当前位置:文档之家› 基于MATLAB的数控车床进给系统的建模与仿真

基于MATLAB的数控车床进给系统的建模与仿真

基于MATLAB的数控车床进给系统的建模与仿真
基于MATLAB的数控车床进给系统的建模与仿真

现代信号处理Matlab仿真——例611

例6.11 利用卡尔曼滤波估计一个未知常数 题目: 设已知一个未知常数x 的噪声观测集合,已知噪声v(n)的均值为零, 方差为 ,v(n)与x 不相关,试用卡尔曼滤波估计该常数 题目分析: 回忆Kalman 递推估计公式 由于已知x 为一常数,即不随时间n 变化,因此可以得到: 状态方程: x(n)=x(n-1) 观测方程: y(n)=x(n)+v(n) 得到A(n)=1,C(n)=1, , 将A(n)=1,代入迭代公式 得到:P(n|n-1)=P(n-1|n-1) 用P(n-1)来表示P(n|n-1)和P(n-1|n-1),这是卡尔曼增益表达式变为 从而 2v σ1??(|1)(1)(1|1)(|1)(1)(1|1)(1)()()(|1)()[()(|1)()()]???(|)(|1)()[()()(|1)](|)[()()](|1)H w H H v x n n A n x n n P n n A n P n n A n Q n K n P n n C n C n P n n C n Q n x n n x n n K n y n C n x n n P n n I K n C n P n n --=----=----+=--+=-+--=--2()v v Q n σ=()0w Q n =(|1)(1)(1|1)(1)()H w P n n A n P n n A n Q n -=----+21 ()(|1)[(|1)]v K n P n n P n n σ-=--+22(1)()[1()](1)(1)v v P n P n K n P n P n σσ-=--=-+

实验一 基于Matlab的控制系统模型

实验一 基于Matlab 的控制系统模型 姓名 学号 班级 一、实验目的 1) 熟悉Matlab 的使用环境,学习Matlab 软件的使用方法和编程方法。 2) 学习使用Matlab 进行各类数学变换运算的方法。 3) 学习使用Matlab 建立控制系统模型的方法。 二、实验原理 1. 香农采样定理 对一个具有有限频谱的连续信号f (t )进行连续采样,当采样频率满足ωs ≥ωmax 时,采样信号f *(t )能无失真的复现原连续信号。 (1) 作信号f (t )=5e 10t 和f *(t ) =5e 10kT 的曲线,比较采样前后的差异。 0.05 0::0.5 5*(10*) subplot(2,1,1) plot(,) grid subplot(2,1,2) stem(,) grid T t T f exp t t f t f ===- 请改变采样周期T ,观察不同的采样周期下的采样效果。

(2) 频谱曲线 50:1:50 5./(100.^2) (,)w F sqrt w plot w F grid =-=+ 若|F (j ωmax ) |=0.1|F (0)|,选择合理的采样周期T 并验加以证。 400:20:400 200 2*/05/*(1./(100.^2)) 15/*(1./(100().^2)) 25/*(1./(100().^2)) (,0,,1,,2) w ws Ts pi ws F Ts sqrt w F Ts sqrt w ws F Ts sqrt w ws plot w F w F w F grid =-===+=+-=++ 请改变采样频率,观察何时出现频谱混叠? 2. 拉式变换和Z 变换 (1) 使用Matlab 求函数的拉氏变换 拉式变换: 反拉氏变换: ()()()()()()2 222 1exp -*123*exp -*4sin *5exp -*s 11/(1) 21/()31/4/() 51/(*(2)*(*c 3)o ) s *yms syms a w t f a t laplace f f t f t a t f s a f s ilaplace f f s a f s f w s w f s s s w t f a t w t ==+==+====++== (2) 使用Matlab 求函数的Z 变换 Z 变换: 反Z 变换:

APF matlab仿真建模要点

电力电子系统建模与仿真 学院:电气工程学院 年级:2012级 学号:12031236 姓名:周琪俊 指导老师:舒泽亮

二极管钳位多电平APF电压平衡SPWM仿真报告 1 有源电力滤波器的发展及现状 有源电力滤波器的发展最早可以追溯到20 世纪60 年代末,1969 年B.M.Bird 和J.F.Marsh发表的论文中,描述了通过向电网注入三次谐波电流来减少电源电流中的谐波成分,从而改善电源电流波形的新方法,这种方法是APF 基本思想的萌芽。1971年日本的H.Sasaki 和T.Machida 首先提出APF 的原始模型。1976 年美国西屋电气公司的L.Gyugyi 等提出了用PWM 变流器构成的APF 并确立了APF 的概念。这些以PWM 变流器构成的APF 已成为当今APF 的基本结构。但在70 年代由于缺少大功率的快速器件,因此对APF 的研究几乎没有超出实验室的范围。80 年代以来,随着新型电力半导体器件的出现,脉宽调制的发展,以及H.Akagi 的基于瞬时无功功率理论的谐波电流瞬时检测方法的提出,APF有了迅速发展。 现在日本、美国、德国等工业发达国家APF已得到了高度重视和日益广泛的应用。由于理论研究起步较早,目前国外有源电力滤波器的研究已步入工业化应用阶段。随着容量的逐步提高,其应用范围也从补偿用户自身的谐波向改善整个电网供电质量的方向发展。有源电力滤波器的工业化应用对理论研究起了非常大的推动作用,新的理论研究成果不断出现。1976 年美国西屋公司的L.Gyugyi 率先研制出800kV A的有源电力滤波器。在此以后的几十年里,有源电力滤波器的实践应用得到快速发展。在一些国家,已经投入工业应用的有源电力滤波器容量已增加到50MV A。目前大部分国际知名的电气公司如西屋电气、三菱电机、西门子和梅兰日兰等都有相关的部门都已有相关的产品。 我国在有源电力滤波器的研究方面起步较晚,直到20 世纪80 年代末才有论文发表。90 年代以来一些高等院校和科研机构开始进行有源电力滤波器的研究。1991 年12 月由华北电科院、北京供电局和冶金部自动化研究所研制的国内第一台400V/50kV A 的有源电力滤波器在北京某中心变电站投运,2001 年华北电科院又将有源电力滤波器的容量提高到了10kV/480kV A。由中南大学和湖南大学研制的容量为500kV A 并联混合型有源电力滤波器已在湖南娄底早元220kV 变电站挂网运行。在近几年国内的有源电力滤波器产品已有很多应用,本文研制的两种APF都已应用于工业现场。 2 二极管箝位式多电平逆变器 自从日本学者南波江章于1980 年提出三电平中性点箝位逆变器以来,多电平逆变器的拓扑结构就受到人们的普遍关注,很多学者相继提出了一些实际应用

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真 实验报告 姓名:****** 专业:电气工程及其自动化 班级:******************* 学号:*******************

实验一无穷大功率电源供电系统三相短路仿真 1.1 无穷大功率电源供电系统仿真模型构建 运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块: (1)无穷大功率电源模块(Three-phase source) (2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load) (3)三相串联RLC支路模块(Three-Phase Series RLC Branch) (4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings)) (5)三相电压电流测量模块(Three-Phase V-I Measurement) (6)三相故障设置模块(Three-Phase Fault) (7)示波器模块(Scope) (8)电力系统图形用户界面(Powergui) 按电路原理图连接线路得到仿真图如下: 1.2 无穷大功率电源供电系统仿真参数设置 1.2.1 电源模块 设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:

1.2.2 变压器模块 变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图: 1.2.3 输电线路模块 根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图: 1.2.4 三相电压电流测量模块 此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:

Matlab仿真实例-卫星轨迹

卫星轨迹 一.问题提出 设卫星在空中运行的运动方程为: 其中是k 重力系数(k=401408km3/s)。卫星轨道采用极坐标表示,通过仿真,研究发射速度对卫星轨道的影响。实验将作出卫星在地球表面(r=6400KM ,θ=0)分别以v=8KM/s,v=10KM/s,v=12KM/s 发射时,卫星绕地球运行的轨迹。 二.问题分析 1.卫星运动方程一个二阶微分方程组,应用Matlab 的常微分方程求解命令ode45求解时,首先需要将二阶微分方程组转换成一阶微分方程组。若设,则有: 2.建立极坐标如上图所示,初值分别为:卫星径向初始位置,即地球半径:y(1,1)=6400;卫星初始角度位置:y(2,1)=0;卫星初始径向线速度:y(3,1)=0;卫星初始周向角速度:y(4,1)=v/6400。 3.将上述一阶微分方程及其初值带入常微分方程求解命令ode45求解,可得到一定时间间隔的卫星的径向坐标值y(1)向量;周向角度坐标值y(2)向量;径向线速度y(3)向量;周向角速度y(4)向量。 4.通过以上步骤所求得的是极坐标下的解,若需要在直角坐标系下绘制卫星的运动轨迹,还需要进行坐标变换,将径向坐标值y(1)向量;周向角度坐标值y(2)向量通过以下方程转换为直角坐标下的横纵坐标值X,Y 。 5.卫星发射速度速度的不同将导致卫星的运动轨迹不同,实验将绘制卫星分别以v=8KM/s ,v=10KM/s ,v=12KM/s 的初速度发射的运动轨迹。 三.Matlab 程序及注释 1.主程序 v=input('请输入卫星发射速度单位Km/s :\nv=');%卫星发射速度输入。 axis([-264007000-1000042400]);%定制图形输出坐标范围。 %为了直观表达卫星轨迹,以下语句将绘制三维地球。 [x1,y1,z1]=sphere(15);%绘制单位球。 x1=x1*6400;y1=y1*6400;???????-=+-=dt d dt dr r dt d dt d r r k dt r d θ θθ2)(2 22222θ==)2(,)1(y r y ?????????????**-=**+*-===)1(/)4()3(2)4()4()4()1()1()1()3()4()2() 3()1(y y y dt dy y y y y y k dt dy y dt dy y dt dy ???*=*=)] 2(sin[)1(Y )]2(cos[)1(X y y y y

春MATLAB仿真期末大作业

MATLAB仿真 期末大作业 姓名:班级:学号:指导教师:

2012春期末大作业 题目:设单位负反馈控制系统前向通道传递函数由)()(21s G s G 和串联,其中: ) 1(1)()(21++==s A s G s K s G A 表示自己学号最后一位数(可以是零),K 为开环增益。要求: (1)设K=1时,建立控制系统模型,并绘制阶跃响应曲线(用红色虚线,并标注坐标和标题);求取时域性能指标,包括上升时间、超调量、调节时间、峰值时间; (2)在第(1)问中,如果是在命令窗口绘制阶跃响应曲线,用in1或者from workspace 模块将命令窗口的阶跃响应数据导入Simulink 模型窗口,用示波器显示阶跃响应曲线;如果是在Simulink 模型窗口绘制阶跃响应曲线,用out1或者to workspace 模块将Simulink 模型窗口的阶跃响应数据导入命令窗口并绘制阶跃响应曲线。 (3)用编程法或者rltool 法设计串联超前校正网络,要求系统在单位斜坡输入信号作用时,速度误差系数小于等于0.1rad ,开环系统截止频率s rad c /4.4''≥ω,相角裕度大于等于45度,幅值裕度大于等于10dB 。

仿真结果及分析: (1)、(2)、将Simulink模型窗口的阶跃响应数据导入命令窗口并绘制阶跃响应曲线 通过在Matlab中输入命令: >> plot(tout,yout,'r*-') >> title('阶跃响应曲线') 即可得出系统阶跃响应曲线,如下: 求取该控制系统的常用性能指标:超调量、上升时间、调节时间、峰值时间的程序如下: G=zpk([],[0,-1],5)。 S=feedback(G,1)。

倒立摆系统的建模及Matlab仿真资料

第1 页共11 页 倒立摆系统的建模及Matlab仿真 1.系统的物理模型 考虑如图(1)所示的倒立摆系统。图中,倒立摆安装在一个小车上。这里仅考虑倒立摆在图面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g l=1m小车的质量:摆杆的长度:2重力加速度:g=9.8m/M=1kg s摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量?≤10%,调节时间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 ?),在u设小车瞬时位置为z,摆心瞬时位置为(作用下,小车及摆均产生加速远 动,sin?lz根据牛顿第二定律,在水平直线远动方向的惯性力应与u平衡,于是有 22dzd?)?sinu?M?m(zl22dtdt???2????z(M?mml?)cos?mlusin? 即:??①

绕摆轴转动的惯性力矩与重力矩平衡,因而有. 第2 页共11 页 2??d??? sin??lcosm(z?lsinmgl)??2dt?????22???????即: nis?l?ocgcosincoszs?ls??② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直?2?????且可忽略则,立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,1sincos??,项。于是有 ???M?zm?u?ml??)(③ ????g?z?l??④联立求解可得1mg?u?z????MM 1)?m(M????u??MlMl 列写系统的状态空间表达式。2.2??T xx,x,x,,选取系统变量则 xx,x,xx?,42134123xx??211mgux???x?32MM x?x?431)(M?mu?x?x? 34MlMl 即00100????z??1mg??????000?z?????d MM??Bu?Ax?xux????????00001???dt????1gm?(M)????000??????? MlMl??????Cx?0?y?xx1001代入数据计算得到:0100????000?1??????T0D,?0??1BA?,?001,C100??1000??00011?? 11 页3 页共第 3.设计控制器3.1判断系统的能控性和稳定性 1100????0011????23BBAABAB?Q?故被控对象完全可控, rank()=4,Q kk??11?0?10??011?10???22???11?。出现大于零的特征值,故被,,0 解得特征值为 0由特征方程0??11I?A?)(控对象不稳定3.2确定希望的极点, 另一对为远极点,认为系统性能主要由主导,选其中一对为主导极点和希望的极点n=4ss21极点决定,远极点只有微小影响。根据二阶系统的关系式,先确定主导极点???42??1????10.?e??t1.67?有,闭环可得;取误差带,于是取,则6.?059?0.02.?0? pns??n2????1?js??=-10.8j,远极点选择使它和原点的距离大于主导极点与原点 距离主导极点为?n,21s??15倍,取的54,33.3采用状态反馈方法使系统稳定并配置极点 ??kkkk?k;状态反馈系统的状态方程,馈状态反的控制规律为为kxu??3102?,其

电机学matlab仿真大作业报告

. 基于MATLAB的电机学计算机辅助分析与仿真 实验报告

一、实验内容及目的 1.1 单相变压器的效率和外特性曲线 1.1.1 实验内容 一台单相变压器,N S =2000kVA, kV kV U U N N 11/127/21=,50Hz ,变压器的参数 和损耗为008.0* ) 75(=C k o R ,0725.0*=k X ,kW P 470=,kW P C KN o 160)75(=。 (1)求此变压器带上额定负载、)(8.0cos 2滞后=?时的额定电压调整率和额定效率。 (2)分别求出当0.1,8.0,6.0,4.0,2.0cos 2=?时变压器的效率曲线,并确定最大效率和达到负载效率时的负载电流。 (3)分析不同性质的负载(),(8.0cos 0.1cos ),(8.0cos 222超前,滞后===???)对变压器输出特性的影响。 1.1.2 实验目的 (1)计算此变压器在已知负载下的额定电压调整率和额定效率 (2)了解变压器效率曲线的变化规律 (3)了解负载功率因数对效率曲线的影响 (4)了解变压器电压变化率的变化规律 (5)了解负载性质对电压变化率特性的影响 1.1.3 实验用到的基本知识和理论 (1)标幺值、效率区间、空载损耗、短路损耗等概念 (2)效率和效率特性的知识 (3)电压调整率的相关知识 1.2串励直流电动机的运行特性 1.2.1实验内容 一台16kw 、220V 的串励直流电动机,串励绕组电阻为0.12Ω,电枢总电阻为0.2Ω。电动势常数为.电机的磁化曲线近似的为直线。其中为比例常数。假设电枢电流85A 时,磁路饱和(为比较不同饱和电流对应的效果,饱和电流可以自己改变)。

MATLAB实现通信系统仿真实例

补充内容:模拟调制系统的MATLAB 仿真 1.抽样定理 为了用实验的手段对连续信号分析,需要先对信号进行抽样(时间上的离散化),把连续数据转变为离散数据分析。抽样(时间离散化)是模拟信号数字化的第一步。 Nyquist 抽样定律:要无失真地恢复出抽样前的信号,要求抽样频率要大于等于两倍基带信号带宽。 抽样定理建立了模拟信号和离散信号之间的关系,在Matlab 中对模拟信号的实验仿真都是通过先抽样,转变成离散信号,然后用该离散信号近似替代原来的模拟信号进行分析的。 【例1】用图形表示DSB 调制波形)4cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%%一般选取的抽样频率要远大于基带信号频率,即抽样时间间隔要尽可能短。 ts=1/fs; %%根据抽样时间间隔进行抽样,并计算出信号和包络 t=(0:ts:pi/2)';%抽样时间间隔要足够小,要满足抽样定理。 envelop=cos(2*pi*t);%%DSB 信号包络 y=cos(2*pi*t).*cos(4*pi*t);%已调信号 %画出已调信号包络线 plot(t,envelop,'r:','LineWidth',3); hold on plot(t,-envelop,'r:','LineWidth',3); %画出已调信号波形 plot(t,y,'b','LineWidth',3); axis([0,pi/2,-1,1])% hold off% xlabel('t'); %写出图例 【例2】用图形表示DSB 调制波形)6cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%抽样时间间隔要足够小,要满足抽样定理。 ts=1/fs; %%根据抽样时间间隔进行抽样

matlab 大作业

上海电力学院 通信原理Matlab仿真 实验报告 实验名称: 8QAM误码率仿真 试验日期: 2014年 6月3日 专业:通信工程 姓名:罗侃鸣 班级: 2011112班 学号: 20112272

一、实验要求 写MATLAB程序,对图示的信号星座图完成M=8的QAM通信系统Monte Carlo仿真,在不同SNRindB=0:15时,对N=10000(3比特)个符号进行仿真。画出该QAM系统的符号误码率。 二、实验原理 1 QAM调制原理 QAM(Quadrature Amplitude Modulation)正交幅度调制技术,是用两路独立的基带信号对两个相互正交的同频载波进行抑制载波双边带调幅,利用这种已调信号的频谱在同一带宽内的正交性,实现两路并行的数字信息的传输。该调制方式通常有8QAM,16QAM,64QAM。 QAM调制实际上就是幅度调制和相位调制的组合,相位+ 幅度状态定义了一个数字或数字的组合。QAM的优点是具有更大的符号率,从而可获得更高的系统效率。通常由符号率确定占用带宽。因此每个符号的比特(基本信息单位)越多,频带效率就越高。 调制时,将输入信息分成两部分:一部分进行幅度调制;另一部分进行相位调制。对于星型8QAM信号,每个码元由3个比特组成,可将它分成第一个比特和后两个个比特两部分。前者用于改变信号矢量的振幅,后者用于差分相位调制,通过格雷编码来改变当前码元信号矢量相位与前一码元信号矢量相位之间的相位差。 QAM是一种高效的线性调制方式,常用的是8QAM,16QAM,64QAM等。当随着M 的增大,相应的误码率增高,抗干扰性能下降。 2 QAM星座图 QAM调制技术对应的空间信号矢量端点分布图称为星座图。QAM的星座图呈现星状分

Matlab控制系统计算机辅助设计

实验目录 实验一:Matlab环境熟悉与基本运算(设计型)实验二:Matlab语言程序设计(设计型) 实验三:控制系统模型的建立(设计型) 实验四:Simulink仿真入门(验证型) 实验五:控制系统时域仿真分析(设计型) 实验六:Simulink环境下时域仿真 实验七:控制系统根轨迹仿真分析 实验八:控制系统频域仿真分析(设计型)

1、矩阵运算(1)矩阵的乘法 A=[1 2;3 4]; B=[5 5;7 8]; y=A^2*B y = 105 115 229 251 (2)矩阵除法 A=[1 2 3;4 5 6;7 8 9]; B=[1 0 0;0 2 0;0 0 3]; y1=A\B 警告: 矩阵接近奇异值,或者缩放错误。结果可能不准确。RCOND = 1.541976e-18。y1 = 1.0e+16 * -0.4504 1.8014 -1.3511 0.9007 -3.6029 2.7022 -0.4504 1.8014 -1.3511 y2=A/B y2 = 1.0000 1.0000 1.0000 4.0000 2.5000 2.0000 7.0000 4.0000 3.0000 (3)矩阵的转置及共轭转置 A=[5+i,2-i,1;6*i,4,9-i]; y1=A.' y1 = 5.0000 + 1.0000i 0.0000 + 6.0000i 2.0000 - 1.0000i 4.0000 + 0.0000i 1.0000 + 0.0000i 9.0000 - 1.0000i y2=A' y2 = 5.0000 - 1.0000i 0.0000 - 6.0000i 2.0000 + 1.0000i 4.0000 + 0.0000i 1.0000 + 0.0000i 9.0000 + 1.0000i 实验名称:Matlab环境熟悉与基本运算(设计型)

三相变压器建模及仿真及MATLAB仿真

XXXXXXX学院课程设计报告 课程名称: 系部: 专业班级: 学生姓名: 指导教师: 完成时间: 报告成绩: 学院教学工作部制

目录 摘要 (3) 第一章变压器介绍 (4) 1.1 变压器的磁化特性 (4) 1.2 变压器保护 (4) 1.3 励磁涌流 (7) 第二章变压器基本原理 (9) 2.1 变压器工作原理 (9) 2.2 三相变压器的等效电路及联结组 (10) 第三章变压器仿真的方法 (11) 3.1 基于基本励磁曲线的静态模型 (11) 3.2基于暂态磁化特性曲线的动态模型 (13) 3.3非线性时域等效电路模型 (14) 第四章三相变压器的仿真 (16) 4. 1 三相变压器仿真的数学模型 (16) 4.2电源电压的描述 (20) 4.3铁心动态磁化过程简述 (21) 第五章变压器MATLAB仿真研究 (25) 5.1 仿真长线路末端电压升高 (25) 5.2 仿真三相变压器 T2 的励磁涌流 (28) 5.3三相变压器仿真模型图 (34) 5.4 变压器仿真波形分析 (36) 结论 (40) 参考文献 (41)

摘要 在电力变压器差动保护中,励磁涌流和内部故障电流的判别一直是一个关键问题。文章阐述了励磁涌流的产生及其特性,利用 MATLAB 对变压器的励磁涌流、内部故障和外部故障进行仿真,对实验的数据波形分析,以此来区分故障和涌流,目的是减少空载合闸产生的励磁涌流对变压器差动保护的影响,提高保护的灵敏性。 本文在Matlab的编程环境下,分析了当前的变压器仿真的方法。在单相情况下,分析了在饱和和不饱和的励磁涌流现象,和单相励磁涌流的特征。在三相情况下,在用分段拟和加曲线压缩法的基础上,分别用两条修正的反正切函数,和两条修正的反正切函数加上两段模拟饱和情况的直线两种方法建立了Yd11、Ynd11、Yny0和Yy0四种最常用接线方式下三相变压器的数学仿真模型,并在Matlab下仿真实现。通过对三相励磁涌流和磁滞回环波形分析,三相励磁涌流的特征分析,总结出影响三相变压器励磁涌流地主要因素。最后,分析了两种方法的优劣,建立比较完善的变压器仿真模型。 关键字: 变压器;差动保护;励磁涌流;内部故障;外部故障;波形分析;仿真;数学模型

matlab机电系统仿真大作业

一曲柄滑块机构运动学仿真 1、设计任务描述 通过分析求解曲柄滑块机构动力学方程,编写matlab程序并建立Simulink 模型,由已知的连杆长度和曲柄输入角速度或角加速度求解滑块位移与时间的关系,滑块速度和时间的关系,连杆转角和时间的关系以及滑块位移和滑块速度与加速度之间的关系,从而实现运动学仿真目的。 2、系统结构简图与矢量模型 下图所示是只有一个自由度的曲柄滑块机构,连杆与长度已知。 图2-1 曲柄滑块机构简图 设每一连杆(包括固定杆件)均由一位移矢量表示,下图给出了该机构各个杆件之间的矢量关系 图2-2 曲柄滑块机构的矢量环

3.匀角速度输入时系统仿真 3.1 系统动力学方程 系统为匀角速度输入的时候,其输入为输出为;。 (1) 曲柄滑块机构闭环位移矢量方程为: (2)曲柄滑块机构的位置方程 (3)曲柄滑块机构的运动学方程 通过对位置方程进行求导,可得 由于系统的输出是与,为了便于建立A*x=B形式的矩阵,使x=[], 将运动学方程两边进行整理,得到 将上述方程的v1与w3提取出来,即可建立运动学方程的矩阵形式 3.2 M函数编写与Simulink仿真模型建立 3.2.1 滑块速度与时间的变化情况以及滑块位移与时间的变化情况 仿真的基本思路:已知输入w2与,由运动学方程求出w3和v1,再通过积分,即可求出与r1。 (1)编写Matlab函数求解运动学方程 将该机构的运动学方程的矩阵形式用M函数compv(u)来表示。 设r2=15mm,r3=55mm,r1(0)=70mm,。 其中各个零时刻的初始值可以在Simulink模型的积分器初始值里设置

M函数如下: function[x]=compv(u) %u(1)=w2 %u(2)=sita2 %u(3)=sita3 r2=15; r3=55; a=[r3*sin(u(3)) 1;-r3*cos(u(3)) 0]; b=[-r2*u(1)*sin(u(2));r2*u(1)*cos(u(2))]; x=inv(a)*b; (2)建立Simulink模型 M函数创建完毕后,根据之前的运动学方程建立Simulink模型,如下图: 图3-1 Simulink模型 同时不要忘记设置r1初始值70,如下图: 图3-2 r1初始值设置

用MATLAB处理线性系统数学模型

实验一 用MATLAB 处理线性系统数学模型 [说明] 一个控制系统主要由被控对象、测量装置、控制器和执行器四大部分构成。MATLAB 软件的应用对提高控制系统的分析、设计和应用水平起着十分重要的作用。采用MATLAB 软件仿真的关键问题之一是在MATLAB 软件平台上怎样正确表示被控对象的数学模型。 [实验目的] 1.了解MATLAB 软件的基本特点和功能; 2.掌握线性系统被控对象传递函数数学模型在MATLAB 环境下的表示方法及转换; 3.掌握多环节串联、并联、反馈连接时整体传递函数的求取方法; 4. 掌握在SIMULINK 环境下系统结构图的形成方法及整体传递函数的求取方法; 5.了解在MATLAB 环境下求取系统的输出时域表达式的方法。 [实验指导] 一、被控对象模型的建立 在线性系统理论中,一般常用的描述系统的数学模型形式有: (1)传递函数模型——有理多项式分式表达式 (2)传递函数模型——零极点增益表达式 (3)状态空间模型(系统的内部模型) 这些模型之间都有着内在的联系,可以相互进行转换。 1、传递函数模型——有理多项式分式表达式 设系统的传递函数模型为 111011 1......)()()(a s a s a s a b s b s b s b s R s C s G n n n n m m m m ++++++++= =---- 对线性定常系统,式中s 的系数均为常数,且a n 不等于零。 这时系统在MATLAB 中可以方便地由分子和分母各项系数构成的两个向量唯一地确定,这两个向量常用num 和den 表示。 num=[b m ,b m-1,…,b 1,b 0] den=[a n ,a n-1,…,a 1,a 0]

倒立摆系统的建模及Matlab仿真

倒立摆系统的建模及Matlab 仿真 1.系统的物理模型 考虑如图(1)面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g 摆杆的长度:l =1m 小车的质量: M=1kg 重力加速度:g=9.8m/2s 摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量δ ≤10%,调节时 间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 设小车瞬时位置为z,摆心瞬时位置为(θsin l z +),在u 作用下,小车及摆均产生加速远动,根据牛顿第二定律,在水平直线远动方向的惯性力应与u 平衡,于是有 u l z dt d m dt z d M =++)sin (22 22θ 即: u ml ml z m M =-++θθθθsin cos )(2&&&&& ① 绕摆轴转动的惯性力矩与重力矩平衡,因而有

θθθsin cos )sin (22mgl l l z dt d m =??? ????+ 即: θθθθθθθsin cos sin cos cos 22g l l z =-+&&&&& ② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直 立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,则1cos ,sin ≈≈θθθ,且可忽略θ θ2&项。于是有 u ml z m M =++θ&&&& )( ③ θθg l z =+&&&& ④ 联立求解可得 u Ml Ml m M u M M mg z 1)(1 -+=+- =θθθ&&&& 2.2列写系统的状态空间表达式。 选取系统变量4321,,,x x x x , []T x x x x x 4321,,,=则 u Ml x Ml m M x x x u M x M mg x x x 1 )(134433221-+= =+-==&&&& 即 []Cx x x y Bu Ax u Ml M x Ml g m M M mg z z dt d x ===+=?????? ? ???????-+?????????? ??? ? +- =???? ????????=000110100)(0 010 0000000 1 1θθ&&& 代入数据计算得到: [][]0,0001,1010,01100 1000010000 1 0==-=? ? ??? ? ??? ???-=D C B A T

电机大作业(MATLAB仿真-电机特性曲线)

电机大作业 专业班级:电气XXXX 姓名:XXX 学号:XXX 指导老师:张威

一、研究课题(来源:教材习题 4-18 ) 1. 74 、R 2 0.416 、X 2 3.03 、R m 6. 2 X m 75 。电动机的机械损耗p 139W,额定负载时杂散损耗p 320W, 试求额定负载时的转差率、定子电流、定子功率因数、电磁转矩、输出转矩和效 率。 二、编程仿真 根据T 形等效电路: 3D - R Q 运用MATLAB 进行绘图。MATLAB 文本中,P N PN ,U N UN ,尺 R 1, X 1 X1 , R 2 R 2,X 2 X 2,R m Rm, X m Xm ,p pjixiesunh ao , p pzasansunhao 。定子电流I11,定子功率因数 Cosangle1,电磁转矩Te , 效率 Xiaolv 。 1.工作特性曲线绘制 MATLA 文本: R1=0.715;X 仁1.74;Rm=6.2;Xm=75;R2=0.416;X2=3.03;pjixiesu nhao=139; pzasa nsu nhao=320;p=2;m 仁 3; ns=1500;PN=17000;UN=380;fN=50; Z1=R1+j*X1; Zm=Rm+j*Xm; for i=1:2500 s=i/2500; nO=n s*(1-s); Z2=R2/s+j*X2; Z=Z1+Zm*Z2/(Zm+Z2); 有一台三相四极的笼形感应电动机, 参数为P N 17kW 、U N 380V (△联 Rm 结)、尺 0. 715 、X j lcr S

U1=UN; I1=U1/Z; l110=abs(l1); An gle 仁an gle(ll); Cosa ngle10=cos(A ngle1); P仁3*U1*l110*Cosa ngle10; l2=l1*Zm/(Zm+Z2); Pjixie=m1*(abs(I2))A2*(1-s)/s*R2; V=(1-s)*pi*fN; Te0=Pjixie/V; P20=Pjixie-pjixies un hao-pzasa nsun hao; Xiaolv0=P20/P1; P2(i)=P20; n (i)=n0; l11(i)=l110; Cosa ngle1(i)=Cosa ngle10; Te(i)=Te0; Xiaolv(i)=Xiaolv0; hold on; end figure(1) plot(P2, n); xlabel('P2[W]');ylabel(' n[rpm]'); figure(2) plot(P2,l11); xlabel('P2[W]');ylabel('l1[A]'); figure(3) plot(P2,Cosa nglel); xlabel('P2[W]');ylabel('go nglvyi nshu'); figure(4) plot(P2,Te); xlabel('P2[W]');ylabel('Te[Nm]'); figure(5) plot(P2,Xiaolv); xlabel('P2[W]');ylabel('xiaolv');

matlab控制系统传递函数模型

MATLAB及 控制系统仿真 实验 班级:智能0702

姓名:刘保卫 学号: 06074053(18) 实验四控制系统数学模型转换及MATLAB实现 一、实验目的 熟悉MATLAB 的实验环境。 掌握MATLAB 建立系统数学模型的方法。 二、实验内容 (注:实验报告只提交第2 题) 1、复习并验证相关示例。 (1)系统数学模型的建立 包括多项式模型(Transfer Function,TF),零极点增益模型(Zero-Pole,ZP),状态空间模型 (State-space,SS); (2)模型间的相互转换 系统多项式模型到零极点模型(tf2zp),零极点增益模型到多项式模型(zp2tf),状态空间模 型与多项式模型和零极点模型之间的转换(tf2ss,ss2tf,zp2ss…); (3)模型的连接 模型串联(series),模型并联(parallel),反馈连接(feedback) 2、用MATLAB 做如下练习。 (1)用2 种方法建立系统的多项式模型。 程序如下: %建立系统的多项式模型(传递函数) %方法一,直接写表达式 s=tf('s') Gs1=(s+2)/(s^2+5*s+10) %方法二,由分子分母构造 num=[1 2]; den=[1 5 10]; Gs2=tf(num,den) figure pzmap(Gs1) figure pzmap(Gs1) grid on 运行结果:

易知两种方法结果一样 Transfer function: s Transfer function: s + 2 -------------- s^2 + 5 s + 10 Transfer function: s + 2 -------------- s^2 + 5 s + 10 (2)用2 种方法建立系统的零极点模型和多项式模型。 程序如下: %方法一 s=tf('s') Gs1=10*(s+1)/((s+1)*(s+5)*(s+10)) % zpk模型 ZPK=zpk(Gs1) %方法二 % tf模型 num=[10 10]; den=conv([1 1],conv([1 5],[1 10])); Gs2=tf(num,den) % zpk模型 ZPK=zpk(Gs2) figure pzmap(Gs1) figure pzmap(Gs1) grid on 运行结果: 易知两种方法结果一样 Transfer function: s Transfer function:

四旋翼飞行器建模与仿真Matlab

四轴飞行器的建模与仿真 摘要 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器,它非常适合近地侦察、监视的任务,具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上,进行飞行器的建模。动力学建模是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿-欧拉模型建立的仿真模型,模型建立后在Matlab/simulink软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissance mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilian applications. In the dissertation, the detailed analysis and research on the rack structure and dynamic characteristics of the laboratory four-rotor aircraft is showed in the dissertation. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the campaign to make the research and analysis. The four-rotor aircraft has many operating status, such as climbing, downing, hovering and rolling movement, pitching movement and yawing movement. The dynamic model is used to describe the four-rotor aircraft in flight in the dissertation. On the basis of the above analysis, modeling of the aircraft can be made. Dynamics modeling is to build models under the principles of flight of the aircraft and a variety of state of motion, and Newton - Euler model with reference to the four-rotor aircraft.Then the simulation is done in the software of Matlab/simulink. Keywords: Quad-rotor,The dynamic mode, Matlab/simulink

相关主题
文本预览
相关文档 最新文档