New variables for the Lema^{i}tre-Tolman-Bondi dust solutions
- 格式:pdf
- 大小:1.00 MB
- 文档页数:39
a
r
X
i
v
:
g
r
-qc/0105081v1 23 May 2001NewvariablesfortheLemaˆıtre-Tolman-Bondidustsolutions.
RobertoA.Sussman†andLuisGarc´ıaTrujillo‡
†InstitutodeCienciasNucleares,ApartadoPostal70543,UNAM,M´exicoDF,04510,M´exico.
‡InstitutodeF´ısica,UniversidaddeGuanajuato,Leon,Guanajuato,M´exico.
Were-examinetheLemˆaitre-Tolman-Bondi(LTB)solutionswithadustsourceadmittingsymme-
trycenters.Weconsiderasfreeparametersofthesolutionstheinitialvaluefunctions:Yi,ρi,(3)Ri,
obtainedbyrestrictingthecurvatureradius,Y≡√
g
θθ,containingtwoarbitraryfunctionsoftheradialcoordinate:M(r)andE(r).Theintegrationofthe
dynamicalequationyieldsathirdarbitraryfunction,t
bb(r).Thefirsttwoofthesefunctions(MandE)areusualy
identifiedastherelativisticanaloguesofthenewtonianmassandthelocalenergyassociatedwiththecomovingdust
shells,thethirdfunction(t
bb)canbeinterpretedasthe“bangtime”,markingthepropertimefortheinitial(or
final)singularityforeachcomovingoberver.ThefunctionsM,E,t
bbarethenthefreeparametersofthesolutions,
thoughanyoneofthemcanalwaysbeusedtofixtheradialcoordinate,thustherearerealyonlytwofreefunctions.
Regularityconditions,relatedtowellbehavedsymmetrycenters,abscenceofshellcrossingsingularitiesandsurface
layers,canbegivenasrestrictionsonthesefunctionsandtheirradialgradients.Thesefunctionsareusualyselected
bymeansofconvenientansatzesbasedontheinterpretationsdescribedaboveand/orthecompatibilitywithregularity
conditionsorobservationalcriteria.Oncethefreeparametershavebeenselectedwehaveacompletelydetermined
LTBmodel.
SincethestandardfreefunctionsleadtoaconsistentdescriptionofLTBmodels,thesefreefunctionsareusedinmost
literaturedealingwiththesesolutions(see[22]foracomprehensiveandautoritativereviewofthisliterature).There
arepapersconsideringspecificmodificationsofthestandardfreefunctionsinordertoformulateinitialconditions
forstudyingthecensorshipofsingularities[20],oraimingatan“intialvalue”formulationofLTBmodels[9].We
believethatnewvariables,definedalonganarbitraryandregular“initial”hypersurfacet=t
i,leadtoamoreintuitive
understandingofLTBsolutions.Therefore,weproposeinthispaperusinganewsetofbasicfreefunctionsalongthe
followingsteps
•Considertherestmassdensity,ρ,the3-dimensionalRicciscalar,(3)R,andthecurvatureradius,Y,allofthem
evaluatedalonganarbitraryCauchyhypersurface,T
i,markedbyconstantcosmictimet=t
i.Thisleadsto:
ρ
i(r),(3)R
i(r)andY
i(r),wherethesubindex
iindicatesevaluationalongatt=t
i(weshallusethisconvention
henceforth).
1•RescaleYwithY
i,leadingtoanadimensionalscalefactory=Y/Y
i,sothatwecandistinguishbetweenthe
regularvanishingofY(atasymmetrycenter,nowgivenasY
i=0)andacentralsingularity(nowcharacterized
asy=0).Likewise,wecandistinguishbetweenthetwodifferentsituationswhenY′=0:regularvanishing
orsurfacelayersifY′
i=0forasinglevalueofr(thusrestrictinggradientsofρ
iand(3)R
i)andshellcrossings
whenΓ=(Y′/Y)/(Y′
i/Y
i)=0.
•Amongthethreefreefunctions,ρ
i(r),(3)R
i(r)andY
i(r),wefixtheradialcoordinate(aswellasthetopology
ofT
i)byaconvenientselectionofY
i,usingtheremainingtwofunctionsasinitialvaluefunctions.
•Fromthelatterfunctionswecanconstructsuitablevolumeaveragesandcontrastfunctions,allofwhichex-
pressibleintermsofinvariantscalarsdefinedinT
i.Theseauxiliaryfunctionsprovideaclearcutandprecise
characterizationofthenatureoftheinitialinhomogeneityaroundasymmetrycenter,asoverdensities(“lumps”)
orunderdensities(“voids”)ofρ
iand(3)R
i.
TheoldfunctionsM,E,t
bbandtheirgradientscanalwaysberecoveredandexpressedintermsoftheabovementioned
volumeaveragesandcontrastfunctions.Hence,allknownregularityconditionsgivenintheoldvariablescaneasilyberecastintermsofthenewones.Inparticular,theknownconditionsforavoidingshellcrossingsingularities[15](seealso[16]and[17])haveamoreappealingandelegantformwiththenewvariables,sincewiththeoldvariablesthe
signsofthegradientsM′,E′,t′
bbdonotdistinguishmanifestlybetweenlumpsorvoids.Intermsofthenewvariables,
itisevidentthat,ingeneral,shellcrossingsareavoidedonlyforlumpsofρ
iand(3)R
i.However,someparticular
casesofinitialconditions,suchasa“simmultaneousbangtime”(t′
bb=0),doallowforsomeinitialconditionsgiven
asvoidstoevolvewithoutshellcrossings.Ifweconsideranevolutioninthetimeranget>t
i,then(underspecific
restrictions)initialvoidscanalsoevolvewithoutshellcrossings.Allthesefeaturescouldalsoemergewiththeoldfree
functions,butthenewvariablesprovideamorestraightforwardandintuitivecharacterizationoftheeffectofinitial
conditionsintheregularevolutionofLTBmodels.
ThenewapproachtoLTBdustsolutionspresentedinthispaperaccounts,notonlyforaninitialvaluetreatment
onaregularCauchyhypersurfaceT
i,buttoanewformalismbasedonrescalingtheevolutionofthemodelsto
variablesdefinedinthishypersurface.Someaspectsofthisformalism(averageandcontrastfunctions)havebeen
developedelsewhere(see[26]and[28]forapplicationsofLTBmetricswithviscousfluidsources).Variablessimilarto
theonesintroducedherehavebeendefinedin[2],[20],[9],[23]and[10](thelatterinconnectionwithSzekeresdust
solutions,seeequations2.4.8to2.4.14of[22]).MenaandTavakol[11]haveclaimedthatsomeofthesevariablesare
notcovariant,thussuggestingcovariantexpressionsfordensitycontrasts(seealso[24]).Althoughweshowthatthe
newvariablescanbeexpressedintermsofinvariantscalars,andsoarecoordinateindependentandcanbecomputed
foranycoordinatesystem,wedonotclaimthatthedensityandcurvatureaveragesandcontrastfunctionsintroduced
herehaveaclear“covariantinterpretation”,orthattheyareunique.However,whatwecancertainlyclaimisthat
thesenewvariablesemergenaturalyfromthefieldequations,provideanadequateinitialvaluetreatmentandyielda
clearandconcisedescriptionofregularityconditions.
Thepaperisorganizedasfollows:sectionIIreviewsthebasicexpressions(metric,evolutionequationandits
solutions)characteristicofLTBmodelsintheusualvariables.ThenewvariablesareintroducedinsectionIII,
leadingtonewformsforthemetric,therestmassdensityandthesolutionsoftheevolutionequation.Volume
averagesandcontrastfunctionsalongT
iaredefinedinsectionIV.SectionVexaminesindetailgenericproperties
ofthenewvariables:regularity,symmetrycentersandgeometricfeaturesofthehypersurfaceT
i(subsectionVA),
characterizationofsingularities(subsectionVB),choiceofradialcoordinateandhomeomorphicclass(topology)ofT
i
(subsectionVC),expressingthenewvariablesintermsofinvariantscalars(subsectionVD),FLRWandSchwarzschild
(subsectionlimitsVE).InsectionVIwelookatthecharacterizationoftheinhomogneityofT
iintermsdensityand
3-curvature“lumps”and“voids”anditsrelationwiththecontrastandaveragefunctions.InsectionVIIweusethe
newvariablesinordertolookattheconditionstoavoidshellcrossings,bigbangtimes,regularityoftheselected
hypersurfaceT
iandsimmultaneousbigbangtimes.Asummaryoftheno-shell-crossingconditionsisgiveninTable
1.SectionVIIIprovidessimplefunctionalansatzesforthenewvariablesandtheirauxiliaryquantities(volume
averages,contrastfunctions,aswellastheoldvariablesandthebigbangtimes).Asimplestep-by-stepguideline
isprovidedfortheconstructionofLTBmodelsandforplottingallrelevantquantitiesderivedfromtheseansatzes.
Thecharacterizationofintialconditionsas“lumps”and“voids”,aswellasthefulfilmentoftheno-shell-crossing
conditionsisillustratedandtestedgraphicalyin12figuresthatcomplementtheinformationprovidedinthetext.
Finaly,theAppendixprovidesausefulsummary(intermsoftheusualvariables)ofthegenericgeometricfeaturesof
thesolutions(regularityconditions,singularities,symmetrycenters,surfacelayers).
Someimportanttopicshavebeenleftoutinthispaper:timeevolutionoflumpsandvoidsbygeneralizingvolume
averagesandcontrastfunctionstoarbitrarytimes(t=t
i),modelswithoutcenters,modelswithamixeddynamics
(ellipticandhyperbolic,etc),matchingsofvariousLTBmodels,etc.Theexaminationofthesetopicswiththe
formalismpresentedhereiscurrentlyinprogress[29].
2