当前位置:文档之家› 自考线性代数(经管类)第1-6章教案(已排版)

自考线性代数(经管类)第1-6章教案(已排版)

自考线性代数(经管类)第1-6章教案(已排版)
自考线性代数(经管类)第1-6章教案(已排版)

线性代数(经管类)

第一章 行列式

(一)行列式的定义

行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.

1.二阶行列式

由4个数)2,1,(=j i a ij 得到下列式子:11

12

2122

a

a a a 称为一个二阶行列式,

其运算规则为

2112221122

211211a a a a a a a a -=

2.三阶行列式

由9个数)3,2,1,(=j i a ij 得到下列式子:33

323123222113

1211a a a a a a a a a

称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.

3.余子式及代数余子式

设有三阶行列式 33

323123222113

12113a a a a a a a a a D =

对任何一个元素ij a ,我们划去它所在的第i 行及第j 列,剩下的元

素按原先次序组成一个二阶行列式,称它为元素ij a 的余子式,记成ij M

例如 33

32232211a a a a M =

,33

32131221a a a a M =

,23

22131231a a a a M =

再记 ij j i ij M A +-=)1( ,称ij A 为元素ij a 的代数余子式.

例如 1111M A =,2121M A -=,3131M A = 那么 ,三阶行列式3D 定义为

我们把它称为3D 按第一列的展开式,经常简写成

∑∑=+=-==3

1

1113

1

113)1(i i i i i i i M a A a D

4.n 阶行列式 一阶行列式 11111a a D ==

n 阶行列式 1121211111212222111211n n nn

n n n n n A a A a A a a a a a a a a a a D +++==

其中(,1,2,,)ij A i j n =为元素ij a 的代数余子式. 5.特殊行列式

上三角行列式

111212221122

000n n nn nn a a a a a a a a a =

下三角行列式

1122

1122

1

2

000nn n n nn

a a a a a a a a a =21

31

312121111133

323123222113

12113A a A a A a a a a a a a a a a D ++==

对角行列式

11221122

0000

nn nn

a a a a a a =

(二)行列式的性质

性质1 行列式和它的转置行列式相等,即T D D =

性质2 用数k 乘行列式D 中某一行(列)的所行列式等于kD ,也就是说,行列式可以按行和列提出公因数.有元素所得到的

性质3 互换行列式的任意两行(列),行列式的值改变符号. 推论1 如果行列式中有某两行(列)相同,则此行列式的值等于零.

推论2 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.

性质4 行列式可以按行(列)拆开.

性质5 把行列式D 的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为D.

定理1(行列式展开定理)

n 阶行列式n ij a D =等于它的任意一行(列)的各元素与其对应的代数余子式的乘积的和,即),,2,1(2211n i A a A a A a D in in i i i i =+++=

或),,2,1(2211n j A a A a A a D nj nj j j j j =+++=

前一式称为D 按第i 行的展开式,后一式称为D 按第j 列的展开式.

本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值.

定理2 n 阶行列式n ij a D =的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即

)(02211k i A a A a A a kn in k i k i ≠=+++

或)(02211s j A a A a A a ns nj s j s j ≠=+++ (三)行列式的计算

行列式的计算主要采用以下两种基本方法:

(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k 时,必须在新的行列式前面乘上k.

(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:

例1 计算行列式 5

2072325121314124-=

D

解:观察到第二列第四行的元素为0,而且第二列第一行的元素是112=a ,利用这个元素可以把这一列其它两个非零元素化为0,然后按第二列展开.

4214121

41

562

31212115062

150********

3(2)1725

025********

312

25110081

375

7375

D -+?=

---+-?+?=行行按第二列展开行行7 列列按第二行展开

例2 计算行列式 a

b b b b a b b b b a b b

b b a D =

4

解:方法1 这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观察其特点,这个行列式的特点是它的每一行元素之和均为b a 3+(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一列的公因子b a 3+,再将后三行都减去第一行:

3131(3)

31311000

(3)

000000a b b b a b b b b b b b

b a b b a b a b b a b b

a b b b a b a b b a b b a b b b b a

a b b b a

b b a

b b b

a b a b a b a b

++==+++-=+--

3))(3(b a b a -+=

方法2 观察到这个行列式每一行元素中有多个b ,我们采用“加边法”来计算,即是构造一个与4D 有相同值的五阶行列式

11234541101000010000100001000b b b b b b

b b a b b b

a b b b a b b a b b D b a b b a b b b a b

b b a b a b b b b

a

b b b a a b

?-+--=

==------行(),,,行 这样得到一个“箭形”行列式,如果b a =,则原行列式的值为零,故不妨假设b a ≠,即0≠-b a ,把后四列的b

a -1

倍加到第一列上,可以把第一列的(-1)化为零.

4410000400001()(3)()00000

b

b

b

b

b a b a b b a b a b a b a b a b a b a b

3

+--??=

-=+-=+- ?-??

-- 例3 三阶范德蒙德行列式

))()((1

11

2313122

3

2

2

2

1

321

3x x x x x x x x x x x x V ---== (四)克拉默法则

定理1(克拉默法则)设含有n 个方程的n 元线性方程组为

1111221121122222

1122,,n n n n n n nn n n

a x a x a x

b a x a x a x b a x a x a x b +++=??+++=??

??+++=

? 如果其系数行列式0≠=n ij a D ,则方程组必有唯一解:

n j D

D x j j ,,2,1, ==

其中j D 是把D 中第j 列换成常数项n b b b ,,,21 后得到的行列式. 把这个法则应用于齐次线性方程组,则有

定理2 设有含n 个方程的n 元齐次线性方程组

1111221211222211220,0,0

n n n n n n nn n a x a x a x a x a x a x a x a x a x +++=??+++=????++

+=

?

如果其系数行列式0≠D ,则该方程组只有零解:

021====n x x x

换句话说,若齐次线性方程组有非零解,则必有0=D ,在教材第二章中,将要证明,n 个方程的n 元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.

第二章 矩阵

(一)矩阵的定义 1.矩阵的概念

由n m ?个数),,2,1;,,2,1(n j m i a ij ==排成的一个m 行n 列的数表

??????

?

??=mn m m n n a a a a a a a a a A

212222111211 称为一个m 行n 列矩阵或n m ?矩阵

当n m =时,称()n n ij a A ?=为n 阶矩阵或n 阶方阵 元素全为零的矩阵称为零矩阵,用n m O ?或O 表示 2.3个常用的特殊方阵:

①n 阶对角矩阵是指形如 ?

???

??? ?

?=nn a a a A 0000002211的矩阵

②n 阶单位方阵是指形如 ????

??

?

??=100010001 n E 的矩阵

③n 阶三角矩阵是指形如 ?

?????? ????????? ?

?nn n n nn n n a a a a a a a a a a a a

2122

211122*********,000的矩阵 3.矩阵与行列式的差异

矩阵仅是一个数表,而n 阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“*”与矩阵记号“()*”也不同,不能用错.

(二)矩阵的运算 1.矩阵的同型与相等

设有矩阵n m ij a A ?=)(,λ?=k ij b B )(,若k m =,λ=n ,则说A 与B 是同型矩阵.若A 与B 同型,且对应元素相等,即ij ij b a =,则称矩阵A 与B 相等,记为B A =

因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等. 2.矩阵的加、减法

设n m ij a A ?=)(,n m ij b B ?=)(是两个同型矩阵则规定

n m ij ij b a B A ?+=+)( n m ij ij b a B A ?-=-)(

注意:只有A 与B 为同型矩阵,它们才可以相加或相减. 由于矩阵的相加体现为元素的相加,因而与普通数的加法运算有

相同的运算律. 3.数乘运算

设n m ij a A ?=)(,k 为任一个数,则规定n m ij ka kA ?=)(

故数k 与矩阵A 的乘积就是A 中所有元素都乘以k ,要注意数k 与行列式D 的乘积,只是用k 乘行列式中某一行或某一列,这两种数乘截然不同.

矩阵的数乘运算具有普通数的乘法所具有的运算律. 4.乘法运算

设k m ij a A ?=)(,n k ij b B ?=)(,则规定n m ij c AB ?=)(

其中kj ik j i j i ij b a b a b a c +++= 2211 ),,2,1;,,2,1(n j m i == 由此定义可知,只有当左矩阵A 的列数与右矩阵B 的行数相等时,AB 才有意义,而且矩阵AB 的行数为A 的行数,AB 的列数为B 的列数,而矩阵AB 中的元素是由左矩阵A 中某一行元素与右矩阵B 中某一列元素对应相乘再相加而得到.

故矩阵乘法与普通数的乘法有所不同,一般地: ①不满足交换律,即BA AB ≠

②在0=AB 时,不能推出0=A 或0=B ,因而也不满足消去律. 特别,若矩阵A 与B 满足BA AB =,则称A 与B 可交换,此时A 与B 必为同阶方阵.

矩阵乘法满足结合律,分配律及与数乘的结合律. 5.方阵的乘幂与多项式方阵 设A 为n 阶方阵,则规定m A AA A =m 个

特别E A =0

又若1110()m m m m f x a x a x a x a --=++

++,则规定

1110()m m m m f A a A a A a A a E --=++

++

称)(A f 为A 的方阵多项式,它也是一个n 阶方阵 6.矩阵的转置

设A 为一个n m ?矩阵,把A 中行与列互换,得到一个m n ?矩阵,称为A 的转置矩阵,记为T A ,转置运算满足以下运算律:

A A T =T )(,T T T

B A B A +=+)(,T T kA kA =)(,T T T A B AB =)(

由转置运算给出对称矩阵,反对称矩阵的定义

设A 为一个n 阶方阵,若A 满足A A T =,则称A 为对称矩阵,若A 满足A A T -=,则称A 为反对称矩阵.

7.方阵的行列式

矩阵与行列式是两个完全不同的概念,但对于n 阶方阵,有方阵的行列式的概念.

设)(ij a A =为一个n 阶方阵,则由A 中元素构成一个n 阶行列式

n

ij a ,称为方阵A 的行列式,记为A 方阵的行列式具有下列性质:设A ,B 为n 阶方阵,k 为数,则 ①A A T =; ②A k kA n = ③B A AB ?= (三)方阵的逆矩阵 1.可逆矩阵的概念与性质

设A 为一个n 阶方阵,若存在另一个n 阶方阵B ,使满足

E BA AB ==,则把B 称为A 的逆矩阵,且说A 为一个可逆矩阵,意指

A 是一个可以存在逆矩阵的矩阵,把A 的逆矩阵

B 记为1-A ,从而A 与1-A 首先必可交换,且乘积为单位方阵E.

逆矩阵具有以下性质:设A ,B 为同阶可逆矩阵,0≠k 为常数,则

①1-A 是可逆矩阵,且A A =--11)(; ②AB 是可逆矩阵,且111)(---=A B AB ; ③kA 是可逆矩阵,且111)(--=A k

kA ④T A 是可逆矩阵,且T T A A )()(11--=

⑤可逆矩阵可从矩阵等式的同侧消去,即设P 为可逆矩阵,则

B A PB PA =?= B A BP AP =?=

2.伴随矩阵

设)(ij a A =为一个n 阶方阵,ij A 为A 的行列式n

ij a A =中元素ij a 的代数余子式,则矩阵?

??????

??nn n

n n n A A A A A A A A A

212221212111称为A 的伴随矩阵,记为*

A (务必注意*A 中元素排列的特点) 伴随矩阵必满足

E A A A AA ==**

1

*-=n A

A (n 为A 的阶数)

3.n 阶阵可逆的条件与逆矩阵的求法 定理:n 阶方阵A 可逆?0≠A ,且*

11A A

A =

-

推论:设A ,B 均为n 阶方阵,且满足E AB =,则A ,B 都可逆,且B A =-1,A B =-1

例1 设???

?

??=d c b a A (1)求A 的伴随矩阵*A

(2)a ,b ,c ,d 满足什么条件时,A 可逆?此时求1-A 解:(1)对二阶方阵A ,求*A 的口诀为“主交换,次变号”即

???

?

??--=a c b d A *

(2)由bc ad d

c b a A -==,故当0≠-bc a

d 时,即0≠A ,A 为可

逆矩阵

此时???

?

??---==

-a c b d bc ad A A A 11*1 (四)分块矩阵

1.分块矩阵的概念与运算

对于行数和列数较高的矩阵,为了表示方便和运算简洁,常用一些贯穿于矩阵的横线和纵线把矩阵分割成若干小块,每个小块叫做矩阵的子块,以子块为元素的形式上的矩阵叫做分块矩阵.

在作分块矩阵的运算时,加、减法,数乘及转置是完全类似的,特别在乘法时,要注意到应使左矩阵A 的列分块方式与右矩阵B 的行分块方式一致,然后把子块当作元素来看待,相乘时A 的各子块分别左乘B 的对应的子块.

2.准对角矩阵的逆矩阵

形如 ????

??

? ??r A A A 21的分块矩阵称为准对角矩阵,其中r

A A A ,,,21 均为方阵空白处都是零块.

若r A A A ,,,21 都是可逆矩阵,则这个准对角矩阵也可逆,并且

?

?

???

?

?

??=?????

?

?

??----112

111

21r r A A A A A A

( 五)矩阵的初等变换与初等方阵 1.初等变换

对一个矩阵A 施行以下三种类型的变换,称为矩阵的初等行(列)变换,统称为初等变换,

(1)交换A 的某两行(列);

(2)用一个非零数k 乘A 的某一行(列);

(3)把A 中某一行(列)的k 倍加到另一行(列)上. 注意:矩阵的初等变换与行列式计算有本质区别,行列式计算是求值过程,用等号连接,而对矩阵施行初等变换是变换过程用“→”连接前后矩阵.

初等变换是矩阵理论中一个常用的运算,而且最常见的是利用矩阵的初等行变换把矩阵化成阶梯形矩阵,以至于化为行简化的阶梯形矩阵.

2.初等方阵

由单位方阵E 经过一次初等变换得到的矩阵称为初等方阵. 由于初等变换有三种类型,相应的有三种类型的初等方阵,依次记为ij P ,)(k D i 和)(k T ij ,容易证明,初等方阵都是可逆矩阵,且它们的逆矩阵还是同一类的初等方阵.

3.初等变换与初等方阵的关系

设A 为任一个矩阵,当在A 的左边乘一个初等方阵的乘积相当于对A 作同类型的初等行变换;在A 的右边乘一个初等方阵的乘积相当于对A 作同类型的初等列变换.

4.矩阵的等价与等价标准形

若矩阵A 经过若干次初等变换变为B ,则称A 与B 等价,记为B A ? 对任一个n m ?矩阵A ,必与分块矩阵???

?

??O O O E r 等价,称这个分块矩阵为A 的等价标准形.即对任一个n m ?矩阵A ,必存在n 阶可逆矩阵

P 及n 阶可逆矩阵Q ,使得

???

?

??=O O O E PAQ r

5.用初等行变换求可逆矩阵的逆矩阵

设A 为任一个n 阶可逆矩阵,构造n n 2?矩阵(A ,E )

然后 ),(),(1-→A E E A

注意:这里的初等变换必须是初等行变换.

例2 求???

?

?

??----=421412311A 的逆矩阵

解:

()()()122113211311213322113100113

100(,)2140

10012

21012400101110110111010

0421012

21001

0412001311001311A E ?-+?+?+?-+?-+?+--????

?

?

=-→-- ? ? ? ?---?

??

?

---????

?

?

→--→- ? ? ? ?--????

行行行行行行行行行行

行行

则 ???

?

?

??----=-1132141241A

例3 求解矩阵方程

????

?

??=????? ??----213411421412311X

解:令???

?

?

??=????? ??----=213411,421412311B A ,则矩阵方程为B AX =,这里A

即为例2中矩阵,是可逆的,在矩阵方程两边左乘1-A ,得

???

?

?

??=????? ??????? ??----==-2052032134111132141241B A X

也能用初等行变换法,不用求出1A -,而直接求B A 1-

),(201005201003001214213441211311),(1B A E B A -=???

?

?

??→????? ??----=

则 ????

?

??==-2052031

B A X

(六)矩阵的秩 1.秩的定义

设A 为n m ?矩阵,把A 中非零子式的最高阶数称为A 的秩,记为秩)(A 或)(A r

零矩阵的秩为0,因而{}n m A ,m in )(0≤≤秩,对n 阶方阵A ,若秩

n A =)(,称A 为满秩矩阵,否则称为降秩矩阵.

1.秩的求法

由于阶梯形矩阵的秩就是矩阵中非零行的行数,又矩阵初等变换不改变矩阵的秩.对任一个矩阵A ,只要用初等行变换把A 化成阶梯形矩阵T ,则秩(A)=秩(T)=T 中非零行的行数.

3.与满秩矩阵等价的条件

n 阶方阵A 满秩?A 可逆,即存在B ,使E BA AB == ?A 非奇异,即0≠A ?A 的等价标准形为E

?A 可以表示为有限个初等方阵的乘积 ?齐次线性方程组0=AX 只有零解

?对任意非零列向量b ,非齐次线性方程组

b AX =有唯一解

?A 的行(列)向量组线性无关 ?A 的行(列)向量组为n R 的一个基 ?任意n 维行(列)向量均可以表示为A 的行(列)向量组的线性组合,且表示法唯一.

?A 的特征值均不为零 ?A A T 为正定矩阵.

(七)线性方程组的消元法.

对任一个线性方程组??????

?=+++=+++=+++m

n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112

222212********* 可以表示成矩阵形式b AX =,其中n m ij a A ?=)(为系数矩阵,

T m b b b b ),,,(21 =为常数列矩阵,T n x x x X ),,,(21 =为未知元列矩阵.

从而线性方程组b AX =与增广矩阵),(b A A =一一对应.

对于给定的线性方程组,可利用矩阵的初等行变换,把它的增广矩阵化成简化阶梯形矩阵,从而得到易于求解的同解线性方程组,然后求出方程组的解.

第三章 向量空间

(一)n 维向量的定义与向量组的线性组合 1.n 维向量的定义与向量的线性运算

由n 个数组成的一个有序数组称为一个n 维向量,若用一行表示,称为n 维行向量,即n ?1矩阵,若用一列表示,称为n 维列向量,即

1?n 矩阵

与矩阵线性运算类似,有向量的线性运算及运算律. 2.向量的线性组合

设m ααα,,,21 是一组n 维向量,m k k k ,,,21 是一组常数,则称

m m k k k ααα+++ 2211

为m ααα,,,21 的一个线性组合,常数m k k k ,,,21 称为组合系数.

若一个向量β可以表示成

m m k k k αααβ+++= 2211

则称β是m ααα,,,21 的线性组合,或称β可用m ααα,,,21 线性表出.

3.矩阵的行、列向量组

设A 为一个n m ?矩阵,若把A 按列分块,可得一个m 维列向量组称之为A 的列向量组.

若把A 按行分块,可得一个n 维行向量组称之为A 的行向量组. 4.线性表示的判断及表出系数的求法.

向量β能用m ααα,,,21 线性表出的充要条件是线性方程组

βααα=+++m m x x x 2211有解,且每一个解就是一个组合系数.

例1 问T )5,1,1(-=β能否表示成T )3,2,1(1=α,T )4,1,0(2=α,

T )6,3,2(3=α的线性组合?

解:设线性方程组为 βααα=++332211x x x 对方程组的增广矩阵作初等行变换:

???

?

?

??-→????? ??-==110020101001564313121201),,,(),(321βαααβA

则方程组有唯一解1,2,1321-===x x x

所以β可以唯一地表示成321,,ααα的线性组合,且3212αααβ-+=

(一)向量组的线性相关与线性无关 1.线性相关性概念

设m ααα,,,21 是m 个n 维向量,如果存在m 个不全为零的数

m k k k ,,,21 ,使得

02211=+++m m k k k ααα ,则称向量组m ααα,,,21 线性相关,称

m k k k ,,,21 为相关系数.否则,称向量m ααα,,,21 线性无关.

由定义可知,m ααα,,,21 线性无关就是指向量等式

02211=+++m m k k k ααα 当且仅当021====m k k k 时成立.

特别 单个向量α线性相关?0=α; 单个向量α线性无关?0≠α 2.求相关系数的方法

设m ααα,,,21 为m 个n 维列向量,则m ααα,,,21 线性相关?m 元齐次线性方程组02211=+++m m x x x ααα 有非零解,且每一个非零解就是一个相关系数?矩阵),,,(21m A ααα =的秩小于m

例2 设向量组123(2,1,7),(1,4,11),(3,6,3)T T T ααα=-==-,试讨论其线性相关性.

解:考虑方程组0332211=++αααx x x

其系数矩阵 ???

?

?

??-→????? ??--==0001102013117641312),,(321αααA

于是,秩32)(<=A ,所以向量组线性相关,与方程组同解的方程组为

??

?=-=+00

232

31x x x x 令13=x ,得一个非零解为1,1,2321==-=x x x

则02321=++-ααα

3.线性相关性的若干基本定理

定理1 n 维向量组m ααα,,,21 线性相关?至少有一个向量是其余向量的线性组合.即m ααα,,,21 线性无关?任一个向量都不能表示为

其余向量的线性组合.

定理2 如果向量组m ααα,,,21 线性无关,又m αααβ,,,,21 线性相关,则β可以用m ααα,,,21 线性表出,且表示法是唯一的.

定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关.

定理4 无关组的接长向量组必无关. (三)向量组的极大无关组和向量组的秩 1.向量组等价的概念

若向量组S 可以由向量组R 线性表出,向量组R 也可以由向量组S 线性表出,则称这两个向量组等价. 2.向量组的极大无关组

设T 为一个向量组,若存在T 的一个部分组S ,它是线性无关的,且T 中任一个向量都能由S 线性表示,则称部分向量组S 为T 的一个极大无关组.

显然,线性无关向量组的极大无关组就是其本身.

对于线性相关的向量组,一般地,它的极大无关组不是唯一的,但有以下性质:

定理1 向量组T 与它的任一个极大无关组等价,因而T 的任意两个极大无关组等价.

定理2 向量组T 的任意两个极大无关组所含向量的个数相同. 3.向量组的秩与矩阵的秩的关系

把向量组T 的任意一个极大无关组中的所含向量的个数称为向

线性代数(李建平)习题答案详解__复旦大学出版社

线性代数课后习题答案 习题一 1.2.3(答案略) 4. (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数 故所求为127485639 (2) ∵(397281564)25119τ=+++= (奇数) ∴所求为397281564 5.(1)∵(532416)421106τ=++++= (偶数) ∴项前的符号位()6 11-=+ (正号) (2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+= ∴ 项前的符号位5(1)1-=- (负号) 6. (1) (2341)(1)12n n τ-?L L 原式=(1)(1)!n n -=- (2)()((1)(2)21) 1(1)(2)21n n n n n n τ--??---??L L 原式=(1)(2) 2 (1) !n n n --=- (3)原式=((1)21) 12(1)1(1) n n n n n a a a τ-?--L L (1) 2 12(1)1(1)n n n n n a a a --=-L 7.8(答案略) 9. ∵162019(42)0D x =?-?+?--?= ∴7x = 10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得 []11(1)1110 01(1)1110 (1)1 1 (1)1 1 1 x x n x x x n x x x n x x n x x +-+--==+-+--L L L L L L L L L L L L L L L L L L L L L []1(1)(1)n x n x -=+-- (2)按第一列展开: 11100000 (1)(1)0 0n n n n n y x y D x x y x y x y -++=?+-=+-L L L L L L L L

《线性代数》课程教学大纲

《线性代数》课程教案大纲 课程代码:课程性质:专业基础理论课必修 适用专业:工科类各专业总学分数: 总学时数:修订年月: 编写年月:执笔:韩晓卓、李锋 课程简介(中文): 线性代数是理、工、经管各专业重要的基础课之一。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,是数学的一个重要分支,其理论与方法已广泛应用于其它科学领域中。主要包括:矩阵、行列式、线性方程组、秩问题、矩阵的特征值和特征向量、二次型等内容。 课程简介(英文): , . , , . . , , , , , , . 一、课程目的 《线性代数》是高等院校工科专业学生必修的一门基础理论课。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性。通过本课程的学习,使学生比较系统地获得线性代数中的行列式、矩阵、线性方程组、矩阵和向量组的秩,矩阵的特征值和特征向量等方面的基本概念、基本理论和基本方法,培养学生独特的代数思维模式和解决实际问题的能力,同时使学生了解线性代数在经济方面的简单应用,并为学生学习后继课程及进一步扩大数学知识面奠定必要的数学基础。 二、课程教案内容及学时分配 (一)教案内容 第一章行列式(学时) 教案内容:

二阶三阶行列式;阶行列式的定义;行列式的性质(证明选讲);行列式按行(列)展开(定理证明选讲,行列式按某行(列)展开选讲);克莱姆法则。 本章的重点与难点: 重点:行列式的性质;行列式按一行(列)展开定理;克莱姆法则的应用。 难点:阶行列式的定义的理解;阶行列式计算。 第二章矩阵(学时) 教案内容: 矩阵的概念;矩阵的运算(矩阵的加、减法;数乘;乘法;矩阵转置;方阵的幂;方阵的行列式);几种特殊的矩阵(对角矩阵,数量矩阵,三角形矩阵,单位矩阵,对称矩阵与反对称矩阵);分块矩阵(分块阵及其运算,分块对角阵);逆矩阵(可逆阵的定义;奇异阵,伴随阵与逆阵的关系;逆阵的性质,二阶上三角分块阵的求逆方法);本章的重点与难点: 重点:矩阵的运算规律;逆矩阵的性质以及求法; 难点:矩阵的乘积及分块矩阵的乘积;逆矩阵(抽象矩阵的逆矩阵)的求法。 第三章矩阵的初等变换与线性方程组(学时) 教案内容: 矩阵的初等变换(初等矩阵定义;初等矩阵与矩阵初等变换的关系。用初等变换求矩阵的逆);矩阵的秩(矩阵的秩的定义;矩阵的秩与其子式的关系;初等变换求矩阵的秩)。线性方程组的消元解法(消元解法与初等行变换的关系;线性方程组有唯一解、无穷多组解和无解的讨论;线性方程组有解的判别定理;齐次线性方程组有非零解的充分和必要条件); 本章的重点与难点: 重点:利用初等变换求矩阵的逆矩阵与矩阵的秩;利用初等变换求线性方程组的通解。 难点:利用初等变换求线性方程组的通解。

北大版 线性代数第一章部分课后答案详解

习题1.2: 1 .写出四阶行列式中 11121314212223243132333441 42 43 44 a a a a a a a a a a a a a a a a 含有因子1123a a 的项 解:由行列式的定义可知,第三行只能从32a 、34a 中选,第四行只能从42a 、44a 中选,所以所有的组合只有() () 13241τ-11233244a a a a 或() () 13421τ-11233442a a a a ,即含有因子1123a a 的项 为11233244a a a a 和11233442a a a a 2. 用行列式的定义证明111213141521 22232425 31 3241425152 000000000 a a a a a a a a a a a a a a a a =0 证明:第五行只有取51a 、52a 整个因式才能有可能不为0,同理,第四行取41a 、42a ,第三行取31a 、32a ,由于每一列只能取一个,则在第三第四第五行中,必有一行只能取0.以第五行为参考,含有51a 的因式必含有0,同理,含有52a 的因式也必含有0。故所有因式都为0.原命题得证.。 3.求下列行列式的值: (1)01000020;0001000 n n -L L M M M O M L L (2)00100200100000 n n -L L M O M O M L L ; 解:(1)0100 0020 0001 000 n n -L L M M M O M L L =()()23411n τ-L 123n ????L =()1 1!n n --

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x y y x y x +++. 解 (1)=---3 811411 02811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??- =416824-++-=4- (2)=b a c a c b c b a cc c aaa bbb cba bac acb ---++3333c b a abc ---= (3)=2 221 11c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---= (4)y x y x x y x y y x y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=

2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0 (2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为 2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子2311a a 的项.

自学考试线性代数经管类资料重点考点

线性代数(经管类)考点逐个击破 第一章 行列式 (一)行列式的定义 行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数. 1.二阶行列式 由4个数)2,1,(=j i a ij 得到下列式子: 11122122 a a a a 称为一个二阶行列式,其运算规则为 2112221122 211211a a a a a a a a -= 2.三阶行列式 由9个数)3,2,1,(=j i a ij 得到下列式子:33 323123222113 1211a a a a a a a a a 称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念. 3.余子式及代数余子式 设有三阶行列式 33 323123222113 12113a a a a a a a a a D = 对任何一个元素ij a ,我们划去它所在的第i 行及第j 列,剩下的元素按原先次序组成一个二阶行列式,称它为元素ij a 的余子式,记成ij M 例如 33 32232211a a a a M = ,33 32131221a a a a M = ,23 22131231a a a a M = 再记 ij j i ij M A +-=)1( ,称ij A 为元素ij a 的代数余子式. 例如 1111M A =,2121M A -=,3131M A = 那么 ,三阶行列式3D 定义为 我们把它称为3D 按第一列的展开式,经常 31 312121111133 323123222113 12113A a A a A a a a a a a a a a a D ++==

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

自学考试试卷 线性代数(经管类)

2015年10月高等教育自学考试全国统一命题考试 线性代数(经管类) 试卷 (课程代码04184) 本试卷共3页,满分l00分,考试时间l50分钟。 考生答题注意事项: 1.本卷所有试题必须在答题卡上作答。答在试卷上无效,试卷空白处和背面均可作草稿纸。2.第一部分为选择题。必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。3.第二部分为非选择题。必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。4.合理安排答题空间。超出答题区域无效。 说明:在本卷中。A T表示矩阵A的转置矩阵。A*表示矩阵A的伴随矩阵,E是单位矩阵,︱A ︱表示方阵A的行列式,r(A)表示矩阵A的秩。 第一部分选择题 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。未涂、错涂或多涂均无分。 1.已知2阶行列式 A.-2 B.-l C.1 D.2 3.设向量组可由向量组线性表出,则下列结论中 正确的是 A.若s≤t,则必线性相关 B.若s≤t,则必线性相关 C.若线性无关,则s≤t D.若线性无关,则s≤t 4.设有非齐次线性方程组Ax=b,其中A为m×n矩阵,且r(A)=r1,r(A,b)=r2,则 下列结论中正确的是 A.若r1=m,则Ax=O有非零解 B.若r1=n,则Ax=0仅有零解 C.若r2=m,则Ax=b有无穷多解 D.若r2=n,则Ax=b有惟一解 5. 设n阶矩阵A满足︱2E-3A︱=0,则A必有一个特征值=

第二部分非选择题 二、填空题 (本大题共l0小题。每小题2分,共20分) 请在答题卡上作答。 6.设行列式中元素a ij的代数余子式为A ij(i,j=1,2),则a11A21+a12+A22=__________.7.已知矩阵,则A2+2A+E=___________. 8.设矩阵,若矩阵A满足AP=B,则A=________. 9.设向量,,则由向量组线性表出的表示式为=____________. 10.设向量组a1=(1,2,1)T,a2=(-1,1,0)T,a3=(0,2,k)T线性无关,则数k的取值应 满足__________. 11.设3元非齐次线性方程组Ax=b的增广矩阵(A,b)经初等行变换可化为 若该方程组无解,则数k=_________. 12.设=-2是n阶矩阵A的一个特征值,则矩阵A—3E必有一个特征值是________.13.设2阶矩阵A与B相似,其中,则数a=___________. 14.设向量a1=(1,-l,0)T,a2=(4,0,1)T,则=__________. 15.二次型f(x1,x2)=-2x12+x22+4x1x2的规范形为__________. 三、计算题(本大题共7小题,每小题9分,共63分) 请在答题卡上作答。 16. 计算行列式的值. 17. 已知矩阵,若矩阵x满足等式AX=B+X,求X.

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数课后习题答案

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: 相信自己加油 (1) 3811411 02 ---; (2)b a c a c b c b a (3) 2 2 2 111 c b a c b a ; (4) y x y x x y x y y x y x +++. 解 注意看过程解答(1)=---3 81141 1 2811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??- =416824-++- =4- (2) =b a c a c b c b a cc c aaa bbb cba bac acb ---++ 3333c b a abc ---= (3) =2 2 2 1 11c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4) y x y x x y x y y x y x +++ yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-= 2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业 (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0

(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子 2311a a 的项. 解 由定义知,四阶行列式的一般项为 43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定, 4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为 10100=+++或22000=+++ ∴44322311a a a a -和42342311a a a a 为所求. 4.计算下列各行列式: 多练习方能成大财 (1)?? ??????? ???711 00251020214214; (2)????? ? ??? ???-26 0523******** 12; (3)???? ??????---ef cf bf de cd bd ae ac ab ; (4)?? ??? ???????---d c b a 100 110011001 解 (1) 7110025102021421434327c c c c --0 1001423102 02110214--- =34)1(14 3102211014+-?---

线性代数课后习题1答案(谭琼华版)

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1) ; 21-1 2 解:;5)1(1222 1-12=-?-?= (2) ;1 1 12 2 ++-x x x x 解: ; 1)1)(1(11 1232222--=-++-=++-x x x x x x x x x x (3) ;22b a b a 解: ;222 2ba ab b a b a -= (4) ;5 984131 11 解: ;59415318119318415115 984131 11=??-??-??-??+??+??= (5) ;0 00 00d c b a 解: ;00000000000000 00=??-??-??-??+??+??=d c b a d b c a d c b a (6) .132213321 解: .183211322133332221111 322133 21=??-??-??-??+??+??=

2.求下列排列的逆序数: (1)34215; 解:3在首位,前面没有比它大的数,逆序数为0;4的前面没有比它大的数,逆序数为0;2的前面有2个比它大的数,逆序数为2;1的前面有3个比它大的数,逆序数为3;5的前面没有比它大的数,逆序数为0.因此排列的逆序数为5. (2)4312; 解:4在首位,前面没有比它大的数,逆序数为0;3的前面有1个比它大的数,逆序数为1;1的前面有2个比它大的数,逆序数为2;2的前面有2个比它大的数,逆序数为2.因此排列的逆序数为5. (3)n(n-1)…21; 解:1的前面有n-1个比它大的数,逆序数为n-1;2的前面有n-2个比它大的数,逆序数为n-2;…;n-1的前面有1个比它大的数,逆序数为1;n 的前面没有比它大的数,逆序数为0.因此排列的逆序数为n(n-1)/2. (4)13…(2n-1)(2n) …42. 解:1的前面没有比它大的数,逆序数为0;3的前面没有比它大的数,逆序数为0;…;2n-1的前面没有比它大的数,逆序数为0;2的前面有2n-2个比它大的数,逆序数为2n-2;4的前面有2n-4个比它大的数,逆序数为2n-4;…;2n 的前面有2n-2n 个比它大的数,逆序数为2n-2n.因此排列的逆序数为n(n-1). 3.写出四阶行列式中含有因子2311a a 的项. 解 由定义知,四阶行列式的一般项为 43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□, 即1324或1342.对应的t 分别为 10100=+++或22000=+++ ∴44322311a a a a -和42342311a a a a 为所求. 4.计算下列各行列式: (1) 71100 251020214214 ; 解: 7110025102 021 4214343 27c c c c --0 1 14 23102021 10214 ---= 34)1(14 3 10 2211014 +-?--- =- 14 3 10 2211014 --3 2 1 132c c c c ++- 14 17172 1099 -= 0. (2) ;0111101111011 110 解: 0111101111011 1104342c c c c --0 1 1 1 1 10110111000--=14)1(1 11 101 1 1+-?-- =-1 1 1 101 01 1-- 12c c +-1 2 1111 001-=- 1 2 11-=-3.

线性代数教案设计

线性代数 课程教案 学院、部 系、所 授课教师 课程名称线性代数 课程学时45学时 实验学时 教材名称 年月日 线性代数课程教案

授课类型 理论课 授课时间 3 节 授课题目(教学章节或主题):第一章 行列式 §1 二阶与三阶行列式 §2 全排列及其逆序数 §3 n 阶行列式的定义 §4 对换 本授课单元教学目标或要求: 1. 会用对角线法则计算2阶和3阶行列式。 2. 知道n 阶行列式的定义。 本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等): 基本内容:行列式的定义 1. 计算排列的逆序数的方法 设12n p p p 是1,2,,n 这n 个自然数的任一排列,并规定由小到大为标准次序。 先看有多少个比1p 大的数排在1p 前面,记为1t ; 再看有多少个比2p 大的数排在2p 前面,记为2t ; …… 最后看有多少个比n p 大的数排在n p 前面,记为n t ; 则此排列的逆序数为12n t t t t =+++ 。 2. n 阶行列式 121211 1212122212() 1 2(1)n n n n t p p np p p p n n nn a a a a a a D a a a a a a = = -∑ 其中12n p p p 为自然数1,2,,n 的一个排列,t 为这个排列的逆序数,求和符号∑是对所有排列 12()n p p p 求和。 n 阶行列式D 中所含2n 个数叫做D 的元素,位于第i 行第j 列的元素ij a ,叫做D 的(,)i j 元。 3. 对角线法则:只对2阶和3阶行列式适用 1112 112212212122 a a D a a a a a a = =-

线性代数课后习题答案(陈维新)

第一章 行列式 习题1.1 1. 证明:(1)首先证明)3(Q 是数域。 因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。 任给两个复数)3(3,32211Q b a b a ∈++,我们有 3 )()3()3)(3(3)()()3()3(3)()()3()3(2121212122112121221121212211b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。 因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以 ) 3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。 如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。 又因为有理数的和、差、积、商仍为有理数,所以 )3(33) (3)3() 3)(3()3)(3(3 32 2 22212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--= -+-+= ++。 综上所述,我们有)3(Q 是数域。 (2)类似可证明)(p Q 是数域,这儿p 是一个素数。 (3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。 (反证法)如果)()(q Q p Q ?,则q b a p Q b a +=? ∈?,,从而有 q ab qb a p p 2)()(222++==。 由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。 所以有0=a 或0=b 。 如果0=a ,则2 qb p =,这与q p ,是互异素数矛盾。 如果0=b ,则有 a p =,从而有“有理数=无理数”成立,此为矛盾。 所以假设不成立,从而有)()(q Q p Q ?。

线性代数第四版同济大学课后习题答案04

第四章 向量组的线性相关性 1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3. 解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T =(1-0, 1-1, 0-1)T =(1, 0, -1)T . 3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3?1+2?0-3, 3?1+2?1-4, 3?0+2?1-0)T =(0, 1, 2)T . 2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得 )523(6 1 321a a a a -+= ])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61 T T T --+= =(1, 2, 3, 4)T . 3. 已知向量组 A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ; B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由 ????? ??-=3121 23111012421301 402230) ,(B A ??? ? ? ??-------971820751610402230 421301 ~r ???? ? ? ?------531400251552000751610 421301 ~r ??? ? ? ? ?-----000000531400751610 421301 ~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.

自考线性代数(经管类)试题及答案解析2020年1月

1 全国2018年1月高等教育自学考试 线性代数(经管类)试题 课程代码:04184 试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A*表示A 的伴随矩阵;秩(A )表示矩 阵A 的秩;|A|表示A 的行列式;E 表示单位矩阵。 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A 为三阶方阵且,2-=A 则=A A T 3( ) A.-108 B.-12 C.12 D.108 2.如果方程组?? ???=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( ) A.-2 B.-1 C.1 D.2 3.设A 、B 为同阶方阵,下列等式中恒正确的是( ) A.AB=BA B.()111---+=+B A B A C.B A B A +=+ D.()T T T B A B A +=+ 4.设A 为四阶矩阵,且,2=A 则=*A ( ) A.2 B.4 C.8 D.12 5.设β可由向量α1 =(1,0,0)α2 =(0,0,1)线性表示,则下列向量中β只能是 A.(2,1,1) B.(-3,0,2) C.(1,1,0) D.(0,-1,0) 6.向量组α1 ,α2 ,…,αs 的秩不为s(s 2≥)的充分必要条件是( ) A. α1 ,α2 ,…,αs 全是非零向量

2 B. α1 ,α2, …,αs 全是零向量 C. α1 ,α2, …,αs 中至少有一个向量可由其它向量线性表出 D. α1 ,α2, …,αs 中至少有一个零向量 7.设A 为m n ?矩阵,方程AX=0仅有零解的充分必要条件是( ) A.A 的行向量组线性无关 B.A 的行向量组线性相关 C.A 的列向量组线性无关 D.A 的列向量组线性相关 8.设A 与B 是两个相似n 阶矩阵,则下列说法错误.. 的是( ) A.B A = B.秩(A )=秩(B ) C.存在可逆阵P ,使P -1AP=B D.λE-A =λE-B 9.与矩阵A =???? ??????200010001相似的是( ) A.???? ??????100020001 B.??????????200010011 C.??????????200011001 D.???? ??????100020101 10.设有二次型,x x x )x ,x ,x (f 232221321+-=则)x ,x ,x (f 321( ) A.正定 B.负定 C.不定 D.半正定 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错填、不填均无分。 11.若,02 11=k 则k=___________. 12.设A=???? ??????411023,B=,010201??????则AB=___________.

线性代数教学大纲

线性代数Ⅰ课程教学大纲 一课程基本情况 课程名称:线性代数。 课程名称(英文): Linear Algebra。 课程编号:B11071。 课程总学时:40学时(全部为课堂讲授)。 课程学分:2学分。 课程分类:必修,考试课。 开课学期:第3学期。 开课专业:适合对数学类基础课要求较高的理工类本科专业,包括物理学(S)、计算机科学与技术(S)、农业机械化及其自动化、机械设计制造及其自动化、电气工程与自动化、电子信息工程、土木工程、工程管理等专业。 先修课程:无。 后续课程:大学物理等基础课和各专业相应专业课。 二课程的性质、地位、作用和任务 《线性代数》是高等学校上述各专业的重要基础课。由于线性问题广泛存在于科学技术的各个领域,某些非线性问题在一定条件下可以转化为线性问题,尤其是在计算机日益普及的今天,解大型线性方程组、求矩阵的特征值与特征向量等已成为科学技术人员经常遇到的课题,因此学习和掌握线性代数的理论和方法是掌握现代科学技术以及从事科学研究的重要基础和手段,同时也是实现我院上述各专业培养目标的必备前提。本课程的主要任务是学习科学技术中常用的矩阵方法、线性方程组及其有关的基本计算方法。使学生具有熟练的矩阵运算能力及用矩阵方法解决一些实际问题的能力。从而为学生进一步学习后续课程和进一步提高打下必要的数学基础。 三主要容、重点及深度 了解行列式的定义,掌握行列式的性质及其计算。理解矩阵(包括特殊矩阵)、逆矩阵、矩阵的秩的概念。熟练掌握矩阵的线性运算、乘法运算、转置及其运算规律。理解逆矩阵存在的充要条件,掌握矩阵的求逆的方法。掌握矩阵的初等变换,并会求矩阵的秩。理解n维向量的概念。掌握向量组的线性相关和线性无关的定义及有关重要结论。掌握向量组的极大线性无关组与向量组的秩。了解n 维向量空间及其子空间、基、维数等概念。理解克莱姆(Cramer)法则。理解非齐次线性方程组有解的充要条件及齐次线性方程组有非零解的充要条件。理解齐次线性方程组解空间、基础解系、通解等概念。熟练掌握用行初等变换求线性方程组通解的方法。掌握矩阵的特征值和特征向量的概念及其求解方法。了解矩阵相似的概念以及实对称矩阵与对角矩阵相似的结论。了解向量积及正交矩阵的概念和性质。了解二次型及其矩阵表示,会用配方法及正交变换法化二次型为标准形。了解惯性定理、二次型的秩、二次型的正定性及其判别法。

线性代数习题与答案(复旦版)1

线性代数习题及答案 习题一 1. 求下列各排列的逆序数. (1) 341782659; (2) 987654321; (3) n (n 1)…321; (4) 13…(2n 1)(2n )(2n 2)…2. 【解】 (1) τ(341782659)=11; (2) τ(987654321)=36; (3) τ(n (n 1)…3·2·1)= 0+1+2 +…+(n 1)= (1) 2 n n -; (4) τ(13…(2n 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+… +1+0=n (n 1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 本行列式4512 3 12123 122x x x D x x x = 的展开式中包含3x 和4 x 的项. 解: 设 123412341234 () 41234(1)i i i i i i i i i i i i D a a a a τ = -∑ ,其中1234,,,i i i i 分别为不同列中对应元素 的行下标,则4D 展开式中含3 x 项有 (2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-????+-????=-+-=- 4D 展开式中含4x 项有 (1234)4(1)2210x x x x x τ-????=. 5. 用定义计算下列各行列式. (1) 0200 001030000004 ; (2)1230 0020 30450001 . 【解】(1) D =(1)τ(2314) 4!=24; (2) D =12. 6. 计算下列各行列式.

自学考试线性代数经管类试卷及答案

自学考试线性代数经管 类试卷及答案 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

2015年4月高等教育自学考试全国统一命题考试 04184 线性代数(经管类)试卷 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个选项是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设行列式D 1= 22 11 b a b a ,D 2=2 22 111 3232a b a a b a --,则D 2= 【 】 2、若A=???? ??1x 1021,B =??? ? ??y 24202,且2A =B ,则 【 】 =1,y=2 =2,y=1 =1,y=1 =2,y=2 3、已知A 是3阶可逆矩阵,则下列矩阵中与A 等价的是 【 】 A.????? ??000000001 B.????? ??000010001 C.????? ??100000001 D.???? ? ??100010001

4、设2阶实对称矩阵A 的全部特征值味1,-1,-1,则齐次线性方程组 (E +A )x =0的基础 解系所含解向量的个数为 【 】 5、矩阵??? ? ??--3113有一个特征值为 【 】 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错填、不填均无分。 6、设A 为3阶矩阵,且A =3,则13-A = . 7、设A =??? ? ??5312,则A * = . 8、已知A =???? ??1201,B =??? ? ??-211111,若矩阵X 满足AX =B ,则X = . 9、若向量组=1α(1,2,1)T ,=2α(k-1,4,2)T 线性相关,则数 k= .

《线性代数》同济大学版-课后习题答案详解

《线性代数》同济大学版 课后习题答案详解 第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; 解逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n -1) 2 4 ??? (2n ); 解 逆序数为 2 ) 1(-n n :

(完整版)线性代数课后习题答案第1——5章习题详解

第一章 行列式 4.计算下列各行列式: (1)???? ????? ???71 10 025********* 4; (2)????????????-26 52321121314 1 2; (3)????????---ef cf bf de cd bd ae ac ab ; (4)????? ???? ???---d c b a 1 00 110011001 解 (1) 71100251020214 214 34327c c c c --0 10014 2310202110 214---=3 4)1(1431022 11014+-?---=14 31022110 14-- 3 21132c c c c ++14 171720010 99-=0 (2) 260 5232112131 412-24c c -2605032122130 412-24r r -0412032122130 412- 14r r -0 000032122130412-=0 (3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4 (4) d c b a 100 110011001---21ar r +d c b a ab 1 001 100 110 10---+=12)1)(1(+--d c a ab 1011 1--+

2 3dc c +0 10111-+-+cd c ad a a b =23)1)(1(+--cd ad ab +-+111=1++++ad cd ab abcd 5.证明: (1)1 11222 2b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(3 3+; (3)0)3()2()1()3()2()1()3()2()1()3()2()1(2 2222222 2 2222222 =++++++++++++d d d d c c c c b b b b a a a a ; (4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-?; (5)1 22 110000 0100001a x a a a a x x x n n n +-----ΛΛΛΛΛΛ ΛΛΛΛn n n n a x a x a x ++++=--11 1Λ. 证明 (1)0 0122222221 312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a (2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开 按第一列 左边 bz ay by ax x by ax bx az z bx az bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分 bz ay y x by ax x z bx az z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分

相关主题
文本预览
相关文档 最新文档