常用电子元件规格常用电容容值 发布时间: 2009-10-9 11:06:19 被阅览数: 322 次来源:河南远大电脑专修学院中国设计教育领 军品牌 文字〖大中小〗自动滚屏(右键暂停) 【单位pF】 39 P 43 P 47 P 51 P 56 P 62 P 68 P 75 P 82 P 91 P 100 P 120 P 150 P 180 P 200 P 220 P 240 P 270 P 300 P 330 P 360 P 390 P 470 P 560 P 620 P 680 P 750 P 【单位nF】 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 10 15 18 22 27 33 39 56 68 82 【单位uF】 0.1 0.15 0.22 0.33 0.47 1.0 (1.5) 2.2 常用电阻阻值 国家标准规定了电阻的阻值按其精度分为两大系列,分别为E-24系列和E-96系列,E-24系列精度为5%,E-96系列为1%, 在这两种系列之外的电阻为非标电阻,较难采购。下面列出了常用的5%和1%精度电阻的标称值,供大家设计时参考。 精度为5%的碳膜电阻,以欧姆为单位的标称值: 1.0 5.6 33 160 820 3.9K 20K 100K 510K 2.7M 1.1 6.2 36 180 910 4.3K 22K 110K 560K 3M

1.2 6.8 39 200 1K 4.7K 24K 120K 620K 3.3M 1.3 7.5 43 220 1.1K 5.1K 27K 130K 680K 3.6M 1.5 8.2 47 240 1.2K 5.6K 30K 150K 750K 3.9M 1.6 9.1 51 270 1.3K 6.2K 33K 160K 820K 4.3M 1.8 10 56 300 1.5K 6.6K 36K 180K 910K 4.7M 2.0 11 62 330 1.6K 7.5K 39K 200K 1M 5.1M 2.2 12 68 360 1.8K 8.2K 43K 220K 1.1M 5.6M 2.4 13 75 390 2K 9.1K 47K 240K 1.2M 6.2M 2.7 15 82 430 2.2K 10K 51K 270K 1.3M 6.8M 3.0 16 91 470 2.4K 11K 56K 300K 1.5M 7.5M 3.3 18 100 510 2.7K 12K 62K 330K 1.6M 8.2M 3.6 20 110 560 3K 13K 68K 360K 1.8M 9.1M 3.9 22 120 620 3.2K 15K 75K 390K 2M 10M 4.3 24 130 680 3.3K 16K 82K 430K 2.2M 15M 4.7 27 150 750 3.6K 18K 91K 470K 2.4M 22M 5.1 30 精度为1%的金属膜电阻,以欧姆为单位的标称值: 10 33 100 332 1K 3.32K 10.5K 34K 107K 357K 10.2 33.2 102 340 1.02K 3.4K 10.7K 34.8K 110K 360K 10.5 34 105 348 1.05K 3.48K 11K 35.7K 113K 365K 10.7 34.8 107 350 1.07K 3.57K 11.3K 36K 115K 374K 11 35.7 110 357 1.1K 3.6K 11.5K 36.5K 118K 383K

钽电解电容封装尺寸

HOW TO ORDER Technical Data: All technical data relate to an ambient temperature of +25°C Capacitance Range:0.10 μF to 2200 μF Capacitance Tolerance:±10%; ±20% Rated Voltage (V R )?+85°C: 2.54 6.3101620253550 Category Voltage (V C )?+125°C: 1.7 2.7 4 71013172333Surge Voltage (V S )?+85°C: 3.3 5.28132026324665Surge Voltage (V S )?+125°C: 2.2 3.45813162028 40 Temperature Range:-55°C to +125°C Reliability:1% per 1000 hours at 85°C, V R with 0.1Ω/V series impedance, 60% confidence level Qualification:CECC 30801 - 005 issue 2EIA 535BAAC Termination Finished: Sn Plating (standard), Gold and SnPb Plating upon request TECHNICAL SPECIFICATIONS millimeters (inches) For part marking see page 129 TAJ Type C Case Size See table above 106 Capacitance Code pF code: 1st two digits represent significant figures 3rd digit represents multiplier (number of zeros to follow) M T olerance K=±10%M=±20% 035 Rated DC Voltage 002=2.5Vdc 004=4Vdc 006=6.3Vdc 010=10Vdc 016=16Vdc 020=20Vdc 025=25Vdc 035=35Vdc 050=50Vdc R Packaging R =Pure Tin 7" Reel S = Pure Tin 13" Reel A = Gold Plating 7" Reel B = Gold Plating 13" Reel H = Tin Lead 7" Reel (Contact Manufacturer)K = Tin Lead 13" Reel (Contact Manufacturer) H, K = Non RoHS NJ Specification Suffix NJ = Standard Suffix — Additional characters may be added for special requirements V = Dry pack Option (selected codes only) ? General purpose SMT chip tantalum series ? 6 case sizes available ? Low profile options available ? CV range: 0.10-2200μF / 2.5-50V COMPONENT RoHS compliant.

不同材料电容性能比较

不同材料电容性能比较 一、选用精密电容的原因 精密VFC所用的关键电容器(多谐振荡器式VFC用的定时电容器和电荷平衡式VFC用的单稳定时电容器)都必须随温度变化保持稳定。另外,如果电容器有介质吸收,那么VFC会产生线性误差并且使建立时间变坏。 如果电容器被充电、放电,然后开路,此时电容器可能恢复一些电荷,这种效应称作介质吸收(DA)。使用这种电容器,会降低VFC或采样保持放大器(SHA)的精度。因此VFC和SHA都应该使用聚四氟乙烯或聚丙烯电容器或者使用低DA 的零温度系数陶瓷电容器。 二、电容具体性能指标要求 容值:1000pF、0.1Uf;容量精度高±0.5%;介质损耗低;耐高温,温度范围-55℃到+125℃,温度系数好±5PPm/℃,容值不随温度变化而变化;应用于高精度振荡电路。 三、选用作为实验分析的电容性能 (一)聚苯硫醚电容器(耐高温电容器) 聚苯硫醚薄膜作介质,铝箔为电极,独特工艺制造。 特点:工作温度范围宽(-55℃到+125℃);良好的温度系数(-40℃到+100℃内容量不变化,温度曲线平坦);容量误差小(±1%、±2%、±5%),介质损耗低tanδ<0.05%。 该产品适用于工作环境变化频繁但要求电路稳定的振荡、定时和积分电路。(二)轴向聚苯乙烯电容器 1.聚苯乙烯膜作介质;高纯度铝箔作电极;采用特殊生产工艺制造具有负温度系数;双向引出结构;(容量范围3pF-1uF)适于要求低安装高度的电子电路; 2.绝缘电阻高;电极间漏电流很小;高频极低损耗,受温度频率变化影响小,环境温度-40℃到+80℃; 3.要求容量误差很小的音频电路; 4.高精度的LC振荡电路、信号采样电路、信号藕合电路。 (三)精密聚丙烯电容器 聚丙烯薄膜作介质和铝箔一起卷绕成形,阻燃环氧树脂包封。容量稳定、介质损耗低、温度特性好(负温度系数),环境温度-40℃到+80℃;适用于对要求高振荡、滤波、计数和延时等电路。 (四)聚苯乙烯电容器 聚苯乙烯膜作介质,铝箔为电极卷绕而成。特点:高内阻,低漏电,介质损耗极低( 1KHZ DF<0.0001) 容量范围宽:100P-1uF;容量误差小(±1%、±2%、±5%)。 (五)CB10 轴向引出式聚苯乙烯薄膜电容器 1.电容器环境条件

常见电容的读数简介

电容的基本单位是F(法),其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。由于单位F 的容量太大,所以我们看到的一般都是μF、nF、pF的单位。换算关系:1F=1000000μF,1μF=1000nF=1000000pF。 电容的标注方法分为:直标法、色标法和数标法。对于体积比较大的电容,多采用直标法。如果是0.005,表示0.005uF=5nF。如果是5n,那就表示的是5nF。 数标法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是10的多少次方。如:102表示10x10x10 PF=1000PF,203表示20x10x10x10 PF。 如:“473”即47000pF=0.047μF “103”即10000pF=0.01μF等等, 一、认识电容 1F=1,000,000uF 1uF=1,000nF 1nF=1000pF 1F=103mF=106uF=109nF=1012pF 1、在各种电子设备中,调谐、耦合、滤波、去耦、隔断直流电、旁路交流电等,都需要用到电容器。电容器通常叫做电容。电容的种类很多,按结构形式来分,有固定电容、半可变电容、可变电容。常用电容按介质区分有纸介电容、油浸纸介电容、金属化纸介电容、云母电容、薄膜电容、陶瓷电容、电解电容、铝电解电容、钽、铌电解电容等。 2、在电路图中电容单位的标注规则。通常在容量小于10000pF的时候,用pF做单位,大于10000pF的时候,用uF做单位。为了简便起见,大于100pF而小于1uF的电容常常不注单位。没有小数点的,它的单位是pF,有小数点的,它的单位是uF。例如,3300就是3300pF,0.1就是0.1uF等。 3、电容使用常识。电容在电路中实际要承受的电压不能超过它的耐压值。在滤波电路中,电容的耐压值不要小于交流有效值的1.42倍。使用电解电容的时候,还要注意正负极不要接反。 不同电路应该选用不同种类的电容。揩振回路可以选用云母、高频陶瓷电容,隔直流可以选用纸介、涤纶、云母、电解、陶瓷等电容,滤波可以选用电解电容,旁路可以选用涤纶、纸介、陶瓷、电解等电容。 电容在装入电路前要检查它有没有短路、断路和漏电等现象,并且核对它的电容值。安装的时候,要使电容的类别、容量、耐压等符号容易看到,以便核实 二、电容容量的表示方法

电容器的主要参数有哪些

电容器的主要参数有哪些? 电容器的主要参数有标称容量(简称容量)、允许偏差、额定电压、漏电流、绝缘电阻、损耗因数、温度系数、频率特性等。 (一)标称容量 标称容量是指标注在电容器上的电容量。 电容量的基本单位是法拉(简称法),用字母“F”表示。比法拉小的单位还在毫法(mF)、微法(μF)、纳法(nF)、皮法(pF),它们之间的换算关系是: 1F=1000mF 1mF=1000μF 1μF=1000nF 1nF=1000pF 其中,微法(μF)和皮法(pF)两单位最常用。 在实际应用时,电容量在1万皮法以上电容量,通常用微法作单位,例如:0.047μF、0.1μF、2.2μF、47μF、330μF、4700μF等等。 电容量在1万皮法以下的电容器,通常用皮法作单位,例如:2pF、68 pF、100 pF、680 pF、5600 pF等等。 标称容量的标注方法有直标法、文字符号标注法和色标法等,具体的识别方法将在以后的内容中作详细介绍。 (二)允许偏差 允许偏差是指电容器的标称容量与实际容量之间的允许最大偏差范围。 电容器的容量偏差与电容器介质材料及容量大小有关。电解电容器的容量较大,误差范围大于±10%;而云母电容器、玻璃釉电容器、瓷介电容器及各种无极性高频在机薄膜介质电容器(如涤纶电容器、聚苯乙烯电容器、聚丙烯电容器

等)的容量相对较小,误差范围小于±20%。 (三)额定电压 额定电压也称电容器的耐压值,是指电容器在规定的温度范围内,能够连续正常工作时所能承受的最高电压。 该额定电压值通常标注在电容器上。在实际应用时,电容器的工作电压应低于电容器上标注的额定电压值,否则会造成电容器因过压而击穿损坏。 (四)漏电流 电容器的介质材料不是绝艰绝缘体,宁在一定的工作温度及电压条件下,也会有电流通过,此电流即为漏电流。 一般电解电容器的漏电流略大一些,而其它类型电容器的漏电流较小。 (五)绝缘电阻 绝缘电阻也称漏电阻,它与电容器的漏电流成反比。漏电流越大,绝缘电阻越小。绝缘电阻越大,表明电容器的漏电流越小,质量也越好。 (六)损耗因数 损耗因数也称电容器的损耗角正切值,用来表示电容器能量损耗的大小。该值越小,说明电容器的质量越好。 (七)温度系数 温度系数是指在一定温度范围内,温度每变化1℃时,电容器容量的相对变化值。温度系数值越小,电容器的性能越好。 (八)频率特性 频率特性是指电容器对各种不同高低的频率所表现出的性能(即电容量等电参数随着电路工作频率的变化而变化的特性)。不同介质材料的电容器,其最高工作频率也不同,例如,容量较大的电容器(如电解电容器)只能在低频电路中正常工作,高频电路中只能使用容量较小的高频瓷介电容器或云母电容器等。 信息来源:慧聪电子 【我来说两句】【推荐给朋友】【关闭窗口】

相关主题
文本预览
相关文档 最新文档