当前位置:文档之家› 预失真技术

预失真技术

预失真技术
预失真技术

数字预失真(DPD)算法研发工具和验证方案

1 安捷伦数字预失真(DPD)算法研发工具和验证方案 -不依赖于特定厂商芯片组的方案 技术背景: 在无线通信系统全面进入3G 并开始迈向 4G 的过程中,使用数字预失真技术(Digital Pre-distortion ,以下简称DPD )对发射机的功放进行线性化是一门关键技术。功率放大器是通信系统中影响系统性能和覆盖范围的关键部件,非线性是功放的固有特性。非线性会引起频谱增长 (spectral re-growth),从而造成邻道干扰,使带外杂散达不到协议标准规定的要求。非线性也会造成带内失真,带来系统误码率增大的问题。 为了降低非线性,功放可以工作在较低的输入工作条件下(或称为回退),即功放工作曲线的线性部分。但是,对于新的传输体制,诸如宽带码分复用(WCDMA)以及正交频分复用(OFDM ,3GPP LTE)等,具有非常高的峰值功率和平均功率比(PAPR),也就是说信号包络的起伏非常大。这意味着功放要从其饱和区回退很多才能满足对信号峰值的线 性放大,而峰值信号并不经常出现,从而导致功 放的效率非常低,通常会低于10%。90% 的功放直 流功率被丢掉了,或被转换为了热量。 稳定性和持续运行能力都会下降。 为了保证功放的线性性和效率,可以使用多种方法对功放进行线性化处理,如反馈,前馈及数字预失真等方法。 在所有这些线性化技术中,数字预失真是性价比最高的一种技术。同反馈法和前馈法相比,数字预失真技术具有诸多优势:优异的线性化能力,保证总体效率以及充分利用数字信号处理器/变换器的优势。数字预失真在基带上加入预失真器,将输入信号扩展为非线性信号,而这种非线性特性正好和功放的压缩特性互补 (见图1)。 理论上讲,预失真器和功放级联后成为线性系统,原有的输入信号被恒增益地放大。加入预失真器之后,功放可以工作到近饱和点而同时仍然保持良好的线性,从而大大提升了功放的效率。从图1中可以看出,DPD(数字预失真器)可以看作是功放响应的”反”响应, 数字预失真算法需要对功放的特性进行高效和精确地建模以保证成功地开发数字预失真器算法。 针对2G 和3G 移动通信标准,市场上已有一些较成熟芯片组技术。工程师可以可以选择既有芯片组、对算法进行优化、验证来完成自己的DPD 设计。但随着LTE 、LTE-Advance 、微波宽带接入(如ODU 等)、802.11ac 以及专用通信系统的不断涌现,要求DPD 方案具有更高的带宽、及在新通信制式或客户化信号上完成功放建模和算法实现的能力。另外有一些用户仅作算法研究而不希望进行费用高昂、设计复杂的电路实现;或者需要开发自有的DPD 方案以降低BOM 成本。这些新需求都需要研发工程师拥有不同的研发和验证工具。 DPD 方案概述: 一个好的研发和验证工具必须具备的性能包括:(1)性能指标如频率、调制带宽等满足系统要求(2)信号制式要具有灵活性,既可以满足标准制式系统(如2G/3G )要求,还要可以满足客户定制化系统的要求(3)精确性(4)功放初始建模不依赖于某个特定厂商的芯片组或硬件实施方案(5)可以将开发好的数字预失真方案和其它的基带设计如CFR 或均衡等集成在一起(6)易于使用。 安捷伦的数字预失真研发和验证工具包括 SystemVue W1716 DPD 预失真工具及超宽带矢量信号分析仪和矢量信号源。这套系统的主要特点包括: (1) 性能高:调制带宽<=140MHz 时,频率高达50GHz ;调制带宽<=800MHz 时,频率高达26.5GHz 多载波LTE-A DPD 算法的验证

削峰和数字预失真原理及其运用

削峰与数字预失真原理及其 运用

目录 目录 (3) 第一章:数字预失真原理及其运用 (5) 1 功放线性化技术的引入 (5) 2 射频功放非线性失真的表征 (6) 2.1 射频功放中的三类失真 (6) 2.2 多项式系统模型 (7) 2.3 AM-AM & AM-PM模型 (8) 2.4 ACPR与EVM (11) 2.5 PA的记忆效应简介 (11) 2.5.1 记忆效应的定义 (11) 2.5.2 电学记忆效应 (13) 2.5.3 热学记忆效应 (13) 3 功放的线性化技术 (14) 3.1 功率回退 (14) 3.2前馈线性功放 (14) 3.3预失真线性功放 (14) 4 数字预失真(DPD)原理 (16) 4.1 数字预失真原理 (16) 4.2 数字预失真的实现 (17) 4.2.1 PA的模型 (18) 4.2.2 数字预失真的实现架构 (19) 4.2.3 DPD模型参数的自适应过程 (20) 4.2.4 基于LUT的数字预失真实现 (21) 5 DPD的运用 (22) 5.1 DPD在无线系统中的位置 (22) 5.2 DPD提高系统的指标 (23) 第二章:削峰原理及其运用 (24) 6 削峰技术引入的目的 (25) 6.1 峰均比定义及测量 (25) 6.2 CCDF的数学表示 (26) 7 削峰的主要指标 (27) 7.1 削峰后的PAR (27) 7.2 误差矢量幅度EVM (28) 7.3 峰值码域误差(PCDE) (29) 7.4 邻道泄漏功率比(ACPR) (29) 8 常用的削峰方法 (29) 8.1 单载波削峰方法 (29) 8.1.1 基带I/Q独立和幅度削峰算法 (30) 8.1.2 基带预补偿削峰算法 (30) 8.1.3 IF硬削峰算法 (30) 8.1.4 匹配滤波器DIF基本削峰算法 (31) 8.1.5 匹配滤波IF脉冲抵消算法 (31)

数字预失真基本原理

17 数字预失真基本原理 马 进 (西安电子科技大学 通信工程学院,陕西 西安 710071) 摘 要 对高功率放大器的失真特性进行了数学分析,介绍了数字预失真的基本原理,总结了常用的几种预失真线性化方法,着重详细介绍了查找表数学模型的建模方法。 关键词 功率放大器;线性化;预失真 中图分类号 TN722.7+ 5 The Principle of Digital Pre-distortion Ma Jin (School of Telecommunications Engineering, Xidian University, Xi ′ an 710071, China) Abstract This paper makes a mathematical analysis of the HPA's distortion characteristic and introduces the principle of digital pre-distortion. It also summarizes some common techniques for linearizing pre-distortion with emphasis on the LUT mathematical model's modeling method. Keywords PA; linearization; pre-distortion; LUT 1 数字预失真的实测图表 数字预失真的目的是改善功放的线性度,而对功放线性度评估是用ACPR 这个指标进行评估的,因此数字预失真目的就是改善功放的ACPR 指标。预失真效果见表1所示。 2 功放的非线性特性分析 功放的各种失真特性[1]如下: (1)AM-AM 失真特性:就是放大器的增益压缩现象,即AM-AM 失真,可以采用非线性的多项式来表征放大器的这种特性,其数值由输入信号的幅度(AM )决定。 在射频增益一定的条件下,在数字域中,可以根据输入基带信号的幅度(功率)通过一个多项式可计算出此种非线性失真分量。常用的多项式表达式如下: 表1 预失真效果 载波 1 2 3 4 备注频率/MHz 870.03 871.26 872.49 873.72 750kHz,Low 47.80 750kHz,Up 45.56 1.98MHz,Low 50.65 预失真前 ACPR/dB 1.98MHz,Up 48.38 9CH 750kHz,Low 60.55 750kHz,Up 63.23 1.98MHz,Low 66.70 预失真后 ACPR/dB 1.98MHz,Up 67.17 9CH 收稿日期:2005-12-21 作者简介:马 进(1979—),男,硕士研究生。研究方向:网络安全、对数字预失真。 ...554433221x a x a x a x a x a y ++++=. (2)AM-PM 失真特性:其数值与AM-AM 失真相似,也是由输入信号的幅度决定。 电子科技 2006年第9期(总第204期)

预失真技术综述

预失真技术综述 1.1 数据预失真技术 数据预失真技术[i][ii]是一种最为简单的预失真补偿技术,该技术是针对信号星座经过非线性卫星信道后发生扭曲变形这一现象,通过在成型滤波之前直接修改发送信号的映射星座图,使接收端尽可能接收到理想的星座,从而减小卫星信道非线性对整个系统的性能影响。根据预失真值与输入数据的前后码元是否有关,数据预失真分为无记忆数据预失真和有记忆数据预失真[iii]两种。目前这两种技术都是基于无记忆非线性卫星信道进行研究,还没有针对高速的有记忆非线性卫星信道的研究。无记忆数据预失真方法简单,易于实现,但对于有记忆的非线性信道,其补偿性能已经不能满足要求。有记忆的数据预失真可以有效降低码间串扰,提高补偿性能,但随着调制阶数和记忆长度的增加,其存储空间和计算复杂度将迅速增加,实现复杂度过大。 1.2 信号预失真技术 信号预失真是在发送滤波器之后,通过修改发送信号的波形来补偿非线性失真的一种技术,其实现方法分为查询表和工作函数法两种。 查询表预失真技术产生于上世纪80年代,其实现方式是把高功放的输入功率(或幅度)作为查询表的索引指针,把高功放的复增益预调整值作为指针对应内容存储在RAM表中,工作时根据输入信号的功率或幅度信息查找其对应预调整值,并将其输出给后继电路,达到线性化的目的。目前国内外已有许多学者对查询表预失真技术进行了研究。日本sony Ericsson移动通信公司提出了一种适用于手持终端的查询表自适应预失真技术,并在窄带CDMA系统中进行实验,使功放模块的功率效率增加了48%[iv]。浙江大学的毛文杰等提出了一种基于双查询表的自适应预失真结构,可使邻道干扰降低约25dB[v]。但由于常规的查询表不能有效的表示记忆特性,使得传统的查询表只能对无记忆的窄带信号进行补偿。文献[vi]采用多维表形式表示记忆非线性特性,但存在结构复杂,收敛慢的问题。 工作函数预失真技术是指在非线性信道之前采用数学模型描述其逆特性,从而使整个信道呈现出线性特性。 (1)基于W-H模型的自适应预失真技术 W-H模型的记忆预失真技术首先利用Wiener模型对记忆高功放进行辨识,得到LTI和无记忆非线性模型的参数,然后根据高功放的输出和系统期望输出的误差,实现对Hammerstein预失真器的自适应调整。但由于Hammerstein预失真器是

高级射频功放设计之预失真技术

高级射频功放设计之预失真技术 Steve C. Cripps 翻译:安斌

5.1 简介 预失真是提高射频功放线形度的一种有效的方法。在功放的输入端放置一个很小的有魔力的盒子就可以提供比其他更复杂的方法,比如前馈更好的线性度,这是有竞争力也是可笑的。从根本上说,所有的预失真的方法都是开环的,因此它只能在有限的时间和有限的动态范围达到闭环系统的线性化程度。尽管如此,预失真方法还是成为了最新研究和发展的焦点,主要是由于DSP提供的更新能力。但是预失真还只是前馈或者反馈系统的实验性质的补充技术。尤其是将在第六章分析的,前馈环中的主功放中精心设计的预失真器能够有效地减少伴随误差功放的功率需求,因此提高了整体效率。也有一些例子,比如移动发射机,预失真器的简单和近乎零成本,对有限的功率范围减少几个dB的ACP/IM是很值得的。预失真功放系统能够在MCPA应用中能够真正的和传统的前馈技术相抗衡,这是一个很活跃也是一个没有完成的领域。 这章的主要目标是使预失真的设计成为一个更严格的初始设计,就像过去讲过的方法一样。简单的模拟预失真器依靠经验调整,通常使用一两个二极管的简单电路,它对于压缩的(expanding)的增益特性进行上撬,这种方法比较粗糙。这种费劲的方法还可以在论文和论坛上见到,这种PD-PA组和特性在双载波的应用中,当驱动电平到达1dB压缩点的时候,IM3响应会出现很深的凹坑。对测量到的数据更仔细的分析可以发现更多不想看到的特性。在更高阶IM3提高很少(甚至在一些例子中出现恶化);对于多载波和频谱扩展的信号,会出现大量的IM3凹坑的填充。 这章中介绍的设计的方法是严格基于第三章中讨论的功放非线性模型的方法。为了建立PD特性第一步是求出PA的Volterra级数的反函数。这个过程,得出了一些非常有用的关于PD 性能极限的普遍法则,这也可以解释经常观察到的凹坑现象。第二步是考虑综合(synthesizing)PD的不同方法。模拟预失真和DSP预失真都使用在本章中第一部分相同的步骤。 从概念上说,预失真器很简单,很吸引人,见图5.1。此图描述了典型的PA增益压缩特性,为了简单起见假设只有三阶非线性特性。预失真器的曲线(action)在任何输入信号电平都呈现出外推(extrapolated)的线性特性。如果输入信号是V in,功放表现出压缩特性,输出电平为V o。为了得到线性的输出,预失真器的行为特性应该增加输入电V in平到一个更高的电平V p。从V in与线性特性的焦点画一条水平直线与压缩的功放特性相交,从此焦点向下画垂线与水平轴相交,此点即为需要的PD输出电平V p。 在把这个简单的图形诠释(cast into)为翔实的数学概念之前,很值得研究((bservation)一下贯穿整个章节中需要牢记的东西。 1、 图1预失真典型特性曲线 1、预失真从某种意义上来说,它自身是矛盾。当功放压缩的时候,它通过加大驱动电平来 减轻失真。 2、当功放饱和的时候,这个过程显然就陷入(run into)了困境。继续增加驱动电平也不能 够使输出回到需要的线性点。这个问题很重要,因为在现代通信系统中,高峰均比(high PEP to average power tatios)使用。 3、从预失真器出来的信号将被严重扭曲。实际上,用频谱仪可以看到,从PD中出来的信号 呈现出与未经预失真的PA出来的信号有着相似的频谱失真。这个结论对PD的带宽和DSP电路的速度有着深刻的影响。当高速数据信号扩展到填满整个功放带宽的时候,一上结论也有着更为深远的应用。 4、这里提到(shown)的预失真器有增益。实际上,PD通常是无源器件,增益的获得是指 PD衰减的减少。这并没有从根本上影响分析的结论,PD有增益的假设方便了分析,在

利用数字预失真线性化宽带功率放大器

利用数字预失真线性化宽带功率放大器 2. Wiener系统 Wiener模型是Volterra模型一种有意义的简化,包括一个线性滤波器,后接无记忆非线性。可以采用查询表对非线性进行模型化,也可用FIR 滤波器线性对线性滤波器进行模型化。Werner系统在模型化大多数RF功率放大器方面的有效性有限。模型参数的估算相当复杂,这使其对实时自适应没有吸引力。 3.Hammerstein系统此外,Hammerstein模型也是Volterra模型的一种简化,包含一个无记忆非线性,后跟一个线性滤波器。这是一种简单的记忆模型,其模型参数的计算比Wiener模型要简单。这种模型对模型化所有不同类型RF功放的有效性有限。 4. Wiener-Hammerstein 将一个线性滤波器、一个无记忆线性与另一个线性滤波器级联起来就构成了Weiner-Hammerstein模型。这种模型比Weiner或Hammerstein模型更加一般,包括Volterra数列许多项,可以更好地进行非线性模型化。 5. 记忆多项式限制(1)中的Volterra数列,使除了中心对角线上的项以外,各个项都为0,即只有i1=i2=i3…时hn(i1,i2,i3…) != 0,得到如式子B所示的记忆多项式模型,其中M为记忆长度,K为非线性阶数。

已经证明这种模型(及其变种)对线性化宽带功放是有效的,硬件和软件计算要求也合适。 文献中也提出了上述模型的不同组合,每一种都有其优缺点。商业上可实施的前置补偿器要求能够擅长处理大量非线性行为,对不同应用可能需要不同模型。对于这些模型中的大多数而言,前置补偿器系数适合采用最小二乘法识别的间接学习架构。 本文第三部分将讨论如何采用采用算术和模型简化方法的混合来实现前置补偿。 在无线系统中,功放(PA)线性度和效率常是必须权衡的两个参数。工程师都在寻找一种有效而灵活的基于Volterra的自适应预失真技术,可用于实现宽带RF 功放的高线性度。本文将概述不同数字预失真技术,介绍一种创新性DPD线性化电路特有的自适应算法。 本文的第二部分介绍了线性化方案对于前置补偿器具有高度精确模型的需求。下面我们将讨论如何采用采用算术和模型简化方法的混合来实现前置补偿。 在GC5322前置补偿实施中,为易于实现,采用算术和模型简化方法的混合。通

通过数字预失真改善功率放大器效率

通过数字预失真改善功率放大器地效率 上网时间:2007年11月22日 关键字:功率放大器数字预失真DSP FPGA 无线应用中地功率放大器有望通过提供优良地线性和效率,来处理现代通信系统中所采用地复杂波形.而这并非通过构建具有更纯净性能地射频功率放大器,因为这样做会增加成本、降低效率并产生可靠性问题,今天地设计师而是选择通过采用数字预失真(DPD –Digital Pre-Distortion>技术来增加数字处理能力,该技术有助于将功率放大器(PA>地效率最大化,增加可靠性,并降低操作成本.b5E2RGbCAP 与模拟方式相比,数字技术在成本、功耗和可靠性方面提供了诸多优势.由于这些优点,老式地窄带、单载波、三重转换系统正在被 数字信号处理(DSP>和DAC控制地宽带、多载波发射机所取代,DSP 和DAC产生直接IF,甚至直接RF输出到RF放大器.p1EanqFDPw 无线系统正向用户提供一系列地服务和益处.不幸地是,先进无 线技术地优势往往不惜牺牲增加功耗和操作成本.现代蜂窝和无线技术,特别是数字射频通信网络,比以往任何时候发送和接收更多地数据、更多地视频以及更多地音频.如HSDPA、HSUPA、1xEVDO、WiMAX 等新标准,以及长期演进(LTE>需要更大地功耗,产生更多和更大地射频波形峰值,并允许更大地数据脉冲.因此,现代无线设备所生产地射频信号具有空前地峰值平均值比(PAR>,并在一个已经拥挤地射频频 谱内存在失真地可能性.DXDiTa9E3d

由于采用空前地高功耗与现代PAR,功率放大器正在被推向之前从未有过地极限,并导致瞬变现象以及低效成本.更大地放大器可以 消耗更多地功耗,从而使得短期资本支出以及长期经营费用急速膨胀.更大、更昂贵地电池需要同样地后备能力.此外,更大地功耗和生产 加剧了散热和电气条件,这可能产生可靠性问题.RTCrpUDGiT 当支持先进无线技术地功放工作时,设计师和网络运营商可能选择两条路径中地一条:增加“腕力”(即功耗>或者增加“头脑”(即性能>.其中,前者有效增加了对上述成本和可靠性地关注,而后者是 在功放效率最大化与严格控制频谱之前推动数字失真波形地新策略.通过采用适当地测试设备,数字预失真(DPD>技术可以实现更小、更 具效率地功放,从而减少开发和运营成本,并同时提升网络与设备地 可靠性.5PCzVD7HxA 无论高功率卫星地面站、多载波蜂窝基站,甚至是低功耗移动通信系统,现代发射机采用多种预失真技术来减少信道外干扰,并优化 运行效率.其中最流行和最有效降低失真地方法之一就是自适应DPD.jLBHrnAILg 这种方法对发射机地输出进行采样来计算误差向量并生成校正 系数,然后将其用来预校正输入信号.为了减少模拟电路失真,链路中地信号尽可能采用数字格式保存.xHAQX74J0X 图1表示了如何提取放大器输出信号地一部分,然后进行下变频以及数字化.将该数字信号提供给DSP电路,该电路实现了目前信号 中地非线性分析并产生非线性校正系数.这些非线性系数用于调整传

预失真线性化技术原理分析

文章编号:1000-9930(2001)01-0068-03 预失真线性化技术原理分析 邬书跃1, 周少武1, 黄 丹1, 张尔杨2 (1.湘潭工学院信息与电气工程系,湖南湘潭411201;2.国防科技大学电子科学与工程学院,湖南长沙410073) 摘要:对两种基本型式的预失真线性化技术数字基带预失真和射频预失真的组成原理进行了详尽的分析.结果表 明,这两种技术具有线性度高、收敛速度快和便于实现等特点,因此可用于对移动发射机中的功率放大器进行线性化.图4,参8. 关 键 词:预失真;线性化;自适应;功率放大器中图分类号:TP391.9;TN929.5 文献标识码:A 数字网络系统发展的新趋势已经引起人们对数字移动通信系统的广泛关注.数字化系统丰富了从普通话音传输业务到数据传输业务的各种业务.在大多数数字移动无线电系统的最新研究中,人们认为像QPSK 和QAM 线性调制方法的引入理论上可以获得高的频谱效率,但它们容易给发射台的功率放大器带来非线性失真,而且由于存在RF 互调失真(通常可由放大器的AM-AM 和AM-PM 转换特性来描述)使得功放的频谱有扩展的趋势.因此线性调制方法需要有线性功率放大技术,否则移动台功率放大器会消除由于线性调制方法的应用而得到的频谱效率的任何优点.在现有移动通信系统中,对邻信道干扰的要求是非常严格的.通常要求已调信号在邻信道的辐射功率(带外发射功率)与所需功率之比应低于-60dB,即与带内信号功率相比,带外发射功率应小于-60dB~-70dB.线性放大器在某种程度上具有功率效率低的缺点,这使得它们不能满足上面所提到的邻信道干扰的严格要求.人们曾尝试对于较小邻信道干扰放宽这一严格要求,并尝试在不牺牲放大器功率效率的情况下保持高的频谱效率.然而即使在非常窄的频带系统(像30kHz 或10kHz 信道间隔系统)中,这一严格要求依然存在.在这种窄信道间隔系统中,发射机功率放大器为了实现高功率效率和低的带外发射则会遇到这一要求.为了克服这一问题,人们对用于基站和移动台的高功效非线性放大器的线性化技术进行了研究.迄今,已研究出了多种对移动发射机中功率放大器进行线性 化的技术,其中主要的技术[1] 有正向前馈(feed -forward )、负反馈(negative feedback )和预失真(predistortion)技术.正向前馈法已广泛使用,然而该方法存在一定的局限性.例如,在工作环境变化时(温度、时间、工作频率及电源电压值发生改变),电路的参数变化不可能严格地保持一致,从而造成放大线性的恶化,因此其稳定性不好.同时在末级大功率合成器处构成自适应环路具有一定的技术难度,所以一般在功率合成级不便采用自适应技术.此外,该方法效率低而且设备很复杂.负反馈技术需要特别处理时延和所需的带宽,这种技术使得放大器带宽很窄,不适合宽频带放大.因此预失真技术成为对功率放大器进行线性化的理想技术.通常这种技术可使放大器得到宽的频带和宽的动态范围.这种技术的实质就是预先使放大器的输入信号在幅度和相位方面产生预定的反失真去抵消放大器内的非线性失真.产生反失真的器件称做线性化器件.图1给出了预失真线性化电路框图 . 本文对两种预失真线性化技术的组成原理及实现方法作了较为详尽的论述,介绍了该技术的应用及发展前景,并指出了今后的研究方向. 收稿日期:2000-07-22 作者简介:邬书跃(1963-),男,湖南常德人,湘潭工学院副教授,博士生,主要从事数字移动通信和自适应功放等方面的研究. 第16卷第1期2001年 3月湘潭矿业学院学报J.XIANGTAN MIN.INST.Vol.16No.1Mar. 2001

宽带功率放大器预失真技术综述

宽带功率放大器预失真技术综述 摘要:随着无线需求和无线业务的不断增加,传输信号必将不断向高质量高速率宽带宽发展。在宽带应用中,由于传输信号带宽增加,宽带功率放大器不同于窄带输入下的无记忆特性,将表现出频率有关的记忆非线性特性。本文重点阐述了功率放大器的线性化技术,数字预失真的基本原理及学习结构,功率放大器的基本模型及模型的评估指标。 关键词:功率放大器,线性化,数字预失真,模型 0引言 随着无线通信技术的日益发展和普遍使用,为高速多媒体业务需求而开发的移动通信 3G技术在通讯容量与质量等方面将不能满足人们日趋增长的需求,而且移动4G系统也日益商用化,其系统不只是单一地为了适应宽带和用户数的增长,更为重要的是它适应多媒体的传输需求,将多媒体等洪量信息通过信道高速传输出去,而且对通讯服务质量提出了更高的要求。近年来,随着全球对环保要求的提高,人们关注的不仅仅是频谱效率的提高问题,还关注到功率效率、能量效率的提高问题。绿色通信的概念正是在这样的背景下提出的,大量提高功效和能效的技术也涌现出来。绿色通信技术主要采用创新性的分布式技术、高功率放大器、多载波等技术以减小能量消耗。作为无线通信系统中不可或缺的重要部件之一,关于功率放大器的线性化研究及其实现,对推动绿色通信概念及理论的深入发展、对节能减排的意义重大,是一项具有理论意义和实际应用价值的课题。 功率放大器是通信系统中的一个关键部件,功放的非线性特性引起的频谱扩张会对邻道信号产生干扰,并且带内失真也会增加误码率。随着新业务的发展,现代无线通信系统中广泛采用了正交幅度调制(Quadrature Amplitude Modulation, QAM)、正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术等高频谱利用率的调制方式。这些调制方式对发射机中射频功放的线性度提出了很高的要求。因此为了保障通信系统的功率效率和性能,必须有效的补偿放大器的非线性失真,使放大器能够高效的线性工作。 1功率放大器的线性化技术 为了更好地利用频谱资源和实现更高速率的无线传输,通常会选择具有更高效、更先进的无线通信技术,如QAM和OFDM技术,QAM技术采用非恒定包络调制方式,对放大器线性度要求高,与非线性功率放大器在通信系统中的共同使用,会由于功率放大器对信号产生的畸变,使信号频谱扩展,导致对相邻信道其他用户的干扰,恶化系统误比特率(bit error rate, BER)性能。OFDM技术以其高的频谱利用率、很强的抗多径干扰及窄带干扰能力、便于移动接收等优点,成为无线通信高速率传输中十分有竞争力的一种技术。但是OFDM 技术对同步误差的高度敏感性以及高的峰均比(peak-to-average power ratio, PAPR)是OFDM 系统面临的主要难题。高PAPR会使传输的射频信号工作在功率放大器的临近饱和区,从而在接收端产生无法恢复的畸变。另外,对于便携移动设备,比如手机,平板电脑,功率放大器是产生功耗的最大的一部分,如果采用一定的线性化技术来提高功率放大器的效率,就能在很大程度上减小便携移动设备的耗电量,从而延长待机时间。 国内外关于功率放大器的非线性特性及线性化技术的研究,截止目前,已先后提出了一系列技术,各种技术都有自己的优、缺点。常用的功率放大器线性化技术有:功率回退技术(power back off, PBO)[1][2]、包络消除和恢复技术(envelope elimination and restoration,

数字预失真关键技术

数字预失真关键技术
宁波大学信息科学与工程学院
刘太君
教授
博士
博导
IEEE高级会员
电子邮箱:
taijun@https://www.doczj.com/doc/d18878892.html,
电话:158********
2009年3月27日至29日

授课大纲
第一章 数字预失真技术基础
第一节 引言 第二节 射频功放非线性特性 第 节 衡量非线性的技术参数(IMD3, IP3, ACPR, EVM) 第三节 第四节 第 节 功放非线性特性提取实验系统 第五节 功放非线性特性的行为模型 第六节 记忆效应鉴别和强度估算 第七节 功放的种类及性能评估

第二章 数字预失真技术理论
第一节 引言 第 节 线性化技术概述 第二节 线性化技术 述 第二节 第 节 数字预失真基本原理 第三节 数字预失真线性化系统 第四节 数字预失真器及其参数辨识 第五节 数字预失真器参数辨识算法 第六节 峰均值比及削峰技术简介 第七节 数字预失真器的ADS仿真

第三章 第 章 数字预失真电路设计及实现
第一节 第 节 引言 第二节 基于FPGA电路的预失真电路设计 第三节 预失真器参数的实时提取及实现 第四节 基于ASIC电路的数字预失真器设计及实现
1. 2 2. 3. 4. Intersil数字预失真线性化解决方案介绍 PMC Sierra数字预失真线性化解决方案介绍 PMC-Sierra TI数字预失真线性化解决方案介绍 Optichron数字预失真线性化解决方案介绍
第五节 非线性建模及预失真性能快速评估软件介绍 第六节 结束语

射频预失真技术研究

射频预失真技术研究 目录 一、功放线性化的必要性 (1) 二、功放线性化技术分类 (2) 2.1功率回退法 (2) 2.2前馈法 (2) 2.3反馈法 (2) 2.4 LINC(linear amplification with none linear component) (3) 2.5预失真法 (3) 三、自主射频预失真技术仿真 (4) 3.1射频预失真方案比较 (4) 3.2 放大器非线性特征建模及仿真 (5) 3.3射频预失真器建模及仿真 (8) 四、参考文献 (11)

随着移动通讯事业的迅猛发展,特别是CDMA和第三代移动通信技术的发展,使得系统对功放线性的要求越来越高。在移动通信系统中,为了保证一定范围的信号覆盖,我们通常使用功率放大器来进行信号放大,进而通过射频前端和天线系统发射出去。而在CDMA或W-CDMA的基站中,如果采用一般的高功放(通常工作在AB类)将由于非线性的影响产生频谱再生效应。尽管它对本信道的影响不大,甚至有时候可以忽略,但它将会干扰邻信道。为此3GPP规范规定了频谱辐射屏蔽(Spectrum emission mask)的要求,一般的高功放不能达到要求。 另一方面,在移动通信系统设计中,为了扩大用户容量,最有效的方法就是同扇区多载频应用。在传统的多载频系统设计中,往往每个通道采用一个窄带的单载波功放(SCPA),然后把它们的输出进行大功率的合成,由天线发射出去。但是它有很多缺点,两路多载波的功率合成要产生3dB的损耗,并且效率比较低,从而导致能量的大量损失。由于多载波线性功放基本上消除了器件的非线性影响,因此,可以先采用小信号功率合成器将各载频进行信号相加,然后采用一个功率放大器进行功率放大,有资料表明,在EDGE单载波功放基站的效率是4%,4载波线性功放基站的效率是12%。多载波线性功放不仅能够提高功放的效率,而且可以大大降低系统的制造成本(功放在基站中的成本比例约占1/3),减小其体积。然而,这种系统也对功放的线性化技术带来了新的挑战。

DPD数字预失真

clc; close all; %% D?o?2úéú simout=load('qpsk_8000.mat'); simout=simout.simout; fs=2*10^8;%2é?ù?ê200Mhz st=0:length(simout)-1; s_qpsk=(simout.').*exp(j*2*pi*20000000*st/fs);%è?êμ2??aQPSKμ÷?? %% ??2¨?÷?μêyéè?? N=50;%??2¨?÷?×êy Wn1=[0.75,0.85];%1?afsμ?ò?°? Wn2=[0.15,0.25]; A=fir1(N,Wn1,'bandpass'); B=fir1(N,Wn2,'bandpass'); %% 1|?ê·?′ó fc=6*10^7;%??2¨60MHZ t=1:length(s_qpsk); s_carri=s_qpsk.*exp(j*2*pi*fc*(t-1)/fs);%é?±??μ s_carri_b=filter(A,1,s_carri);%′?í¨??2¨ h = spectrum.welch; hpsd_carri_b=psd(h,s_carri_b,'fs',fs); figure(1); plot(hpsd_carri_b);%1|?ê·?′ó?°μ?1|?ê?×?ü?è a=[1.0513+0.0904j,-0.068-0.0023j,0.0289+0.0054j,0.0542-0.29j,0.2234+0.2 317j,-0.0621-0.0932j,-0.9657-0.7028j,-0.2451-0.3735j,0.1229+0.1508j]; %a=[2.3,4.2,1.3,-1.2,-3.2,9.1,0.5,2.67,1.7]; HPA_s=volterra(a,s_carri_b); % h=spectrum.welch; hpsd=psd(h,HPA_s,'fs',fs); figure(2); plot(hpsd); %% ?¤ê§??+1|·?-----?à??ê?·¨ b=[1.0513+0.0904j,-0.068-0.0023j,0.0289+0.0054j,0.0542-0.29j,0.2234+0.2 317j,-0.0621-0.0932j,-0.9657-0.7028j,-0.2451-0.3735j,0.1229+0.1508j]; %b=[2.3,4.2,1.3,-1.2,-3.2,9.1,0.5,2.67,1.7]; w=zeros(1,length(b)); w=[0.01+0.01j,0.01+0.01j,0.01+0.01j,0.01+0.01j,0.01+0.01j,0.01+0.01j,0. 01+0.01j,0.01+0.01j,0.01+0.01j]; %w=[0.00679765478699548-0.000259498756269653i,0.00837971394159005-0.000 111941227697152i,0.0114287412467534+0.000135048972435035i,0.00999572083 062263-3.11814652641192e-07i,0.00999748855999973-1.58555811669834e-07i, 0.0100016305410513+1.47719343296075e-07i,0.00999993931875462-4.06509747 496053e-09i,0.00999995731939103-2.60788444989852e-09i,0.010000015583326 5+1.43812621935027e-09i]; s_qpsk=[0,0,s_qpsk]; u=0.05;%LMS??·¨μ?2?êy DPD_s0=zeros(1,length(HPA_s)+2); DPD_s1=zeros(1,length(HPA_s)+2); DPD_s=zeros(1,length(HPA_s)+2); LVB1=zeros(1,N+1); LVB2=zeros(1,N+1); HPA_s_p=zeros(1,length(HPA_s)+2); e=zeros(1,length(HPA_s)); y=zeros(1,length(HPA_s)+2); lamda=0.99;%QRD-RLS??·¨μ?2?êy y_q=zeros(1,length(HPA_s)+2);

预失真功放介绍

高线性高效率射频功率放大器 浙江奉灵无线技术有限公司 北美大力无线有限公司功放的作用 在现代无线电通信技术中,大功率(20W以上)、高频率(200MHz~2,690MHz)、高效率、高线性功率放大器具有重要的地位。例如在无线电移动通信基站中,为了提高频谱利用率,解决日益紧张的频谱资源问题,通常采用非恒包络的调制方式,如QAM,QPSK等调制方式。要求射频功率放大器必须具有高线性,对一个输出功率为50W(47dBm)的功率放大器,在工作频带内及边缘要求3阶互调分量≤-12.5dBm,意味着功放的互调衰减要求大于47-(-12.5)=59.5dBc。而对目前无线电技术所采用半导体器件——场效应晶体管,是很难达到这么高的线性要求。 因此,长期以来,功放只有采用功率回退的办法。即对于输出功率20W的功放,往往需用200W的场效应管并且工作在耗电很大的A类状态,才能获得所需的高线性要求。这就带来大功率高频率射频功放的高耗电、低效率(不足10%)、发热大、可靠性低和成本高等一系列的问题。 在我国和在世界范围内,多年来众多无线技术专家都在想方设法解决这个难题。但至今为止尚无有效可行的技术解决方案,而本公司通过采用新一代的Doherty功放+数字预失真(DPD)技术,率先做到了50W以上的WCDMA功率放大器(工作频段为2,110~2,170MHz)在满足上述高线性的条件下,功放的整体系统效率超过30%,是目前大多数采用功率回退功放的3倍,处于国际领先水平。 由于新功放采用与调制方式无关的新技术,所以不但可以做到频带较窄的WCDMA单载波应用,也可以做到宽频带的多载波应用,如3载波、4载波。不仅可以应用在WCDMA 制式的第3代移动通信系统中,也可以应用到cdma2000、TD-SCDMA、LTE、UMB和WiMAX系统中的单载波和多载波情况。并能发展应用到多系统宽频带系统中,如2G+3G,3G+4G混合模式系统中,使功放进一步降低资本支出和营运成本、减少重复建设。

先进数字预失真理论及应用

先进数字预失真理论及应用 功率放大器(Power Amplifier,PA)是无线通信系统中主要的非线性器件。数字预失真(Digital PreDistortion,DPD)以其成本低、编程灵活等优点成为目前射频前端的主流线性化技术。未来DPD的发展趋势主要集中在宽带应用场景下的低复杂度结构及算法研究。 模数转换器(Analog-to-Digital Converter,ADC)是DPD系统反馈回路中功耗较大、成本较高的器件之一。本文围绕降低ADC量化精度的要求与ADC的采样速率展开研究,前者能降低系统功耗与成本,以应对基站"小型化",后者则能在降低功耗的同时降低反馈信号带宽,来应对"大带宽"的趋势。除此之外,本文还会解决DPD系统中存在的诸多关键问题。 传统的DPD系统依赖于带宽不低于原始信号5倍且量化精度足够高的反馈信号,使得DPD在面向宽带应用的时候受到很大限制。本文考虑降低ADC的量化精度降低到极端情况下的1比特,并对此时的DPD算法进行理论推导,证明单比特DPD系统的可行性。同时本文对单比特DPD系统中存在的问题逐一提出了解决方案,包括基于单比特采样数据的频域时间对齐算法,迭代步长的估计,系统复杂度的分析,并通过实验测试验证单比特DPD系统的线性化性能。 此外本文在此基础上提出一种改进的单比特DPD系统,即前向建模辅助的单比特DPD参数提取方法,也被证明能够有效对宽带功放进行线性化。在宽带场景下一方面DPD系统反馈带宽受限,另一方面传统模型精度的提升也很困难。为此本文阐述一种采用频谱外推思想的方法,在迭代的过程中不断地用降低采样速率的反馈数据来恢复出真实的功放输出,从而能够进一步得到精确的DPD参数。 本文也对频谱外推算法的数值稳定性进行理论分析,并提出一种提高算法数

自适应数字预失真的FPGA实现

自适应数字预失真的FPGA 实现 苏惠明 (西安外事学院计算机中心 陕西西安 710077) 摘 要:数字预失真技术在软件仿真方面已取得长足进步,但在硬件实现上还存在着很大的不足。利用设计的实验平台,在窄带通信系统中不考虑记忆效应的情况下,提出了一种基于查询表的能够有效抑制器件噪声的自适应数字预失真方案。经FP GA 实现该方案后,可以明显降低噪声和交调干扰,实验结果较为理想。 关键词:数字预失真;FP GA ;记忆效应;滤波器 中图分类号:TN91 文献标识码:B 文章编号:10042373X (2008)132156203 R ealization of Adaptive Digital Predistortion by FPG A SU Huiming (Computer Center ,Xi ′an International University ,Xi ′an ,710077,China ) Abstract :Digital predistortion technology in the simulation software has made great progress ,but in hardware realization there is a great shortage.Based on the narrow communication systems and disregarding memory effects ,the paper describes an adaptive digital predistortion method which can restrain the noise effect caused by applications.Realized by FP GA ,it can obvi 2ously reduce noise and cross 2interference ,and achieve perfect experimental result. K eywords :digital predistortion ;FP GA ;memory effects ;filter 收稿日期:2007212215 数字预失真技术目前已在软件仿真的基础上提出了大量的方案,但毕竟从软件仿真到硬件实现是有很长一段距离的:一方面硬件环境很难完全在仿真中体现,诸如量化噪声、器件噪声等;另一方面硬件约束,如资源限制,处理速度等也是软件仿真中很难考虑完全的。记忆效应和器件噪声是实际电路中无法消除的两个负面因素,本文介绍了消除器件噪声影响进行的一些工作。1 实验平台 图1是实验平台框图,绿色虚框部分在FP GA (Al 2tera :EP1S25F672C7)内实现,其中,成型滤波器:64倍上采样的数字升余弦滚降滤波器;R/P 和P/R :直角坐标转极坐标和极坐标转直角坐标转换,采用“CORDIC 算法”[1];ADC 和DAC :14位数/模、模/数转换器。介 于耦合回路中时延比较固定,采用固定长度延时器补偿,延时器的最大精度为基带时钟周期:1/56μs ;对于下变频器晶振与基带板晶振之间存在的频偏,通过载波同步环路[2]消除。 HPA 属于AB 类的SSPA ,其特点是相位失真几 乎可以忽略,幅幅传输特性可用Rapp 模型[3] 进行 描述: F AM/AM (u )= K 3u 1+( K 3u Q sat )2S 1/2S (1) 式中,K 为放大倍数,u 为输入信号幅度,S 为光滑因子,Q sat 为饱和输出幅度,图2为K =1时,不同(S ,Q sat )对应的工作曲线:自上而下的蓝线对应的系数分别是(8,0.5),(6,0.5),(4,0.5),(2,0.5),(4,0.4)。 对于Q sat 相等的SSPA ,S 越大则1dB 压缩点越高,线性工作区域越长,性能越好。理论上,经过数字预失真处理后所能达到的最佳效果是将SSPA 的线性工作区域保证在u ∈[0,Q sat )(实际上工作点无法达到Q sat ),图中绿线为对应于Q sat =0.5的SSPA 理论线性工作曲线。在Q sat 相等的情况下,不同S 的SSPA 经过预失真后所能保证的线性工作区域是相同的。换言之,通过数字预失真技术可以降低对H PA 的设计要求。 为充分避免记忆效应的影响,实验平台信源波特率为7/8Mb/s [4]。由于物理器件本身的特性,反馈信号中的随机分量是不可消除的,图3是在FP GA 内(图1中A ,B 点处)获得的对应曲线,单位是ADC 和DAC 的量化间隔。图中,整个工作范围是一条具有一定宽度的 “带” (与图6的仿真结果吻合),如果该随机分量得不到适当的抑制,经预失真后会被以某种形式放大输出,造成性能恶化。 电子技术苏惠明:自适应数字预失真的FP GA 实现

相关主题
文本预览
相关文档 最新文档