当前位置:文档之家› Price Expectation and the Pricing of Stock Evidence from Developed and Emerging

Price Expectation and the Pricing of Stock Evidence from Developed and Emerging

Price Expectation and the Pricing of Stock Evidence from Developed and Emerging
Price Expectation and the Pricing of Stock Evidence from Developed and Emerging

Review of Paci?c Basin Financial Markets and Policies

Vol.9,No.4(2006)639–660

c Worl

d Scienti?c Publishing Co.

and Center for Paci?c Basin Business,Economics and Finance Research

Price Expectation and the Pricing of Stock Index Futures:Evidence from Developed and Emerging Markets

Janchung Wang

Department of Financial Operations

National Kaohsiung First University of Science and Technology

Kaohsiung824,Taiwan

janchung@https://www.doczj.com/doc/d48798965.html,.tw

Hsinan Hsu

Department of Finance

Tainan University of Technology

Tainan,Taiwan

hsinan@https://www.doczj.com/doc/d48798965.html,.tw

This study examines how well the pricing model of Hsu and Wang(2004)explains the behavior of stock index futures prices for the developed markets(such as the S&P500index futures market)and the emerging markets(such as the Taiwan Futures Exchange(TAIFEX)Taiwan stock index futures market).It also compares the pricing performance of three alternative pricing models of stock index futures: the cost of carry model,the Hemler and Longsta?(1991)model,and the Hsu–Wang model.Overall,the Hsu–Wang model provides signi?cantly better pricing performance than that of the cost of carry model in emerging markets with high degrees of imperfection.Moreover,this study also observes that the Hemler and Longsta?(1991)model performs better than the cost of carry model in estimat-ing prices of the TAIFEX futures,suggesting that the incorporation of stochastic market volatility is bene?cial to predict the TAIFEX futures prices. Keywords:Cost of carry model;Hemler–Longsta?model;Hsu–Wang model;price expectation.

1.Introduction

Until now,the cost of carry model has been the most widely used model for pricing stock index futures.This model was developed under the assumption of perfect markets with non-stochastic interest rates.However,if interest

639

640?Janchung Wang&Hsinan Hsu

rates are stochastic,Cox,Ingersoll,and Ross(1981;hereafter CIR)show that futures and forward prices cannot be equal.Additionally,some studies, (e.g.,Resnick and Hennigar,1983;Kamara,1988;Hemler,1988)have found that pricing deviations from the cost of carry model are a function of the volatility of the underlying security price in some?nancial futures markets. Motivated by these considerations,Hemler and Longsta?(1991)follow the framework of CIR and develop a closed-form general equilibrium model of stock index futures price with stochastic interest rates and market volatility (hereafter Hemler–Longsta?model).

The above two models are based on the assumption of perfect markets and no-arbitrage argument.Under the assumption of perfect markets,since the arbitrage mechanism can work completely in deriving valuation mod-els,a hedged position consisting of stock and futures can be“continuously”rebalanced to remain riskless.Therefore,futures valuation formulae can be obtained in perfect markets.However,su?cient reasons exist to believe that real capital markets are not perfect and index arbitrage cannot be com-plete.Figlewski(1989)?nds that continuously rebalancing hedged positions is impossible in real capital markets.Recently,Hsu and Wang(2004)incor-porate the factor of price expectation and use an argument of the incomplete arbitrage mechanism,to develop a pricing model of stock index futures in imperfect markets(hereafter Hsu–Wang model).1

In theory,when the markets are perfect and the arbitrage mechanism works completely,the riskless arbitrage ensures that the di?erence between the index futures price and the index price equals the carrying cost.Con-versely,in highly imperfect?nancial markets,due to incompleteness of arbitrage,the relationship between the index futures price and the index price may sometimes violate the carrying cost.A number of studies(e.g., So?anos,1993)have found that the arbitrage mechanism works well in highly competitive?nancial markets with high degrees of perfection,such as the S&P500index futures market.Interestingly however,some researches have observed that market imperfections could a?ect the implementation of arbi-trage mechanism in emerging markets with high degrees of imperfection.For example,Gay and Jung(1999)argue that transaction costs and restrictions on short sales are important factors a?ecting the underpricing of Korean 1Market imperfections are de?ned as including heterogeneous information among investors,frictional capital markets(transaction costs,taxes etc.),constraints on short selling,and indivisibility of securities.For a detailed discussion,see Hsu and Wang(2004).

Price Expectation and the Pricing of Stock Index Futures?641 stock index futures.Moreover,Huang,Kuo,and Shyu(1998),using SGX-DT MSCI Taiwan stock index futures data from April1,1997to March 27,1998,?nd that ex-ante arbitrage pro?ts are attractive after considering transaction costs and execution delays.Thus,there is certainly room for market imperfections to a?ect arbitrage mechanism in emerging markets.

A measure of how good a model is its prediction.The Hsu–Wang model that incorporates market imperfections has been developed but has not been empirically tested.Can the Hsu–Wang model provide more accurate pric-ing performance than that of the cost of carry model in emerging markets with high degrees of imperfection?By using the S&P500index futures contract(representing a developed market with low degree of market imper-fection)and the TAIFEX Taiwan stock index futures contract(representing an emerging market with high degree of market imperfection),this study ?rst examines how well the Hsu–Wang model predicts the behavior of index futures prices for developed and emerging markets.Moreover,the Hsu–Wang model has not been directly compared with other models.Previous researches of index futures pricing tended to focus on the cost of carry model,with a few studies(e.g.,Bailey,1989;Cakici and Chatterjee,1991; Hemler and Longsta?,1991;and Brailsford and Cusack,1997)comparing this model with other competing models.This study also compares the Hsu–Wang model with other pricing models in perfect markets,including the cost of carry model and the Hemler–Longsta?model.

The remainder of this paper is organized as follows:Section2describes the history,institutional details,and arbitrage mechanism of the TAIFEX and the S&P500index futures contracts.Section3describes three alter-native pricing models for stock index futures.Empirical methodology and data description are presented in Section4.Section5reports the empirical results.Finally,Section6presents conclusions.

2.TAIFEX and S&P500Futures Contracts:History,

Institutional Details,and Arbitrage Mechanism

The TAIFEX futures contract,based on the Taiwan capitalization weighed index,began trading on the TAIFEX on July21,1998.The Taiwan capital-ization weighed index is a market-value weighted index comprising all of the common stocks(currently about676)listed on the Taiwan Stock Exchange. The TAIFEX futures contract matures on the current month,the next cal-endar month,and the next three-quarter months;and the last trading day of each contract is the third Wednesday of the delivery month.The futures

642?Janchung Wang&Hsinan Hsu

Table1.Speci?cations of the TAIFEX and the S&P500index futures contracts.

TAIFEX Index Futures S&P500Index Futures

1.Opening date July21,1998April21,1982

2.Underlying index Taiwan capitalization weighed

index

S&P500stock index

3.Contract size Futures price times NT$200Futures price times$250

4.Contract months The current month,the next

calendar month,and the

next three-quarter months March,June,September, December

5.Minimum price

change 1index point=NT$200per

contract

0.10index points=$25per

contract

6.Price limits7%of the previous day’s

settlement price Floor:Price limits corresponding to a5.0%, 10.0%,15.0%,and20.0% decline below the settlement price of the preceding RTH session?

https://www.doczj.com/doc/d48798965.html,st trading day The third Wednesday of the

delivery month The Thursday prior to the third Friday of the contract month

8.Settlement Cash Cash

Source:Chicago Mercantile Exchange(CME)and Taiwan Futures Exchange(TAIFEX).?See CME Rulebook for details.

contract is cash settled only.Table1lists the main features of the two futures contracts.

Market imperfections di?er among markets.The S&P500index futures contract has been trading for more than two decades.Average daily trading volume during the period of the study was above89,000contracts.Addi-tionally,the frequency of arbitrage opportunities is low,which implies that the arbitrage mechanism works well in the S&P500index futures market. As for the TAIFEX futures market,the history is relatively short compared to the S&P500index futures market.Average daily volume during the?rst month of trading,July1998,was only257contracts.During the period of the study,average daily volume was only15,000contracts.The negative basis and arbitrage opportunities are frequent and persistent in1998,implying that the arbitrage mechanism is incomplete.2

2This study de?nes the negative basis as AF

t

Price Expectation and the Pricing of Stock Index Futures?643 By applying Chung’s(1991)no-arbitrage boundary argument,this study investigates in more detail the frequency and magnitude of index arbitrage for the two markets.Taking transaction costs into account,the upper bound (F U)and lower bound(F L)for the futures price can be written as:

F U t=F c,t+c+S t e r(T?t)(1)

F L t=F c,t?c?S t e r(T?t),(2) where F c,t is the theoretical futures price estimated by the cost of carry model at time t;S t denotes the current stock index;r represents the risk-free interest rate;T?t denotes the time to expiration;c?is the percentage transaction costs(as a percentage of the underlying index value)incurred by selling the index and buying the futures contracts;and c+denotes the percentage transaction costs incurred by buying the index and selling the futures contracts.Percentage transaction costs c?and c+in USA are set at 0.75%and0.55%,respectively.For the TAIFEX futures,c?and c+are set at1.33%and0.55%,respectively.3

Results of testing the frequency and magnitude of index arbitrage for the two markets are summarized in Table2.Table2indicates that arbitrage opportunities are infrequent for the S&P500index futures market.The result implies that the arbitrage mechanism in the S&P500index futures works well.As for the TAIFEX futures market,the frequency and the mag-nitude of arbitrage pro?ts are relatively high compared to the S&P500 index futures market,implying that the arbitrage mechanism is relatively incomplete.Therefore,in terms of history,trading volume,and arbitrage mechanism,the S&P500and the TAIFEX index futures markets should represent the developed markets and emerging markets,respectively.4

3.Pricing Models of Stock Index Futures

Three alternative pricing models are compared in this study.Until now, the cost of carry model has been the standard model for pricing stock index

3The transaction costs involved in index arbitrage comprise the sum of the commission and market impact cost(i.e.,bid-ask spread).Stoll and Whaley(1987)estimated transaction costs to be approximately0.5%to0.75%of the underlying index value.Chung(1991) provided an alternative estimate of0.5%to1.0%.For the Taiwan stock index arbitrage, Huang,Kuo,and Shyu(1998)estimated c?and c+for quasi-arbitrageurs to be1.3255% and0.5362%,respectively.

4Under the criteria employed by Standard&Poor’s Emerging Market Database(EMDB) and Morgan Stanley Capital International(MSCI),Taiwan is categorized as an“emerging”market.The United States is classi?ed as a“developed”market.

644?Janchung Wang &Hsinan Hsu

Table 2.

Summary statistics on index arbitrage.N

No.of Violations No.of Violations of Lower of Upper Contract &Period

Boundary(%)Boundary(%)Mean |e ?t |S t Mean |e +t |S t S&P 500

Full sample 1455

5(0.34)35(2.41)0.00370.0014(21/07/98–17/06/04)

Period 1733

3(0.41)31(4.23)0.00380.0014(21/07/98–14/06/01)

Period 2722

2(0.28)4(0.55)0.00360.0017(15/06/01–17/06/04)

TAIFEX

Full sample 1516

116(7.65)346(22.82)0.00580.0055(21/07/98–16/06/04)

Period 1750

48(6.40)257(34.27)0.00630.0064(21/07/98–16/05/01)

Period 2766

68(8.88)89(11.62)0.00540.0029(17/05/01–16/06/04)

Notes :N represents the number of observations.|e ?t |S t =|AF t ?F L t |S t ,if AF t F U t .AF t is the actual futures price at time t .futures.Cornell and French (1983a,b)use an arbitrage argument to develop a pricing model of stock index futures under the following assumptions:

(1)Capital markets are perfect,namely,no taxes and transaction costs,no

constraints on short sales,and divisibility of securities.

(2)No limits exist on borrowing or lending at the same risk-free rate.

(3)The risk-free interest rate is known with certainty.

If dividend yield is non-stochastic,Cornell and French show that the index futures price can be approximated by

F (S,t )=S t e (r ?q )(T ?t ),(3)

where q is the dividend yield.

If the underlying stock index pays irregular lumpy dividends,under the concept of continuous compounding,the cost of carry model will be

F (S,t )=(S t ?D t )e r (T ?t )

(4)

D t =n i =1 S t d i w i p i,t /e r (t i ?t ) ,

Price Expectation and the Pricing of Stock Index Futures?645 where D t is the sum of the present values of all cash dividends distributed by the underlying component stocks at time t during the life of the futures contract;d i is the cash dividend per share for stock i during the life of the futures contract;w i is the weight of stock i in the index;t i is the time that stock i pays the cash dividend;and p i,t is the price of stock i at time t.

A considerable amount of empirical research has focused on the cost of carry model.Cornell and French(1983a,b),Modest and Sunderesan (1983),and Gould(1988)found that according to the cost of carry model, index futures contracts were underpriced relative to their theoretical values. Brenner,Subrahmanyam,and Uno(1990)reported that the largest pricing errors in the Japanese index futures market were observed in the?rst year of listing.Brailsford and Cusack(1997)found that the frequency of negative pricing errors was signi?cant for the cost of carry model in the individual share futures contracts listed on the Australian stock exchange.Gay and Jung(1999)observed that the market price of futures was persistently below the theoretical value of futures estimated by the cost of carry model in the Korean stock index futures market.

Hemler and Longsta?(1991)follow the framework of CIR and develop a closed-form general equilibrium model of stock index futures price with stochastic interest rates and market volatility.The general equilibrium model of futures price is given by Eq.(15)in Hemler and Longsta?(1991).The nat-ural logarithm of the general equilibrium model yields the following regres-sion equation:

L t=α+βr t+λV t+εt,(5) where L t=ln(F t e qτ/S t);F t is the futures price;τdenotes the time to expi-ration(i.e.,τ=T?t);and V t represents the market volatility.With a lumpiness of cash dividends,L t will be ln(F t/(S t?D t)).

Additionally,ifα=0,β=T?t,andλ=0(that is,market volatility should not have explanatory power)hold,Eq.(5)reduces to

L t=r tτ.(6) Equation(6)can be rearranged to demonstrate(3),the cost of carry model. Thus,the cost of carry model can be regarded as a special case of the Hemler–Longsta?model.

The above two models are based on the assumption of perfect markets and no-arbitrage argument.Under the assumption of perfect markets,a hedged position consisting of stock and futures can be“continuously”rebal-anced to remain riskless.Furthermore,futures valuation formulae can be

646?Janchung Wang&Hsinan Hsu

obtained in perfect markets.However,su?cient reasons exist to believe that real capital markets are not perfect and index arbitrage cannot be com-plete.Figlewski(1989)?nds that continuously rebalancing hedged positions is impossible in real capital markets.Thus,Hsu and Wang(2004)incorporate the factor of price expectation,which re?ects the total e?ects of all market imperfections,and use an argument of the incomplete arbitrage mechanism to develop a pricing model of stock index futures in imperfect markets.The model assumes that the stock index(S)follows a geometric Wiener process. Consider a hedged portfolio P that consists of one unit of the underlying index and x units of the futures position.It is assumed that no initial cash out?ow is required for the futures contracts.Then,the rate of return of the hedged portfolio,dP

P

,is given by

dP

P

=(w f u f+u)dt+(w fσf+σ)dZ,(7)

where w f=xF

S ;F represents the futures price;u andσdenote the constant

expected growth rate in S and the constant volatility of S,respectively; u f andσf denote the instantaneous expected return on futures,and the instantaneous standard deviation of return on futures,respectively;and dZ is a Wiener process.

If w f=?σ

σf ,then w fσf+σ=0.In this case,the return of P is

certain and the portfolio is riskless.However,to keep the portfolio riskless,it therefore is necessary to“continuously”rebalance w f until the expiration of the futures contract.Figlewski(1989)?nds that forming a riskless hedge and rebalancing continuously until expiration is only possible in a perfect market. In imperfect markets,because arbitrage mechanism cannot be complete and index arbitrage is exposed to large risk,the portfolio cannot be riskless at any instant.This means that the portfolio must earn some expected rate of return(which can be greater than,smaller than,or equal to the risk-free rate),rather than the risk-free rate at any instant.

Let u p andσp denote the instantaneous expected rate of return of the hedged portfolio,and the coe?cient of dZ in Eq.(7),respectively.Thus, they obtain

w f u f+u=u p(8)

w fσf+σ=σp.(9) From(8)and(9),they obtain the following partial di?erential equation

1

2

σ2S2F ss+uαSF s+F t=0,(10)

Price Expectation and the Pricing of Stock Index Futures?647 where the price expectation parameter,uα=[(u p?q)?(u?q)σpσ]/(1?σpσ).

The solution of this PDE is given by

F t=S t e uα(T?t).(11) Equation(11)is the Hsu and Wang(2004)pricing equation.

If the underlying stock index pays irregular lumpiness of dividends,the pricing model of stock index futures in imperfect markets can be modi?ed as follows:

F(S,t)=(S t?D t)e u α(T?t),(12) where u α=[u p?uσpσ]/(1?σpσ).

Now,Eqs.(3)and(11)are compared.When the market is perfect and the arbitrage mechanism works completely,the portfolio consisting of futures contracts and the underlying stocks becomes a perfectly hedged portfolio and σp=0.In this case,σpσalso equals zero.Asσpσ→0,then(1?σpσ)→1and [(u p?q)?(u?q)σpσ]→(r?q).Equation(11)thus is identical to Eq.(3).That is,the Hsu and Wang(2004)pricing model in imperfect markets is identical to the cost of carry model in perfect markets.Conversely,when the market is imperfect and the arbitrage mechanism cannot work completely,the hedged portfolio cannot continuously be riskless andσp>0.In this case,σpσis also greater than zero and the two pricing models are not identical.Thus,Hsu

and Wang(2004)de?neσp

σin Eq.(10)as the degree of market imperfection

for measuring the extent of market imperfection.5

4.Methodology

4.1.Data

For the S&P500index futures and the TAIFEX Taiwan stock index futures, the nearest maturity contracts all have signi?cant trading volume.To reduce thin trading problems,only the near-month contracts were considered in this study.The sample period for the S&P500index futures covers July21, 1998to June17,2004.To capture di?erent market conditions of the sample 5To value the degree of market imperfection,Hsu and Wang(2004)also derive a theoretical valuation model as follows:

σp

σ=(1?ρ)

whereρis the instantaneous correlation coe?cient between the futures return and the index return.A detailed discussion for a valuation model of the degree of market imper-fection,see Hsu and Wang(2004).

648?Janchung Wang&Hsinan Hsu

period,two approximately equal length sub-samples were considered.The ?rst sub-period(period1)includes data between July21,1998and June14, 2001.The second sub-period(period2)includes data from June15,2001 through June17,2004.As for the TAIFEX Taiwan stock index futures,the data covered the period from July21,1998to June16,2004.The?rst and second sub-periods are from July21,1998to May16,2001and from May17, 2001to June16,2004,respectively.Moreover,to reduce the asynchroneity problem between the spot index and the futures prices,the transaction time of each daily observation for the index futures had to match with(or,at least,was nearest to)the transaction time of each daily observation for the spot index.6

For the S&P500stock index futures,the91-day Treasury bill rates were used as the substitute of risk-free interest rates.Data on the S&P 500futures,the S&P500index,and the Treasury bill rates were collected from Datastream and the AREMOS database.The annualized quarter-end dividend yields of S&P500index for the same period were obtained from the Standard&Poor’s quantitative services.As for the TAIFEX Taiwan stock index futures,30-day commercial paper rates in secondary market were used as the proxy of risk-free interest rates.The TAIFEX futures,the TAIFEX Taiwan stock index,the cash dividend per share,and the commercial paper rates data are from the Taiwan Economic Journal and the Taiwan Security Exchange.

https://www.doczj.com/doc/d48798965.html,paring the pricing performance among the three

pricing models

4.2.1.Parameter estimation of the Hemler–Longsta?model

For the Hemler–Longsta?model,the only variable that cannot be directly observed is the volatility of the underlying index(V t).To accommodate time-varying volatility in index returns,estimators based on the moving average method or the GARCH model are commonly employed.This study employs 6From July21,1998to December31,2000,the trading session for the stocks listed in the Taiwan Stock Exchange started from9:00a.m.to12:00noon,while the trading session for the TAIFEX futures started from9:00a.m.to12:15p.m.From January1,2001,the end of the trading session was extended to1:30p.m.for the stock market and to1:45p.m.for the TAIFEX futures market.Therefore,for each day in the sample period,the TAIFEX futures market closes15minutes later than the stock market.This study uses futures prices recorded closest to12:00noon(or1:30p.m.)for matching with closing price of the stock market at12:00noon(or1:30p.m.).As for the S&P500index futures,we repeat the same procedure.

Price Expectation and the Pricing of Stock Index Futures ?649

both the moving average method and the exponential GARCH (EGARCH)modi?ed by Nelson (1991)to estimate V t .

4.2.1.1.Moving average.

The variance of index returns is estimated using an equally weighted moving average of past returns.That is,

V dt =1n ?1t ?1 i =t ?n (R i ?R )2(13)

R i =ln S i S i ?1

R =1n t ?1 i =t ?n

R i ,where V dt is the variance estimate on day t ;R i is the spot index return on day i ;S i is the index price on day i ;R denotes the mean return of spot index;and n is the length of the period set to a value of 20days,as suggested by Chiras and Manaster (1978).The variance per annum (V t )should be calculated from the variance per trading day (V dt )using the formula

V t =V dt ×(number of trading days per annum).(14)

4.2.1.2.EGARCH (1,1)model.

Asymmetric GARCH model of Nelson (1991),which allows for asymmetric volatility response to stock price shocks,is speci?ed as follows:7

R t =μ+εt εt |εt ?1,εt ?2,...~N (0,h t )

(15)ln(h t )=β0+β1ln(h t ?1)+β2εt ?1 h t ?1+β3 εt ?1 h t ?1 ? 2π .(16)

In the EGARCH (1,1)model,since β2<0,negative stock price shocks (i.e.,εt ?1<0)will have a greater impact on the conditional variance,h t ,than positive stock price shocks (i.e.,εt ?1>0).In addition,if β3>0and |εt ?1√

h t ?1

|> 2/π,then the lagged residuals will have a positive impact on the conditional variance.

7Nelson (1991)indicates that the volatility of American stock market has asymmetric e?ects using EGARCH model.Lin,Liu,and Wu (1999)obtain similar results using the Taiwan capitalization weighed index.

650?Janchung Wang&Hsinan Hsu

4.2.2.Parameter estimation of the Hsu–Wang model

Implementing the Hsu–Wang model requires estimating one unobservable parameter uα.This study uses the adaptive expectations model to estimate this parameter.The adaptive expectations model implies that the forecast at time t is adjusted by a fractionβof the most recent forecast error at time t?1.8That is,

P t=P t?1+β(A t?1?P t?1),(17) where P t denotes the forecast value at time t;A t?1represents the actual value at time t?1;andβis the adjustment coe?cient.Ifβ=1,then P t=A t?1.

Using iteration of substitution,the adaptive expectations model(17)can be reduced to

P t=βA t?1+β(1?β)A t?2+β(1?β)2A t?3+β(1?β)3A t?4+ (18)

Equation(18)indicates that the forecast value at time t can be expressed as an exponentially weighted average of a series of past values.If0<β<1, the in?uence of the actual value on the forecast value at time t will decrease with the distance of that value from time https://www.doczj.com/doc/d48798965.html,ing Eq.(18),the estimate of uαat time t can be obtained from the following regression9

uα,t=a0+a1uα,t?1+a2uα,t?2+a3uα,t?3+···+a n uα,t?n+εt.(19) The lag length speci?cation for Eq.(19)is determined using Akaike Infor-mation Criterion(AIC).10lags are used initially.One lag is found to be optimal for the S&P500and the TAIFEX index futures contracts.Table3 reports regression results on the one-lag adaptive expectation.The adaptive coe?cients(a1)range from0.1325to0.1608for the S&P500market,and 0.2888to0.3167for the TAIFEX market.All of the adaptive coe?cients are signi?cantly greater than zero and less than one.The results indicate that uαat time t is adjusted by a fraction a1of uαat time t?1.

8The adaptive expectations model has been widely used in the economic literature to describe the formation process of price expectation regarding future behavior of variables such as farm prices(e.g.,Nerlov,1958)in?ation rate(e.g.,Wachtel and Figlewski,1981), interest rate(e.g.,Sinkey,1973),dividend behavior(e.g.,Lee,Wu,and Djarraya,1987), and stock prices(e.g.,Chow,1989).

9Similarly,using Eq.(19),the estimate of u

αat time t can be obtained.

Price Expectation and the Pricing of Stock Index Futures?651

Table3.Regression results on the adaptive expectation.

Model:uα,t=a0+a1uα,t?1+εt

t-values

a0a1R2H0:a0=0H0:a1=0H0:a1=1 S&P500

Full sample0.03670.16080.032230.724??? 6.894????35.979???Period10.03120.13250.035421.680??? 5.140????33.652???Period20.03060.15030.049022.545??? 6.041????34.152???TAIFEX

Full sample0.05470.31670.0989 3.493???12.580????27.142???Period10.13480.28880.0827 5.587???8.020????19.750???Period2?0.01820.30960.0929?0.8958.622????19.227???Note:???Signi?cant at the1%level.

4.2.3.Obtaining the theoretical values of stock index futures for the

three models,respectively

For the cost of carry model,substituting the known risk-free rate r and the cash dividend yield q,together with the current index price S t and time to maturity T?t,into the cost of carry model(3),the theoretical value for the S&P500index futures can be obtained.Similarly,substituting the known risk-free rate r and the lumpiness of cash dividend D t,together with the current index price S t and time to maturity T?t,into the cost of carry model(4),the theoretical values of the TAIFEX Taiwan stock index futures can then be obtained.

For the Hemler–Longsta?model,substituting the data r t,V t and the coe?cient estimatesα,β,andλinto the regression model(5)to generate the estimate of the dividend-adjusted futures/spot price ratio L t.Finally, the theoretical values of index futures F t can then be inferred from L t.

For the Hsu–Wang model,substituting the estimate uα,together with the current index price S t and time to maturity T?t,into the pricing model(11),the theoretical value of the S&P500index futures at time t can be estimated.Similarly,substituting the lumpiness of cash dividend D t and the estimate u α,together with the current index price S t and time to maturity T?t,into the pricing model(12),the theoretical value of the TAIFEX Taiwan stock index futures at time t can be obtained.

4.2.4.Calculating the forecast error statistics for the three models

To determine how well the three models predicted,the mean absolute error(MAE),the mean percentage error(MPE),and the mean absolute

652?Janchung Wang&Hsinan Hsu

percentage error(MAPE)are de?ned as follows:

MAE=1

n

n

t=1

|AF t?F t|(20)

MPE=1

n

n

t=1

AF t?F t

AF t

(21)

MAPE=1

n

n

t=1

AF t?F t

AF t

,(22)

where AF t is the actual price of stock index futures at time t;and F t is the theoretical value of stock index futures at time t.

Additionally,to compare the performance among the three models,the t-test and Wilcoxon Sign-Rank test were used to test whether the MAPE statistics generated from each model were signi?cantly di?erent.

5.Empirical Results

5.1.Pricing error statistics of the three pricing models

Through all tables,CCM,HL-MA,HL-EG,and HW-AE represent the cost of carry model,the Hemler–Longsta?model with moving average,the Hemler–Longsta?model with EGARCH,and the Hsu–Wang model with adaptive expectations,respectively.

5.1.1.The S&P500stock index futures market

Table4presents descriptive statistics on the model pricing errors.From the“percentage error”column,for the full sample,the cost of carry model underprices the S&P500contract by an average of0.076%.This?nding is consistent with the?nding of Bhatt and Cakici(1990).The Hsu–Wang model slightly underprices the S&P500contract.The results for absolute percentage error are also shown in Table4.The MAPE of CCM is the lowest for the full sample,and for the second sub-period.For the?rst sub-period, HW-AE has the smallest MAPE.We further use t-test and Wilcoxon Sign-Rank test to examine whether the MAPE statistics generated from each model are signi?cantly di?erent.The results are reported in Table5.More closely examining this table suggests the following.First,according to the t-test,for the full sample,the MAPE of CCM is signi?cantly smaller than that of the others.However,for the?rst sub-period,the performance of HW-AE is signi?cantly better than that of the others.Thus,in terms of

Price Expectation and the Pricing of Stock Index Futures?653 Table4.Descriptive statistics of pricing errors for the S&P500futures contract.

Percentage Error Absolute Percentage Error Absolute Error N Mean(%)Std(%)Mean(%)Std(%)Mean Std Full sample

CCM14550.07600.23520.18360.1654 2.2017 2.0853 HL-MA1434?0.00040.28840.20310.2047 2.4399 2.6201 HL-EG1453?0.00040.28760.20300.2037 2.4368 2.6089 HW-AE14310.00380.25930.19750.1680 2.3458 2.0682 Period1

CCM7330.12770.25720.22150.1826 2.9152 2.4111 HL-MA712?0.00060.34310.24430.2407 3.2244 3.1979 HL-EG731?0.00060.34070.24290.2387 3.1961 3.1725 HW-AE7210.01050.25280.19660.1638 2.5992 2.1710 Period2

CCM7220.02360.19720.14510.1355 1.4774 1.3507 HL-MA722?0.00020.21210.15440.1453 1.5758 1.4581 HL-EG722?0.00020.21190.15410.1453 1.5725 1.4584 HW-AE710?0.02010.21660.16600.1405 1.6951 1.4181 Note:N represents the number of observations.

model rankings,on the basis of MAPE,the preferred model is generally the cost of carry model,followed by the Hsu–Wang model with adaptive expectations,and then Hemler–Longsta?model with EGARCH.Second,for the volatility estimates in the Hemler–Longsta?model,the MAPE of HL-MA and that of HL-EG do not signi?cantly di?er for all the periods.This ?nding suggests that the Hemler–Longsta?model with the more complex EGARCH estimates does not perform better.

Tables4and5indicate that the Hsu–Wang model provides no improve-ment over the cost of carry model,perhaps because the degree of market perfection is higher and the arbitrage mechanism works well for the S&P500 index futures market.Alternatively,precisely estimating the price expecta-tion parameter uαin the Hsu–Wang model is extremely di?cult.Hence,as expected,the Hsu–Wang model does not perform better than the cost of carry model for the S&P500index futures.

5.1.2.The TAIFEX Taiwan stock index futures market

Table6summarizes the pricing errors of the three pricing models in test-ing the TAIFEX futures contract.From the percentage error,for the full sample and for the second sub-period,all the models overprice the TAIFEX contract.The largest overestimate is an average of?0.273%for the cost of

654?Janchung Wang&Hsinan Hsu

Table5.Results of statistical tests for di?erences in MAPE between the

pricing models(S&P500futures contract).

Full Sample Period1Period2 CCM vs.HL-MA?2.81????2.03????1.26

(1.52)(0.53)(0.96)

CCM vs.HL-EG?2.81????1.93???1.21

(1.59)(0.44)(0.89)

CCM vs.HW-AE?2.24?? 2.74????2.86???

(2.33??)(2.53??)(2.77???)

HL-MA vs.HL-EG0.020.110.04

(0.08)(0.05)(0.07)

HL-MA vs.HW-AE0.80 4.38????1.54

(0.76)(2.98???)(1.50)

HL-EG vs.HW-AE0.79 4.32????1.57

(0.70)(2.96???)(1.86?)

Notes:Numbers in parentheses are the Wilcoxon test statistics.For two-tailed

test,?,??,and???signi?cant at the10%,5%,and1%levels,respectively.

If the MAPE of the former model is greater than that of the latter model in

column1,t-value is positive.

Conversely,t-value is negative.

carry model.On the basis of the absolute percentage errors,it is found that the MAPE of HW-AE is the lowest for the full sample,and for all the two sub-periods.This?nding suggests that the Hsu–Wang model with adaptive expectations provides the best performance for the TAIFEX futures.Addi-tionally,the cost of carry model has the largest MAPE for all the periods. Table6also summarizes the absolute errors of the three pricing model.In general,the results are similar to those of the MAPE.

The t-test and Wilcoxon Sign-Rank test statistics based on MAPE are reported in Table7.According to this table,the MAPE of CCM is signi?-cantly larger than that of the others.As for HL-MA,HL-EG,and HW-AE, the MAPEs of these models do not obviously di?er.Overall,from Tables6 and7,the Hsu–Wang model with adaptive expectations is preferred for the TAIFEX futures.HL-MA and HL-EG should also have good pricing perfor-mance.The cost of carry model has the worst performance.As one would expect,in highly imperfect?nancial markets,such as the TAIFEX futures market,the relationship between the index futures price and the index price sometimes violates the carrying cost.Consequently,the Hsu–Wang model yields signi?cantly better results compared to the cost of carry model.Sec-ond,we compare the t-test and Wilcoxon Sign-Rank test statistics of HL-MA and HL-EG.Similar to the results of the S&P500index futures,the

Price Expectation and the Pricing of Stock Index Futures?655 Table6.Descriptive statistics of pricing errors for the TAIFEX futures contract.

Percentage Error Absolute Percentage Error Absolute Error N Mean(%)Std(%)Mean(%)Std(%)Mean Std Full sample

CCM1516?0.04300.91370.68330.607842.586139.2663 HL-MA1495?0.00220.66500.47860.461529.266628.2223 HL-EG1514?0.00220.66260.47630.460529.186628.1716 HW-AE1446?0.03150.64980.46290.456928.241627.8857 Period1

CCM7500.19190.97980.75610.651554.551346.2974 HL-MA729?0.00270.74120.52940.518436.833133.4350 HL-EG748?0.00260.72910.51770.513136.113933.2139 HW-AE7170.01030.72870.51250.517835.667633.2820 Period2

CCM766?0.27300.77860.61210.553030.870826.0211 HL-MA766?0.00160.57000.42140.383621.501418.8799 HL-EG766?0.00160.57450.42570.385421.727218.9916 HW-AE729?0.01420.55400.41660.382321.112418.7769 Note:N represents the number of observations.

Table7.Results of statistical tests for di?erences in MAPE between the pricing models.

(TAIFEX futures contract)

Full Sample Period1Period2 CCM vs.HL-MA10.39???7.39???7.83???

(10.17???)(7.42???)(7.32???) CCM vs.HL-EG10.56???7.86???7.64???

(10.35???)(7.99???)(7.07???) CCM vs.HW-AE11.19???7.95???7.98???

(11.31???)(8.29???)(7.66???) HL-MA vs.HL-EG0.140.43?0.22

(0.13)(0.57)(0.24) HL-MA vs.HW-AE0.930.620.24

(1.47)(1.03)(0.61) HL-EG vs.HW-AE0.790.190.47

(1.34)(0.47)(0.82) Notes:Numbers in parentheses are the Wilcoxon test statistics.For two-tailed test,?,??, and???signi?cant at the10%,5%,and1%levels,respectively.

If the MAPE of the former model is greater than that of the latter model in column1, t-value is positive.Conversely,t-value is negative.

EGARCH approach cannot provide better forecasts of future spot volatility than the moving average approach.

Moreover,Tables6and7illustrate that the performance of the Hemler–Longsta?model is much better than that of the cost of carry model.As dis-

656?Janchung Wang&Hsinan Hsu

Table8.Cost of carry model versus Hemler–Longsta?model for the S&P500index futures

L t=α+βr t+λV t+εt

αβλR2DW N Moving Average

Full sample?0.00040.1444???0.01020.642 2.041434 (?0.63)(8.94)(1.48)

Period10.00040.11820.02020.547 2.02712

(0.10)(1.49)(1.52)

Period2?0.00050.1621???0.00430.361 2.04722 (?1.21)(6.64)(1.09)

EGARCH(1,1)

Full sample?0.00050.1433???0.01260.640 2.041453 (?0.73)(8.86)(1.62)

Period10.00140.11030.00620.545 2.03731

(0.36)(1.40)(0.58)

Period2?0.00050.1580???0.00730.350 2.03722 (?1.30)(6.57)(1.33)

Notes:Numbers in parentheses are the t-values.For two-tailed test,?,??,and???signi?-cant at the10%,5%,and1%levels,respectively.N represents the number of observations. cussed above,if the Hemler–Longsta?model determines prices,spot volatil-ity should have explanatory power.Thus,we estimate the regression Eq.(5). To control for autocorrelation,the regression coe?cients of the Eq.(5) are estimated with an iterative Cochrane–Orcutt procedure.According to Tables8and9,the variance of Taiwan’s index return has almost signif-icant explanatory power for the TAIFEX futures,compared to the S&P 500index futures.Perhaps because the Taiwan stock market has the higher volatility property,incorporating stochastic market volatility is bene?cial to predict the TAIFEX futures prices.This?nding possibly explains why the Hemler–Longsta?model performs better than the cost of carry model for the TAIFEX futures.

5.2.Statistical tests for di?erences in MAPE between

the sub-periods

Table10summarizes the results of statistical tests for di?erences in MAPE between the?rst sub-period and the second sub-period.The MAPE of the ?rst sub-period is signi?cantly greater than that of the second sub-period for all the index futures contracts and for all the models,implying that the e?ciency of these two markets appears to increase over time.

Price Expectation and the Pricing of Stock Index Futures?657 Table9.Cost of carry model versus Hemler–Longsta?model for the TAIFEX index

futures.

L t=α+βr t+λV t+εt

αβλR2DW N Moving Average

Full sample?0.00210.1408????0.0175?0.466 2.031495 (?1.55)(4.19)(?1.78)

Period10.0219????0.3500??0.00110.382 2.01729

(2.84)(?2.28)(0.09)

Period20.0037????0.0566???0.0629???0.436 2.03766

(5.61)(?1.96)(?9.95)

EGARCH(1,1)

Full sample?0.0049???0.1015???0.0315???0.471 2.041514 (?3.05)(2.70)(3.03)

Period10.0209????0.4012???0.0419???0.410 2.02748

(2.90)(?2.86)(3.27)

Period20.0018????0.1130??0.0229?0.429 2.04766

(2.78)(?1.75)(?1.86)

Notes:Numbers in parentheses are the t-values.For two-tailed test,?,??,and???signi?-cant at the10%,5%,and1%levels,respectively.N represents the number of observations.

Table10.Results of statistical tests for di?erences in MAPE between the

sub-periods.

S&P500Futures TAIFEX Futures CCM9.07??? 4.64???

(8.71???)(4.34???)

HL-MA8.55??? 4.56???

(7.96???)(3.52???)

HL-EG8.58??? 3.94???

(8.04???)(2.66???)

HW-AE7.09??? 4.08???

(6.40???)(2.40???)

Notes:Numbers in parentheses are the Wilcoxon test statistics.For two-tailed

test,?,??,and???signi?cant at the10%,5%,and1%levels,respectively.

If the MAPE of the period1is greater than that of the period2,t-value is

positive.

5.3.Statistical tests for di?erences in MAPE between

the markets

This study also examines whether there is signi?cant di?erences in MAPE between the S&P500index futures and the TAIFEX futures.According to Table11,the performance in estimating the prices of the S&P500index futures contract is signi?cantly better than that of the TAIFEX futures

658?Janchung Wang&Hsinan Hsu

Table11.Results of statistical tests for di?erences in MAPE between the

markets.

Full Sample Period1Period2 CCM30.84???21.62???22.66???

(29.83???)(19.88???)(22.76???)

HL-MA21.03???13.44???17.95???

(21.02???)(12.91???)(17.13???)

HL-EG21.05???13.25???18.18???

(21.11???)(12.56???)(17.21???)

HW-AE19.51???12.88???15.83???

(17.34???)(10.64???)(14.10???)

Notes:Numbers in parentheses are the Wilcoxon test statistics.For two-tailed

test,?,??,and???signi?cant at the10%,5%,and1%levels,respectively.

If the MAPE for the TAIFEX futures market is greater than for the S&P500

futures market,t-value is positive.

contract for all the models and for all the periods.The result indicates that the higher market perfection indeed helps to reduce the extent of mispricing.

6.Conclusions

The Hsu–Wang model that incorporates an argument of the incomplete arbi-trage mechanism has been developed but has not been empirically tested. Using the S&P500index futures contract(representing a developed mar-ket with low degree of market imperfection)and the TAIFEX Taiwan stock index futures contract(representing an emerging market with high degree of market imperfection),this study examines how well the Hsu–Wang model explains the behavior of index futures prices for di?erent imperfect markets. Additionally,this study also compares the Hsu–Wang model with other pric-ing models in perfect markets,including the cost of carry model and the Hemler–Longsta?model.

Overall,the Hsu–Wang model with adaptive expectations provides the best performance for the TAIFEX futures.However,the Hsu–Wang model provides no improvement over the cost of carry model for the S&P500index futures.These results imply that the Hsu–Wang model provides more accu-rate pricing performance than that of the cost of carry model in immature markets with high degrees of market imperfection.Therefore,when select-ing a pricing model to estimate the theoretical values of stock index futures, investors should identify the degree of market imperfection for the markets in which they are participating.Moreover,the Hemler and Longsta?model performs better than the cost of carry model in estimating prices of the TAIFEX futures.This?nding indicates that in the higher volatility of the

世界主要国家地区住房调控政策经验与启示

世界主要国家地区住房调控政策经验与启示 中国金融40人论坛特邀成员陈卫东 [ 2010-04-22 ] 共有0条点评 内容摘要:近年来我国住房市场蓬勃发展对改善居民居住条件、拉动经济增长和促进就业发挥了重要作用,但房价过快上涨、投机气氛渐浓,许多购房者被排除在市场之外,成为社会各界高度关注的热点问题。“他山之石,可以攻玉”,本文在归纳和总结主要国家和地区房地产市场调控背景、抑制泡沫政策和住房保障模式的基础上,提出了完善我国房地产市场调控、破解房地产市场难题的政策建议:政府要高度重视房地产问题,力争在“住有所居”和“保增长”之间取得最佳平衡,“保低放高”,继续扩大保障性住房建设和覆盖范围,增大住房市场交易和保有环节税负,实行以实物建房为主的住房保障模式,加快我国住房市场和住房保障的法制化进程。 关键词:房地产泡沫、住房保障模式、国际经验、住有所居 1998年以来,我国房地产市场蓬勃发展,对改善居民居住条件、拉动经济增长和创造就业发挥了重要作用。但最近几年,房价节节攀升,超出了许多购房者的承受能力,超出老百姓承受能力的房地产市场必定是不可持续的。“他山之石,可以攻玉”,归纳和总结世界主要国家和地区住房市场调控政策的背景、经验与教训,对完善我国住房政策、破解当前住房市场难题、促进房地产市场健康发展具有重要的借鉴意义。 一、主要国家和地区出台住房调控政策的不同背景 住房是人们生活的必需品,又是特殊商品。短期内需求大幅增加而供给难以及时跟进,决定了住房很容易成为投资品。生活必需品要求价格的稳定性和投资品价格的波动性之间的矛盾,是房地产市场最基本的矛盾。这个基本矛盾决定了不能把所有住房问题全都交由市场这只所谓“无形之手”去解决,客观上要求由政府“有形之手”加以调节,以弥补市场失灵。 (一)提供公共住房,保障居民“住有所居” 随着人口增长和经济发展,各个国家和地区住房矛盾不断突现,保障居民“住有所居”成为各个国家和地区住房调控政策的重中之重。新加坡有460万常住人口,国土面积仅699平方公里,人口密度大,土地资源十分有限。建国初期,面临严重的房荒,新加坡住房形势十分严峻。为解决住房短缺及其引发的社会问题,早在1960年新加坡政府宣布成立建屋发展局,1964年推出了“居者有其屋”的政府组屋计划,将政府工作的重点放在解决普通收入者的居住问题上。 香港政府干预房地产市场始于1954年,当时石硖尾大火导致5万多人丧失家园,政府不得不进行安置,并于当年成立了香港房屋委员会,负责建立和发展与商品房市场并行的公共经济房系统。1972年,房屋委员会制定了公共房发展规则,耗资54

香港房地产金融市场的发展与特点(doc 9页)

香港房地产金融市场的发展与特点(doc 9页)

香港房地产金融市场发展特点与启示 2003-05-28 中国房地产金融作者:中国建设银行房地产金融业务香港培训班 2002年11月5日至12日,由中国建设银行总行房地产金融业务部孙冰峰副总经理带队,建设银行总行和部分分行房地产金融业务部的有关负责人和业务骨干以及总行人力资源部人员共 30人在香港进行了房地产金融业务培训。培训的主要目的是通过了解香港住房按揭市场情况及按揭业务运作,吸取香港房地产与房地产金融市场发展的经验教训,引进香港银行业的经营管理理念,学习和借鉴有益的业务运作方式、操作流程、产品品种以及有关制度体系,以不断规范中国建设银行房地产金融业务运作,加快产品创新步伐,提高市场营销能力,促进业务的持续稳定健康发展。 一、香港房地产金融市场的发展与特点 1.1 香港房地产市场现状 1.房地产价格持续大幅下跌,“负资产”借款人大量增加 自1998年亚洲金融风暴以后,香港房地产价格一路暴跌,截至目前已经平均下降了6成半左右,而且房地产市场仍未摆脱低迷和萧条,没有止跌回升的迹象。由于香港居民采取购房形式的置业与投资意识非常强,购房支出在香港居民的消费和投资支出中占有相当高的比例,因此,这次香港房价下跌持续时间之久、下跌幅度之大,给香港经济金融发展和社会稳定带来了很大的不利影响。 “负资产”一词的流行以及由此引发的一系列问题就是一个典型的例证。住房按揭是香港居民购买住房的主要手段,银行按揭贷款成数一般不超过房价的7成,但是由于房价的大幅暴跌,许多按揭借款人所购房屋的市价目前已远不及其按揭贷款的未偿还余额,成为“负资产”人士。根据香港金融管理局公布负资产住宅按揭贷款的最新调查(28家认可机构提供的资料):截至 2002年9月底,负资产住宅贷款总宗数70112笔;未偿还总额1180亿港元,占按揭贷款未偿总额的比例达22%;按揭成数已达128%(如以原按揭成数为七成计算,再假设近几年已还一成本金,则表明房价下跌了68%);平均利率大幅下调,为最优惠利率减0.76厘(以前高于最优惠利率)。“负资产”人士和负资产按揭贷款的大量存在,不仅影响了社会和经济稳定,也大大增加了银行按揭业务的风险。 针对上述形势,香港政府推出了包括停售公屋(指廉租住房,见后描述)抑制房价下跌等一系列措施,香港金融管理局也放宽了利率限制 (由原“最优惠利率十利差”变为“最优惠利率-2.5%”),并鼓励新按揭产品的创新。银行纷纷下调利率,推出加按、140%超按、MortgageOne账户(见后描述)等新产品防范风险,争取业务。发展商也以低于市价一至两成出售新楼,并提供二按(见后描述),送印刷费、律师费和提供低价装修、低价出售家居等新措施招揽业务。 2、满足不同收入阶层需要的住房供应体系

香港住房政策与国内住房政策对比及启示

一、香港房地产市场的调控措施 透明的房地产市场交易信息。为遏制楼市投机行为、抑制房价过快上涨,香港政府不断加强新房屋预售、销售环节的透明度,降低开发商对房屋售价与现房供应的操纵,从而抑制了因新房销售信息不对称所引发的哄抬房价现象。香港政府对开发商预售、现售环节、信息披露、首次放盘量等方面出台了多项指引文件,还明确规定了有关预售新房(含楼花)示范单位的细则。 健全的土地管理制度。香港在坚持土地公有制的前提下,将土地使用权批租给受让人,土地批租主要采用公开拍卖、招标、私下协议和临时租约四种形式。香港有比较健全的土地法例体系,包括《香港房地产法》、《收回官地条例》、《土地征用法令》、《地契条款》、《拍卖地产条例》等。政府只是根据这些法例进行管理,实行有偿、有期、有条件使用土地。所有要使用土地的人都需要通过土地市场获得土地。既有垄断控制,又有自由转让。在楼市出现泡沫的时候政府采取增加住宅用地供应的做法,在楼市萧条时期政府采取减少土地供应的措施,以保持楼市的平稳发展。 完善的公屋制度。香港的公屋制度不仅包括政府出资建造建筑实体,还包括货币化的综援金制度。到1997年,香港650万居民中居住在出租公屋、政府补助出售房屋的人口达331.38万,占全港人口的51%。公租房制度与香港的房地产大规模开发几乎同步,不仅解决了众多中低收入者的住房问题,还为香港节约了土地资源,保持了社会稳定,提高了城市竞争力。

短期交易“额外印花税”。为了抑制投资者炒房,香港引入了短期交易“额外印花税”。目前,香港物业交易须缴纳最高4.25%的从价印花税,而“额外印花税”则分为三级税率:6个月或以内转售的交易,税率为该转售交易金额的15%;6个月以上至12个月之间转售,税率10%;12个月以上至24个月之内转售,税率为5%。换言之,持有物业的时间愈短,业主需要缴纳的“额外印花税”税率便愈高。 楼宇按揭成数调整。楼宇按揭成数也是香港调控楼市的主要手段之一,且效果比较明显。香港楼宇的按揭成数一般在5成左右。香港金融管理局根据楼市冷热程度适时调整楼市按揭成数。在楼市萧条时期上调楼市按揭成数,一般楼价越高按揭成数越高;楼市出现泡沫时下调楼市按揭成数,一般楼价越高按揭成数越低。2010年11月,香港金融管理局宣布下调楼宇按揭成数。新政一出,之前热火朝天的香港楼市顿入寒冬。据香港美联物业的统计显示,在楼市新政出台的首个周末,香港十大指标性二手楼盘的成交量已经比前一周减少近八成,二手楼看楼量普遍下跌五成以上,还有许多楼盘罕见地出现“零成交”。 二、香港与内地房地产政策调控的比较 香港楼市调控的针对性比内地强。一般来说,香港政府楼市调控的针对性很强,目标直指短期炒楼行为,加大炒家转手成本,进而遏制楼价快速上涨。在遏制纯投资购房者以金融杠杆炒楼的同时,也确保了真实自住型需求不受政策影响。所以香港楼市调控政策的短期效应比较明显,特别是楼市泡沫期间,每一轮楼市新政出台后的数周内,

香港地产模式不适合中国内地

香港地产模式不适合中国内地 社科院易宪容 那种高房价、高地价、高公屋率的住房发展模式不适合中国。绝大多数民众的住房问题,只能在政府某种政策帮助下进入房地产市场来解决。这就要求我们不仅要调整房地产市场产品结构,也得通过政策方式来调低房价。 在今年两会上,房地产问题成了代表们关注的热点。对此,不少代表提出了自己的看法,并希望用不同的方式来解决国内目前的高房价问题,解决中低收入民众的住房问题。在2006年政府工作报告中,对房地产问题也有更为详细的阐述。如,“继续把好土地、信贷两个闸门,坚持实行最严格的土地管理制度,坚持按照贷款条件和市场准入标准发放贷款。从严控制新开工项目。继续解决部分城市房地产投资规模过大和房价上涨过快的问题。要着力调整住房供应结构,严格控制高档房地产开发,重点发展普通商品房和经济适用房。建立健全廉租房制度和住房租赁制度。整顿规范房地产和建筑市场秩序”等。而把这些意见归结到一点,就是中国房地产市场采取何种发展模式以及中国的住房保障体系如何来建立的问题。 政府目前对内地房地产发展之思路,很容易让我联想到香港的住房发展模式,即高地价、高房价、高公屋居住率。在这种模式下,政府以高价将土地出卖给开发商,房地产开发商以高房价在市场交易。在这种高房价下,60平方米以下的住房占72%,90平方米以下的住房占90%,而近50%香港居民住政府供给的公屋。在这种制度安排下,尽管香港税收十分低,但是社会绝大多数财富通过房地产市场分别流向了政府(如政府庞大的土地基金)与房地产开发商(香港的最富有的人基本上都是通过房地产市场起家的),造成了严重的社会财富两极分化。

同时,由于房价过高、公屋率过高,整个香港居民的住房福利水平严重下降。这不仅表现的香港居民的住房面积过小,而且表现在香港绝大多数居民所住房子的周边环境恶劣。可以说,香港这种住房发展模式是香港特定条件下的产物。 政府目前对内地房地产发展之思路,处处似乎都表现出要仿照香港房地产的发展模式。比如,无论是去年中央政府关于宏观调控的文件,还是“十一五规划”关于房地产的发展概要,都是以稳定房价为目的,且都显示出中国的房地产市场发展正在走向香港模式。政府有这种思路,房地产开发商更是尽情地发挥了。比如,以高房价来带动高地价;再比如,中低收入者的住房问题基本通过政府资助来解决(建立中国的住房保障体系,加大政府对经济适用房与廉租屋投入……)。然而,这种模式究竟适合中国吗?这种模式对谁最有利?最大的受害者又是谁? 作为一个处于转轨过程中的发展中国家,中国绝大多数民众目前仍处于中低收入水平的状态下,如果绝大多数民众的住房都要通过国家的住房保障体系来解决,政府的财政有这种承受能力吗?如果没有,中国住房保障体系的资金又从何而来?在目前的情况下,国家财政显然是没有这种能力建立香港那种庞大的公屋体系的。而且,即便是政府有能力来承担,那么又将通过何种方式来分配呢?如果这种分配体系不能够市场化,那么不就又退回到1998年货币化住房改革之前的老路上去了吗? 一些人之所以要把中低收入民众住房问题归结到政府责任上去,一方面是因为房地产开发商要把中国绝大多数民众赶出房地产市场,另一方面也是在为推高房价提供借口。当然,这和政府目前采取的这种模仿香港的住房发展模式也不无关系。

中国大陆地区与香港地区汉语外来词对比研究

内容提要 外来词是一种普遍的语言现象,本文在对汉语外来词的由来及其历史状况作出初步探讨的基础上,着重比较中国大陆地区与中国香港地区在外来词借入过程中所存在的差异,并进一步探索分析造成这种差异的社会历史文化等诸多方面的因素。

目录 0.引言 (1) 1. 汉语外来词研究 (2) 1.1汉语外来词的发展历史 (2) 1.1.1第一次高峰.古代西域/佛教 (2) 1.1.2 第二次高峰.近现代西学东渐 (3) 1.1.3 第三次高峰.当代改革开放 (4) 1.2 外来词引入的六种方式 (5) 1.2.1音译 (5) 1.2.2意译 (5) 1.2.3形译 (5) 1.2.4半音半意译 (6) 1.2.5音译加表意字 (6) 1.2.6直用原文 (6) 2. 香港地区汉语外来词与大陆地区汉语外来词的差别8 2. 1译法的不同 (8) 2.1.1普通话曾用过音译,但后改为意译而香港则一直为音译8 2.1.2普通话为意译,而香港则为音译 (9) 2.1.3香港为音译,普通话原来就有 (10)

2.1.4同是音译,但用字却不同 (10) 2.1.5同是意译,译法不同 (11) 2.2 语义的变异不同 (12) 2.2.1 词义的变异 (12) 2.2.2 词用的变异 (13) 2.2.3利用词义的变异造变义混合词 (13) 2.3差别的原因 (14) 2.3.1不同的历史文化积累、社会环境,从根本上造成了 两地对外来词的不同态度和倾向 (15) 2.3.2 两地不同的语言使用环境 (16) 2.3.3 香港地区独特的外来语借入过程 (17) 2.3.4 粤语独特的语音特色 (18) 3. 结语 (20) 注释 (23) 参考文献 (24) 论文摘要(中文) (1) 论文摘要(英文) (1)

香港的公屋

香港的公屋 周昀皓发表于2013-04-16 08:57 一般人想到香港可能会联想到大厦林立的商业区,或者亮丽的购物中心,但其实对很多香港当地人来讲,公共屋村(简称公屋)才象征了香港普罗大众的生活。 从香港的统计来看,香港人口约有710万人以上,而且这数字年年有上升的趋势,香港土地面积是1104平方公里,大约是上海的1/6,人口密度自然非常高,在世界上也是头三位高密度地区之一,而且香港的地形是山地较多,平地较少。 所以,一般住宅的购入金额非常高,只有非常少的一部分富裕阶层才有能力拥有。一般市区高层住房(私家楼)的价格,大约需要一个普通香港人11年的薪资,比起在日本东京首都圈买房需要的5-7倍年薪,在香港买房更为困难。 居者有其屋 为了解决香港地少人多、楼价高带来的中低收入人士住房问题,香港政府通过公屋政策及政府资助,给大部分香港人提供了一个安身之所。 目前,香港700多万人口中约半数都住在这类政府资助的公营房屋里,其中租住公屋的人数为三成。以公屋为例,每月租金只为一般低收入家庭收入的一成左右。每个屋村都有配套的文娱康乐设施,球场、公园、诊所、商场和商店街等。 以一般一家四口为例,居住面积大约只有50平方米,生活空间较为狭窄。但香港的公屋制度不但保障了每个香港人都能获得城市生活的基本居住需求,更让每个人都有一个安定的起点。 很多香港人都在公屋长大,毕业后或许先帮父母搬去环境更好的公营房屋(例如居屋),然后自己再存钱搬去私家楼。或结婚后,夫妇继续住在旧的公屋单位里,买复数的住宅单位作出租或炒卖的投资目的,最终达到更好的生活水平。 在街头访问一般的香港单身人士,人生最大的目标是什么? 听到最多的回答是“买屋”。比起结婚优先考虑买屋,这可能是像香港这类环境才有的现象。狭窄的居住环境或许正是鼓励香港人一步一步往上获得更舒适的生活环境的动力,也是很多人的共同原点,或许正因为如此,很多香港人都对公屋带有很特别的感情。

香港公租房

二、公租房管理模式的国际经验比较 (一)经验介绍 香港特别行政区,面积1104 平方公里,分为18个行政区域,约706万人口,香港地少人多,寸土寸金。1953 年12 月, 香港九龙石硖尾寮屋区遭遇火灾, 五万多居民变得无家可归。香港政府为安置因为火灾而失去住房的居民采取了急救计划,为灾害的受害者和赤贫人员兴建了一些紧急及基本的安居住所, 也是从那时起, 香港政府把公共住房变成了政府建设的计划。自1954 年开始实施公屋制度起,经过50 多年的努力,香港政府通过住房保障制度较好地解决了香港低收入群体的住房问题,成为世界上解决住房保障问题的一个成功典范。 香港政府于1973年4月1日颁布并实施了《香港房屋条例》,从并成立了专门的法定机构—香港房屋委员会(以下简称“房委会”)。房委会主席由运输及房屋局局长兼任,房屋署署长则为房委会副主席。房屋署是房委会的执行机关。除主席及副主席外,房委会成员还包括两名官方及26名非官方委员,全部由行政长官委任。所有非官方委员都是以个人身份接受委任。 根据房屋委员会的资料,至2011年6月,香港共有公屋72.13万套,超过200万香港人居住其中,约占香港人口的1/3。香港的住房市场包括四个部分:公营永久房屋,47.7%的香港人居住在公营永久房屋中,其中租住单位30.0%、资助出售单位17.7%;私人永久房屋51.8%;公营临时房屋(自2006年起不再适用);私人临时房屋0.5%①

(数据截止2011年第三季度,下同)。从住宅套数上看,公营房屋共计1137千套,其中房委会公营租住房屋单位708千套,房委会中转房屋单位5千套,房协租住单位34千套,房委会资助出售单位374千套,房协会资助出售单位16千套;私人房屋1433千套。类比我国公租房在建设档次、供给方式和保障对象上的情况,香港的公营租住房屋具有较高的借鉴意义。 全港公屋主要分布在四个区域内,分别为市区(包括港岛及九龙),扩展市区(包括东涌、沙田、马鞍山、将军澳、荃湾、葵涌及青衣),新界(包括天水围、大埔、粉岭、上水、屯门及元朗)和离岛(不包括东涌)。房委会设有公屋轮候册,以便为符合资格的申请人提供公租房,轮候册可于各屋办事处、分区租约事务管理处、深水房屋事务询问处、房屋署公屋申请分组及各区民政事务处免费索取。申请人根据自己的实际情况填写公屋轮候册,房屋署对所有符合资格的公屋申请者依先后顺序进行登记,并将严格依照轮候册上的申请书编号及申请人所选择的地区,依次办理审查及配房手续。所有申请者必须通过公屋轮候才能获得公屋配置。 1.公租房保障对象的界定标准 (1)配租对象 房委会根据申请人不同,将公租房计划分成四种类型。(1)一般家庭申请计划。这种申请计划主要是以家庭为单位,向房委会提交申请。申请人在填写公屋轮候册时,必须满足下列基本条件:申请者必须是年满18周岁,其家庭成员拥有在港永久居住权;18周岁以下的

值得学习的香港房地产模式

值得学习的香港房地产模式 “香港经验”依然值得内地同仁借鉴内地房地产业的改革发展与香港回归的脚步基本是同步的,这是历史的巧合,也是历史的必然。作为中国内地对外交往的重要窗口,“香港经验”一直是内地改革开放的重要样板。作为房地产而言,内地与香港在房地产所要面对的境况具有太多的相似,香港的发展思路也就成了以深圳为代表的众多内地城市的发展模式。 回归10年,内地与香港在交流中相互促进,在发展中互相借鉴,共同促进了经济的繁荣和发展。在房地产行业,房地产市场的10年与香港回归的10年基本重合。10年来,内地房地产市场化的发展处处显示出“香港经验”的印记。10年后,这些“香港经验”仍然值得内地房地产行业继续学习和借鉴。 香港房地产的发展,至少三个方面的经验都是内地房地产业界必须认真学习、研讨的重点。一是香港房地产业的快速起步和发展历史,二是公屋(廉租房)制度,三是香港处理亚洲金融危机所导致的房地产泡沫破灭的经验和智慧。 香港房地产的快速起步和发展,得益于自由完善的市场环境和灵活多样的融资体制,以及不断创新的对购房者进行支持的金融产品。房地产是一个资金密集型行业,而在香港房地产起步的上个世纪五六十年

代,无论是港府还是开发商资金都十分有限,楼花和按揭制度的创设和引入,使开发商能迅速回笼资金,大大提高了资金的使用效率,也引导了购房者的消费观念,而港府则通过土地招拍挂提高了财政收入。 这些措施对于起步阶段的香港房地产起到了重要的推动作用,这些制度也在改革开放后从深圳传入内地,促进了内地房地产的发展。随着时间的变迁,类似于预售制、招拍挂等内容也不断在实践中遇到问题,但是其基本思路,尤其是在提高资金使用效率方面的思路永远值得借鉴。 在内地,目前困扰房地产开发和银行系统的仍然是资金及其管理问题。由于投融资渠道单一,内地房地产开发资金70%左右直接和间接来自银行贷款,银行系统过多地承担了房地产金融风险,不仅为金融风险埋下隐患,而且使宏观调控处处掣肘。反观香港房地产,其融资渠道则顺畅得多,开发企业既可以从银行获得支持,也很容易通过发行股票和债券融资,而后者在内地基本属于起步阶段,仍然需要更多的政策支持。 香港的公屋制度起源于灾难性的“石硖尾大火”,公屋制度不仅包括政府出资建造建筑实体,还包括货币化的综援金制度。到1997年,在当时全港650万居民中,居住在出租公屋、政府补助出售单位的人口达331.38万,占全港人口的50.97%。公屋制度与香港的房地产大规模开发几乎同步,不仅解决了众多中低收入者的住房问题,还为香港节约

房地产公司的商业模式概述

房地产公司的商业模式 中城房网轮值主席、万通集团董事局主席冯仑:近期以来,业界各种各样的研讨会关注的不外乎三个层面的问题,第一是行业问题,即市场趋势,行业进展;第二是项目问题,产品性能,科技进步;在这两者之外,还有一层即公司问题。公司治理经营渐成大伙儿关注的重点,你那个公司如何能办得不仅今天赚钞票,而且能够持久进展,比较好地保持竞争力。我们通过一段时刻的考虑和研究,提出了房地产公司的商业模式,分成了几种类型,每一种类型我们会提出一些案例和一些典型的公司。 开发公司模式 1、房屋开发模式 该模式又分三种类型。 第一种类型为沃尔玛模式。比较典型的是万科模式,在不同城区的郊区大规模的拷贝,产品极其单一化,目标客户极其准确,体制上采取一个总部强势操纵,有打算地在郊区连锁开店,该模式经济增长特不快,万科今年营业额可能能够超过40亿元,会打破近五年来一个地产公司年销售额最高不超过30亿如此一个纪录。 第二种类型为百货公司模式。现在的华润置地是那个模式,即在同一个地域,各种产品同时做,产品多样化,像一个百货公司高中低档什么产品都有,商户、写字楼、住宅、酒店、公寓。这种百货公司模式比较多的见于过去城建系统转制过来的开发公司和国内专门多综合性的大型国营开发公司。

第三种类型为精品店模式。这是万通地产致力追求的模式,只在少数高端市场进行精品店经营,我可能卖的车是劳斯莱斯,一天卖不出几辆,然而每一辆的价格高,因此营业额较高。万通今年销售额会超过20亿元,要紧集中于高端产品。 2、土地开发模式 一种是陆家嘴模式,即一个整体公司以经营土地为主,通过规划,成片出让,同时与开发结合,要紧是综合金融、贸易、商业等业态。陆家嘴每年的营业额实际上专门少,但利润专门高,要紧是土地出让的收益特不大。 一种是天津开发区模式,即工业土地的开发模式,由于经营的土地要紧是工业区,都市机能较差,因此工业区土地价值的增值幅度和它收益情况比陆家嘴要差得多,但该模式也是国内惟一一个,甚至是要紧的一个靠土地经营的工业区赚钞票的一个企业。 3、混合开发模式 混合开发的模式又分成两种。一种是纵向重叠的混合开发模式,即现在传统的开发公司采取的模式,从拿地一直到物业治理纵向重叠起来,所有环节你自己都要做,如此功能上就不够专业化,公司内部治理上又互相重叠。在广东,甚至有相当多的企业还有自己的设计院、建材公司、施工建设公司。 另外一种,是交叉混合开发模式,典型案例是珠江和合生创展,该模式使拿土地和开发房子、建房子有适当的划分。珠江大片的拿地,然而合生创展几乎不自己拿地,只做房屋。如此交叉起来,同时又是一个老总,在北京、上海和广东有大量的开发,

香港住区规划

住区规划原理报告 ——香港

目录 第一部分:香港住区背景 香港的土地制度 香港住区开发建设相关政策 “香港模式” 住区发展历程 第二部分:案例分析 秀茂坪 牛头角上邨 香港凯旋门 第三部分:保障性住宅 保障性住宅政策 城市中的空间分布 规划设计方法 保障性住房案例 第四部分:对我国住区发展建设的启示

港岛、九龙半岛、新界与 离岛三大区,其中约有80 %的土地属于丘陵山地。 唯一较广阔的平地位于新 界西北部。

?现有建成区大多位于维 多利亚港狭长的南北面。 ?由于可供发展的土地严 重缺乏,人口密度高, 整体人口密度每平方公 里6480人 香港维多利亚港景色(太平山视角)

香港的土地制度 ?一、土地使用权制度 ?香港的土地是leasehold制度,即香港所有土地拥有权,除了位于中环的圣约翰大教堂是唯一私人拥有的土地外,则全部由香港政府所拥有,再由政府出租予居民,除一次性收取「卖地」金额以外,居民则需向政府缴交地租。 ?二、土地使用权出让制度 ?香港在1997年经历金融风暴后,开始调整批地政策,至2004年全面采用「勾地」制度,即是由有意土地使用者从政府的土地储备表中,提出对某地块所愿意支付出的「最低价格」,该有兴趣发展商需向政府提交相等于「最低价格」5%款项的按金,再经过公开拍卖或招标形式,由政府批出土地。以这种「勾地」方式卖出土地,既能配合有意发展商之土地实际需求,在拍卖过程中又能体现自由经济下公平竞争的原则,政府亦可以控制土地之批出及价格。 ?三、土地使用权转让制度 ?由于香港实行高地价政策,除了开发成本外,也要计算机会成本,受让方的出价要相当高,经过私人协商由原土地使用权人把土地使用权年期卖给另外之发展商,所以在香港并不常见。

国内外房地产公司盈利模式及适用条件研究

国内外房地产公司盈利模式及适用条件研究 【摘要】盈利模式是指房地产企业从思考收入来源问题开始,围绕价值创造、传递和实现而形成的一种逻辑。笔者试图分析国内外房地产公司的土地升值、产品建设、产品开发销、物业经营等盈利模式,从而探讨出其有利的适用条件。 1.房地产公司盈利模式定义 1.1盈利模式从历史来看,盈利模式问题是因为互联网企业缺乏收入来源而引发的,而不是经营不善缺乏效率导致没有利润引发的。具体到房地产行业,盈利模式是指房地产企业从思考收入来源问题开始,围绕价值创造、传递和实现而形成的一种逻辑。这种逻辑体现为企业选择自身价值网络中的地位就是选择价值传递和实现的方式;这种逻辑最终体现在企业对自身战略、结构和能力的选择上,并因此之故企业获得利润。 所以,在以下对房地产公司盈利模式的归纳、分析依据就是根据行业的价值链。 2.国内外房地产公司的盈利模式分析 2.1土地升值模式过去,开发商通过协议的方式,往往能够以比较低的价格取得土地的使用权,而在这种方式下,“关系”这种非市场化因素就成为取得土地的重要因素,在开发建设环节不必太操心,即便是粗放型的开发和管理,在项目建成之后,也能依靠土地升值而获取超额利润。 在这种盈利模式下,房地产企业通过利用“关系”资源以及当时的政策缺陷,在收入和其他支出一定的情况下,通过降低土地获得成本,实现粗放式的盈利。

2.2地产商模式地产商模式的特点是其经营的产品不是房屋,而是土地本身。产先,开发商通过土地招、拍、挂等方式取得土地的开发使用权;第二步,房地产开发商对得到的土地进行拆迁、平整、做好“三通一个平”为基础工作,持有土地一段时间或对上地周边进行开发使土地增值;第三步,房地产开发商把地块再转让给别的开发商,实现土地增值。 2.3产品建设模式房地产开发商从事房屋的建设,实现房地产开发的真实增值。有的房地产开发企业是专业以房屋建设为主要业务,实现企业的盈利;有的房地产开发商除了充实房屋的建设,还从事一定的城市基础设计建设,体现企业更多的盈利点。 2.4产品开发销售模式这是一会儿房地产企业的盈利模式,即通过对房屋的开发,通过销售出让产权,快速收回资金,最终实现盈利。房地产开发商从事商品房的销售,是实现房地产企业专门从事商品房的销售活动,包括二手房的销售,以此实现企业盈利。

对中国香港地区菲利普斯曲线的验证

对中国香港地区菲利普斯曲线的验证 一:关于通货膨胀、失业和菲利普斯曲线 英国经济学家菲利普斯(A. W. Philips )通过整理英国近一个世纪的统计资料,发现货币工资增长率与失业率之间存在着一种负相关关系,这种关系用曲线形式描述,就是菲利普斯曲线。由于工资是产品成本主要构成,因而对产品价格有决定性影响,所以西方经济学家把菲利普斯曲线延伸为表现失业率与通货膨胀率的替代关系:低水平的失业率,伴随着高水平的通货膨胀率;反之,低水平的通货膨胀率,对应着高水平的失业率。同时西方经济学家们也将这种替代关系作为政府进行总需求管理操作依据:当通货膨胀率太高时,采用提高失业率的紧缩政策;当失业率太高时,采用提高通货膨胀率的扩张政策,以达到避免经济过分波动的目的。 在现代主流宏观经济学中,向下倾斜的“替代性”的菲利普斯曲线一般只在短期中成立。在长期中,通常认为菲利普斯曲线是垂直的,而且对应于最低可持续失业水平(甚至有的经济学家认为菲利普斯曲线在长期是不存在的)。现代菲利普斯曲线还包括了预期的通货膨胀(这种补充是米尔顿·弗里德曼和爱德蒙·费尔普斯研究的结果)和供给冲击。这种增加要归因于OPEC ——因为国际石油主要受OPEC 所垄断,他们缩减产量,控制石油价格虽然不全为经济目的。在20 世纪70 年代,OPEC 引起了世界石油价格大幅度上升,这使经济学家更加认识到总供给冲击的重要性。 通货膨胀和失业是描述经济增长的两大重要因素。我们都希望经济呈“低失业率高增长”的态势发展,然而经济的发展并不会“乖乖”的依着我们的愿望而发展。通货膨胀或者通货紧缩和失业总是政府很难对付的对象。下面分别对这两大重要因素做简要论述: 通货膨胀:是指价格水平的持续上升或者是币值持续下降的过程,它是一个长期概念——简而言之,就是钱多货少。西方经济学曾介绍过通货膨胀包括:温和的、急剧的、恶性的通货膨胀。我们用价格指数(CPI )的加权平均价格来衡量通货膨胀。 失业:是指在劳动年龄内有劳动能力,目前无工作(不能凭借工作获得一定报酬)的人,这部分人以某种方式正在积极寻找工作的现象。同样,西方经济学也曾介绍过失业包括:季节性、摩擦性、结构性、流动性、周期性失业。由于在失业统计的过程中存在着或多或少的失真,我们找到的失业率也只是城镇登记失业率。 在西方经济学中我们已经对失业和通货膨胀有过方方面面的学习,在此且不赘述。 二、菲利普斯曲线的推导 菲利普斯曲线说明了其通货膨胀率取决与三种力量:预期的通货膨胀 e π ;失业率与自然失业率的背 离,即周期性失业n U U -;供给冲击(供给冲击指对总供给产生意外重大影响的生产成本或生产率的 突然变动,作为供给冲击的结果,实际GDP 和价格水平会发生预料不到的变动)。 这三种力量表现为现代菲利普斯曲线的方程: () ν βππ+--=n e U U 通货膨胀=预期的通货膨胀-(β*周期性失业)+供给冲击 这个菲利普斯曲线方程式由总供给方程式推导而来。总供给方程式为: P=P e +(1/α)(Y-Y n ) 首先,在方程式右边加上一项供给冲击ν代表改变物价水平并使短期总供给曲线移动的外生事件。 P= P e +(1/α)(Y-Y n )+ν 然后,方程两边减去上一年物价水平P -1得

香港公屋制度对我国廉租住房制度的启示

第17卷 第1期长 春 大 学 学 报 Vol .17 No .1  2007年1月 JOURNAL OF CHANGCHUN UN I V ERSI TY Jan .2007  文章编号:1009-3907(2007)01-0036-04 收稿日期:2006-11-02 作者简介:周精灵(1982-),女,湖北省武汉市人,武汉科技大学文法与经济学院硕士研究生,主要从事社会保障理论研究。 香港公屋制度对我国廉租住房制度的启示 周精灵,刘 丹 (武汉科技大学文法与经济学院,湖北武汉 430081) 摘 要:廉租房制度是住房保障的核心内容之一。建立和完善廉租房制度,是解决城镇新贫困人 口住房问题的重要途径,也是住房制度改革的一项重要内容。本文着重分析了香港公屋制度的具体特点,在借鉴香港公屋制经验的基础上,根据我国国情提出了解决我国廉租房制度现存问题的具体措施。 关键词:香港公屋;廉租房;政府支持;专业运营;资金筹集;准入与退出机制中图分类号:F293131 文献标识码:A 1998年下半年,我国基本完成了传统的福利性住房制度向商品性住房制度的历史性转变,逐步建立了以市场配置资源为主的住房新体系。广大城镇居民开始转向通过市场渠道解决住宅问题。房地产业蓬勃发展,迅速成为我国新的经济增长点。居民的住宅水平得到了显著提高,市场化取向的住房制度改革取得了一定成效。但由此也产生了新的问题,大量低收入家庭没有经济能力通过市场化渠道购买住房,因此早在1999年4月,政府部门就已经出台《城市廉租住房管理办法》,希望通过廉租房计划来解决城市低收入家庭的住房问题。2004年3月1日开始实施新的《城镇最低收入家庭廉租住房管理办法》和2005年5月1日起实施的《城镇廉租住房租金管理办法》,进一步明确了政府负有为低收入人群提供廉租住房保障的责任。但从我国目前廉租房计划的实践来看,还存在诸多问题必须加以解决,才能更好地推进城镇廉租房计划的进程。 1 香港的公屋制度 香港政府于1954年开始实施公屋制度,经过50多年的实践,已日趋完善。截止2004年3月 底,香港约20119万人,即占香港人口的30%,居住在香港房屋委员会提供的公屋,租住公屋单位 的数目为6418万个,占全港房屋总数的三成[1] 。 香港公屋计划的巨大成功,与香港政府的长期积极投入、公屋管理部门高效务实的专业运营和管理、有效的财政资金安排密不可分,这些成功的经验为中国内地的廉租房制度提供了宝贵的经验。111 专业化的运营和管理 在公屋的发展中,香港房屋委员会发挥了积极的作用。1973年成立的香港房屋委员会不以赢利为目的,它由政府直接经营,以满足那些市场不能为其提供基本住房的低收入人群的住房需要。房委会负责统筹所有政府公屋供应、编配和管理事务,通过其执行部门房屋署规划及兴建公屋。同时房委会还注重成员在社会和专业背景方面的多元化,以确保房屋政策的研究和制订能反映社会不同阶层的意见。对于房屋事务,房委会聘用专业房屋事务经理管理辖下房屋。 在公屋的建设过程中,香港房委会不仅照例建设有效率的公屋社区和发达的交通网络,还尽量争取各项配套设施的同步完成,并通过对公屋进行持续的维修、改善和重建计划,以提高公屋的居住质量。 112 政府土地政策的支持 香港政府对公屋建设最大的资助是免费拨地给房委会。政府定期及准确评估房屋需求,供应足够建屋土地并提供配套的基础设施。为达到土地供应平稳,政府尽量灵活和弹性地处理土地供应,为不

香港房地产政策

香港住房政策演变及可借鉴的经验 香港住房政策演变及可借鉴的经验 来源:转载新筑网作者:编辑:边缘 1842年当《南京条约》将香港沦为英国的殖民地时,香港不过是一个名不见传的小渔村。今天,这个面积虽只有1102平方公里,人口有680万的“弹丸之地”在金融、贸易物流等方面却创造了许多“世界第一”。然而,人口密度高(每平方公里6946人),土地资源短缺,导致香港的房价高,购置一套70平方米的普通住宅也要上百万港元,店铺、商用楼的租金更是世界之最。高房价,一方面,抑制了居民住房条件的改善,使人均GDP名列全球第24位香港住宅私有率仅为46%,人均居住面积、环境,也大大低于许多同等经济发展水平的国家。另一方面,对住房的巨大需求也促进了建筑业、金融服务业的发展。 1 住宅产业的发展及政策演变 香港住宅业的发展及政府的介入要追朔到20世纪50年代。其住房政策的演变大致可分为三个阶段: 第一阶段:消除“房荒”阶段。在第二次世界大战结束之后,大批难民的涌入使得香港人口在短短几年内从50万剧增至200万,1953年12月,一场大火将九龙半岛石峡尾本屋区烧成一片废墟,5.8万人流落街头,“房荒”可以说是困扰香港当时社会经济的首要问题,这迫使香港政府开始介入住房市场。 1953年,政府推出的公共房屋计划主要是为救助和安置木屋区遭受火灾的灾民和最贫困阶层的住房问题,为他们提供一些临时性房屋或公共屋村(即廉租屋)。兴建临时性安置所、中转房屋和公共屋村为无家可归者和低收入者提供了基本的住房保障。 第二阶段:住房条件改善阶段。随着战后香港经济的发展,政府财力的增强,1972年,港府推出了“十年建屋计划”,这是政府积极从供给方面入手,全面改善

房地产企业拿地十六种模式详解

房地产企业拿地十六种模式详解 1招、拍、挂 规范的拿地(专题阅读)方式:出让土地一方为国家,没有任何税费,拿地一方,可以支付的款项进入企业所得税和土地税成本,没有任何争议。 问题1:土地闲置费问题。(国税函【2010】220号、国税发【2009】31 号) 问题 2: 契税问题。财税【2004】134号、国税函【2009】603号(一级开发情况下出现 的问 题) 问题 3: 考虑拿地的主体问题;例如,签订土地转让框架协议的可以是母公司,如果是后签订协议,一定是项目公司。否则,土地再转让到项目公司,税收问题很严重。 问题4:返还的土地出让金问题。财税【2009】151号、财税【2009】87号文件。例如, 某公司5亿元拍下了土地,政府又返还了2亿元土地出让金。 2不是招、拍、挂,创造招、拍、挂(操纵政府) 例如:某国有企业土地补缴土地出让金,变为开发用地后,准备将地转让给某开发企业。 第一步,国家将土地收储,支付给开发企业补偿费,营业税(国税发[1993]149号文件、国税函【2008】277号文件、国税函【2009】520号文件)不征税,土地税(《条例》和财税【2006】21号文件,不征税,企业所得税(国税函【2009】118号文件,享受搬迁补偿纳税 待 遇) 第二步,国家二次招拍挂,承诺该企业拿到土地,支付给国有企业的拆迁补偿费在招拍 挂中支付;此时,政府出让土地,没有任何税费。 第三步,如果该国有企业要房子,不要地,则地产企业保留分给国有企业的房子不卖, 而是在将利润分走后,将企业股权留给国有企业来完成。 总结:该方法主要是为了在尽量节省税款的方式下,解决如何将土地从一个国有企业转 移到另外一家。 3购买转让土地(项目) 买方:直接按照支出款项作为成本费用,除了缴纳契税以外,没有其他涉税问题,干净。

香港自古就是中国领土

香港自古就是中国领土 香港(包括香港岛、九龙、“新界”地区)位于北纬22°9′到22°37′,东经113°52′到114°30′,大约在1万年前,香港岛与今九龙半岛还是连成一片的陆地,属于大陆山脉的延伸部分,未有今维多利亚海峡之阻。后来由于山体的沉降和海水的入侵,造成与大陆的分离。70年代香港建造地铁时,科学家们对海底发掘样品进行C14测定,证明在公元前6000年时,海面在今海平面之下大约11米处。 早在四五千年前,中华民族就有人在这片土地上生活和劳作,30年代出土的大量石斧、石刀、石簇、石锤、陶釜、陶鬲、陶碗、陶盂、铜锐、铜戈、铜镜、铜环、玉斧、玉 、玉珥等等,都充分证明了这一点。到了春秋战国时期,香港成了百越族勇士们远征海外的基地之一。百越(或称百粤)是当时完全不同于中原部落的南方部落,他们种类众多,善于捕鱼、驾船、航海,很少从事农耕、狩猎,崇拜鸟形风神,经常有部落扬帆远征,香港便是他们天赐的出发地。每当东北季风徐徐吹来,勇士们便升起风帆,驶向大海的深处,寻找理想的乐土。许多学者认为,如今生活在南太平洋群岛及东南亚一带的土著民族,就是中国百越族迁徙而去的一个分支,甚至有中外学者认为,百越族的勇士们曾经踏上了南美大陆和非洲陆地。

秦始皇三十三年(公元前214年),从黄土高原呼啸南下的剽悍的秦兵,轻而易举地征服了舞弄鱼叉、鱼网的百越战士。首次完成统一中国大业的始皇帝嬴政,在岭南地区设置了南海、桂林、象郡三个郡,移徙50万人开发和镇守岭南。从此,香港地区一直在中央政府的行政管辖之内,直到英国人侵占香港之前,历代历朝都是如此,从未间断过。 有人说,在英占之前,香港一直是一座荒凉的不毛之地,人烟稀少,只是散落着两三个小渔村。其实这是一种偏离史实的观点。至少在唐宋时期,香港就已经相当繁荣了,不亚于东南沿海其他地区。香港的海盐、珍珠和香木,曾经闻名华南,饮誉全国。从东晋以后,香港就是南中国海上交通的要道。作为中国的一块领土,几千年来香港地区一直处在中国政府的管辖之下。自秦到清,历代王朝都在这里设官治民。而居民们也讲礼教,敬祖先,开学堂,读圣书,过着与中国其他地区的人一样的平静生活。 康熙年间(公元1704年),清朝政府曾派兵在香港驻守,准许内地人民迁到岛上居住,并准缴纳地税,领地耕种。从此,各地迁来岛上居住谋生的人比以前多了。在香港定居的有本地人、客家、福佬和水上居民(旧称蛋家)。本地人是广州语系的人,由香港附近各地迁来,多半住在平地,并拥有相当的田地;客家是由惠州、梅县、海丰、陆丰等地移来,因为他们来得迟,平地已被本地人占去了,因此多数住在山上;福佬是从福建南部沿海

国外房地产开发模式一览

国外房地产开发模式一览(转贴) 现阶段我国房地产业发展过程中出现的诸多矛盾,都可以从行业制度上和运作模式上找到原因。如果仅盯着高房价这些表面现象争论不休,开出相关的药方往往只能“治标”而不能“治本”。 目前国际上具有一定代表性的房地产开发模式主要有两种:一种是以市场化资本运作为主、注重专业化细分和协作的“美国模式”;另一种是从融资、买地、建造,到卖房、管理都以开发企业为中心的“香港模式”。我国近几年的房地产宏观调控,使房地产开发模式渐渐由香港模式向美国模式转变,尤其自2005年以来,美国模式成为中国地产圈内的高温词汇,国内众多地产大腕屡屡提起。“弃港投美”,目前已经有不少品牌开发商对此趋之若骛。 香港模式 “一条龙”式垄断游戏 由于地缘关系和土地公有等方面的相似性,目前我国的房地产开发模式基本上借鉴了香港模式。香港模式是一条以房地产开发企业为核心的纵向运作链,投资买地、开发建设、营销销售、物业管理等,通常由一家企业独立完成,堪称“全能开发商”。香港房地产开发融资渠道也相对比较单一,主要构成是银行贷款和通过预售收取客户预购房款。香港模式具有以下几个鲜明特点: 地皮最值钱。香港拥有660万人口,却只是1070平方公里的弹丸之地,而作为人口高密度最高的上海,1700万人却拥有6340平方公里。这就跟解放前的中国农民一样——一辈子的梦想可能就是置下五亩地。对香港地产商而言,有地才是生存的硬道理。 项目运作“一条龙”化。香港房地产开发企业通常采用拿地、盖房、销售、物管“一条龙”式的滚动开发模式,作为“全能开发商”扮演着各类角色。长江和黄、新鸿基地产、新世界发展、恒基兆业等10家地产集团都是这样开发楼盘的。这种全能型模式有利于形成地产巨头,行业集中度相对较高,有利于资源的优化配置,正由于此,前十家地产商的开发量约占香港总开发量的80%左右。 获取土地是第一要义。政府高度垄断土地,大开发商高度垄断市场,房地产发展商占有了最具稀缺性的土地资源后,其他行业和社会财富自动聚拢而来,想不赚钱都难。香港不同于美国,地少人多、寸土寸金,拥有土地成了房地产开发企业竞争力的核心所在。 融资渠道相对单一。总体来说,香港地产商大型化、财团化之后,其自身财力已经比较雄厚,然后通过银行贷款和预售款,基本就能满足开发经营需求,没有太大动力进行多元化融资。 期房预售制。1953年,在香港严重供小于求的卖方市场下,霍英东首创卖楼花的游戏规则,期房预售使得开发商除银行贷款外,又获得了一个新的融资渠道。从而在资金要求上大大降低了开发商的入行门槛。 美国模式 敛聚暴利门都没有 通过严格的专业化细分,形成一条横向价值链,构成以专业细分和金融运作见长的房地产发展模式。

相关主题
文本预览