当前位置:文档之家› 锚栓锚固长度取值分析

锚栓锚固长度取值分析

锚栓锚固长度取值分析
锚栓锚固长度取值分析

锚栓锚固长度取值分析

《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。

一、问题的提出

《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。

结合具体工程实例:山东富伦钢厂余热回收锅炉框架,抗震设防烈度7度0.1g。经过计算地脚螺栓选用M20 Q235B,锚栓类型采用直钩锚栓。基础混凝土等级C20。

根据《钢结构设计手册上册》(第三版)表10-6 锚栓锚固长度为400mm。

根据《钢结构节点设计手册》(第二版)表9-75 锚栓锚固长度为520mm

根据《地脚螺栓(锚栓)通用图》HG/T21545-2006锚栓锚固长度为410×1.05=430mm

因此按哪本手册(图集)进行设计的问题就产生了。

二、采用两种方法分析计算

A 方法一:根据混凝土结构设计规范中的锚固长度计算

地脚螺栓埋入基础中的的锚固长度属于混凝土结构范畴,地脚螺栓的有小直径面积及地脚螺栓的强度设计值属于钢结构范畴,因此地脚螺栓的锚固长度可根据《混凝土结构设计规范》

GB50010-2002、与《钢结构设计规范》GB50017-2003进行分析计算,

la=α×fy/ft×d (《混凝土结构设计规范》GB50010-2002 9.3.1-1)

α取0.16 (《混凝土结构设计规范》GB50010-2002 表9.3.1)

ft取1.1N/mm2(《混凝土结构设计规范》GB50010-2002 表4.14)

fy取140 N/mm2(《钢结构设计规范》GB50017-2003 表 3.4.1-4)

la=0.16×140 N/mm2/1.1N/mm2×20mm=408mm

根据《建筑抗震设防分类标准》GB50223-95 7.04条余热锅炉框架为丙类建筑。

抗震等级三级(《混凝土结构设计规范》GB50010-2002表11.1.4)

laE=1.05 la=408×1.05=429mm

B方法二:根据二力平衡原理利用理论公式计算得出

理论公式:fy·Ae=2πr·la·ft

根据上述计算方法可得出下表:

分析上表中的数据可以得出:

《地脚螺栓(锚栓)通用图》HG/T21545-2006中的锚栓锚固长度和计算过的结果几乎完全一致。

《钢结构节点设计手册》(第二版)中给出的锚固长度比计算结果偏大约10%~20%。

《钢结构设计手册上册》(第三版)中给出的锚固长度比计算结果偏小约2%~10%

理论公式得出得值比较以上3本手册与图集的锚固长度还是比较偏于安全的。

三、结论

当我们在设计锚栓的锚固长度时,可以直接套用《地脚螺栓(锚栓)通用图》HG/T21545-2006中给出的锚固长度。在使用《钢结构节点设计手册》(第二版)或《钢结构设计手册上册》(第三版)设计锚固长度时,由于两本设计手册都未考虑根据抗震设防烈度的不同划分锚固长度,因此我们可以根据工程实际的抗震设防烈度适当增减锚栓的锚固长度。

另:补充。

根据01SG519,地锚栓的长度长度25d,弯钩长度4d

地脚螺栓锚固长度规范资料

地脚螺栓锚固长度规范 篇一:地脚螺栓锚固长度问题 请教地脚螺栓锚固长度问题 该帖被浏览了2652次| 回复了25次 《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。 请教各位前辈《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)是根据什么的出的锚固长度。 本人的计算方法上有何错误 以下是本人写的一个分析总结:锚栓锚固长度取值分析一、问题的提出 《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。 结合具体工程实例:山东富伦钢厂余热回收锅炉框架,抗震设防烈度7度0.1g。经过计算地脚螺栓选用M20 Q235B,锚栓类型采用直钩锚栓。基础混凝土等级C20。 根据《钢结构设计手册上册》(第三版)表10-6 锚栓锚固长

度为400mm。 根据《钢结构节点设计手册》(第二版)表9-75 锚栓锚固长度为520mm 根据《地脚螺栓(锚栓)通用图》HG/T21545-2006锚栓锚固长度为410×1.05=430mm 因此按哪本手册(图集)进行设计的问题就产生了。 二、分析计算 计算方法一: 地脚螺栓埋入基础中的的锚固长度属于混凝土结构范畴,地脚螺栓的有小直径面积及地脚螺栓的强度设计值属于钢结构范畴,因此地脚螺栓的锚固长度可根据《混凝土结构设计规范》GB50010-2002、与《钢结构设计规范》GB50017-2003进行分析计算, la=α×fy/ft×d (《混凝土结构设计规范》GB50010-2002 9.3.1-1) α取0.16 (《混凝土结构设计规范》GB50010-2002 表9.3.1) ft取1.1N/mm2(《混凝土结构设计规范》GB50010-2002 表4.14) fy取140 N/mm2(《钢结构设计规范》GB50017-2003 表3.4.1-4) la=0.16×140 N/mm2 / 1.1N/mm2×20mm=408mm 根据《建筑抗震设防分类标准》GB50223-95 7.04条余热

埋件计算

埋件计算 建筑埋件系统 设计计算书 设计: 校对: 审核: 批准: 二〇一四年三月二十二日

目录 1 计算引用的规范、标准及资料 (1) 2 幕墙埋件计算(粘结型化学锚栓) (1) 2.1 埋件受力基本参数 (1) 2.2 锚栓群中承受拉力最大锚栓的拉力计算 (1) 2.3 群锚受剪内力计算 (2) 2.4 锚栓或植筋钢材破坏时的受拉承载力计算 (2) 2.5 锚栓或植筋钢材受剪破坏承载力计算 (3) 2.6 拉剪复合受力承载力计算 (3) 3 附录常用材料的力学及其它物理性能 (4)

幕墙后锚固计算 1 计算引用的规范、标准及资料 《玻璃幕墙工程技术规范》 JGJ102-2003 《金属与石材幕墙工程技术规范》 JGJ133-2001 《混凝土结构后锚固技术规程》 JGJ145-2004 《混凝土结构加固设计规范》 GB50367-2006 《混凝土结构设计规范》 GB50010-2010 《混凝土用膨胀型、扩孔型建筑锚栓》 JG160-2004 2 幕墙埋件计算(粘结型化学锚栓) 2.1埋件受力基本参数 V=4000N N=5000N M=200000N·mm 选用锚栓:慧鱼-化学锚栓,FHB-A 12×80/100; 2.2锚栓群中承受拉力最大锚栓的拉力计算 按5.2.2[JGJ145-2004]规定,在轴心拉力和弯矩共同作用下(下图所示),进行弹性分析时,受力最大锚栓的拉力设计值应按下列规定计算: 1:当N/n-My 1/Σy i 2≥0时: N sd h=N/n+My 1 /Σy i 2 2:当N/n-My 1/Σy i 2<0时: N sd h=(NL+M)y 1 //Σy i /2 在上面公式中: M:弯矩设计值; N sd h:群锚中受拉力最大锚栓的拉力设计值; y 1,y i :锚栓1及i至群锚形心轴的垂直距离; y 1/,y i /:锚栓1及i至受压一侧最外排锚栓的垂直距离; L:轴力N作用点至受压一侧最外排锚栓的垂直距离;

化学锚栓拉拔力

学锚栓, 一、基本参数 工程所在地:青岛市 幕墙计算标高:15.33 m 玻璃设计分格:B×H=1549×2000 mm B:玻璃宽度 H:玻璃高度 设计地震烈度:7度 地面粗糙度类别:A类 二、荷载计算 1、风荷载标准值 W K:作用在幕墙上的风荷载标准值(KN/m2) βgz:瞬时风压的阵风系数,取1.60 μs:风荷载体型系数,取1.2 μz:风荷载高度变化系数,取1.527 青岛市地区风压W0=0.6 KN/m (按50年一遇) W k=βgzμsμz W0 =1.60×1.2×1.527×0.60 =1.76 KN/m2>1.0 KN/m2 取W K=1.76 KN/m2

2、风荷载设计值 W :风荷载设计值 (KN/m 2) r w :风荷载作用效应的分项系数,取1.4 W=r w ×W k =1.4×1.76 =2.46 KN/m 2 3、玻璃幕墙构件重量荷载 G AK :玻璃幕墙构件自重标准值,取0.50 KN/m 2 G A :玻璃幕墙构件自重设计值 G A =1.2×G AK =1.2×0.50=0.60 KN/m 2 4、地震作用 q EK :垂直于幕墙平面的分布水平地震作用标准值 (KN/m 2) q E :垂直于幕墙平面的分布水平地震作用设计值 (KN/m 2) βE :动力放大系数,取5.0 αmax :水平地震影响系数最大值,取0.08 G AK :幕墙构件(包括玻璃和接头)的重量标准值,取0.50 KN/m 2 q EK =AK max E G ?α?β =5.0×0.08×0.50 =0.20KN/m 2 q E =γE ×q EK =1.3×0.20 =0.26 KN/m 2 5、荷载组合 风荷载和地震荷载的水平分布作用标准值 q K =ψW ·q WK +ψE ·q EK =1.0×1.76+0.5×0.20 =1.86 KN/m 2 风荷载和地震荷载的水平分布作用设计值 q=ψW ·γW ·q WK +ψE ·γE ·q EK =1.0×1.4×1.76+0.5×1.3×0.20 =2.59 KN/m 2 第二章、化学锚栓强度计算 一、部位要素 该处最大计算标高按15.33 m 计,受到由水平风荷载和地震荷载作用效应的组合荷载

化学锚栓计算

化学锚栓计算: 采用四个级斯泰NG-M12×110粘接型(化学)锚栓后锚固,h ef =110mm ,A S =58mm 2 , f u =500N/mm 2 ,f y =300N/mm 2 。 荷载大小: N= KN V= KN M=×= KN ·m 一、锚栓内力分析 1、受力最大锚栓的拉力设计值 因为36122 1 5.544100.166105042250 My N n y ???-=-??∑=556 N >0 故,群锚中受力最大锚栓的拉力设计值: =2216 N 2、承受剪力最大锚栓的剪力设计值 化学锚栓有效锚固深度:ef h '=ef h -30=60 mm 锚栓与混凝土基材边缘的距离c=150 mm <10ef h '=10×60=600 mm ,因此四个锚栓中只有部分锚栓承受剪切荷载。 承受剪力最大锚栓的剪力设计值: 2 h Sd V V = =2074/2=1037 N 二、锚固承载力计算 1、锚栓钢材受拉破坏承载力 锚栓钢材受拉破坏承载力标准值:

,5850029000Rk s s stk N A f ==?=N 锚栓钢材破坏受拉承载力分项系数: 锚栓钢材破坏时受拉承载力设计值: ,,,29000145002.0 Rk s Rd s RS N N N γ= ==N >h Sd N =2216 N 锚栓钢材受拉承载力满足规范要求! 2、混凝土锥体受拉破坏承载力 锚固区基材为开裂混凝土。 单根锚栓理想混凝土锥体破坏时的受拉承载力标准值: = N 混凝土锥体破坏情况下,确保每根锚栓受拉承载力标准值的临界间距: 混凝土锥体破坏情况下,确保每根锚栓受拉承载力标准值的临界边距: 基材混凝土劈裂破坏的临界边距: 则,c 1=150 mm >,90cr N c =mm ,取c 1=90 mm 边距c 对受拉承载力降低影响系数: ,,90 0.70.3 0.70.390 s N cr N c c ψ=+=+?= 表层混凝土因密集配筋的剥离作用对受拉承载力降低影响系数: ,9030 0.50.5200200ef re N h ψ-=+=+ =

地脚螺栓锚固长度

土木在线论坛? 结构? 钢结构? 请教地脚螺栓锚固长度问题 请教地脚螺栓锚固长度问题 土木在线论坛? 结构? 钢结构? 请教地脚螺栓锚固长度问题 该帖被浏览了8865次| 回复了32次 《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。 请教各位前辈《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第 二版)是根据什么的出的锚固长度。 本人的计算方法上有何错误 以下是本人写的一个分析总结:锚栓锚固长度取值分析 一、问题的提出 《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。 结合具体工程实例:山东富伦钢厂余热回收锅炉框架,抗震设防烈度7度0.1g。经过计算地脚螺栓选用M20 Q235B,锚栓类型采用直钩锚栓。基础混凝土等级C20。 根据《钢结构设计手册上册》(第三版)表10-6 锚栓锚固长度为400mm。 根据《钢结构节点设计手册》(第二版)表9-75 锚栓锚固长度为520mm 根据《地脚螺栓(锚栓)通用图》HG/T21545-2006锚栓锚固长度为 410×1.05=430mm 因此按哪本手册(图集)进行设计的问题就产生了。 二、分析计算 计算方法一: 地脚螺栓埋入基础中的的锚固长度属于混凝土结构范畴,地脚螺栓的有小直径面积及地脚螺栓的强度设计值属于钢结构范畴,因此地脚螺栓的锚固长度可根据《混凝土结构设计规范》GB50010-2002、与《钢结构设计规范》GB50017-2003 进行分析计算, la=α×fy/ft×d (《混凝土结构设计规范》GB50010-2002 9.3.1-1) α取0.16 (《混凝土结构设计规范》GB50010-2002 表9.3.1) ft取1.1N/mm2(《混凝土结构设计规范》GB50010-2002 表4.14) fy取140 N/mm2(《钢结构设计规范》GB50017-2003 表 3.4.1-4)la=0.16×140 N/mm2/ 1.1N/mm2×20mm=408mm 根据《建筑抗震设防分类标准》GB50223-95 7.04条余热锅炉框架为丙类建 筑。 抗震等级三级(《混凝土结构设计规范》GB50010-2002 表11.1.4)

后置埋件计算

幕墙埋件计算 基本参数: 1:计算点标高:26.2m; 3:幕墙立柱跨度:L=4500mm,短跨L1=550mm,长跨L2=3950mm; 3:立柱计算间距:B=1300mm; 4:立柱力学模型:双跨梁,侧埋; 5:板块配置:中空玻璃; 6:选用锚栓:化学锚栓 M12*160;锚板采用Q235B的300×200×8 mm钢板。荷载标准值计算 (1)垂直于幕墙平面的分布水平地震作用: qEk=βEαmaxGk/A =5.0×0.08×0.0005 =0.0002MPa (2)连接处水平总力计算: 对双跨梁,中支座反力R1,即为立柱连接处最大水平总力。 qw:风荷载线荷载设计值(N/mm); qw=1.4wkB =1.4×0.001551×1300 =2.823N/mm qE:地震作用线荷载设计值(N/mm); qE=1.3qEkB =1.3×0.0002×1300 =0.338N/mm 采用Sw+0.5SE组合:……5.4.1[JGJ133-2001] q=qw+0.5qE =2.823+0.5×0.338 =2.992N/mm N:连接处水平总力(N); R1:中支座反力(N); N=R1 =qL(L12+3L1L2+L22)/8L1L2 =2.992×4500×(5502+3×550×3950+39502)/8/550/3950 =17370.342N (3)立柱单元自重荷载标准值: Gk=0.0005×BL =0.0005×1300×4500 =2925N (4)校核处埋件受力分析: V:剪力(N);

N :轴向拉力(N),等于中支座反力R1; e0:剪力作用点到埋件距离,即立柱螺栓连接处到埋件面距离(mm); V=1.2Gk =1.2×2925 =3510N N=R1 =17370.342N M=e0×V =106×3510 =372060N ·mm 二、埋件计算 锚板面积 A=60000.0 mm2 0.5fcA=429000.0 N N=11547.3N < 0.5fcA 锚板尺寸可以满足要求! 锚筋采用后植锚固的形式,锚筋采用2-M12化学螺栓的埋设方式,锚板采用Q235B 的300×200×8 mm 钢板。 N 拔=n z M N 1)2(?+?β<5 .1拉拔N =21)100416000210738( 25.1?+? =7969 N M12化学螺栓单个设计值为16200 N ; 可知均大于N 拔=7969 N 所以满足要求 根据以上计算,整个幕墙埋件设计满足设计要求,达到使用功能,可以正常使用。

后锚固锚栓取样标准

工程现场检测(十)

钢结构(十一)

室内空气检测(十二)

CECS 03:2007 取芯法检测混凝土强度取样规定:批量:1. 数量应根据检验批的容量确定。标准芯样试件的最小样本量不宜少于15个,小直径芯样试件的最小样本量应适当增加。2. 芯样应从检测批的结构构件中随机抽取。每个芯样取自一个构件或结构的局部部位。单个:单个构件的混凝土有效芯样的数量不应少于3个;对于较小构件,不得少于2个。DBJ/T01-78-2003(泵送)回弹应在成型28d~365d内试验JGJ/T23-2001 (通用)回弹法检测混凝土抗压强度检测数量:1、单个检测:适用于当被检构件数量少于10个时。单个结构或构件的检测。测区不应少于10个,小于(4.5×0.3)平方米的构件测区不应少于5个。2、批量检测:适用于同生产工艺、强度等级、原材料、配合比、成型工艺、养护条件、龄期相近的同类结构或构件按批进行检测的构件,抽检数量不少于同批构件总数的30%,且构件数量不得少于10件回弹应在成型14d~1000d内试验DBJ/T01-78-2003JGJ/T23-2001 碳化深度测点数不应少于构件测区的30% 1 混凝土GB50204-2002 DBJ01-82-2004 钢筋保护层厚度GB50204-2002取样规定:1、梁类、板类构件抽检比例均为2%,且不小于5个构件;2、悬挑构件抽检比例均不宜小于50%。DBJ01-82-2004取样规定:1、梁类、板类构件抽检比例均为2%,且不小于5个构件;2、悬挑梁类、板类构件应各抽取构件数量10%且不少于10个构件。检测数量:1、梁类:检测全部纵向受力钢筋的保护层厚度;2、板类:检测不少于6根纵向受力钢筋。拆模后,装修前试验 砌体GBJ129-90 抗压强度参照砌体的组批原则。但在同等条件下,每组试件的数量,对于抗压试验,不应少于3件。 3 砂浆GB/T50315-2000回弹法检测抗压强度每一检测单元内,应随机选择6个构件(单片墙体、柱),作为6个测区。当一个检测单元不足6个构件时,应将每个构件作为一个测区。回弹应在成型28d后试验 4 后锚固拉拔(螺栓、植筋、化学锚栓等)JGJ145-2004 拉拔力取样规定:同规格、型号、基本相同部位为一批。取样数量:按每批锚栓总数的1/1000计算,且不少于3根。植筋拉拔:1、钢筋间距不小于200mm 2、外露长度不小于600mm 3天后试验5 建筑工程(饰面砖、保温板+饰面砖)拉拔JGJ110-2008 粘结强度1、施工前应做饰面砖样板件粘结强度进行检验;每种类型的基层上应各粘贴1m2饰面砖样板件,每种类型的样板件应各指制一组3个饰面砖粘结强度试样。2、取现场粘贴饰面砖粘结强度检验应以每1000m2同类墙体饰面砖为一个检验批,不足1000m2应按1000m2计,每批应取一组3个试件,每相邻的三个楼层应至少取一组试样,试样应随机取样,取样间距不得少于500mm。3、带饰面砖的预制墙板以1000m2同类带饰面砖的预制板为一个检验批,不足1000m2应按1000m2计,每批应取一组每组应为3块板,煤矿取一个试样试验。水泥基胶粘剂粘贴,按胶粘剂使用说明书规定的时间或粘贴14d后试验,粘贴28天以内达不到标准,应以28d~60d内约定时间检验的粘结强度为准。 6、围护结构DBJ/T01-44-2000传热系数分前中后三次取样,每次取2个点。热流计法 7 、外墙节能构造钻心检验GB50411-2007 保温层厚度外墙取样数量为一个单位工程每种节能保温做法至少取3个芯样,取样部位宜均匀分布,不宜在同一个房间外墙上取2个或2个以上芯样。试体粘贴14天后试验 钢结构(十一) 1 GB50205-2001 焊缝超声波探伤一级焊缝,检查数量为100%;二级焊缝,检查数量为20%。 2 JB/T6061-2007 磁粉探伤 3 GB50205-2001 螺栓实物最小荷载高强度大六角螺栓每一规格螺栓抽查8个 4 GB50205-2001 GB/T1321-2006 连接副扭矩系数高强度大六角螺栓应在施工现场待安装的螺栓批中随机抽取,每批应抽取8套连接副进行复验。 5

梯笼专项施工方案范本

梯笼专项施工方案

第一节编制依据 《建筑施工手册》第四版中国建筑工业出版社; 《钢结构设计规范》(GB50017- ) 中国建筑工业出版社; 《建筑结构荷载规范》(GB50009- )中国建筑工业出版社; 《建筑施工脚手架实用手册(含垂直运输设施)》中国建筑工业出版社; 《建筑施工安全检查标准》JGJ59-99 中国建筑工业出版社; 《建筑施工计算手册》江正荣著中国建筑工业出版社; 《建筑地基基础设计规范》(GB 50007- ) 第二节工程概况 上海市轨道交通12号线土建工程29标段工程;属于深基坑;;地下2层;基坑局部深度13.58m;总建筑面积:11019.34平方米;施工单位:中铁二十四局集团有限公司。 本工程由上海轨道交通12号线发展有限公司投资建设,中铁第四勘察设计院集团有限公司设计,地质勘察,上海建科建设监理咨询有限公司监理,中铁二十四局集团有限公司组织施工; 第三节人行梯笼方案选择 本工程考虑到施工工期、质量和安全要求,故在选择方案时,应充分考虑以下几点: 1、笼体的结构设计,力求做到结构要安全可靠,造价经济合理。 2、在规定的条件下和规定的使用期限内,能够充分满足预期的安全性和耐久性。 3、选用材料时,力求做到常见通用、可周转利用,便于保养维修。

4、结构选型时,力求做到受力明确,构造措施到位,升降搭拆方便,便于检查验收; 5、综合以上几点,人行梯笼,还必须符合《建筑施工安全检查标准》要求,要符合市文明标化工地的有关标准。 6、结合以上人行梯笼设计原则,同时结合本工程的实际情况,综合考虑了以往的施工经验,决定采用以下1种人行梯笼方案: 选用规格为(3600×1700×2500)箱式深基坑施工行人安全B型梯笼。 第四节安装方案 1、施工前的准备工作: 1.1 梯笼安装前应对安装人员进行安全技术的培训。对质量及安全防护要求详细交底。 1.2 安装班组人员要有明确的分工,确定指挥人员,设置安全警戒区,挂设安全标志,并派监护人员排除作业障碍。 1.3 根据设计建筑基坑深度核对安装高度。 1.4 安装作业前检查的内容包括: 1.4.1箱式笼体的成套性和完好性; 1.4.2提升机构是否完整良好; 1.4.3基础位置和做法是否符合要求; 1.4.4附墙架连接埋件的位置是否正确和埋设牢靠; 1.4.5必备的各种安全装置是否具备和性能是否可靠。 2、梯笼安装:

化学锚栓计算(31041)(学习建筑)

化学锚栓计算: 采用四个5.6级斯泰NG-M12×110粘接型(化学)锚栓后锚固,h ef=110mm,A S=58mm2,f u=500N/mm2 ,f y=300N/mm2。 荷载大小: N=5.544 KN V=2.074 KN M=2.074×0.08=0.166 KN·m

一、锚栓内力分析 1、受力最大锚栓的拉力设计值 因为36122 1 5.544100.166105042250My N n y ???-=-??∑=556 N >0 故,群锚中受力最大锚栓的拉力设计值: 12 i h Sd My N N n y =+∑ 3625.544100.166105042250 ???=+?? =2216 N 2、承受剪力最大锚栓的剪力设计值 化学锚栓有效锚固深度:ef h '=ef h -30=60 mm 锚栓与混凝土基材边缘的距离c=150 mm <10ef h '=10×60=600 mm ,因此四个锚栓中只 有部分锚栓承受剪切荷载。 承受剪力最大锚栓的剪力设计值: 2 h Sd V V ==2074/2=1037 N 二、锚固承载力计算 1、锚栓钢材受拉破坏承载力 锚栓钢材受拉破坏承载力标准值: ,5850029000Rk s s stk N A f ==?=N 锚栓钢材破坏受拉承载力分项系数: S, 1.25001.2 2.0300 stk R N yk f f γ?===≥1.4 1.0-1.55 锚栓钢材破坏时受拉承载力设计值: ,,,29000145002.0Rk s Rd s RS N N N γ===N >h Sd N =2216 N 锚栓钢材受拉承载力满足规范要求!

三种典型地脚螺栓锚固能力探讨

三种典型地脚螺栓锚固能力探讨 摘要:本文对三种典型地脚螺栓端头形式的抗拉承载力进行了计算,重点考虑 了不同端头形式与埋置深度的关系;并在埋置深度一定时,计算抗拉承载力大小;在抗拉承载力一定的情况下,计算埋置深度的大小。分析了端头形式对抗拉承载 力的影响,认为对于锚板式地脚螺栓,在相同的抗拉承载力作用下,其埋置深度 要小于其余两种形式的地脚螺栓,并通过实际算例,证明了锚板式地脚螺栓布置 更加灵活,对地脚螺栓的设计与施工有一定的指导意义。 关键词:地脚螺栓;端部形式;抗拉强度;埋置深度 1.概述 地脚螺栓的作用是将设备牢固地连接起来,防止设备工作时发生移动或倾覆,并使设备在运行时所产生的不平衡力和振动传递到基础上去,保证设备的正常运转。 在美国核安全相关混凝土结构规范即ACI 349-06中对于锚板式地脚螺栓,参 考附录D 混凝土锚固中的计算方法和过程,可以设计出符合要求的锚板式地脚螺栓。对于弯钩式地脚螺栓和直勾式地脚螺栓,大多依靠设计经验或者直接从相应 的国标GB 799《地脚螺栓》中选取。在核电站的应用过程中,仅依靠设计经验等 方式选择的以上两种地脚螺栓过于保守,地脚螺栓需要埋入混凝土中的部分深度 很深;而现在核电站的设计需要考虑其建造的经济性,往往设备的布置空间紧凑,设备的混凝土基础的深度可能无法满足地脚螺栓所需埋深,需要在计算地脚螺栓 实际所需埋置深度的基础上适当调整便于布置。本文采用GB 50696-2011《钢铁 企业冶金设备基础设计规范》中对地脚螺栓锚固设计的方法,应用到弯钩式地脚 螺栓、直钩式地脚螺栓和锚板式地脚螺栓计算当中,对三种地脚螺栓的抗拉承载力、埋置深度进行对比分析;根据GB 50010中相关的条文说明,对三种地脚螺 栓端头形式的锚固能力进行了理论分析,得出结论。 三种典型的埋置式地脚螺栓示意图见图1。 图1 2.地脚螺栓抗拉承载力计算公式 在GB 50696-2011附录D D.0.3,地脚螺栓抗拉承载力设计值,应取按螺栓本 身受拉破坏、混凝土锥体破坏及螺栓与混凝土粘结破坏三种破坏模式计算得出的 承载力设计值中的最小值。根据GB 50696-2011附录D D.0.6的条文说明,当地脚 螺栓为非直杆螺栓时,则不考虑螺杆与混凝土之间的粘结力的作用。 针对本文中三种形式的地脚螺栓,假设三种地脚螺栓表面光滑,即混凝土对 螺栓没有粘结力作用。则地脚螺栓抗拉承载力设计值,应取按螺栓本身受拉破坏、混凝土锥体破坏得出的抗拉承载力设计值中的最小值。 2.1 地脚螺栓受拉破坏承载力设计值计算公式 地脚螺栓本身受拉承载力设计值计算公式: ——单个地脚螺栓抗拉承载力设计值,; ——地脚螺栓的抗拉强度设计值,; ——地脚螺栓的公称直径,。 对于钢材材质一定,地脚螺栓公称直径一定的条件下,对应地脚螺栓的受拉 承载力设计值是确定的,故不作展开分析。

HILTI化学锚栓-HVU承载力计算(喜利得CC法)

附录. HILTI化学锚栓-HVU承载力计算(喜利得CC法) 1 化学锚栓抗拉性能计算 单根锚栓抗拉承载力设计值取下列两者中的最小值: N Rd,c :混凝土边缘破坏承载力 N Rd,s :钢材破坏承载力 1.1 N Rd,c —— 混凝土锥体破坏抗拉承载力设计值计算 计算公式:N Rd,c =N Rd,c0×f B,N×f T×f A,N×f R,N 公式中:N Rd,c0 —— 混凝土锥体破坏的抗拉承载力设计值,通过标准值N Rk,c0由公式N Rk,c0 /γMc,N,得到,其中分项安全系数γMc,N 取 1.8, N Rd,c0按表L.1.1.1确定。 表L.1.1.1 混凝土锥体破坏的抗拉承载力设计值及标准埋置深度 锚栓规格 M8 M10 M12 M16 M20 N Rd,c0 (kN) 12.4 16.6 23.8 34.7 62.9 h nom (mm)1)80 90 110 125 170 注:1)h nom 为标准埋置深度 公式中:f B,N ——混凝土强度影响系数,不同标号混凝土系数按表L.1.1.2确定。 表L.1.1.2混凝土强度影响系数 混凝土强度等级立方体抗压强度 f B,N f ck,cube(N/mm2) C20 20 0.94 C25 25 1.0 C30 30 1.05

C40 40 1.12 C45 45 1.20 C50 50 1.25 C55 55 1.30 C60 60 1.35 注:f B,N 也可按公式计算: f B,N =1+(f ck,cube -25 ) / 80 限制条件: 20 N/mm2≤f ck,cube ≤ 60 N/mm2 公式中:f T ——埋置深度影响系数,可按公式计算: f T = h act / h nom 实际埋深限制h act: h nom≤h act≤2.0×h nom 公式中:f A,N ——锚栓间距影响系数,按表L.1.1.3确定。 表L.1.1.3锚栓间距影响系数 锚栓间距 锚栓规格 s(mm) M8 M10 M12 M16 M20 40 0.63 45 0.64 0.63 50 0.66 0.64 55 0.67 0.65 0.63 60 0.69 0.67 0.64 65 0.70 0.68 0.65 0.63 70 0.72 0.69 0.66 0.64 80 0.75 0.72 0.68 0.66 90 0.78 0.75 0.70 0.68 0.63 100 0.81 0.78 0.73 0.70 0.65 120 0.88 0.83 0.77 0.74 0.68 140 0.94 0.89 0.82 0.78 0.71 160 1.00 0.94 0.86 0.82 0.74 180 1.00 0.91 0.86 0.76 200 0.95 0.90 0.79 220 1.00 0.94 0.82 250 1.00 0.87 280 0.91 310 0.96 340 1.00 注:f A,N 也可按公式计算: f A,N =0.5 + s / 4 h nom 化学锚栓间距限制条件: s min ≤ s ≤ s cr,N s min = 0.5 h nom s cr,N = 2.0 h nom

钢结构用柱脚锚栓选用表

表1Q235 钢锚栓选用表 锚栓直径 d (mm) 锚栓截面 有效面积 A0 (cm) 连接尺寸锚固长度及细部尺寸每个螺栓 的受拉承 载力设计 值 t a N (KN) Ⅰ型Ⅱ型Ⅲ型 单螺母双螺母锚固长度l (mm)锚板尺寸 a (mm) b (mm) a (mm) b (mm) 当基础混凝土的强度等级为 C (mm) t (mm) C15 C20 C15 C20 C15 C20 20 22 24 27 30 33 36 39 42 45 2.448 3.034 3.525 4.594 5.606 6.936 8.167 9.758 11.21 13.06 45 45 50 50 55 55 60 65 70 75 75 75 80 80 85 90 95 100 105 110 60 65 70 75 80 85 90 95 100 105 90 95 100 105 110 120 125 130 135 140 500 550 600 675 750 825 900 1000 400 440 480 540 600 660 720 780 1050 1125 840 900 630 675 505 540 140 140 20 20 34.3 42.5 49.4 64.3 78.5 97.1 114.3 136.6 156.9 182.8

表2Q235 钢锚栓选用表 锚栓直径 d (mm) 锚栓截面 有效面积 A0 (cm) 连接尺寸锚固长度及细部尺寸每个螺栓 的受拉承 载力设计 值 t a N (KN) Ⅰ型Ⅱ型Ⅲ型 单螺母双螺母锚固长度l (mm)锚板尺寸 a (mm) b (mm) a (mm) b (mm) 当基础混凝土的强度等级为 C (mm) t (mm) C15 C20 C15 C20 C15 C20 48 52 56 60 64 68 72 76 80 14.73 17.58 20.30 23.62 26.76 30.55 34.60 38.89 43.44 80 85 90 95 100 105 110 115 120 120 125 130 135 145 150 155 160 165 110 120 130 140 150 160 170 180 190 150 160 170 180 195 205 215 225 235 1200 1300 1400 1500 1600 1700 1800 1900 2000 960 1040 1120 1200 1280 1360 1440 1520 1600 720 780 840 900 960 1020 1080 1140 1200 575 625 670 720 770 815 865 910 960 200 200 200 240 240 280 280 320 350 20 20 20 25 25 30 30 30 40 206.2 246.1 284.2 330.7 374.6 427.7 484.4 544.5 608.2

预埋件计算示例

预埋件计算书 ==================================================================== 计算软件:MTS钢结构设计系列软件MTSTool v2.0.1.6 计算时间:2013年03月27日10:32:08 ==================================================================== 一. 预埋件基本资料 采用化学锚栓:单螺母扩孔型锚栓库_6.8级-M20 排列为(环形布置):2行;行间距200mm;2列;列间距80mm; 锚板选用:SB12_Q235 锚板尺寸:L*B= 200mm×300mm,T=12 基材混凝土:C35 基材厚度:400mm 锚筋布置平面图如下: 二. 预埋件验算: 1 化学锚栓群抗拉承载力计算 轴向拉力为:N=10kN X向弯矩值为:Mx=9.5kN·m 锚栓总个数:n=2×2=4个 按轴向拉力与X单向弯矩共同作用下计算: 由N/n-M x*y1/Σy i2

=10×103/4-9.5×106×100/60000 =-13333.333 < 0 故最大化学锚栓拉力值为: N h=(M x+N*l)*y1'/Σy i')2 =(9.5×106+10×103×100)×200/60000 =28750=28750×10-3=28.75kN 所选化学锚栓抗拉承载力为(锚栓库默认值):Nc=90.574kN 故有: 28.75 < 90.574kN,满足 2 化学锚栓群抗剪承载力计算 X方向剪力:Vx=8.2kN X方向受剪锚栓个数:n x=4个 Y方向受剪锚栓个数:n y=4个 剪切荷载通过受剪化学锚栓群形心时,受剪化学锚栓的受力应按下式确定: V ix V=V x/n x=8200/4=2050×10-3=2.05kN V iy V=V y/n y=0/4=0×10-3=0kN 化学锚栓群在扭矩T作用下,各受剪化学锚栓的受力应按下列公式确定: V ix T=T*y i/(Σx i2+Σy i2) V iy T=T*x i/(Σx i2+Σy i2) 化学锚栓群在剪力和扭矩的共同作用下,各受剪化学锚栓的受力应按下式确定: V iδ=[(V ix V+V ix T)2+(V iy V+V iy T)2]0.5 结合上面已经求出的剪力作用下的单个化学锚栓剪力值及上面在扭矩作用下的单个锚栓剪力值公式 分别对化学锚栓群中(边角)锚栓进行合成后的剪力进行计算(边角锚栓存在最大合成剪力): 取4个边角化学锚栓中合剪力最大者为: V iδ=[(2050+0)2+(0+0)2]0.5=2.05kN 所选化学锚栓抗剪承载力为(锚栓库默认值):Vc=53.855kN 故有: V iδ=2.05kN < 53.855kN,满足 3 化学锚栓群在拉剪共同作用下计算 当化学锚栓连接承受拉力和剪力复合作用时,混凝土承载力应符合下列公式: (βN)2+(βV)2≤1 式中: βN=N h/Nc=28.75/90.574=0.3174 βV=V iδ/Vc=2.05/53.855=0.03807 故有: (βN)2+(βV)2=0.31742+0.038072=0.1022 ≤1 ,满足 三. 预埋件构造验算: 锚固长度限值计算: 锚固长度为160,最小限值为160,满足! 锚板厚度限值计算: 按《混凝土结构设计规范2002版》10.9.6规定,锚板厚度宜大于锚筋直径的0.6倍,故取 锚板厚度限值:T=0.6×d=0.6×20=12mm 锚筋间距b取为列间距,b=80 mm 锚筋的间距:b=80mm,按规范且有受拉和受弯预埋件的锚板厚度尚宜大于b/8=10mm,

化学锚栓技术

化学锚栓技术?适用范围 1、建筑物玻璃幕墙的锚固连接; 2、建筑物外墙各种干挂式天然人造石板的锚固连接; 3、工业和民用的各种电机设备与基座的锚固连接; 4、各种管道支架、电缆桥架的锚固; 5、电杆、灯柱底座安装的锚固; 6、户外或建筑物屋顶各种广告牌支架的锚固; 7、马路、公路、桥梁旁侧护栏支柱的安装固定; 8、港口码头船缆墩柱的锚固; 9、有关砖石砌体的加固连接。 ?化学锚栓的特点与应用范围

1、化学锚栓的组成 本公司成产的JCT化学锚栓由化学药剂(玻璃管装)与配套金属杆体(优质碳素钢或不锈钢)组成,如图所示。 2、产品特点 ⑴施工安装简捷、方便; ⑵承载快抗拉拔力大,抗剪切力高; ⑶抗震动,抗疲劳,耐老化; ⑷锚固后,可以施焊连接。 材料 1、基材 ⑴化学锚栓用于钢筋混凝土或素混凝土时,混凝土强度等级不宜小于C15。 ⑵化学锚栓用于砖石砌体时,砖石强度等级不宜小于MU7.5,砂浆强度等级不宜小于M5。 2、化学锚栓杆体 化学锚栓杆体由金属螺杆、螺母及垫片组成。螺杆可分为镀锌螺杆及不锈钢螺杆。金属螺杆的机械性能见表一

金属螺杆的机械性能(表一) 3、化学药剂由混合树脂、固化剂、填料剂玻璃管组成。 4、化学药剂在不同温度环境下的固化时间,见表二 化学药剂固化时间(表二) ?施工 1、现场基材表面清除浮尘后,按设计要求放好线,精心施工、确保孔距、孔径、深度尺寸的准确。 2、对螺杆应先除去表面的污物、浮锈,在用棉纱浸入丙酮、反复清洗,彻底擦除油污。 3、施工操作应严格遵守下列程序要求: ⑴用冲击钻或者水钻钻孔; ⑵用毛刷或者压缩空气清孔,建议重复2~3次,孔内不应由明水; ⑶将化学药剂放入清洁的孔内; ⑷用电钻旋转安装螺杆,将螺杆推入孔底,旋转时间不宜超过30秒,不允许采用冲击方式安装; ⑸固化前请勿晃动螺杆。 ?检测

地脚螺栓锚固长度问题

1.一般来说锚栓锚固长度取25d,弯头4d,另加外露丝扣长度150---200mm 2.地脚螺栓锚固长度根据锚固方式不同,取值不同,当螺栓采用1、2类锚固时时,取25d;当当螺栓采用3类锚固时时,取15d,具体取值可参见《建筑结构构造资料集》(下册)P145. 3.地脚螺栓锚固长度的计算可根据《混凝土结构设计规范》GB50010-2002 提供的公式(第114页): la=α*fy /ft *d 式中:la――锚栓的锚固长度; fy――锚栓的抗拉强度设计值 ft――混凝土轴心抗拉强度设计值 d――钢筋的公称直径 α――锚栓的的外形系数 锚栓直径大于25mm时,锚固长度应乘以修正系数1.1 钢筋的外形系数 钢筋类型光面钢筋带肋钢筋刻痕钢丝螺旋肋钢丝三股钢绞线七股钢绞线 α0.160.140.190.130.160.17 混凝土强度设计值 强度总类混凝土强度等级 C15C20C25C30C35C40 ft0.91 1.1 1.27 1.43 1.57 1.71

根据《钢结构设计规范》GB50017-2003所列数据显示,Q235的锚栓抗拉强度设计值为140N/mm2,Q345的锚栓抗拉强度设计值为180N/mm2。《架空送电线路杆塔结构设计技术规定》DL/T5154-2002所列数据显示,35#优质碳素钢锚栓抗拉强度设计值为190N/mm2,45#优质碳素钢锚栓抗拉强度设计值为215N/mm2。 经计算得地脚螺栓锚固长度(混凝土强度C20): Q235为22.4d(故实际取25d)Q345为28.8d(故实际取30d) 35#为30.4d(故实际取35d)45#为34.4d(故实际取35d)

化学锚栓计算

化学锚栓计算: 采用四个 5.6级斯泰NG-M12×110粘接型(化学)锚栓后锚固,h ef=110mm,A S=58mm2,f u=500N/mm2 ,f y=300N/mm2。 荷载大小: N=5.544 KN V=2.074 KN M=2.074×0.08=0.166 KN·m 一、锚栓内力分析 1、受力最大锚栓的拉力设计值

因为36 122 1 5.544100.166105042250My N n y ???-=-??∑=556 N >0 故,群锚中受力最大锚栓的拉力设计值: 12 i h Sd My N N n y = + ∑ 362 5.544100.166105042250 ???=+?? =2216 N 2、承受剪力最大锚栓的剪力设计值 化学锚栓有效锚固深度:ef h '=ef h -30=60 mm 锚栓与混凝土基材边缘的距离c=150 mm <10ef h '=10×60=600 mm ,因此四个锚栓中只有部分锚栓承受剪切荷载。 承受剪力最大锚栓的剪力设计值: 2 h Sd V V = =2074/2=1037 N 二、锚固承载力计算 1、锚栓钢材受拉破坏承载力 锚栓钢材受拉破坏承载力标准值: ,5850029000Rk s s stk N A f ==?=N 锚栓钢材破坏受拉承载力分项系数: S, 1.25001.2 2.0300 stk R N yk f f γ?===≥1.4 1.0-1.55 锚栓钢材破坏时受拉承载力设计值: ,,,29000 145002.0 Rk s Rd s RS N N N γ= ==N >h Sd N =2216 N 锚栓钢材受拉承载力满足规范要求! 2、混凝土锥体受拉破坏承载力 锚固区基材为开裂混凝土。 单根锚栓理想混凝土锥体破坏时的受拉承载力标准值:

锚栓锚固长度取值分析

《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。 请教各位前辈《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)是根据什么的出的锚固长度。 本人的计算方法上有何错误 以下是本人写的一个分析总结:锚栓锚固长度取值分析 一、问题的提出 《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。 结合具体工程实例:山东富伦钢厂余热回收锅炉框架,抗震设防烈度7度0.1g。经过计算地脚螺栓选用M20 Q235B,锚栓类型采用直钩锚栓。基础混凝土等级C20。 根据《钢结构设计手册上册》(第三版)表10-6 锚栓锚固长度为400mm。 根据《钢结构节点设计手册》(第二版)表9-75 锚栓锚固长度为520mm 根据《地脚螺栓(锚栓)通用图》HG/T21545-2006锚栓锚固长度为410×1.05=430mm 因此按哪本手册(图集)进行设计的问题就产生了。 二、分析计算 计算方法一: 地脚螺栓埋入基础中的的锚固长度属于混凝土结构范畴,地脚螺栓的有小直径面积及地脚螺栓的强度设计值属于钢结构范畴,因此地脚螺栓的锚固长度可根据《混凝土结构设计规范》GB50010-2002、与《钢结构设计规范》GB50017-2003进行分析计算, la=α×fy/ft×d (《混凝土结构设计规范》GB50010-2002 9.3.1-1) α取0.16 (《混凝土结构设计规范》GB50010-2002 表9.3.1) ft取1.1N/mm2(《混凝土结构设计规范》GB50010-2002 表4.14) fy取140 N/mm2(《钢结构设计规范》GB50017-2003 表3.4.1-4) la=0.16×140 N/mm2 / 1.1N/mm2×20mm=408mm 根据《建筑抗震设防分类标准》GB50223-95 7.04条余热锅炉框架为丙类建筑。 抗震等级三级(《混凝土结构设计规范》GB50010-2002 表11.1.4) laE=1.05 la=408×1.05=429mm 计算方法二: 根据二力平衡原理得出 理论公式:fy·Ae=2πr·la·ft 根据上述计算方法可得出下表: 抗震设防等级6度基础混凝土等C20 地脚螺栓型号材质方法一计算结果节点手册结构手册图集理论公式 M20 Q235B(Q345B) 408mm(525mm) 520mm(700mm) 400mm(500mm) 410mm(530mm) 496mm(638mm) M22 Q235B(Q345B) 448mm(576mm) 570mm(770mm) 440mm(550mm) 450mm(580mm) 559mm(719mm) M24 Q235B(Q345B) 489mm(629mm) 620mm(840mm) 480mm(600mm) 490mm(630mm) 596mm(766mm) 抗震设防等级7度基础混凝土等C20 地脚螺栓型号材质方法一计算结果节点手册结构手册图集理论公式 M20 Q235B(Q345B) 429mm(551mm) 520mm(700mm) 400mm(500mm) 431mm(557mm)

相关主题
文本预览
相关文档 最新文档