当前位置:文档之家› 高中数学圆锥曲线难题练习题带答案

高中数学圆锥曲线难题练习题带答案

高中数学圆锥曲线难题练习题带答案
高中数学圆锥曲线难题练习题带答案

高中数学圆锥曲线

一.选择题(共20小题)

1.已知F1、F2是椭圆=1的左、右焦点,点P是椭圆上任意一点,以PF1为直径作圆N,直线ON与圆N交于点Q(点Q不在椭圆内部),则=()

A.2B.4C.3D.1

2.在平面直角坐标系xOy中,已知椭圆+=1(a>b>0),过左焦点F(﹣2,0)倾斜角为的直线交椭圆上

半部分于点A,以F A,FO为邻边作平行四边形OF AB,若点B在椭圆上,则b2等于()

A.B.2C.3D.4

3.已知双曲线的右焦点到其中一条新近线的距离等于,抛物线E:y2=2px(p>0)的

焦点与双曲线C的右焦点重合,则抛物线E上的动点M到直线l1:4x﹣3y+6=0和l2:x=﹣1的距离之和的最小值为()

A.1B.2C.3D.4

4.已知椭圆(a>b>0)的焦距为2,右顶点为A.过原点与x轴不重合的直线交C于M,N两点,线段AM的中点为B,若直线BN经过C的右焦点,则C的方程为()

A.B.C.D.

5.已知经过原点O的直线与椭圆相交于M,N两点(M在第二象限),A,F分别是该椭圆的右顶点和右焦点,若直线MF平分线段AN,且|AF|=4,则该椭圆的方程为()

A.B.C.D.

6.已知椭圆T:的焦点F(﹣2,0),过点M(0,1)引两条互相垂直的两直线l1、l2,若P为椭

圆上任一点,记点P到l1、l2的距离分别为d1、d2,则d12+d22的最大值为()

A.2B.C.D.

7.点F为抛物线C:y2=2px(p>0)的焦点,过F的直线交抛物线C于A,B两点(点A在第一象限),过A、B分别作抛物线C的准线的垂线段,垂足分别为M、N,若|MF|=4,|NF|=3,则直线AB的斜率为()

A.1B.C.2D.

8.已知双曲线的一条渐近线方程为,且双曲线经过点(2,3),若F1、F2为其左、右焦点,P为双曲线右支上一点,若点A(6,8),则当|P A|+|PF2||取最小值时,点P的坐标为()

A.B.C.D.

9.已知双曲线C:=1(a>0,b>0)的左、右焦点分别是F1,F2,直线l:y=k(x﹣)过点F2,且与双曲线C在第一象限交于点P,若()?=0(O为坐标原点),且|PF1|=(a+1)|PF2|,则双曲线C的离心率为()

A.B.C.D.

10.已知点F1,F2是椭圆C1和双曲线C2的公共焦点,e1,e2分别是C1和C2的离心率,点P为C1和C2的一个公共

点,且∠F1PF2=,若e2=2,则e1的值是()

A.B.C.D.

11.已知双曲线﹣=1的左、右焦点分别为F1,F2,O为双曲线的中心,P是双曲线右支上的点,△PF1F2的内切圆的圆心为I,且圆I与x轴相切于点A,过F2作直线PI的垂线,垂足为B,则=()

A.1B.2C.3D.4

12.已知双曲线,F1,F2分别为双曲线的左右焦点,P(x0,y0)为双曲线C上一点,且位于第一象限,若△PF1F2为锐角三角形,则y0的取值范围为()

A.B.C.D.

13.已知F为双曲线的左焦点,过点F的直线与圆于A,B

两点(A在F,B之间),与双曲线E在第一象限的交点为P,O为坐标原点,若F A=BP,∠AOB=120°,则双曲线的离心率为()

A.B.C.D.

14.已知F1,F2分别为双曲线C:=1的左、右焦点,过点F2的直线与双曲线C的右支交于A,B两点,设

点H(x H,y H),G(x G,y G)分别为△AF1F2,△BF1F2的内心,若|y H|=3|y G|,则双曲线离心率的取值范围为()A.[2,+∞)B.(1,]C.(1,2]D.(1,2)

15.已知F1,F2分别为双曲线C:的左、右焦点,过点F2的直线与双曲线C的右支交于A,B两点,设

点H(x H,y H),G(x G,y G)分别为△AF1F2,△BF1F2的内心,若|y H|=3|y G|,则|HG|=()

A.2B.3C.3D.4

16.设双曲线C:(a>0,b>0),M,N是双曲线C上关于坐标原点对称的两点,P为双曲线C上的一动

点,若k PM?k PN=4,则双曲线C的离心率为()

A.2B.C.D.5

17.已知双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,渐近线分别为l1,l2,过F2作与l1平行的直线l交l2于点P,若|+|=|﹣|,则双曲线C的离心率为()

A.B.C.2D.3

18.已知过抛物线C:y2=4x焦点F的直线交抛物线C于P,Q两点,交圆x2+y2﹣2x=0于M,N两点,其中P,M 位于第一象限,则的最小值为()

A.1B.2C.3D.4

19.已知椭圆,圆A:x2+y2﹣3x﹣y+2=0,P,Q分別为椭圆C和圆A上的点,F(﹣2,0),则|PQ|+|PF|的最小值为()

A.B.C.D.

20.已知F1,F2是双曲线的左,右焦点,经过点F2且与x轴垂直的直线与双曲线的一条渐近线相交于点A,且,则该双曲线离心率的取值范围是()

A.[,]B.[,3]C.[3,]D.[,3]

二.填空题(共10小题)

21.已知椭圆的短轴长为2,上顶点为A,左顶点为B,左右焦点分别是F1,F2,且△F1AB的面积为,则椭圆的方程为;若点P为椭圆上的任意一点,则的取值范围是.22.已知F是椭圆C:=1(a>b>0)的左焦点,AB是椭圆C过F的弦,AB的垂直平分线交x轴于点P.若,且P为OF的中点,则椭圆C的离心率为.

23.椭圆C:和双曲线的左右顶点分别为A,B,点M为椭圆C的上顶点,直线AM与

双曲线E的右支交于点P,且,则双曲线的离心率为.

24.已知F1,F2分别为双曲线的左焦点和右焦点,过点F2且斜率为k(k>0)的直线l与

双曲线的右支交于A,B两点,△AF1F2的内切圆圆心为O1,半径为r1,△BF1F2的内切圆圆心为O2,半径为r2,则直线O1O2的方程为:;若r1=3r2,则k=.

25.已知双曲线的一条渐近线为l,圆M:(x﹣a)2+y2=8与l交于A,B两点,若△ABM是等腰直角三角形,且(其中O为坐标原点),则双曲线C的离心率为.

26.(文科)已知双曲线C:=1(a>0,b>0)的右焦点为F,以F为圆心,以|OF|为半径的圆交双曲线C 的右支于P,Q两点(O为坐标原点),△OPQ的一个内角为60°,则双曲线C的离心率的平方为.27.已知P是椭圆=1上任意一点,AB是圆x2+(y﹣2)2=1的任意一条直径(A,B为直径两个端点),则

的最小值为,最大值为.

28.已知抛物线C:x2=2py(p>0)的准线方程为y=﹣1,直线l:3x﹣4y+4=0与抛物线C和圆x2+y2﹣2y=0从左至右的交点依次为A、B、E、F,则抛物线C的方程为,=.

29.已知F1,F2分别是双曲线C:,b>0)的左,右焦点,过点F1向一条渐近线作垂线,交双曲线

右支于点P,直线F2P与y轴交于点Q(P,Q在x轴同侧),连接QF1,若△PQF1的内切圆圆心恰好落在以F1F2为直径的圆上,则∠F1PF2的大小为;双曲线的离心率为.

30.已知点F1、F2分别为双曲线C:(a>0,b>0)的左、右焦点,点M(x0,y0)(x0<0)为C的渐近

线与圆x2+y2=a2的一个交点,O为坐标原点,若直线F1M与C的右支交于点N,且|MN|=|NF2|+|OF2|,则双曲线C 的离心率为.

三.解答题(共10小题)

31.如图,已知抛物线C1:x2=4y与椭圆C2:(a>b>0)交于点A,B,且抛物线C1在点A处的切线l1

与椭圆C2在点A处的切线l2互相垂直.

(1)求椭圆C2的离心率;

(2)设l1与C2交于点P,l2与C1交于点Q,记△ABQ,△ABP的面积分别为S1,S2,问:是否存在椭圆C2,使得S1=2S2?请说明理由.

32.已知点N(1,0)和直线x=2,设动点M(x,y)到直线x=2的距离为d,且|MN|=d.

(1)求点M的轨迹E的方程;

(2)已知P(﹣2,0),若直线l:y=k(x+1)与曲线E交于A,B两点,设点A关于x轴的对称点为C,证明:P,B,C三点共线.

33.已知椭圆的离心率为,且坐标原点O到过点(0,b),的直线的距离为.

(1)求椭圆C的标准方程;

(2)是否存在过点的直线l交椭圆C于A,B两点,且与直线x=3交于点P,使得|P A|,|AB|,|PB|依次成等差数列,若存在,请求出直线l的方程;若不存在,请说明理由.

34.已知椭圆C:+=1的右焦点为F,过F的直线与椭圆C交于A,B两点,AB的中点为D.(Ⅰ)若点D的纵坐标为﹣,求直线AB的方程;

(Ⅱ)线段AB的中垂线与直线x=﹣4交于点E,若|AB|=,求|DE|.

35.已知抛物线C:y2=2px(0<p<5),与圆M:(x﹣5)2+y2=16有且只有两个公共点.

(1)求抛物线C的方程;

(2)经过R(2,0)的动直线l与抛物线C交于A,B两点,试问在直线y=2上是否存在定点Q,使得直线AQ,BQ的斜率之和为直线RQ斜率的2倍?若存在,求出定点Q;若不存在,请说明理由.

36.曲线C:y2=2px(p>0)与曲线E:x2+y2=32交于A、B两点,O为原点,∠AOB=90°.(1)求p;

(2)曲线C上一点M的纵坐标为2,过点M作直线l1、l2,l1、l2的斜率分别为k1、k2,k1+k2=2,l1、l2分别交曲线C于异于M的不同点N,P,证明:直线NP恒过定点.

37.已知抛物线的准线与半椭圆相交于A,B两点,且.

(Ⅰ)求抛物线C1的方程;

(Ⅱ)若点P是半椭圆C2上一动点,过点P作抛物线C1的两条切线,切点分别为C,D,求△PCD面积的取值范

围.

38.已知圆锥曲线+=1过点A(﹣1,),且过抛物线x2=8y的焦点B.

(1)求该圆锥曲线的标准方程;

(2)设点P在该圆锥曲线上,点D的坐标为(,0)点E的坐标为0,),直线PD与y轴交于点M,直线PE与x轴交于点N,求证:|DN|?|EM|为定值.

39.已知双曲线Γ1:﹣=1与圆Γ2:x2+y2=4+b2(b>0)交于点A(x A,y A)(第一象限),曲线Γ为Γ1、Γ2

上取满足x>|x A|的部分.

(1)若x A=,求b的值;

(2)当b=,Γ2与x轴交点记作点F1、F2,P是曲线Γ上一点,且在第一象限,且|PF1|=8,求∠F1PF2;

(3)过点D(0,+2)斜率为﹣的直线l与曲线Γ只有两个交点,记为M、N,用b表示?,并求?

的取值范围.

40.在直角坐标系xOy中,已知点A(﹣2,2),B(2,2),直线AD,BD交于D,且它们的斜率满足:k AD﹣k BD=﹣2.

(1)求点D的轨迹C的方程;

(2)设过点(0,2)的直线1交曲线C于P,Q两点,直线OP与OQ分别交直线y=﹣1于点M,N,是否存在常数λ,使S△OPQ=λS△OMN,若存在,求出λ的值;若不存在,说明理由.

高中数学圆锥曲线

一.选择题(共20小题)

1.【解答】解:连接PF2,由题意可知|PF2|=2|ON|,|NQ|=|PF1|,所以|OQ|=|ON|+|NQ|=(|PF2|+|PF1|)=×4=2,由极化恒等式可知,所以=3,(极化恒等式:).故选:C.

2.【解答】解:依题意,c=2,设A(x1,y1),B(x2,y2),∵四边形OF AB为平行四边形,∴y1=y2,又,,∴x2=﹣x1,又F A∥OB,且直线F A的倾斜角为,∴.∵y1=y2,x2=﹣x1,∴x1=﹣1,x2=1,.得A(﹣1,),将A的坐标代入椭圆方程,可得,

①又a2﹣b2=4,②联立①②解得:,.故选:B.

3.【解答】解:双曲线C:(b>0)的渐近线方程为y=±,右焦点(,0)到其一条

渐近线的距离等于,可得,解得b=2,即有c=,由题意可得=1,解得p=2,

即有抛物线的方程为y2=4x,如图,过点M作MA⊥l1于点A,作MB⊥准线l2:x=﹣1于点C,连接MF,根据抛物线的定义得MA+MC=MA+MF,设M到l1的距离为d1,M到直线l2的距离为d2,∴d1+d2=MA+MC=MA+MF,根据平面几何知识,可得当M、A、F三点共线时,MA+MF有最小值.∵F(1,0)到直线l1:4x﹣3y+6=0的距

离为.∴MA+MF的最小值是2,由此可得所求距离和的最小值为2.故选:B.

4.【解答】解:如图,设M(x0,y0),则N(﹣x0,﹣y0),∵A(a,0),且线段AM的中点为B,∴B(,),由B,F,N三点共线,得,依题意,F(1,0),∴,,

即.又y0≠0,解得a=3,∴b2=32﹣12=8.可得C的方程为.故选:C.

5.【解答】解:由|AF|=4,得a﹣c=4,设线段AN的中点为P,M(m,n),则N(﹣m,﹣n),又A(a,0),∴P (,),F(a﹣4,0),∵点M、F、P在同一直线上,∴k MF=k FP,即,化简即可求得a=6,∴c=2,则b2=a2﹣c2=32.故椭圆方程为.故选:C.

6.【解答】解:由题意知:a2=1+4=5,∴椭圆T:.设P(x0,y0),∵l1⊥l2,且M(0,1),∴

,又,∴=.﹣1≤y0≤1,∴当时,d12+d22的最大值为,故选:D.

7.【解答】解:由抛物线方程,可得直线方程为x=﹣,F(,0),设A(x1,y1),B(x2,y2),则M(,y1),N(﹣),∴,得,

①,得,②又直线AB过焦点F,∴,③

联立①②③得,p4=(16﹣p2)(9﹣p2),解得p=(p>0).设抛物线准线交x轴于K,则FK=p=.在Rt△MKF中,可得cos∠MFK=,由抛物线的性质,可得∠AMF=∠AFM=∠MFK,则∠AFK=2∠MFK,∴cos∠AFK=,则cos,∴sin∠AFx=,则tan.∴直线AB的斜率为.故选:D.

8.【解答】解;由题意,可设双曲线C的方程为y2﹣3x2=k(k≠0),将点(2,3)代入,可得32﹣3×22=k,即k=﹣3.故双曲线方程为.作出双曲线如图所示,连接PF1,AF1,由双曲线的定义,得|PF1|﹣|PF2|=2.∴|PF2|=|PF1|﹣2,则|P A|+|PF2|=|P A|+|PF1|﹣2≥|AF1|﹣2.当且仅当A,P,F1三点共线时等号成立,

由A(6,8),F1(﹣2,0),得直线AF1的方程为y=x+2.联立,得2x2﹣4x﹣7=0.解得x=1±.∵点P在双曲线的右支上,∴点P的坐标为(,).故选:C.

9.【解答】解:如右上图,由直线l:y=k(x﹣)过点F2,可得F2(),由()?=0,可得OP=OF2,取PF2的中点M,连接OM,则OM⊥PF2.又OM∥PF1,∴PF1⊥PF2.设PF2=m,则|PF1|=(a+1)|PF2|=(a+1)m,由,解得.∴双曲线C的离心率为e=.故选:C.10.【解答】解:设椭圆和双曲线的半焦距为c,长半轴长为a1,实半轴长为a2,即有e1=,e2=,设P为第一象限的点,|PF1|=m,|PF2|=n,由椭圆和双曲线的定义可得m+n=2a1,m﹣n=2a2,解得m=a1+a2,n=a1﹣a2,由∠F1PF2=,可得4c2=m2+n2﹣2mn cos,即为4c2=3a12+a22,即有,又e2=2,∴.

故选:D.

11.【解答】解:根据题意得F1(﹣,0)、F2(,0),设△PF1F2的内切圆分别与PF1、PF2切于点A1、B1,与F1F2切于点A,则|P A1|=|PB1|,|F1A1|=|F1A|,|F2B1|=|F2A|,又点P在双曲线右支上,∴|PF1|﹣|PF2|=4,故|F1A|﹣|F2A|=4,而|F1A|+|F2A|=2,设A点坐标为(x,0),则由|F1A|﹣|F2A|=4可得(x+)﹣(﹣x)=4,解得x=2,故|OA|=2,则△PF1F2的内切圆的圆心在直线x=3上,延长F2B交PF1于C,在三角形PCF2中,由题意得,

三角形PCF2是一个等腰三角形,PC=PF2,∴在三角形F1CF2中,有|OB|=|CF1|=(|PF1|﹣|PC|)=(|PF1|﹣|PF2|)=2,∴=1.故选:A.

12.【解答】解:由双曲线,得F1(﹣,0),F2(,0),∵P位于第一象限,∴∠PF1F2恒为锐角,又△PF1F2为锐角三角形,∴∠PF2F1,∠F1PF2均为锐角.由∠PF2F1为锐角,得2<x0<,∴

(0,).∵y0>0,∴y0∈(0,),由∠F1PF2为锐角,得>0,∴

>0,即>0,又,∴>0.即>,又y0>0,∴y0>.综上所述,y0∈().故选:C.

13.【解答】解:如图,由圆O的方程,得圆O的半径为OA=OB =.过O作AB的垂线OH,则H为AB的中点,又F A=BP,∴H为FP的中点,设双曲线的右焦点为F1,连接PF1,则OH为三角形FF1P的中位线,可得OH∥PF1,则PF1⊥PF,由∠AOB=120°,可得OH=.∴,则PF=,在Rt△PFF1中,由勾股定理可得:,整理得:.解得:e=或e=(舍).故选:D.

14.【解答】解:不妨设直线AB的斜率大于0,倾斜角设为θ,连接HG,HF2,GF2,设△AF1F2的内切圆与三边的交点分别为D,E,F,则|AF1|﹣|AF2|=|AD|+|DF1|﹣(|AE|+|EF2|)﹣|DF1|﹣|EF2|=|F1F|﹣|FF2|,即为2a=c+x H﹣(c

﹣x H),可得x H=a,同理可得x G=a,则HG⊥F1F2,在直角三角形F2FG中,|FG|=|FF2|tan=(c﹣a)tan,在直角三角形F2FH中,|FH|=|FF2|tan(﹣θ)=(c﹣a)tan(﹣θ),又|y H|=3|y G|,所以|FH|=3|HG|,即(c ﹣a)tan(﹣θ)==3(c﹣a)tan,解得tan=,由θ为锐角,可得=,即θ=,可得直线AB的斜率为,而双曲线的渐近线的方程为y=±x,由过点F2的直线与双曲线C的右支交于A,B 两点,可得>,即b2<3a2,即c2﹣a2<3a2,可得c<2a,由e=,且e>1,则1<e<2,故选:D.

15.【解答】解:不妨设直线AB的斜率大于0,连接HG,HF2,GF2,设△AF1F2的内切圆与三边的交点分别为D,E,F,则|AF1|﹣|AF2|=|AD|+|DF1|﹣(|AE|+|EF2|)﹣|DF1|﹣|EF2|=|F1F|﹣|FF2|,即为2a=c+x H﹣(c﹣x H),可得x H=a,

同理可得x G=a,则HG⊥F1F2,在直角三角形F2FG中,|FG|=|FF2|tan=(c﹣a)tan,在直角三角形F2FH 中,|FH|=|FF2|tan(﹣θ)=(c﹣a)tan(﹣θ),又|y H|=3|y G|,所以|FH|=3|HG|,即(c﹣a)tan(﹣θ)==3(c﹣a)tan,解得tan=,tanθ==,可得θ=,所以|HG|=4|FG|=4(2﹣)tan=4,故选:D.

16.【解答】解:由题意,设M(x1,y1),P(x2,y2),则N(﹣x1,﹣y1),∴k PM?k PN=?=,∵,,∴两式相减可得,即,

∵k PM?k PN=4,∴,则e==.故选:C.

17.【解答】解:如图所示,l1:y=,l2:y=﹣,F2(c,0),则过焦点F2平行于l1的直线方程为y=.由,解得P().∴|OP|=.由|+|=|﹣|,得F1P⊥F2P,即P在以线段F1F2为直径的圆上.则|OP|=c=,即e=.故选:C.

18.【解答】解:设P(x1,y1),Q(x2,y2),再设PQ的方程为x=my+1,联立,得y2﹣4my﹣4=0.

∴y1+y2=4m,y1y2=﹣4,则.|PM|?|QN|=(|PF|﹣1)(|QF|﹣1)=(x1+1﹣1)(x2+1﹣1)=x1x2=1,则≥2=2.∴的最小值为2.故选:B.

19.【解答】解:由圆A:x2+y2﹣3x﹣y+2=0,得.作出椭圆C与圆A的图象如图,

F(﹣2,0)为椭圆的左焦点,设椭圆的右焦点为F′(2,0),则|PQ|+|PF|=|PQ|+2

×4﹣|PF′|=8﹣(|PF′|﹣|PQ|),圆A过点F′,要使|PQ|+|PF|最小,则|PF′|﹣|PQ|需要取最大值为圆的直径.∴|PQ|+|PF|的最小值为8﹣.故选:D.

20.【解答】解:如图,由题意,A(c,),|F1F2|=2c,则tan.

由,得≤≤1,即2≤≤.∴e=∈[].故选:A.二.填空题(共10小题)

21.【解答】解:由已知可得2b=2,即b=1,∵△F1AB的面积为,∴(a﹣c)b=,得a﹣c=;

∵a2﹣c2=b2=1;∴a=2,c=.可得椭圆方程为;∴==.令|PF1|=m,则.∴=,∵≤m≤,∴1≤﹣m2+4m≤4;∴1≤≤4.故答案为:;[1,4].

22.【解答】解:由题意可得直线AB的斜率存在且不为0,设直线AB的方程为x=my﹣c,设A(x1,y1),B(x2,y2),因为P为OF的中点,所以P(﹣,0),因为,所以(﹣c﹣x1,﹣y1)=2(x2+c,y2),所以可得y1=﹣

2y2,联立直线AB与椭圆的方程,整理可得:(a2+m2b2)y2﹣2b2mcy+b2c2﹣a2b2=0,所以y1+y2=,x1+x2=m(y1+y2)﹣2c=﹣,所以A,B的中点坐标(﹣,),所以线段AB的中垂线方程为:y﹣=﹣m(x+),令y=0,可得x=,由题意可得﹣

=,可得a2(1+m2)=(2+m2)c2,①由,可得:9m2c2=(1+m2)a2②,由①②可得:9m2=2+m2,解得m2=,将m2=代入①可得a2=c2,所以=,故答案为:.

23.【解答】解:如图,由已知可得:A(﹣3,0),B(3,0),M(0,).则,AM所在直线方程为y=,设P(x0,y0),则,消去x0,y0,解得b2=6.则c=.∴双曲线的离心率为e=.故答案为:.

24.【解答】解:△AF1F2的内切圆圆心为O1,边AF1、AF2、F1F2上的切点分别为M、N、E,则|AM|=|AN|,|F1M|=|F1E|,|F2N|=|F2E|,由|AF1|﹣|AF2|=2a,得|AM|+|MF1|﹣(|AN|+|NF2|)=2a,则|MF1|﹣|NF2|=2a,即|F1E|﹣|F2E|=2a,记O1的横坐标为x0,则E(x0,0),于是x0+c﹣(c﹣x0)=2a,得x0=a,同理可得内心O2的横坐标也为a,

则有直线O1O2的方程为x=a;设直线l的倾斜角为θ,则∠OF2O2=,∠O1F2O=90°﹣,在△O1EF2中,tan∠O1F2O=tan(90°﹣)=,在△O2EF2中,tan∠O2F2O=tan=,由r1=3r2,可得3tan =tan(90°﹣)=cot,解得tan=,则直线的斜率为tanθ==.∴k=.故答案为:a;.

25.【解答】解:双曲线的一条渐近线l的方程为y=,圆M:(x﹣a)2+y2=8的圆

心M(a,0),半径为r=2,由△ABM为等腰直角三角形,可得AB=r=4,设OA=t,由,可得OB=5t,AB=4t,由4t=4,得t=1,过M作MD⊥AB,且D为AB的中点,OD=3,AB=4,AD=2,M到直线l的距离为MD=,在直角三角形OMD中,MD2=OM2﹣OD2,在直角三角形AMD中,MD2=AM2﹣AD2,

即有a2﹣9=8﹣4,解得a=,即有MD=2=,解得b=,c=,∴e=.故答案为:.

26.【解答】解:如图所示OP=OQ,且△OPQ的一个内角为60°,则△OPQ为等边三角形,∴OP=PQ,设圆与x轴交于G,连接PF,PG,则∠OPG=90°,由∠POG=30°,可得∠OGP=60°,

可得PG=PF=FG=c,由OG=2c,可得OP=c,PQ=c,则PH=c,可得OH=c,故P(c,c),又P为双曲线上一点,∴,由b2=c2﹣a2,e=,且e>1,可得9e4﹣16e2+4=0,解得e2=.故答案为:.

27.【解答】解:设圆C:x2+(y﹣2)2=1的圆心为C,则=()?()=(﹣﹣)?()==.∵P是椭圆=1上的任意一点,设P(x0,y0),,即.

∵点C(0,2),∴==.∵y0∈[﹣1,1],∴当y0=1时,取得最小值1,当时,取得最大值.∴的最小值为0,最大值为.故答案为:0;.

28.【解答】解:由抛物线C:x2=2py(p>0)的准线方程为y=﹣1,得﹣,即p=2.∴抛物线C的方程为x2=4y;圆x2+y2﹣2y=0为x2+(y﹣1)2=1,则圆心与抛物线的焦点M重合,圆的半径为1.如图,

联立,得4y2﹣17y+4=0.解得:,y F=4.∴|AB|=|AM|﹣1=|AA1|﹣1=;

|EF|=|MF|﹣1=|FB1|﹣1=4,则=.故答案为:x2=4y;16.

29.【解答】解:设F1(﹣c,0),F2(c,0),如图可得△QF1F2为等腰三角形,则△PQF1的内切圆圆心I在y轴上,又I恰好落在以F1F2为直径的圆上,可设I(0,c),双曲线的一条渐近线方程设为bx+ay=0,则直线PF1的方程

设为ax﹣by+ac=0,则I到直线PF1的距离为=|a﹣b|,由图象可得a<b,则|a﹣b|=b﹣a,设Q(0,t),且t>c,则直线QF2的方程为tx﹣cy+tc=0,由内心的性质可得I到直线QF2的距离为b﹣a,即有=b ﹣a,化简可得abt2﹣tc3+abc2=0,由△=c6﹣4a2b2c2=c2(a2﹣b2)2,解得t=或<c(舍去),

则Q(0,),直线QF2的斜率为=﹣,可得直线QF2与渐近线OM:bx+ay=0平行,可得∠F1PF2=,由F1到渐近线OM的距离为=b,|OM|==a,由OM为△PF1F2的中位线,可得|PF2|=2|OM|=2a,|PF1|=2|MF1|=2b,又|PF1|﹣|PF2|=2a,则b=2a,e===.故答案为:,.

30.【解答】解:如图,由题意可得,直线F1M与圆O相切于点M,且|MF1|=b,由双曲线的定义可知,2a=|NF1|﹣|NF2|=|MN|+|MF1|﹣|NF2|,∵|MN|=|NF2|+|OF2|,且|OF2|=c,∴2a=b+c,即b=2a﹣c,∴b2=(2a﹣c)2=c2﹣4ac+4a2,

又b2=c2﹣a2,联立解得4c=5a,即e=.故答案为:.

三.解答题(共10小题)

31.【解答】解:(1)设切点A(m,n),可得m2=4n,x2=4y即y=的导数为y′=x,可得切线l1的斜率为m,对椭圆+=1两边对x求导,可得+=0,即有y′=﹣,则椭圆C2在点A处的切线l2的斜率为﹣,由题意可得率为m?(﹣)=﹣1,化为b2=a2,则e====;

(2)假设存在椭圆C2,使得S1=2S2.由抛物线C1在点A处的切线l1的方程为mx=2(y+n),与椭圆方程x2+2y2=2b2联立,消去x可得(4+2m2)y2+8ny+4n2﹣2b2m2=0,则n+y P=﹣=﹣,解得y P=﹣,可得|y P﹣n|=|﹣﹣n|=,又椭圆C2在点A处的切线l2的方程为mx+2ny=2b2,与抛物线方程x2=4y联立,可得nx2+2mx﹣4b2=0,可得mx Q=﹣,即x Q=﹣=﹣=﹣,y Q=x Q2=?=,所以|y Q﹣n|=,由S1=2S2,可得=2?,即为2n2=1+2n,

解得n=+(负的舍去),则2b2=m2+2n2=4n+2n2=4+3,所以存在椭圆C2,且方程为+=

1,使得S1=2S2.

32.【解答】解:(1)由已知,,∴,化简得动点M的轨迹E的方程:;

证明:(2)设A(x1,y1),B(x2,y2),则C(x1,﹣y1),由,得(1+2k2)x2+4k2x+2k2﹣2=0,此时△>0,∴,,由直线BC的方程:,得:

,令y=0,则==

==,∴直线BC过点P(﹣2,0),即P,B,C三点共线.

33.【解答】解:(1)由题意可得e==,且a2﹣b2=c2,则a=2b,c=b,坐标原点O到过点(0,b),的直线的距离为,可得??a=?b?c,解得b=1,a=2,则椭圆的方程为+y2=1;

(2)假设存在满足题意的直线l,显然其斜率存在,设直线l的方程为y=k(x﹣),且A(x1,y1),B(x2,y2),联立,消去y,可得(1+4k2)x2﹣k2x+k2﹣4=0,由题意,可得△=16(k2+1)>0恒成立,又x1+x2=,x1x2=,由|P A|=|3﹣x1|,|PB|=|3﹣x2|,|AB|=|x1﹣x2|,且|P A|,|AB|,|PB|依次成等差数列,可得|3﹣x1|+|3﹣x2|=2|x1﹣x2|,即6﹣(x1+x2)=2,所以6﹣=2=2?,即52k2+15=4,解得k=±,

所以存在这样的直线满足题意,且直线l的方程为y=x﹣或y=﹣x+.

34.【解答】解:(Ⅰ)由题意知,F(1,0),设直线AB的方程为x=my+1,A(x1,y1),B(x2,y2),联立,消去x可得(3m2+4)y2+6my﹣9=0.∴.点D的纵坐标为,解得m=2或m=.当m=2时,直线AB的方程为x﹣2y﹣1=0;

当m=时,直线AB的方程为3x﹣2y﹣3=0.∴直线AB的方程为x﹣2y﹣1=0或3x﹣2y﹣3=0;

(Ⅱ)由(Ⅰ)可知,,.∴|AB|=

=.令,解得m=±1.从而可得D的纵坐标为,横坐标为.∵DE⊥AB,于是|DE|=.

35.【解答】解:(1)联立方程,得x2+(2p﹣10)x+9=0,∵抛物线C与圆M有且只有两个公共

点,则△=(2p﹣10)2﹣36=0,解得p=2或p=8(舍去).∴抛物线C的方程为y2=4x;

(2)假设直线y=2上存在定点Q(m,2),当直线l的斜率不存在时,A(2,),B(2,),

由题知2k RQ=k AQ+k BQ,即恒成立.当直线l的斜率存在时,设直线l的方程为y=k(x ﹣2),A(x1,y1),B(x2,y2),联立,得k2x2﹣4(k2+1)x+4k2=0,则,x1x2=4,由题知2k RQ=k AQ+k BQ,∴=

==.整理得:(m2﹣4)k﹣2(m+2)=0.∵上式对任意k成立,∴,解得m=﹣2.故所求定点为Q(﹣2,2).

36.【解答】解:(1)由对称性可知:A、B关于x轴对称,可设A(a,a),a>0,则a2=2pa?a=2p,把A(2p,2p)代入曲线C得:(2p)2+(2p)2=32?p=2;

(2)证明:由(1)得曲线C的方程为y2=4x,即有M(1,2),设N(x1,y1),P(x2,y2),则,

同理,(*),若直线NP斜率为0,直线NP的方程设为y=t0,代入曲线C,仅有一解,不合题意,舍去;当m存在时,设直线NP的方程设为x=my+t,把x=my+t代入y2=4x 整理得:y2=4(my+t)?y2﹣4my﹣4t=0,且16m2+16t>0,得,代入(*)式,得:﹣4t=4?t=﹣1,故直线NP的方程为x=my﹣1,可得直线NP恒过定点(﹣1,0).

37.【解答】解:(1)抛物线的准线:x=﹣,由抛物线的准线与半椭圆

相交于A,B两点,且.可得得p=2,所以.(2)设点P坐标为(x0,y0),满足.由题意可知切线斜率不会为0,设切线PC为(x﹣x0)=m1(y﹣y0),代入得y2﹣4m1y+4m1y0﹣4x0=0,由△=0可得①,设切点C(x1,y1),所以y1=2m1,代入①可得②.设切线PD为(x﹣x0)=m2(y﹣y0),切点D(x2,y2),同理可得

③.由②③可知y1,y2是方程y2﹣2y0y+4x0=0的两根,所以y1+y2=2y0,y1?y2=4x0,

又,,所以代入②③可知C(x1,y1),D(x2,y2)是4x﹣2y0y+4x0=0的两根,即CD直线方程为4x﹣2y0y+4x0=0.∴,∴,S△PCD==

=,又因为且x0∈[﹣2,0],

38.【解答】解:(1)抛物线x2=8y的焦点B(0,2),将点A(﹣1,),B(0,2)代入方程得:,解得,∴圆锥曲线的标准方程为;证明:(2)由(1)可知,该圆锥曲线为椭圆,且D(),E(0,2),设椭圆上一点P(x0,y0),则直线PD:,令x=0,得,∴|EM|=|2+|;

直线PE:,令y=0,得,∴|DN|=||.∴|DN|?|EM|=||?|2+|=||?||=|?|=||.∵点P在椭圆上,∴,即.

代入上式得:|DN|?|EM|=||=||=.

故|DN|?|EM|为定值.

39.【解答】解:(1)由x A=,点A为曲线Γ1与曲线Γ2的交点,联立,解得y A=,b=2;

(2)由题意可得F1,F2为曲线Γ1的两个焦点,由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=8,2a=4,所以|PF2|=8﹣4=4,因为b=,则c==3,所以|F1F2|=6,

在△PF1F2中,由余弦定理可得cos∠F1PF2===,由0<∠F1PF2<π,可得∠F1PF2=arccos;

(3)设直线l:y=﹣x+,可得原点O到直线l的距离d==,所以直线l是圆的切线,

设切点为M,所以k OM=,并设OM:y=x与圆x2+y2=4+b2联立,可得x2+x2=4+b2,可得x=b,y=2,即M(b,2),注意直线l与双曲线的斜率为负的渐近线平行,所以只有当y A>2时,直线l才能与曲线Γ有两个交点,

由,可得y A2=,所以有4<,解得b2>2+2或b2<2﹣2(舍去),因为为

在上的投影可得,?=4+b2,所以?=4+b2>6+2,则?∈(6+2,+∞).

40.【解答】解:(1)设D(x,y),由A(﹣2,2),B(2,2),得(x≠﹣2),(x≠2),∵k AD﹣k BD=﹣2,∴,整理得:x2=2y(x≠±2);

(2)存在常数入=4,使S△OPQ=λS△OMN.证明如下:由题意,直线l的斜率存在,设直线l:y=kx+2,P(x1,y1),Q(x2,y2).联立,得x2﹣2kx﹣4=0.则x1+x2=2k,x1x2=﹣4.=.则=.直线OP:y=,取y=﹣1,得,直线OQ:y=,取y=﹣1,得.则|x M﹣x N|=||=||=

相关主题
文本预览
相关文档 最新文档