当前位置:文档之家› 热风炉课程设计

热风炉课程设计

热风炉课程设计
热风炉课程设计

1 热风炉的热工计算

1.1 燃烧计算

煤气成分的确定如表1-1。

表1-1 已知煤气的干成分%

(1) 干煤气成分换算成湿煤气成分

若已知煤气的含水的体积百分数,用下式计算: V 湿=V F ×(100-H 2O)/100×100% (1-1) 若已知干煤气含水的重量,则用下式计算:

V 湿=V F ×100/(100+0.124g H2O ) ×100% (1-2) 以上两个公式中:

V 湿—湿煤气中各组分的体积百分含量,% F V —干煤气中各组分的体积含量,%

2H O —湿煤气中含水体积, %

2H O g —干煤气中含水的重量,3g m (忽略机械水的含量)

查“空气及煤气的饱和水蒸气含量(气压101325a P )表”知30℃是煤气的饱和水含量为35.103g m ,代入上面的(1-2)式计算得表1-2。

表1-2煤气成分换算表

(2)煤气低发热量的计算:

设其中含可燃物成分的热效应如表1-3。

表1-3 可然成分热效应KJ

煤气低发热量DW Q 的计算:

3

DW 24242Q 126.36CO 107.85H 351.81CH 594.4C H 233.66H SKJ m =++++

+

126.3622.03107.85 1.44358.810.48=?+?+?

3

=3111.244KJ m

(3)焦炉煤气的加入量计算如表1-4。

表1-4焦炉煤气成分表

理论燃烧温度的计算:

取炉顶温度比热风温度高200℃,燃烧温度比拱顶温度约高80℃ 则T =T +200+80=1480理风℃ ,

2001280C C

T T ??=-=理

所要求的最低发热量:

3

T =0.158Q +770

Q (T 770)4494KJ m

=-=理低低理

加入焦炉煤气量:

33Q 1700018500KJ m ,Q =17500KJ m ≈低低焦到取

00

DW QW V (Q Q )(Q Q )9=--≈低焦低

则煤气干成分加入量为:1-9﹪=91﹪ 则在混合成分中:

2242n m 0000000000CO 0000000000CO 0000000000H 0000000000CH 0000000000N 000000

C H V 209193=18.47V 23919 6.521.52V 1.591958 6.59V 0.591925 2.75V 55919450.41V 9 3.50.31=?+?=?+?==?+?==?+?==?+?==?=

换算成混合湿煤气成分:

2222224242220000FCO H O CO 0000FCO H O CO 0000FH H O 0000FCH H O CH FN H O N V V 100)100=17.70V V 100(100+0.124g )100=20.62V V 100)100=6.32V V 100(100+0.124g )100=2.64V V 100(100+0.124g )1=??=??=??=??=??2湿湿湿H 湿湿n m 2n m 00000000

FC H H O C H 00=48.31V V 100(100+0.124g )100=0.29=??湿

混合煤气成分如表1-5。

煤气低发热量的计算:

3

DW 242423

Q 126.36CO 107.85H 351.81CH 594.4C H 233.66H SKJ m 126.3620.62107.85 6.32358.81 2.64594.40.29=4406.79KJ m =+++++=?+?+?+?

(4) 空气需要量和燃烧生成物的计算:

1)空气利用系数a 0b =L L 空,燃烧混合煤气b 1.1 1.15空为到,计算中取1.10

计算如表1-6。

表1-6 燃烧产物体积

(为了简化计算,式中将n m C H 全部简化成24C H 来计算) 2)燃烧13m 高炉煤气的理论空气量0L 为:

3

0L 16.98210.809m

=÷=

3)实际空气需要量n L 为:

3

n L 1.100.8090.890m =?=

4)燃烧13m 高炉煤气的实际生成物量V 产为: 3V =1.94m 产 5)助燃空气显热Q 为:

3

003

Q =C t L C 1.302t 20L 0.809m

Q 1.302200.80921.07kg m ??====??=空空空空空空

式中C 空—助燃空气t 空时的平均热焓,3KJ (m .C)?

t 空—助燃空气温度,℃ 6)煤气显热Q 煤为:

3

Q =C t 1C 1.357t 30

Q =1.357301=40.71kg m ??==??煤煤煤煤煤煤

式中C 煤—煤气t 煤的平均热容,3KJ (m .C)?

t 煤—煤气温度,℃

7)生成物热量Q 产为:Q 产=(Q 空+Q 燃+Q DW )/燃烧1m 3煤气的生成物体积

=(21.07+40.71+4406.79)/1.94 =2303.39KJ/m 3

(5)理论燃烧温度的计算:

取预热温度200℃ 则

++t =

DW

Q Q Q V C ?空煤理产产

式中 t 理——理论燃烧温度;℃

C 产

——燃烧产物在

t 理时的平均热容;KJ/m 3

由于C 产

的数据取决于

t 理,须利用已知的Q 产用迭代法和内插法求得t 理其过程如

下:

燃烧生成物在某温度的t

Q 产

,用下式计算:

2222

t t t t t 2222=++CO H O O N Q CO H O O N ωωωω???+?产;KJ/m 3

式中

2

2

2

2

t t t t

CO H O O N

ωωωω、、、——分别为CO 2、H 2O 、O 2、N 2在压力为101

a kp ,温度

t 时的焓值,KJ/m 3,可从附录表中查得;

2222CO H O O N 、、、——分别为1 m 3生成物中该气体的含量,m 3。

先设理论燃烧温度为1400℃ 和1600℃ ,查表可得CO 2、H 2O 、O 2、N 2在该温

度的焓值,

表1-7 CO 2、H 2O 、O 2、N 2在1400℃ 和1600℃ 的焓(KJ/m 3

)

据表的生成物成分,分别算出1400℃ 和1600℃的生成物热量

。 表1-8 在1400℃ 和1600℃的生成物热量

上述生成物的实际热量Q 产为2303.39 3KJ m 。

可以见其理论燃烧温度介于1400℃到1600℃之间,按内插法求得理论燃烧温度

t 理

为:

=1400+.(2525.092274.53)200

t -?理(230339-2274.53) =1400+58

=1458C ?

1.2 简易计算

已知:高炉的有效容积为39003m ,每立方米高溶剂应具有加热面积取803

m (一般为80~903

m ),4n =座。

(1)热风炉的全部加热面积为:3

803900312000m ?=,设燃烧室及炉顶所占

加热面积为:3

3120000.51560m ?=

则每座热风炉蓄热室加热面积为:3

(3120001560)477160m -=

(2)选取热风炉蓄热室的外壳直径为10000mm,

炉壳及炉墙的钢板和耐火材料的厚度如表1-9。

蓄热室的内直径为: (3)热风炉总断面积(23.14 6.92?)2

462.45m ÷=

一般燃烧室占热风炉总断面积的20%~25%,本例取25%,则燃烧室面积:

262.450.2515.615m ?=,蓄热室面积为:2

62.4515.61546.85m -=

(4)燃烧室选取圆形,按经验去其图中半圆部分的面积占燃烧室断面积的

0058,计算出半圆的半径R(m)为:

2`

1

R 15.610.582

R 2.4m

R 1.7m

π=?==取

校核燃烧室的断面积为:222

11

F = 2.4+ 1.7+1.722.4-1.715.552m 22ππ???=燃()

即近似于2

15.615m

(5)选用宝钢7孔格子砖,格子砖外形尺寸:221×256 mm 一个七孔砖的面积:(0.256-0.064)×0.221=0.0424322m 蓄热室一层格孔砖数:46.85÷0.042432=1104(块)

单个格子砖断面孔数为12个,蓄热室断面上总格孔数:1104×12=13249(个)

一米长格孔砖的加热面积:2

10.064=0.24m ?? 则 格子砖的加热面积:2

f=0.2413249=3180m ? 格子砖高度:776103180=24.4m ÷ (6)高炉入炉风量的计算:

q v =V U .Iq j /1440 (m 3/min)

式中U V ,I.,j q ,V q 分别为高炉的有效容积,高炉冶炼强度,每吨干焦的 干风耗风量(一般为2604~27503m t ),高炉入炉风量。

设计当中取

3j q 2604m t

= 则

3V q 8800m =

(7)其他尺寸:格子砖上缘到球顶砌砖的中心距离4200mm ,拱顶的内径半 径为4460mm ,炉顶钢板厚20mm ,炉底钢板厚25mm ,截锥球面到拱顶的距离 为6000mm ,支柱及炉箅子高度为2900mm ,水泥层80mm ,炉顶砌砖高度为 800mm 。

全高=格子砖上缘到球顶砌的中心距离+拱顶的内径半径+炉顶钢板厚+炉 底钢板厚+截锥球面到拱顶的距离+支柱及炉箅子高度+水泥层+炉顶砌砖 高度

H=4200+4460+20+25+24400+6000+2900+80+8000=43.5m

H D==

核检:43.5100 4.35

它在4~6之间,是稳定的。

(附:湘钢1号高炉热风炉H=40.988 高径比5.25)

1.3砖量计算

(1)有以上条件可知:

七孔砖厚:90mm 24.4÷0.09=271(层)

则总砖量为:271×1104=299307(块)

(2)蓄热室砖量计算:

蓄热室大墙高度=全高-内径半径-炉顶钢板后-炉顶砌砖厚度-膨胀缝-找水平泥层-炉底钢板厚度

大墙高度=43.5-4.46-0.8-0.02-0.025-0.08-6.5=31.62m

采用G-2、G-4 相配合,砖厚C=80mm[12]

则总层数=31.62÷0.008=396(层)

一层耐火砖用量:

楔形砖:X=π×2a/(b-

b)=π×2×345/(150-128)=99(块)

1

直形砖:y=(πd-

b X)/b=(π×8.92-0.125×99)/0.15=104(块)

1

则总砖量:(99+104)×396=80388(块)

2 热风炉本体结构设计

2.1热风炉结构的选择

外燃式热风炉是内燃式热风炉的进化和发展,它是燃烧室和蓄热室分别在两个圆柱形壳体内,两个室的顶部以一定方式连接起来。

根据一序列的参考材料我选择设计新日铁式外燃式热风炉。新日铁是外燃式热风炉的特点:蓄热室拱顶有锥形缩口,拱顶由两个半径相同的半球形顶和一个圆柱形管组成,连接管上设有膨胀补缩器。为了使热风和混入的冷风混合均匀,在每一个热风炉燃烧室热风口处设有一个混风室,在混风室和燃烧室之间的连接管上亦设有通用型伸缩管,以吸收两者的不均匀膨胀和连接管的轴向膨胀。

我国目前使用的外燃式热风炉(地得式,马琴式,新日铁式)数量已达40多座,其中使用最多,应用效果最好的为新日铁式外燃式热风炉。设计的过程中参考太钢43503

m高炉热风炉的设计,其中本设计的设计参数表2-1。

表2-1 高炉设计参数:

项目燃烧室炉

壳外径

mm

燃烧室炉

壳内径

mm

拱顶温

度℃

格子砖

高度

mm

送风风

3min

m

格子砖

类型

单位炉容

加热面积

m2/m3

燃料组成每座热风

炉加热面

积m2

参数10000 8900 1400 24400 8800 七孔高

62.45 高炉煤气

焦炉煤气

77160

图2-3新日铁式热风炉

由于整个热风炉重量很大又经常震动,且荷重将随高炉炉容的扩大和风温的提高而增加,故对炉基要求严格。地基的耐压力不小于2.0~2.5kg/2

cm,为防止热风炉产生不均匀下沉而是管道变形或撕裂,将三座热风炉基础做成一个整体,高出地面200~400mm,以防水浸基础由

A F或16Mn钢筋和325号水泥浇灌

3

成钢筋混泥土结构。土壤承载力不足时,需打桩加固。

生产实践表明,不均匀下沉未超过允许值时,可将热风炉基础又做成单体分离形式,如武钢、鞍钢两座大型高炉,克节省大量钢材。

2.2炉壳的设计

热风炉的炉壳由8~20mm厚的钢板焊成。对一般部位可取:δ=1.4D(mm)。开孔多的部位可取:δ=1.7D(mm), δ为钢板厚度(mm),D为炉壳内径(m),钢板厚度主要根据炉壳直径、内压、外壳温度、外部负荷而定。炉壳下部是圆柱体,顶部为半球体。为确保密封炉壳连同封板焊成一个不漏气的整体。由于炉内风压较高,加上炉壳耐火砖的膨胀,使热风炉底部承受到很大的压力,为防止底板向上抬起,热风炉炉壳用地脚螺栓固定在基础上,同时炉底封板与基础之间进行压力灌浆,保证板下密实,也可以把地脚螺栓改成锚固板,并在底封板上灌上混泥土。将炉壳固定使其不变形,或把平底封板加工成蝶形底,使热风炉成为一个手内压的气罐,减弱操作应力的影响。在施工过程中对焊接必须进行X光探伤检验,要求炉壳椭圆度不大于直径的千分之二,整个中心线的倾斜(炉顶中心与炉底中心差)不大于30mm。为了保证炉壳和炉内砌砖的密封性,在砌砖前后要试漏、试压,检查砌砖前试验压力为0.3~1.5kg/2

cm,砌砖后工作压力的1.5倍试压,每小时压力降<=1.5%.蓄热室、燃烧室的拱顶和连接管处采用(韧性耐龟裂钢板)含锰、铝的镇静钢。高温区炉壳外侧用0.5mm铝板包覆,铝板与炉壳间填充后3mm保温毡,使炉壳温度控制在150~250℃,防止内表面结露,也防止突然降温(暴雨)使炉壳急冷而产生应力。炉壳内表面涂硅氨基甲酸乙醋树脂保护层,防止

NO与炉壳接触。

X

2.3炉墙的设计

各层厚度应根据炉壳温度和所用耐火材料的界面温度确定。如图2-2所示。因炉墙温度自上而下逐渐升高、所以不同高度耐火层和绝热层厚度不同。一般下部区域温度低、荷重大,宜选用较厚耐火砖,减薄的绝热层,所留膨胀缝可小。上部高温区,荷重小,但为了减少热损失,应增加绝热层的厚度,耐火层可较薄。

炉墙通常由345mm耐火砖砌筑,一般风温水平的热风炉和炉壳接触的是65mm 后的硅藻土砖绝热层,绝热层和耐火砖之间是60~145mm后的干水渣填料层,用以缓冲膨胀。两层绝热砖之间填以50~90mm后的干水渣或硅藻土或石粉。隔墙上

部由于燃烧室位置在热风炉内的一侧,靠格子砖的隔墙为两面加热,而靠热风炉

大墙一侧的隔墙为一面加热。因此,前者的温度比后者高,产生的高温蠕变大,

而耐火材料不适应高温时,就使燃烧室向格子砖方向倾斜,并进而使上部格砖严

重错孔。图2-2。

b -多用于蓄热室侧 a -多用与燃烧室侧

图2-2 炉墙的组成

2.4拱顶的设计

拱顶是连接燃烧室和蓄热室的砌筑结构,它长期处于高温状态工作,应选用优质的内火材料,并保证砌体结构的稳定性,燃烧时高温烟气流均匀地进入蓄热室。内燃式热风炉拱顶有半球形,锥型,抛物线形和悬链形,目前国内传统内燃式热风炉一般多采用半球形。它可使炉壳免受侧向推力,拱顶荷重通过拱脚正压在墙上,以保持结构稳定性。应加强热风炉上部与拱顶的绝热保护,鉴于拱顶支在大墙上,大墙受热膨胀,受压易于破坏,故将拱顶与大墙分开,支在环形梁上,使拱顶砌成独立的支撑结构。

在拱顶内衬的内火砖材质,决定拱顶温度水平,为了减少结构质量和提高

拱顶的稳定性,应尽量缩小拱顶的直径,并适当减薄砌体的厚度。拱顶砌体厚度

减薄后,其内外温度差降低,热应力减少,可相当延长拱顶寿命。中型热风炉砖

厚以300~500mm为宜,大型高炉热风炉砖厚以350~400mm为宜。但是砖型过多制

造麻烦,过少则施工困难。国内部颁标准以有了3组9种拱顶定型砖适用于砌筑

内部半径为2100~3900mm的半球形拱顶。拱顶的下部第一层砖为拱脚砖。常用钢

圈加固,使炉壳少受水平力作用。在拱顶的正中为特制的炉顶盖砖,上有安装测

拱顶温度的电热偶孔。为了提高热效率,减少热损失好保护炉壳,拱顶的隔热是

十分重要的。高风温热风炉拱顶隔热砖的厚度为400~500mm,一般由2~3层隔热

砖组成。

2.5蓄热室的设计

蓄热室是热风炉进行热交换的主体,它由格子砖砌筑而成。砖的表面就是蓄热室的加热面,格子砖块作为贮热介质,所以蓄热室的工作既要传热快又要贮热多,而且要有尽可能高的温度。格子砖的特性对热风炉的蓄热能力,换热能力以及热效率有直接影响。

蓄热室断面积,一般是从选定的热风炉直径扣除燃烧室断面积而得到的,它应该用填满格子砖的通道面积中的气流速度来核算。为了保证传热速度,要求气流在紊流状态流动,即雷诺数大于2300。由于气体在高温下粘度增大,而且格孔小不易引起紊流,故现代高风温热风炉要求有较高的流速以满足传热的要求,在生产中常有这样的情况,蓄热面积不少,顶温很高,但风温上不去,烟道温度却上升很快,其原因主要是流速低造成的。

蓄热室工作的好坏,风温和传热效率如何,与格孔大小、形状、砖量等也有很大的关系。

但在燃烧室两侧蓄热室狭窄处存在死角,烟气在蓄热室断面上分布不均,相对的减少了蓄热室面积。眼镜形燃烧室结构稳定性差,热应力小,当量直径小,不利于煤气燃烧:但蓄热室死角小,烟气流分布均匀,有效面积利用较好。复合型兼备上述两种形状的优点,设计上采用多。

2.6燃烧室的设计

燃烧室是煤气燃烧的空间,位于颅内的一侧,它的断面形状有三种,即圆形、眼睛形、复合型。本设计采用圆形型,燃烧能力大,气流在燃烧室内分布均匀,燃烧效果好,废气分布均匀,燃烧室隔墙一般由两层互不错缝的高铝砖砌筑,大型高炉用一层345mm和一层230mm高铝砖砌成,中小高炉用两层230mm高铝砖砌成。两层之间彼此无约束,在受热膨胀时互不受阻碍。燃烧室比蓄热室要高出300~500mm,目的是使烟气流在蓄热室内分布均匀一些。

2.7炉箅子与支柱的设计

蓄热室全部格子砖都通过炉箅子支持在支柱上,当废气温度不超过350℃,短期不超过400℃时,用普通铸铁就能稳定的工作,当废气温度较高时,可用耐热铸铁(Ni0.4%~0.8%,Cr0.6%~1.0%)或高硅耐热铸铁。为避免堵住格孔,支柱和炉箅子的结构应和格孔相适应。支柱高度要满足安装烟道哦冷风管道的净空需要,同时保证气流畅通。炉箅子的块数与支柱相同,而炉箅子的最大外形尺寸,要能从烟道口进出。下图为支柱和炉箅子的结构图2-5。

图2-5支柱和炉箅子的结构

3 燃烧器的选择

燃烧器种类很多,常见的有套筒式和栅格式,就其材质而言又分金属燃烧器和陶瓷燃烧器。

金属燃烧器的特点:

煤气道与空气道为一套筒结构,进入燃烧室后相混合并燃烧。这种燃烧器的优点是结构简单,阻损小,调节范围大,不易发生回火现象,因此,过去国内热风炉广泛采用这种燃烧器。

陶瓷燃烧器的特点:

(1)陶瓷燃烧器是用耐火材料砌成的,安装在热风炉燃烧室内部。一般是采用磷酸盐耐火混泥土或矾土水泥耐火混泥土预制而成;

(2)助燃空气与煤气流一定交角,交角将空气或煤气分割成许多细小流股,因此混合好,能完全燃烧;

(3)气体混合均匀,空气过剩系数小,可提高燃烧温度;

(4)燃烧气体向上喷出,消除“之”字形运动,不再冲刷隔墙,延长了隔墙的寿命,同时改善了气流分布;

(5)燃烧能力大,为进一步强化热风炉和热风炉大型化提供了条件。

4 格子砖的选择

格子砖的选择对热风炉工作有相当大的关系。例如:蓄热室工作的好坏和转热效率如何。与格孔大小、形状、砖量等有很大关系。对格子砖选择很重要。对格子砖的要求是:

(1) 单位体积格子砖具有最大的受热面积。

(2)有何受热面积相适应的砖量来储热,以保证一定的范围内,不引起过大的风温降落。

(3)尽可能地引起气流扰动,保持较高的流速,以提高对流传热、速度。(4)有足够的建筑稳定性。

(5)便于加工制造、安装、维护成本低。

本设计选用的七孔格子砖(50×50)的热工特性表4-1。

表4-1选用的七孔格子砖的热工特性

常用的格子砖基本上分两类,板状转和块状穿孔砖。

板状砖的每个孔由4块砖组成。为使气流产生紊流提高对流传热能力,还有波纹转和切角豆点砖。切角豆点砖切角形成的水平通道还可使整个蓄热室断面气流分布均匀。板状转具有价格低的优点,但砌成的蓄热室稳定性差,容易倒塌和错位。目前,无论是大高炉还是小高炉的热风炉已经很少采用这类砖了。

块状穿孔砖,是在整块砖上穿孔,而空形有圆形、方形、长方形、六角形等。块状穿孔转的优点是砌成的蓄室稳定性好,砌砖快,受热面积大。缺点是成本高。为了引起气流扰动和增加受热面积,常在孔内增加凸缘,或将孔做成有一定锥度,还可将长方形孔隔1~3层扭转90°。

蓄热室的结构可能分为两类,即在整个高度上格孔截面不变的单段式和格孔截面变化的多段式。从传热和蓄热角度考虑,采用多段式较为合理。热风炉工作中,希望蓄热室上部高温段多贮存一些热量,所以上部格子砖填充系数(V)较大而有效通道截面积(?)较小,这样送风期间不致冷却太快,以免风温急剧下降。

5 管道与阀门的设计

5.1外燃式热风炉管道

热风炉系统设有冷风管、热风管、混风管、燃料用净煤气管和助燃风管、倒流休风管。一般采用10~20mm厚的普通碳素钢板焊制成管道直径。根据气体在管道内流量和合适的流速决定。

d=√4v/ωπ

式中d——圆形管道内径

V——气体在实际状态下的体积流量,m3/s

ω——气体在实际状态下的流速,m3/s

表5-1 管道内气体参考数据

ω,nm/s 名称标准流速0

热风炉净燃煤气支管(煤气不预热) 6~10

助燃空气管道 6~ 8

风压>0.9×101-MPa的冷风管道 9~12

风压<0.5×101-MPa的冷风管道 7~10

风压>0.9×101-MPa的热风管道 6~8

风压>0.5×101-MPa的热风管道 5~7

冷风管——应保证密封,常用4~12mm钢板焊成,由于冷风温度在冬季约为70~80℃。夏季常超出100℃甚至高达150℃,为了消除热应力,故在冷风管道上设置伸缩圈。

热风管——由10mm厚的普通钢板焊成,要求管道的密封性好,热损失少,热风管道一般用标准砖砌筑,内层砌粘土砖或高铝砖,外层砌隔热砖。

混风管——为了稳定热风温度而设,它根据热风炉的出口温度而参入一定的冷风。倒流休风管道应有千分之五的排水坡度,并在进入坡度支管前设置排水设备。

5.2 外燃式热风炉阀门

根据热风炉周期性工作的特点可将热风炉的阀门分为控制燃烧系统的阀门和鼓风系统的阀门。

控制燃烧系统阀门的作用是把助燃空气及煤气送入热风炉燃烧,并把废气排出热风炉,注意有燃烧阀、煤气调节阀、煤气切断阀、烟道阀等。鼓风系统的阀门将鼓风送入热风炉,并把热风送到高炉。有点阀门还起着调节热风温度的作用。主要有放风阀、混风阀、冷风阀、热风阀。

要求设备坚固结实,能承受一定的强度,保证高压下密封性能好,开头灵活,便于检修,故选择设计闸式阀门,结构复杂,阻力小,密封性好,按构造式分为三类:

(1)蝶式阀。它是中间有轴可以自由旋转的翻板,利用转角的大小采用调节流量。它调节灵活,但密封性差。

(2)盘式阀。结构比较简单,多用于切断含尘气体。气流方向平行于阀的开启方向。多用于含尘气体,如烟道阀。

(3)闸式阀。结构比较复杂,但密封性好。气流方向与阀的动作方向垂直,适用与洁净气体的切断。

(4)放风阀。从鼓风机采的冷风管道上安装放风阀,它是为了不停止鼓风机运转的情况下,减少或完全停止向高炉供风而设计的。

(5)混风阀。想热风总管中掺入一定量的冷风,以保持温度稳定不变。其位置在混风管与热风总管相接处,它由调节阀和阻隔阀组成。

(6)冷风阀。设在冷风管上的切断阀。它是冷风进入热风炉的闸门。当热风送风时,打开冷风阀可把高炉鼓风机鼓出的冷风送入热风炉。

(7)热风阀。设置在热风炉的热风出口处。在热风炉送风期打开热风阀,热空气经热风支管送热风总管。热风阀在900~1300℃和0.5MPa左右压力的条件下工作,是阀门系统中工作最恶劣的设备,一般利用铸钢和锻钢、钢板焊接结构。

热风阀门直径的选择考虑使用要求,维护制造条件及经济合理等因素。热风阀门直径选择十分重要。在允许条件下采用大直径的阀门对延长热风阀寿命有好处。热风阀的实际流速不应大于75m/s。其它阀门的截面积将于热风阀的面积之比有如下关系:

阀门名称阀门的截面积与热风阀的面积之比

热风阀 1.0

冷风阀0.8~1.0

防风阀 1.0~1.2

煤气切断阀0.7~1.0

燃烧阀0.7~1.0

烟道阀 2.0~2.8

混风阀0.3~0.4

废气阀0.05~0.12

充风阀0.05~0.12

各调节阀、切断阀直径应与管道直径相适应。

6 热风炉用耐火材料

6.1 硅砖

硅砖主要成分是2SiO ,其含量在95%左右。由鳞石英、方石英和玻璃相组成。硅砖高温性能好,耐火度及荷重软化温度较高,蠕变温度高且蠕变变率小,有利于热风炉稳定,不足的是它的体积密度小,蓄热能力差。硅砖在600℃以下发生相变,体积又较大的膨胀,容易破坏砌体的稳定性,因此,硅砖的使用温度应大于600℃。在热风炉内硅砖一般用于拱顶、燃烧室和蓄热室炉衬的上部以及上部格子砖。

6.2 高铝砖

高铝砖质地坚硬、致密、密度大,抗压强度高,有很好的耐磨性和较好的导热性,在高温下体积稳定,蠕变性仅次于硅砖。普遍应用于高温区域,如拱顶、中上部格子、燃烧室隔墙等。

6.3 粘土砖

粘土砖主要成分是23Al O 和2SiO ,随着23Al O 和2SiO 含量的不同,性质也发生变化。粘土砖热稳定好,高温烧成的粘土砖残余收缩小。粘土砖粘耐火度和荷重软化温度低,蠕变温度低,蠕变率大。但是砖容易易加工,价格廉价,广泛应用于热风炉中、低温度区域、中下格子砖及砖衬。粘土砖用量约占热风炉用砖量的30%~50%。

6.4 隔热砖

热风炉用隔热砖有硅藻土砖、轻质硅砖、轻质粘土砖、轻质高铝砖以及陶瓷纤维砖等。隔热砖气孔率大,密度小,导热性低,机械强度低,但在使用中应可以支承自身质量。

6.5 不定形材料

热风炉用不定形材料有耐火、隔热及耐酸三种喷涂料。耐火材料是指通过耐火锥形体试样的无荷重耐火实验测得结果耐火度高于1580摄氏度的无机非金属材料。耐火材料通常有:刚玉、氧化锆、白刚玉、碳化硅、铝矾土、锆英砂、镁砂、电熔镁砂、石墨、石英砂、耐火砖、浇注料、不定型、防火材料、轻烧镁、重烧镁、中档镁砂等。

用 途: 耐火材料广泛应用于石油、化工、冶金、锻压、国防、航天、航空、建筑、环卫等领域。耐火喷涂料主要用于高温部位炉壳及热风管内,以防止窜风烧坏钢壳。隔热涂层料导热系数低,可以减少热损失。耐酸涂层料用于拱顶、燃烧室及蓄热室上部钢壳,其作用是防止高温生成物中x NO 等酸性氧化物对炉壳的腐蚀。当采用双层喷涂料时,隔热喷涂料靠钢壳喷涂,然后再喷涂耐酸或耐火涂料。

目前国产FN—130喷涂料在理化性能和施工性能上均达到或超过日本的CN—130G喷涂料,且价格只有其1/7.先已有50余座高炉应用。另外,国产MS 耐酸质喷涂料也全面达到了日方MIX—387指标,价格不到其1/3,其主要性能见表5-5。

我国内燃式热风炉炉衬和格子砖普遍采用高铝砖和豁粘土砖砌筑;外燃式热风炉,高温部分一般采用硅砖砌筑,中低温部位则依次用高铝砖和豁粘土砖砌筑。

美国热风炉高温部位一般采用硅砖砌筑,蓄热室上部温度高于1420℃的部位采用抗碱性强、导热性好和蓄热量大的方镁石格子砖。日本热风炉用砖处理得比较细致,不同部位选用不同的耐火砖,同时还考虑到耐火材料的高温蠕变性能。热风炉寿命可达到15~20年。

热风炉选用耐火材料主要依据炉内温度分布,通常下不采用粘土砖,中不采用高铝砖,上部高温区为耐高温、抗蠕变的材质如硅砖、低蠕变高铝砖等。

后记

通过本次外燃式热风炉课程设计,对热风炉的炉型、结构、各部分相关材质加深了熟悉,真正从实际了解了外燃式热风炉,学会了热工计算和简易计算,掌握了热风炉的各层构件和几何尺寸以及相关技术要求,提高了实际分析问题的能力,尤其对于热风炉各个部件的参数选择有了进一步的了解和掌握;通过制图学

到的求精和务实的态度,整体布局的能力有了提高,培养了勤奋踏实的学习习惯。在本次设计中由衷的感谢刘竹林教授对我们孜孜不倦的指导,一丝不苟的科研态度和精益求精的工作精神让我们受益匪浅,从老师身上更让我们学习到了追求严谨的科学精神,老师的无私奉献更让我们钦佩、学习,再次感谢刘老师的指导教诲。

参考文献

[1]刘竹林. 炼铁理论与工艺[M]. 北京:化学工业出版社,2007:41-60.

[2]韩昭沧. 燃料及燃烧[M]. 北京:冶金工业出版社,1994:27-67.

[3]周国治. 热风炉设计原理[M]. 北京:冶金工业出版社,1980:53-98.

[4]万新. 炼铁厂设计原理[M]. 北京:冶金工业出版社,2011:136-169.

[5]胡洵璞. 高炉炼铁设计原理[M]. 北京:化学工业出版社,2010:217-307.

[6]吴胜利. 炼铁学[M]. 北京:冶金工业出版社,1981:136-267.

热风炉技术方案样本

山西安龙重工有限公司 热风炉系统设备 技 术 方 案 湖北神雾热能技术有限公司 .12.02 一、前言 该项目是遵循山西安龙重工有限公司所提技术要求设计, 所采用的技术核心主要是当前国内外先进的燃气半预混双旋流燃烧

技术等。 二、设计基础 1、原始参数及现场条件 1).处理原料 待定 2).处理能力: 待定 2 热风炉工况参数 1).最大热负荷: ×104Kcal/h 2).热风炉出口热风温度: 50~300℃ 3).热风炉出口热风流量: 187000 Nm3/h(在300℃工况下) 4).燃料参数 煤气(具体种类待定): 热值约1000 Kcal/Nm3 压力: 6~8 kPa 5).液化气或其它高热值燃气( 启炉和长明火燃料) 热值: 0 kcal/Nm3 压力: 10kPa 6).煤气吹扫气参数 氮气: 压力: ~0.2 MPa 三、方案内容 1、性能参数

2、耐火材料选型参数 低水泥高铝浇注料: 用于炉膛耐火内衬 容重~2.3kg/m3 烧后抗压强度110℃×24h ≥15MPa 1000℃×3h ≥25MPa 烧后线变化率1000℃×2h 0~-0.2% 耐火度>1700℃ 3、热风炉设备特点综述 热风炉是根据终端设备对温度的要求, 输出适合温度和一定流量热烟气的设备, 在满足此基本要求的基础之上, 我们重点考虑了如下方面: a)热风炉在运行过程中对炉内温度实现检测, 满足

终端设备所需要风温及风量。燃烧器调节范围大, 火焰长度、扩散角均能和炉子合理匹配, 且配有 自动点火和火检, 保证安全稳定运行; b)炉子采用合理的钢结构来支撑本体; 选用性能良 好的耐火材料砌筑, 采用二次风冷却的方式, 确 保炉体表面温度符合技术要求; c)合理配置炉子检修口、观察孔, 结构设计做到开 启灵活, 关闭严密, 减少炉气外溢和冷风吸入的 现象; d)配备完善的热工控制系统设备, 自动化程度高。确 保严格的空燃比和合理的炉压等控制, 使热损失 减少到最小; e)满足低耗、节能的工艺要求; f)在环保方面, 烟气中有害成分游离碳和NO X经过强 化燃料与空气混合, 避免游离碳的生成; 同时降 低燃烧过剩空气系数和火焰温度是减少NO X的有效 技术措施。实现减少NO X的生成量。 4、热风炉系统及主要技术说明 4.1、热风炉结构与组成 热风炉主要由热风炉本体、燃烧器、燃烧及控制系统等组成,

热风炉设备安装施工方案讲解

热风炉设备安装施工方案 一、编制说明 1.1 编制依据 1.1.1 由唐山钢铁国际工程技术有限公司设计的唐钢炼铁北区1#高炉易地改造工程热风炉设备安装施工图纸 1.1.2 《机械设备安装工程施工及验收通用规范》GB50231—2010 1.1.3 《炼铁机械设备工程施工及验收规范》GB50372—2006 1.1.4助燃风机预热器安装图及热风炉炉箅子及支柱图 1.2 工程质量目标 1.2.1 在法律、法规及相关规定允许下100%满足顾客要求;分部工程质量合格率100%;试车成功率100%;工程回访保修率100%;设备完好率90%以上,设备利用率65%以上。 1.3 工期目标 1.3.1 确保唐钢炼铁北区1#高炉易地改造工程施工网络计划节点要求。 1.4 安全目标 1.4.1 安全目标是无重伤以上事故,年度负伤频率0.3%以下。 二、现场文明施工目标 2.1 现场物料堆放要整齐并要有标识,施工现场安全通道设置合理并畅通。 2.2 有毒有害固体废弃物合法处理排放100%,无毒无害固体废

弃物合法处理排放95%。 2.3 生活垃圾按规定及清运到指定地点或垃圾处理站,生活污水按建设单位指定的场所合理排放。 2.4 噪声控制:昼间≤70dB,夜间≤55dB。 2.5 合理用水用电比预算节约2%,充分利用边角余料,施工材料比预算降低0.5%。 三、工程概况 本工程为唐钢炼铁北区1#高炉易地改造工程热风炉设备安装安装工程。主要设备包括热风炉炉箅子及支柱、助燃风机工艺管道系统等设备的安装。 助燃风机型号为Q=123090m3/h H=14Kpa 为左、右旋式各一台,每台重6.5吨,同时还有助燃风机出口放散消声器一台,放散阀及切断阀共计六台,整体式煤气及空气预热器一台、其重量为125吨。(1)助燃风机的中心标高1.4m,基础标高0.1~0.6m。(2)风机出口放散消声器安装在12.4m的管道上。(3)整体式煤气及空气预热器安装在标高为3.92m的支架上,下半部分的中心标高为6.5m,上半部分中心标高为11.725m。 每座热风炉炉箅板共计19个,其中箅板(一)重2436kg,箅板(二)重3172kg,箅板(三)重3076kg;支柱19个,每个支柱重2155kg;支柱垫板19个,斜铁组每个柱子需要4组、共计76组。炉箅子安装每套总重量106.37吨。 风机设备主要包括:机壳、转子、轴承装置、电机及底座、进

施工方案-冬季施工热风炉基础大体积砼方案

热风炉基础大体积混凝土冬季施工方案 鞍钢凌钢朝阳钢铁项目炼铁工程热风炉基础为桩基承台基础,长37.6米、宽16.6米、厚3.2米,混凝土强度等级为C30,混凝土量约为2000立方米,属典型的大体积混凝土。大体积混凝土施工具有水化热高、收缩量大、容易开裂、降温缓慢等特点,故大体积混凝土浇筑做为一个施工重点和难点认真对待。因临近冬季,预计混凝土浇筑养护将属于冬季施工内容,所以又须作冬季施工准备。 第一节:大体积砼施工方案 大体积混凝土施工重点主要是将温度应力产生的不利影响减少到最小,防止和降低裂缝的产生和发展,因此考虑采取如下施工措施。 一、优化混凝土配合比 考虑到水泥水化热引起的温度应力和温度变形,在混凝土配合比及施工过程中要注意如下问题: (1)选用 42.5 低热硅酸盐水泥,以降低发热总量,减低最高温度,中砂,5~40碎石,以减少水泥用量。 (2)复合型防冻减水剂,在混凝土中掺入水泥重量约2%,初凝时间控制在6~8h。 (3)掺入粉煤灰,以替代部分水泥用量,推迟最高温峰值。采用R 60=302代替R 28 =302, 从而减少水泥用量,降低水化热的不利影响。采用Ⅰ级粉煤灰,细度应符合国家现行标准的规定,掺量通过试验室确定。具体配合比如下: (4)施工期间,要根据天气及材料等实际情况,及时调整施工配比,并且应避免在雨雪天施工。 (5)提高混凝土抗拉强度,保证骨料级配良好,控制石子、砂子的含泥量不超过1%和3%,且不得含有其他杂质。 (6)混凝土坍落度控制在90110。 二、温度控制 1. 为控制好混凝土内部温度与表面温度之差不超过25℃,施工中主要采取如下措施:

(1)尽量控制混凝土入模浇筑温度,保证温度不低于5度。 (2)为防止混凝土表面散热过快和表面脱水,避免内、外温差过大和干缩而产生裂缝,混凝土终凝后,立即进行保温保湿养护,保温养护时间根据测温控制,当混凝土表面温度与大气温度基本相同时,可缓缓撤掉保温养护层。保湿养护不得少于14d;保湿保温养护措施:混凝土表面采用一层塑料薄膜+二层草帘+一层塑料彩条布,确保保温层厚度达100。 2.混凝土热工计算: 底板混凝土施工在2008年11月份中旬,大气平均气温()取3℃。 2.1 混凝土拌合温度 每立方米混凝土各项原材料用量及温度如下: 水泥:320,5℃;砂子:740,3℃,含水率为2%;石子:1130,3℃;含水率为1%;水:175,25℃;粉煤灰:55,3℃;外加剂:7.5,3℃。 (1)混凝土拌合物的温度 T0=[0.92()+4.2( ωω)1(ωω)2(ωω)]÷[4.20.9()] 式中T0—混凝土拌合物的温度(℃)。 、、、—水、水泥、砂、石的用量()。 、、、—水、水泥、砂、石的温度(℃)。 ω、ωg —砂、石的含水率(%)。 c1、c2 —水的比热容()及溶解热()。 当骨料温度>0℃时, c1=4.22=0; 当骨料温度≤0℃时, c1=2.12=335。 为了计算简便,粉煤灰和外加剂的重量均计算在水泥的重量内。 T0=[0.92(382.5×3+720×3+1130×3)+4.2×25(175-2%×720-1%× 1130)+4.2(2%×720×3+1%×1130×3)-0]÷[4.2×175+0.9(382.5+720+1130)]=8.4℃ (2)混凝土拌合物的出机温度 T10-0.16(T0) 式中T1—混凝土拌合物的出机温度(℃); —搅拌棚内温度(℃)。

热风炉技术方案

山西安龙重工有限公司热风炉系统设备 技 术 方 案 湖北神雾热能技术有限公司 2009.12.02

一、前言 该项目是遵循山西安龙重工有限公司所提技术要求设计,所采用的技术核心主要是目前国内外先进的燃气半预混双旋流燃烧技术等。 二、设计基础 1、原始参数及现场条件 1).处理原料 待定 2).处理能力:待定 2 热风炉工况参数 1).最大热负荷:2000×104Kcal/h 2).热风炉出口热风温度:50~300℃ 3).热风炉出口热风流量:187000 Nm3/h(在300℃工况下) 4).燃料参数 煤气(具体种类待定):热值约1000 Kcal/Nm3 压力:6~8 kPa 5).液化气或其它高热值燃气(启炉和长明火燃料) 热值:20000 kcal/Nm3 压力:10kPa 6).煤气吹扫气参数 氮气:压力:~0.2 MPa 三、方案内容

2、耐火材料选型参数 低水泥高铝浇注料:用于炉膛耐火内衬 容重~2.3kg/m3 烧后抗压强度110℃×24h ≥15MPa 1000℃×3h ≥25MPa 烧后线变化率1000℃×2h 0~-0.2% 耐火度>1700℃ 3、热风炉设备特点综述 热风炉是根据终端设备对温度的要求,输出适合温度和一定流量热烟气的设备,在满足此基本要求的基础之上,我们重点考虑了如下方面: a)热风炉在运行过程中对炉内温度实现检测,满足终端设备所 需要风温及风量。燃烧器调节范围大,火焰长度、扩散角均 能和炉子合理匹配,且配有自动点火和火检,保证安全稳定 运行; b)炉子采用合理的钢结构来支撑本体;选用性能良好的耐火材 料砌筑,采用二次风冷却的方式,确保炉体表面温度符合技 术要求; c)合理配置炉子检修口、观察孔,结构设计做到开启灵活,关 闭严密,减少炉气外溢和冷风吸入的现象; d)配备完善的热工控制系统设备,自动化程度高。确保严格的 空燃比和合理的炉压等控制,使热损失减少到最小; e)满足低耗、节能的工艺要求; f)在环保方面,烟气中有害成分游离碳和NO X通过强化燃料

热风炉工程安全技术措施详细版

文件编号:GD/FS-4332 (解决方案范本系列) 热风炉工程安全技术措施 详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

热风炉工程安全技术措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 一、工程热风炉施工职工安全技术通则 1、进入施工现场要严格服从甲方的安全管理要求。 2、严格遵守《建筑现场安全生产六大纪律》、《建筑安装工人安全技术操作规程》和《施工现场临时用电技术规范》等规范。 3、进入施工现场必须穿戴好劳动保护品,必须带安全帽,穿劳保鞋。 4、2米以上高空作业必须系好安全带,并高挂低用,严禁高空坠物,安全帽必须系好下颌带。 5、施工现场严禁吸烟。 6、起重组装、安装构件,要做到心中有数,明

白用绳大小,构件基本重量,吊车的性能参数。 7、吊装所用的吊耳、钢绳和绳扣要合理选择,大小要与所吊重量匹配。吊装前应检查所用吊具,特别是钢绳。 8、施工时需躲让天车和特种车,起重工必须用口哨指挥天车,哨声及手势应符合规范。 9、特种作业人员必须持有效证件上岗。电工、焊工必须穿绝缘鞋。 氧气瓶、乙炔瓶必须安装好压力表和方回火装置,必须按安全距离摆放,不得小于5米,与明火距离不得小于10米。 10、施工现场使用的临时电源线,必须经审批并由专业电工按标准安全铺设。所使用的配电箱,应采用所需容量的标准化配电箱,并有专人维护与管理,安装或拆卸完毕,配电箱柜门应及时关闭。

热风炉工程施工针对性安全技术措施标准版本

文件编号:RHD-QB-K4316 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 热风炉工程施工针对性安全技术措施标准版本

热风炉工程施工针对性安全技术措 施标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1、热风炉炉壳制作安装安全技术措施 1.1 炉壳下料使用火焰切割时,在切割区域下方垫钢板,防止混凝土或石块飞溅伤人。 1.2炉壳卷制时注意天车、卷板机操作人员的相互配合,钢板单边上升过高时,必须用吊车或使用临时支撑。 1.3 炉壳拼焊时,单件瓦块必须固定牢靠,特别是S带的组装,由于组装瓦块数较多,拼组难度较大,组装时要防止瓦块倾翻。 1.4 炉壳组带吊装时必须用钢丝绳固定牢靠,若

使用钢板吊夹时,必须严格根据吊装物重量选用钢板吊夹型号。 1.5 炉壳在高空施焊搭设的临时平台所用的跳板,必须保证其质量,并绑扎牢固,施工人员必须正确系好安全带,携带物品必须放置好,防止滑落。 2、钢结构制作安装安全技术措施 2.1架工在吊装构件时,无关人员必须站在安全距离外,躲避悬空构件。 2.2施工人员搭设梯子安装构件时,梯脚必须有人扶持。 2.3在安装钢结构平台横梁时,施工人员必须系好安全带,正确配戴安全帽;在铺设平台板时,必须将电焊线上所有接头处包上绝缘胶布,防止移动过程中电焊线引出火花;在平台板铺设完后,必须及时安装平台四周护栏。

3、工艺管道卷制安装安全技术措施 3.1卷制管道时卷板机操作人员必须确认其它人员在安全位置时方可启动机器。 3.2管道安装时,尽可能将工作放在地面做。高空作业时,必须系好安全带,正确配戴安全帽。作业区域下部安排专人看守,防止高空坠物伤人。 3.3架工指挥吊装管道时,必须小心,防止伤害高空作业人员。 4、油管道安装技术措施: 4.1酸洗作业时,应穿戴好作业防护用品,不得用手直接触及带有酸溶液的管子。 4.2使用切管机、磨光机等电动工具必须确保良好的绝缘和接地,作业时,必须戴好防护眼镜。 4.3施工遗留在地面液压油应及时用锯沫清理干净。

热风炉工艺流程图

2009-09-21 13:26:12 来源: 作者: 【大中小】浏览:6207次评论:1条 一、热风炉技术操作规程 (一)烧炉和送风制度 1 烧炉制度 (1) 炉顶温度1250℃~1300℃ (2) 烟道温度350℃~380℃ (3) 高炉煤气压力8℃~9℃ 2 烧炉原则: (1) 以煤气流量和烟道残氧仪显示值(应在~%)为参考调节助燃空气,在烧炉初期使炉顶温度尽快达到规定值,以后控制炉顶温度,提高烟道温度,提高热量储备,满足高炉的需要. (2) 烧炉初期应尽量加大煤气量和空气量,实现快速烧炉. (3) 炉顶温度达到规定值时应加大空气量来保持炉顶温不在上升,使炉子中、下部温度上升,扩大蓄热量. (1) 烟道温度达到规定值时,应减小煤气量和空气量,保持烟道温度不在上升,顶温和烟道温度都达到规定值则转入闷炉. (2) 高炉使用风温低,时间在4小时以上时,可采取小烧或者适当增加并联送风时间. (3) 烧炉要注意煤气压力,发现煤气压力低时要和净化室联系提高压力,当煤气压力低于3Kpa时,要停止烧炉. (4) 热风炉顶温度低于700℃时,烧炉要用焦炉煤气引火. 3送风制度: (1)正常情况:四座热风炉同时工作,采用交叉并联送风运行方式,风温使用较低或一座热风炉因故障停用时,可临时采用两烧一送的运行方式,运行方式的改变需工长批准。长期改变运行方式要经工段长批准。 (2) 一个炉子的换炉周期为小时,换炉时间按作业表进行,改变换炉周期应经工段批准,一定要先送风后烧炉.

(3) 换炉时,风压波动〈5Kpa,波动超过范围,要立即查清原因(如冲压不当、换炉操作失误等). (4) 在送风或换炉中,风压和风量突然下降,可能鼓风机失常,应及时报告值班工长,风压降到20Kpa时,立即关闭冷风大闸. (二)热风炉换炉操作选择 (1)手动操作(一般在正常情况下不使用). (2)机旁操作箱手动操作(特殊情况下使用). (3)操作室手动(遥控手动),自动失常情况下使用. (4)半自动操作(温度控制或特殊情况). (5)全自动操作(定时换炉). (6)单炉自动操作. (7)自动烧炉与停烧. (8)交叉并联送风. 注:操作制度经过同意可以互换,操作方法可根据需要选择. (三)热风炉换炉操作顺序 1.燃烧转送风 (1)关煤气调节阀. (2)关煤气阀. (3)关助燃空气调节阀. (4)关燃烧阀. (5)关助燃阀. (6)开支管放散阀及蒸汽阀. (7)关烟道阀(2个). (8)通知值班工长,同意后. (9)开冷风旁通阀(充压)待炉内压力充满后. (10)开热风阀,开冷风阀. (11)关冷风旁通阀.

热风炉系统管道耐材砌筑施工方案

梅宝公司一期热风炉更新改造工程 热风炉耐材砌筑专项施工方案 审批: 审核: 编制: 编制单位:上海梅山工业民用工程设计研究院有限公司编制时间:二0一五年元月二十日

目录 一、编制依据 (3) 二、工程概况 (3) 三、施工部署 (3) 3.1指导思想: (3) 3.2项目管理机构 (3) 3.3项目部管理人员安排 (4) 四、主要施工条件 (4) 五工程进度计划及劳动力组织 (5) 5.1工程进度计划 (5) 5.2工种计划 (5) 六主要施工内容和施工方法 (5) 6.1喷涂设施布置 (5) 6.2 耐火材料的运输及保管 (6) 6.3 耐材作业技术要求 (6) 6.4 喷涂料试喷涂实验 (6) 6.5热风主管内部耐材砌筑 (8) 6.6热风支管内部耐材砌筑 (8) 6.7热风竖管内部耐材砌筑 (9) 6.8倒流休风管内部耐材砌筑 (12) 6.9烟道内衬施工 (15) 6.10热风围管耐材砌筑 (15) 七施工网络进度计划 (19) 八主要施工机械、机具使用计划表 (20) 九工程质量管理 (21) 9.1质量管理目标 (21) 9.2质量保证体系 (21) 9.3质量管理措施 (21) 9.4砌砖质量检查方法 (22) 9.5砌砖注意事项 (23)

9.6质量保证措施 (24) 十安全控制措施 (25) 10.1安全保证体系 (25) 10.2 安全保证措施 (26) 十一文明施工 (27) 11.1 文明施工目标及管理体系 (27) 11.2 文明施工管理措施 (27) 10.6 治安保卫、消防措施 (27) 十二环境保护措施 (28) 12.1环境保护管理体系 (28) 12.2现场环境管理措施 (29) 12.3 卫生防疫管理措施 (29) 十三.冬雨季施工措施 (30) 11.1 雨季施工措施 (30) 11.2 冬季施工措施 (30)

热风炉基础施工方案

文件编号: 方案编号: 发放号: 山钢喀什钢铁结构调整产业升级项目 热风炉基础 施工方案 建设单位意见:批准: 审核: 编制: 施工单位:莱钢建设有限公司建安分公司 2012年03月13 目录 一、编制依据 二、摘要

三、工程概况 四、工程质量目标 五、组织机构 六、施工准备 七、砼浇筑 八、主要管理措施 九、其他主要施工方案 一十、施工质量保证措施 一十一、关键控制点及控制措施 一十二、安全技术措施 (附配合比检测报告及原材料检测报告) 一、编制依据: 1、喀什钢铁结构调整产业升级项目热风炉基础施工图; 2、混凝土结构工程施工质量验收规范GB50204-2002; 3、《建筑工程施工质量验收统一标准》GB50300-2001; 4、砼质量控制标准GB50164-92; 5、建筑施工安全检查标准《JGJ59-99》;

6、《大体积混凝土施工规范》 GB50496-2009 7、块体基础大体积砼施工技术规程YBJ224-91; 8、地质勘查报告。 二、摘要: 热风炉本体基础属大体积砼,特点是结构厚实、砼量大、水化热使结构产生温度变形影响大,且热风炉基础平面尺寸过大,立面与周围土石方接触面积也大,则约束作用而产生的温度应力及盐渍土对其的腐蚀作用也更大,所以对施工技术要求也更高。 三、工程概况: 该项目位于新疆喀什市疏勒县南部,位于艾尔木东乡,疏勒县与英吉沙县域边界北部,喀和高等级公路西侧,314国道东侧,项目占地220万平方米,一期项目约占120万平方米。场平标高1261.7m,回填戈壁石后强夯至1263.2m。施工区域全部位于盐碱沼泽地段,1263.2~1261.7m为回填戈壁石,1261.7~1257.3m为粉土,1257.3~1239.3m为粉细砂,1239.3m以下为粉土。地下水位至1259.6m左右。 土建工程主要包括热风炉基础及附属独立混凝土基础。热风炉基础地基采用强夯置换的处理方式,地基处理后承载力应不小于350Kpa。热风炉本体基础为大体积混凝土,长36.4m,宽16.4m,深3m,基底标高-3.0m,基础顶标高+0.02m。几何构造由下面一个长方体、中间一个棱台、上方一个长方体组成,基础采用钢筋为三级钢HRB400,基础所处的环境类别为三b类盐渍土环境,受力钢筋混凝土保护层最小厚度:基础为50mm。基础垫层采用C20砼(含12%CM防腐剂),基础采用C40砼(含10%CM防腐剂),基础上部 +0.02m ~ -0.98m间范围采用C40耐热混凝土,耐热温度400℃。基础侧、上表面按设计要求均做防腐处理。本体基础属

某钢钢铁热风炉炉壳施工方案

某钢环保搬迁炼铁项目3#2500 m3高炉热风炉本体专项施工方案 建设单位:部 监理单位: 总包单位: 施工单位: 批准: 审核: 编制: 2010年11月

目录 一、编制依据 (3) 二、工程概况 (4) 三、工程质量目标 (4) 四、组织机构 (4) 五、施工组织部署 (5) 六、施工准备及各项资源需用量计划 (7) 6.1 技术准备 (7) 6.2 现场施工准备 (7) 6.3劳动力准备 (8) 6.4 机具准备 (8) 6.5 材料准备 (10) 七、施工方案 (10) 7.1 炉底制安 (10) 7.1 炉壳制作 (17) 7.3安装 (23) 八、质量保证措施 (29) 九、安全保证措施 (31) 十. 施工环保措施 (33) 十一.网络计划 (33)

一、编制依据 1.1工程名称 *钢集团环保搬迁炼铁项目3#2500m3高炉热风炉系统工程。 1.2编制目的、宗旨 本施工方案是为*钢集团环保搬迁炼铁项目3#2500m3高炉热风炉系统工程施工而编制。 指导思想是:编制时为业主着想,施工时对业主负责,竣工时让业主满意,同时在经济合理,技术可靠的前提下,保安全、保质、保量、保工期完成此工程。 1.3编制依据 本施工方案编制时依据*钢集团环保搬迁炼铁项目3#2500m3高炉热风炉本体施工图及我公司GB/T19001-2000—ISO9001:2000质量管理体系、GB/T28001—2001职业健康安全管理体系、GB/T24001-2004—ISO14001:2004环境管理体系标准。并结合以往施工同类工程特点、经验材料,我公司施工能力、技术装备状况制定的。 1.4本工程采用规范标准 《钢结构工程施工及验收规范》 GB50205-2001 《现场设备、工业管道焊接工程施工及验收规范》GB50236-98 《工业金属管道工程施工及验收规范》GB50235-97 《工业设备及管道绝热工程施工及验收规范》GBJ126-89 《机械设备安装工程施工及验收通用规范》GB50231-98 《工业金属管道工程质量检验评定标准》GB50184-93

热风炉管道施工方案

目录 一、热风炉管道安装简介 (1) 1、热风炉管道简介 (1) 2、热风炉管道安装位置 (2) 3、热风炉管道吊装重点、难点 (3) 二、吊装概述 (3) 三、安装步骤及吊运技术、安全措施 (3) 1、安装步骤 (3) 2、具体吊装措施 (4) 3、安全措施 (4) 四、附图表 (6) 1.吊车使用计划 (6) 2.吊车性能表 (7) 3、吊装位置示意图 (9)

一、热风炉管道安装简介 1、热风炉管道简介 热风炉管道位于窑头系统与水泥磨系统之间,介质为高温烟气,主要作用是用来为水泥磨烘干系统提供高温烟气。更换总长约50米。热风炉管道内径Φ=2700mm,由δ=8mm钢板卷制而成;内圈镶δ=8mm环筋H=80mm(1米一个);内部打浇注料(厚50mm硅酸钙板,厚50mm的浇注料,高100mm 锚固件)。 经计算,1米筒体重量约为:2吨(钢材:0.576吨,硅钙板:0.116吨,浇注料:1.2吨;锚固件:0.03吨) 总重约100吨,安装时9米为一段(约20t)进行吊装施工。 2、热风炉管道安装位置 本次更换的热风炉管道安装于窑头系统与水泥磨系统之间的东西方向,七个钢结构支架,靠近厂区支工路加工场地。 3、热风炉管道安装重点、难点 由于热风炉管道安装支架不是等距分布,吊车受幅度、臂长(长度、高度)影响,风管内部施工浇注料后进行吊装作业,故需采用大型号吊车进行吊装。同时编制此特殊措施,保证安装工作顺利完成。

二、吊装概述 由于管道甲方要求最长为9米进行吊装,所以风管采用分6节吊装:热风炉至7#墩为第一段,7#墩至6#墩为第二段,5#墩至4#墩为第三段,3#墩至2#墩为第四段,2#墩至1#墩为第五段,1#墩至窑头为第六段,其中难点在于第一段和第二段的吊装。吊装结束后50吨吊车负责清理吊装现场。 三、安装步骤及吊运技术、安全措施 1、安装步骤 2、具体吊装措施 参加施工的全体人员应熟悉相应的施工规范及施工图纸,切实做好技术交底工作。 加强施工人员的质量意识,树立“质量是企业的生命,质量是企业的信誉”的观点。 热风炉管道安装必须在进行基础验收后才能进行,如未达到强度管道不能吊上基础。 各种吊装机械和施工机具提前供应调配,并应保证完好。 施工过程应严格按规范及相应的方案施工图执行。 热风炉管道吊装作业时,禁止随意在风管上焊接吊耳或临时支撑等,如必须焊接需经现场技术负责人同意,并取得监理、供应商的认可的书面文件。

热风炉管道施工方案

目录 一、热风炉管道安装简介 (2) 1、热风炉管道简介 (2) 2、热风炉管道安装位置 (2) 3、热风炉管道吊装重点、难点 (2) 二、吊装概述 (3) 三、安装步骤及吊运技术、安全措施 (3) 1、安装步骤 (3) 2、具体吊装措施 (3) 3、安全措施 (4) 四、附图表 (6) 1.吊车使用计划 (6) 2.吊车性能表 (6) 3、吊装位置示意图 (8)

一、热风炉管道安装简介 1、热风炉管道简介 热风炉管道位于窑头系统与水泥磨系统之间,介质为高温烟气,主要作用是用来为水泥磨烘干系统提供高温烟气。更换总长约50米。热风炉管道内径Φ=2700mm,由δ=8mm钢板卷制而成;内圈镶δ=8mm环筋H=80mm(1米一个);内部打浇注料(厚50mm硅酸钙板,厚50mm的浇注料,高100mm 锚固件)。 经计算,1米筒体重量约为:2吨(钢材:0.576吨,硅钙板:0.116吨,浇注料:1.2吨;锚固件:0.03吨) 总重约100吨,安装时9米为一段(约20t)进行吊装施工。 2、热风炉管道安装位置 本次更换的热风炉管道安装于窑头系统与水泥磨系统之间的东西方向,七个钢结构支架,靠近厂区支工路加工场地。 3、热风炉管道安装重点、难点 由于热风炉管道安装支架不是等距分布,吊车受幅度、臂长(长度、高度)影响,风管内部施工浇注料后进行吊装作业,故需采用大型号吊车进行吊装。同时编制此特殊措施,保证安装工作顺利完成。

二、吊装概述 由于管道甲方要求最长为9米进行吊装,所以风管采用分6节吊装:热风炉至7#墩为第一段,7#墩至6#墩为第二段,5#墩至4#墩为第三段,3#墩至2#墩为第四段,2#墩至1#墩为第五段,1#墩至窑头为第六段,其中难点在于第一段和第二段的吊装。吊装结束后50吨吊车负责清理吊装现场。 三、安装步骤及吊运技术、安全措施 1、安装步骤 2、具体吊装措施 参加施工的全体人员应熟悉相应的施工规范及施工图纸,切实做好技术交底工作。 加强施工人员的质量意识,树立“质量是企业的生命,质量是企业的信誉”的观点。 热风炉管道安装必须在进行基础验收后才能进行,如未达到强度管道不能吊上基础。 各种吊装机械和施工机具提前供应调配,并应保证完好。 施工过程应严格按规范及相应的方案施工图执行。 热风炉管道吊装作业时,禁止随意在风管上焊接吊耳或临时支撑等,如必须焊接需经现场技术负责人同意,并取得监理、供应商的认可的书面文件。

热风炉精细化烧炉控制技术

技术秘密全文 一、技术秘密名称:热风炉精细化烧炉控制技术 二、股份公司原有技术及存在的问题 现有大中型高炉的热风炉一般为四座热风炉,采用两烧两送方式工作,烧炉采用DCS(即Distributed control system,直译为分散控制系统)进行控制的,对煤气和空气采取双闭环比值控制的方式进行配比燃烧,由操作工根据拱顶温度的变化情况及废气残氧量不定时地修改空燃比。为了满足高炉对高风温的需要。一般采用尽量提供足够的焦炉煤气或热值较高的转炉煤气,采用废气含氧量加双闭环比值控制和过量氧气系数的办法来满足自动控制和高风温的需要。 在热风炉作业中要保护设备而须管理格子砖温度分布,此外还因使能耗最小而需在燃烧时对煤气流量作最优设定。前者除了保护拱顶使不超上限温度外,由于硅变形点为1350℃以下,为防止达到此温度时硅砖膨胀而破裂,还须在送风末期管理这一温度。现有技术的热风炉煤气等流量自动设定主要是按热平衡和检测数据来计算送风终了时的蓄热量,但没有足够精确度的残热推断和温度分布的数学模型,为此还需手动设定。 但上述方法不足在于: 使用方法(1)无法用最经济简单方法提供尽可能高温度的热风。而最经济科学的方法是,尽可能多的使用高炉煤气,并且在保证高风温情况下尽可能减少焦炉或转炉煤气的使用量。 使用方法(2)由于其使用废气烟道中装有的残氧量测量仪对残氧量进行闭环跟踪调节,由于其控制输入参数为已发生,因此调节反映较慢,不利于节

约能源,同时此也不能满足最佳空燃比所要求的精度。 三、国内外解决同类问题的技术方案 目前国内高炉热风炉的烧炉控制方式因建炉时间和体积的不同以及不同钢铁企业之间,其控制水平千差万别,但目前均无法真正实现烧炉的自动控制,主要有以下几种控制方式: A、采用分立仪表控制的,多见于一些比较老的中小高炉(100-1000m3)上,这部分热风炉燃烧控制都是手工调节,燃烧效果的好坏取决于热风炉操作工的“勤心”、“细心”、“精心”。根本谈不上自动控制。 B、采用PLC或DCS进行控制的,多见于后期新建或大修后改造过,有些企业对煤气和空气的配比燃烧采取双闭环比值控制的方式,或分别采用单回路自动控制,由操作工根据拱顶温度的变化情况不定时地修改空燃比,以提高拱顶温度。但是煤气热晗值的变化是比较频繁的,尽管有经验丰富且勤快的操作工经常操作,也难于保证给出的空燃比是最佳的,何况要保持其长期性。加上调节阀频繁动作,容易损坏。因此热风炉的烧炉控制根本无法达到最优。虽然部分热风炉采用新的工艺技术,使热风炉送出的风温较高,多在1050-1250℃之间,甚至更高,但是还是无法使热风炉的烧炉真正实现自动控制,并使得空燃比随时处于最佳值。 C、国内部分高炉操作水平很高的企业,对热风炉自动烧炉和对风温要求自然也很高,因此想尽办法提高风温并实现自动烧炉,除热风炉采用新的工艺技术外,在烧炉控制上除采取上述双闭环比值控制外,还增加煤气热值仪和废气分析仪,这样从理论上可以实现自动烧炉。但是煤气热值仪和废气分析仪滞后大、控制精度低、稳定性差、维护量极大,在自动烧炉和风温的提

热风炉施工方案

热风炉施工方案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

编制说明 1、编制目的: 热风炉本体、框架和设备是唐山东海特钢有限公司3#高炉工程的重要部分。热风炉主体和框架的安装是整个热风炉工程安装的重点,为保证其安装的质量和工期,特编制此方案。 2、编制宗旨: 确保热风炉壳体和框架安装的施工保质、保量、保工期,使业主满意。

编制依据 本施工方案的编制依据是施工文件、施工图纸、国家现行规范、规程、标准、GB/T19001—2000质量标准、河北省有关建筑施工现场安全管理标准,并结合以往施工的同类工程特点、施工经验,我公司施工能力、技术装备状况制订的。方案编制所遵循的标准及规范: 《钢结构设计规范》 GBJ17-88 《钢结构制作安装规范》 YB9254-95 《钢结构工程质量检验评定标准》 GB50221-95 《工程测量规范》 GB50026-93 《建筑钢结构焊接技术规程》 JGJ81-2002 《钢结构高强螺栓连接设计、施工及验收规程》 JGJ82-91 《建筑防腐蚀工程施工及验收规范》 GB50212-91 《建筑防腐工程质量检验评定标准》 GB50224-95 《焊接质量保证一般原则》 GB/T12467-90 《钢结构工程施工质量验收规范》 GB50205-2001 《建筑工程质量检验评定标准》 GBJ301-88 《冶金机械设备安装工程施工及验收规范—炼铁设备》 YBJ208-85《机械设备安装工程施工及验收通用规范》 GB50231-98 《冶金机械设备安装工程施工及验收规范—通用规范》 YBJ201-83 《冶金机械设备安装工程质量检验评定标准》(炼铁设备) YBJ243-92 《建筑施工高处作业安全技术规范》 GBJ80-91 《施工现场临时用电安全技术规范》 JGJ46-88 《建筑机械使用安全技术规程》 JGJ33-2001 《建设工程施工现场供用电安装规范》 GB50194-93 《工业金属管道工程施工及验收规范》 GB/50235-1997 《现场设备、工业管道焊接工程施工及验收规范》 GB/50236-1998 《钢焊缝手工超声波探伤》 GB11345

热风炉施工组织技术方案

酒钢1#高炉热风炉技术改造 耐火材料内衬砌筑工程施工组织设计 1、编制说明 由于1号高炉热风炉系统原来由包钢设计院设计,现在由武汉钢铁设计院设计,这部分有关技术资料、图纸不齐全。所以,在编写过程中,我们主要结合武钢高炉大修改造工程的施工方式,加以综合,并根据以往高炉施工的成熟经验编制而成。 在编制过程中,受技术资料不全的限制,难免有一些缺陷,我们将在图纸、技术资料到齐后,再予以修改、补充。 编制依据: ⑴酒钢1#热风炉改造施工承包合同技术附件及初步设计; ⑵国家现行有关规范GBJ211—87《工业炉砌筑工程施工及验收规范》; ⑶ GB50309—92《工业炉砌筑工程质量检验评定标准》; ⑷ GB/T19002—ISO9002 质量体系标准; ⑸原冶金部(94)冶建字079号文; ⑹建设部第29号令《建筑工程质量管理办法》。 ⑺其它有关资料:武钢几个高炉砌筑施工组织设计、作业设计、1994年新版《工业炉手册》等有关文献。 2、工程简况 3)热风炉系统技术改造工程由武汉设计院总承包,其改1800m酒钢1号高炉(造内容为:将原有热风炉4座全部折除,利用1#、2#、3#热风炉基础新建3座热风炉,原4#热风炉处新建1座双预热设施。热风主管改造后内径加大、标高上抬约6m。烟气支管也由地下改为地上。新建1座70m钢筋砼结构烟囱。 2.1 炉型参数 炉型:高温长寿内燃式热风炉 热风炉筒身直径: 9.34 m 拱顶园柱段直径: 10.74 m 2>36.8 m蓄热室面积: 2燃烧室面积:>10.5 m251000 m每座热风炉加热面积:>2.2结构特点 2.2.1热风炉结构形式 ⑴采用自立式悬链线拱顶: 拱顶与热风炉墙体分开,其重量由设在炉壳内壁的金属托架分层支承。在拱顶内衬与墙体之间设置滑动缝,避免墙体与拱顶内衬相对位移产生阻力起破坏作用。高温内燃式拱顶耐火砖采用板块结构可以吸收拱顶砌体的热膨胀,消除温差应力

冬季热风炉安全技术措施详细版

文件编号:GD/FS-8015 (解决方案范本系列) 冬季热风炉安全技术措施 详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

冬季热风炉安全技术措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 随着天气逐渐变冷,因热风炉未投用,致使主、副井至井下淋头水点积冰,存在不安全隐患,根据县局包保组检查,暂停止对井下的工程建设。现热风炉具备投用条件,为确保热风炉投用后,及时对井下巷道结冰进行处理,特制定本安全技术措施,以保证矿井的施工安全。 一、成立专门的除冰队伍 具体由安全副矿长白云啸负责,跟班领导现场指挥,运输队高明明、赵建云负责设施。 第一小队组长:白云啸 成员:高明明张彦昌高建云 第二小队组长:张建平

成员:赵建云王福平党永靖 二、安全技术措施 首先除冰过程中要注意工作人员的自身安全,操作人员站在冰块掉落的侧上方,防止由于冰块松动大面积掉落伤人。其次小队里要有专门负责观察周边环境的工作人员,防止操作过程中有过往行人。施工过程中所有人员要听从施工负责人的统一指挥,任何人不得违章作业,违章指挥。小队人员要携带必要的除冰工具(3米长的2吋钢管,顶端科焊接成铲状),两个小队分别从主斜井和副斜井井口开始由上往下,依次进行除冰。除冰重点位置为: 一小队:主斜井-煤仓上口进风行人巷-行人台阶-装载硐室上、下段 二小队:副斜井-U钢支护段-行人台阶-道轨-井底车场-集中轨道大巷-8103回风顺槽-采区轨道大巷

热风炉施工方案

A-2 施工组织设计(方案)报审表 工程名称:唐山市恒安实业异地改造工程编号: 湖南和天工程项目管理有限公司

唐山市恒安实业异地改造工程 1#、2#高炉热风炉系统各管道制作及 安装施工方案 编制:日期: 审核:日期: 批准:日期: 二十冶唐山恒安专业项目部 2007年7月17日

一:工程概况 1、工程实物量 唐山市恒安实业异地改造工程1#2#高炉热风炉系统设备包括: 热风阀DN1200、倒流休风阀DN900、预热煤气切换阀DN1400、煤气切断阀DN1000、煤气调节阀DN900、预热空气切换阀DN1200、助燃空气切断阀DN1000、助燃空气调节阀DN900、冷风阀DN1100、冷风均压阀DN150、混风切断阀DN700、混风调节阀DN500、冷风放风阀DN1200、烟道切断阀DN2800、烟道阀DN1200、废气阀DN350、波纹补偿器DN1900、波纹补偿器DN1000,卷制管道φ2816㎜~φ377㎜共约1100米。 2、工程特点 工期短,交叉、高空作业多,主要为地面组对,高空上管,找正焊接,搭设临时平台。由于管道口径大,管道重,弯头多,制作量大,需搭设临时制作平台,安装时需采用25吨汽车吊配合。 二: 施工准备工作 1、做好施工图纸自审、会审工作,发图纸设计问题尽可能在施工前与设计人员及时沟通解决。 2、做好技术交底工作,使每个施工人员能仔细了解其施工的设备安装方法、要点、质量要求,以及在安装中可能出现的问题及处理方法。 3、施工场地内做到三通一平,达到送水、送电要求。 4、编制施工方案,并得到甲方及监理的认可。 5、做好人员及机具的准备工作。 三、主要施工方法及要求 1、卷管制作 (1)卷管前应根据管道的直径确定下料板的长度L=(φ-t)×π。其中φ为管的外径,t为管壁厚度,要求其下料板应归整矩形,其对角线偏差不大于3mm,长度偏差为±6mm。 (2)卷管前应将两端压弧,其弧度大小应与校弧板一致,压板时必须保证板边与压辊平齐,其所压滚弧应用校圆样板进行校验,要求

热风炉工程安全技术措施

编号:SM-ZD-21305 热风炉工程安全技术措施Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

热风炉工程安全技术措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 一、工程热风炉施工职工安全技术通则 1、进入施工现场要严格服从甲方的安全管理要求。 2、严格遵守《建筑现场安全生产六大纪律》、《建筑安装工人安全技术操作规程》和《施工现场临时用电技术规范》等规范。 3、进入施工现场必须穿戴好劳动保护品,必须带安全帽,穿劳保鞋。 4、2米以上高空作业必须系好安全带,并高挂低用,严禁高空坠物,安全帽必须系好下颌带。 5、施工现场严禁吸烟。 6、起重组装、安装构件,要做到心中有数,明白用绳大小,构件基本重量,吊车的性能参数。 7、吊装所用的吊耳、钢绳和绳扣要合理选择,大小要与所吊重量匹配。吊装前应检查所用吊具,特别是钢绳。

8、施工时需躲让天车和特种车,起重工必须用口哨指挥天车,哨声及手势应符合规范。 9、特种作业人员必须持有效证件上岗。电工、焊工必须穿绝缘鞋。 氧气瓶、乙炔瓶必须安装好压力表和方回火装置,必须按安全距离摆放,不得小于5米,与明火距离不得小于10米。 10、施工现场使用的临时电源线,必须经审批并由专业电工按标准安全铺设。所使用的配电箱,应采用所需容量的标准化配电箱,并有专人维护与管理,安装或拆卸完毕,配电箱柜门应及时关闭。 11、电焊机必须安装可靠的接零接地保护。电焊机接线端子处必须有保护罩,一次线不得超过2-3米,二次线要使用整根导线,中间不应有接头和破皮;如需加长,接头处外表应保持良好的绝缘性能。二次线严禁搭在气瓶或其它易燃易爆物品的容器或材料上。 12、手持电动工具必须符合安全要求,并安装漏电保护器。

相关主题
文本预览
相关文档 最新文档